mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-19 05:13:46 +00:00
community[mionr]: add Jina Reranker in retrievers module (#19406)
- **Description:** Adapt JinaEmbeddings to run with the new Jina AI Rerank API - **Twitter handle:** https://twitter.com/JinaAI_ - [ ] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ --------- Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
92969d49cb
commit
baefbfb14e
254
docs/docs/integrations/document_transformers/jina_rerank.ipynb
Normal file
254
docs/docs/integrations/document_transformers/jina_rerank.ipynb
Normal file
@ -0,0 +1,254 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f6ff09ab-c736-4a18-a717-563b4e29d22d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Jina Reranker"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1288789a-4c30-4fc3-90c7-dd1741a2550b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook shows how to use Jina Reranker for document compression and retrieval."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a0e4d52e-3968-4f8b-9865-a886f27e5feb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain langchain-openai langchain-community langchain-text-splitters langchainhub\n",
|
||||
"\n",
|
||||
"%pip install --upgrade --quiet faiss\n",
|
||||
"\n",
|
||||
"# OR (depending on Python version)\n",
|
||||
"\n",
|
||||
"%pip install --upgrade --quiet faiss_cpu"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d1fc07a6-8e01-4aa5-8ed4-ca2b0bfca70c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Helper function for printing docs\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def pretty_print_docs(docs):\n",
|
||||
" print(\n",
|
||||
" f\"\\n{'-' * 100}\\n\".join(\n",
|
||||
" [f\"Document {i+1}:\\n\\n\" + d.page_content for i, d in enumerate(docs)]\n",
|
||||
" )\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d8ec4823-fdc1-4339-8a25-da598a1e2a4c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up the base vector store retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9db25269-e798-496f-8fb9-2bb280735118",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's start by initializing a simple vector store retriever and storing the 2023 State of the Union speech (in chunks). We can set up the retriever to retrieve a high number (20) of docs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ce01a2b5-d7f4-4902-9156-9a3a86704f40",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"##### Set the Jina and OpenAI API keys"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6692d5c5-c84a-4d42-8dd8-5ce90ff56d20",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n",
|
||||
"os.environ[\"JINA_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "981159af-fa3c-4f75-adb4-1a4de1950f2f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.embeddings import JinaEmbeddings\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"documents = TextLoader(\n",
|
||||
" \"../../modules/state_of_the_union.txt\",\n",
|
||||
").load()\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
|
||||
"texts = text_splitter.split_documents(documents)\n",
|
||||
"\n",
|
||||
"embedding = JinaEmbeddings(model_name=\"jina-embeddings-v2-base-en\")\n",
|
||||
"retriever = FAISS.from_documents(texts, embedding).as_retriever(search_kwargs={\"k\": 20})\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = retriever.get_relevant_documents(query)\n",
|
||||
"pretty_print_docs(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b5a514b7-027a-4dd4-9cfc-63fb4d50aa66",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Doing reranking with JinaRerank"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bdd9e0ca-d728-42cb-88ad-459fb8a56b33",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now let's wrap our base retriever with a ContextualCompressionRetriever, using Jina Reranker as a compressor."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3000019e-cc0d-4365-91d0-72247ee4d624",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.retrievers import ContextualCompressionRetriever\n",
|
||||
"from langchain_community.document_compressors import JinaRerank\n",
|
||||
"\n",
|
||||
"compressor = JinaRerank()\n",
|
||||
"compression_retriever = ContextualCompressionRetriever(\n",
|
||||
" base_compressor=compressor, base_retriever=retriever\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"compressed_docs = compression_retriever.get_relevant_documents(\n",
|
||||
" \"What did the president say about Ketanji Jackson Brown\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f314f74c-48a9-4243-8d3c-2b7f820e1e40",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pretty_print_docs(compressed_docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "87164f04-194b-4138-8d94-f179f6f34a31",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## QA reranking with Jina Reranker"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "2b4ab60b-5a26-4cfb-9b58-3dc2d83b772b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"================================\u001b[1m System Message \u001b[0m================================\n",
|
||||
"\n",
|
||||
"Answer any use questions based solely on the context below:\n",
|
||||
"\n",
|
||||
"<context>\n",
|
||||
"\u001b[33;1m\u001b[1;3m{context}\u001b[0m\n",
|
||||
"</context>\n",
|
||||
"\n",
|
||||
"=============================\u001b[1m Messages Placeholder \u001b[0m=============================\n",
|
||||
"\n",
|
||||
"\u001b[33;1m\u001b[1;3m{chat_history}\u001b[0m\n",
|
||||
"\n",
|
||||
"================================\u001b[1m Human Message \u001b[0m=================================\n",
|
||||
"\n",
|
||||
"\u001b[33;1m\u001b[1;3m{input}\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.chains import create_retrieval_chain\n",
|
||||
"from langchain.chains.combine_documents import create_stuff_documents_chain\n",
|
||||
"\n",
|
||||
"retrieval_qa_chat_prompt = hub.pull(\"langchain-ai/retrieval-qa-chat\")\n",
|
||||
"retrieval_qa_chat_prompt.pretty_print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "72af3eb3-b644-4b5f-bf5f-f1dc43c96882",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n",
|
||||
"combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)\n",
|
||||
"chain = create_retrieval_chain(compression_retriever, combine_docs_chain)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "126401a7-c545-4de0-92dc-e9bc1001a6ba",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain.invoke({\"input\": query})"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-2",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-2"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -2,6 +2,9 @@ import importlib
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain_community.document_compressors.jina_rerank import (
|
||||
JinaRerank, # noqa: F401
|
||||
)
|
||||
from langchain_community.document_compressors.llmlingua_filter import (
|
||||
LLMLinguaCompressor, # noqa: F401
|
||||
)
|
||||
@ -14,6 +17,7 @@ __all__ = ["LLMLinguaCompressor", "OpenVINOReranker"]
|
||||
_module_lookup = {
|
||||
"LLMLinguaCompressor": "langchain_community.document_compressors.llmlingua_filter",
|
||||
"OpenVINOReranker": "langchain_community.document_compressors.openvino_rerank",
|
||||
"JinaRerank": "langchain_community.document_compressors.jina_rerank",
|
||||
}
|
||||
|
||||
|
||||
|
@ -0,0 +1,125 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List, Optional, Sequence, Union
|
||||
|
||||
import requests
|
||||
from langchain_core.callbacks import Callbacks
|
||||
from langchain_core.documents import BaseDocumentCompressor, Document
|
||||
from langchain_core.pydantic_v1 import Extra, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
JINA_API_URL: str = "https://api.jina.ai/v1/rerank"
|
||||
|
||||
|
||||
class JinaRerank(BaseDocumentCompressor):
|
||||
"""Document compressor that uses `Jina Rerank API`."""
|
||||
|
||||
session: Any = None
|
||||
"""Requests session to communicate with API."""
|
||||
top_n: Optional[int] = 3
|
||||
"""Number of documents to return."""
|
||||
model: str = "jina-reranker-v1-base-en"
|
||||
"""Model to use for reranking."""
|
||||
jina_api_key: Optional[str] = None
|
||||
"""Jina API key. Must be specified directly or via environment variable
|
||||
JINA_API_KEY."""
|
||||
user_agent: str = "langchain"
|
||||
"""Identifier for the application making the request."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key exists in environment."""
|
||||
jina_api_key = get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
|
||||
user_agent = values.get("user_agent", "langchain")
|
||||
session = requests.Session()
|
||||
session.headers.update(
|
||||
{
|
||||
"Authorization": f"Bearer {jina_api_key}",
|
||||
"Accept-Encoding": "identity",
|
||||
"Content-type": "application/json",
|
||||
"user-agent": user_agent,
|
||||
}
|
||||
)
|
||||
values["session"] = session
|
||||
return values
|
||||
|
||||
def rerank(
|
||||
self,
|
||||
documents: Sequence[Union[str, Document, dict]],
|
||||
query: str,
|
||||
*,
|
||||
model: Optional[str] = None,
|
||||
top_n: Optional[int] = -1,
|
||||
max_chunks_per_doc: Optional[int] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Returns an ordered list of documents ordered by their relevance to the provided query.
|
||||
|
||||
Args:
|
||||
query: The query to use for reranking.
|
||||
documents: A sequence of documents to rerank.
|
||||
model: The model to use for re-ranking. Default to self.model.
|
||||
top_n : The number of results to return. If None returns all results.
|
||||
Defaults to self.top_n.
|
||||
max_chunks_per_doc : The maximum number of chunks derived from a document.
|
||||
""" # noqa: E501
|
||||
if len(documents) == 0: # to avoid empty api call
|
||||
return []
|
||||
docs = [
|
||||
doc.page_content if isinstance(doc, Document) else doc for doc in documents
|
||||
]
|
||||
model = model or self.model
|
||||
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
|
||||
data = {
|
||||
"query": query,
|
||||
"documents": docs,
|
||||
"model": model,
|
||||
"top_n": top_n,
|
||||
}
|
||||
|
||||
resp = self.session.post(
|
||||
JINA_API_URL,
|
||||
json=data,
|
||||
).json()
|
||||
|
||||
if "results" not in resp:
|
||||
raise RuntimeError(resp["detail"])
|
||||
|
||||
results = resp["results"]
|
||||
result_dicts = []
|
||||
for res in results:
|
||||
result_dicts.append(
|
||||
{"index": res["index"], "relevance_score": res["relevance_score"]}
|
||||
)
|
||||
return result_dicts
|
||||
|
||||
def compress_documents(
|
||||
self,
|
||||
documents: Sequence[Document],
|
||||
query: str,
|
||||
callbacks: Optional[Callbacks] = None,
|
||||
) -> Sequence[Document]:
|
||||
"""
|
||||
Compress documents using Jina's Rerank API.
|
||||
|
||||
Args:
|
||||
documents: A sequence of documents to compress.
|
||||
query: The query to use for compressing the documents.
|
||||
callbacks: Callbacks to run during the compression process.
|
||||
|
||||
Returns:
|
||||
A sequence of compressed documents.
|
||||
"""
|
||||
compressed = []
|
||||
for res in self.rerank(documents, query):
|
||||
doc = documents[res["index"]]
|
||||
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
|
||||
doc_copy.metadata["relevance_score"] = res["relevance_score"]
|
||||
compressed.append(doc_copy)
|
||||
return compressed
|
@ -1,6 +1,6 @@
|
||||
from langchain_community.document_compressors import __all__, _module_lookup
|
||||
|
||||
EXPECTED_ALL = ["LLMLinguaCompressor", "OpenVINOReranker"]
|
||||
EXPECTED_ALL = ["LLMLinguaCompressor", "OpenVINOReranker", "JinaRerank"]
|
||||
|
||||
|
||||
def test_all_imports() -> None:
|
||||
|
Loading…
Reference in New Issue
Block a user