mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-26 16:43:35 +00:00
Zep Retriever - Vector Search Over Chat History (#4533)
# Zep Retriever - Vector Search Over Chat History with the Zep Long-term Memory Service More on Zep: https://github.com/getzep/zep Note: This PR is related to and relies on https://github.com/hwchase17/langchain/pull/4834. I did not want to modify the `pyproject.toml` file to add the `zep-python` dependency a second time. Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
This commit is contained in:
parent
5525b704cc
commit
c8c2276ccb
291
docs/modules/indexes/retrievers/examples/zep_memorystore.ipynb
Normal file
291
docs/modules/indexes/retrievers/examples/zep_memorystore.ipynb
Normal file
@ -0,0 +1,291 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Zep Memory\n",
|
||||
"\n",
|
||||
"## Retriever Example\n",
|
||||
"\n",
|
||||
"This notebook demonstrates how to search historical chat message histories using the [Zep Long-term Memory Store](https://getzep.github.io/).\n",
|
||||
"\n",
|
||||
"We'll demonstrate:\n",
|
||||
"\n",
|
||||
"1. Adding conversation history to the Zep memory store.\n",
|
||||
"2. Vector search over the conversation history.\n",
|
||||
"\n",
|
||||
"More on Zep:\n",
|
||||
"\n",
|
||||
"Zep stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs.\n",
|
||||
"\n",
|
||||
"Key Features:\n",
|
||||
"\n",
|
||||
"- Long-term memory persistence, with access to historical messages irrespective of your summarization strategy.\n",
|
||||
"- Auto-summarization of memory messages based on a configurable message window. A series of summaries are stored, providing flexibility for future summarization strategies.\n",
|
||||
"- Vector search over memories, with messages automatically embedded on creation.\n",
|
||||
"- Auto-token counting of memories and summaries, allowing finer-grained control over prompt assembly.\n",
|
||||
"- Python and JavaScript SDKs.\n",
|
||||
"\n",
|
||||
"Zep's Go Extractor model is easily extensible, with a simple, clean interface available to build new enrichment functionality, such as summarizers, entity extractors, embedders, and more.\n",
|
||||
"\n",
|
||||
"Zep project: [https://github.com/getzep/zep](https://github.com/getzep/zep)\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.memory.chat_message_histories import ZepChatMessageHistory\n",
|
||||
"from langchain.schema import HumanMessage, AIMessage\n",
|
||||
"from uuid import uuid4\n",
|
||||
"\n",
|
||||
"# Set this to your Zep server URL\n",
|
||||
"ZEP_API_URL = \"http://localhost:8000\"\n",
|
||||
"\n",
|
||||
"# Zep is async-first. Our sync APIs use an asyncio wrapper to run outside an app's event loop.\n",
|
||||
"# This interferes with Jupyter's event loop, so we need to install nest_asyncio to run the\n",
|
||||
"# Zep client in a notebook.\n",
|
||||
"\n",
|
||||
"# !pip install nest_asyncio # Uncomment to install nest_asyncio\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-05-18T20:09:20.355017Z",
|
||||
"start_time": "2023-05-18T20:09:19.526069Z"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Initialize the Zep Chat Message History Class and add a chat message history to the memory store\n",
|
||||
"\n",
|
||||
"**NOTE:** Unlike other Retrievers, the content returned by the Zep Retriever is session/user specific. A `session_id` is required when instantiating the Retriever."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"session_id = str(uuid4()) # This is a unique identifier for the user/session\n",
|
||||
"\n",
|
||||
"# Set up Zep Chat History. We'll use this to add chat histories to the memory store\n",
|
||||
"zep_chat_history = ZepChatMessageHistory(\n",
|
||||
" session_id=session_id,\n",
|
||||
" url=ZEP_API_URL,\n",
|
||||
")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-05-18T20:09:20.424764Z",
|
||||
"start_time": "2023-05-18T20:09:20.355626Z"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Preload some messages into the memory. The default message window is 12 messages. We want to push beyond this to demonstrate auto-summarization.\n",
|
||||
"test_history = [\n",
|
||||
" {\"role\": \"human\", \"content\": \"Who was Octavia Butler?\"},\n",
|
||||
" {\n",
|
||||
" \"role\": \"ai\",\n",
|
||||
" \"content\": (\n",
|
||||
" \"Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American\"\n",
|
||||
" \" science fiction author.\"\n",
|
||||
" ),\n",
|
||||
" },\n",
|
||||
" {\"role\": \"human\", \"content\": \"Which books of hers were made into movies?\"},\n",
|
||||
" {\n",
|
||||
" \"role\": \"ai\",\n",
|
||||
" \"content\": (\n",
|
||||
" \"The most well-known adaptation of Octavia Butler's work is the FX series\"\n",
|
||||
" \" Kindred, based on her novel of the same name.\"\n",
|
||||
" ),\n",
|
||||
" },\n",
|
||||
" {\"role\": \"human\", \"content\": \"Who were her contemporaries?\"},\n",
|
||||
" {\n",
|
||||
" \"role\": \"ai\",\n",
|
||||
" \"content\": (\n",
|
||||
" \"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R.\"\n",
|
||||
" \" Delany, and Joanna Russ.\"\n",
|
||||
" ),\n",
|
||||
" },\n",
|
||||
" {\"role\": \"human\", \"content\": \"What awards did she win?\"},\n",
|
||||
" {\n",
|
||||
" \"role\": \"ai\",\n",
|
||||
" \"content\": (\n",
|
||||
" \"Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur\"\n",
|
||||
" \" Fellowship.\"\n",
|
||||
" ),\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"role\": \"human\",\n",
|
||||
" \"content\": \"Which other women sci-fi writers might I want to read?\",\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"role\": \"ai\",\n",
|
||||
" \"content\": \"You might want to read Ursula K. Le Guin or Joanna Russ.\",\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"role\": \"human\",\n",
|
||||
" \"content\": (\n",
|
||||
" \"Write a short synopsis of Butler's book, Parable of the Sower. What is it\"\n",
|
||||
" \" about?\"\n",
|
||||
" ),\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"role\": \"ai\",\n",
|
||||
" \"content\": (\n",
|
||||
" \"Parable of the Sower is a science fiction novel by Octavia Butler,\"\n",
|
||||
" \" published in 1993. It follows the story of Lauren Olamina, a young woman\"\n",
|
||||
" \" living in a dystopian future where society has collapsed due to\"\n",
|
||||
" \" environmental disasters, poverty, and violence.\"\n",
|
||||
" ),\n",
|
||||
" },\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"for msg in test_history:\n",
|
||||
" zep_chat_history.append(\n",
|
||||
" HumanMessage(content=msg[\"content\"])\n",
|
||||
" if msg[\"role\"] == \"human\"\n",
|
||||
" else AIMessage(content=msg[\"content\"])\n",
|
||||
" )\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-05-18T20:09:20.603865Z",
|
||||
"start_time": "2023-05-18T20:09:20.427041Z"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"### Use the Zep Retriever to vector search over the Zep memory\n",
|
||||
"\n",
|
||||
"Zep provides native vector search over historical conversation memory. Embedding happens automatically.\n",
|
||||
"\n",
|
||||
"NOTE: Embedding of messages occurs asynchronously, so the first query may not return results. Subsequent queries will return results as the embeddings are generated."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "[Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3bedb2bf-aeaf-4849-924b-40a6d91e54b9', 'created_at': '2023-05-18T20:09:20.47556Z', 'role': 'human', 'token_count': 8})]"
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.retrievers import ZepRetriever\n",
|
||||
"\n",
|
||||
"zep_retriever = ZepRetriever(\n",
|
||||
" session_id=session_id, # Ensure that you provide the session_id when instantiating the Retriever\n",
|
||||
" url=ZEP_API_URL,\n",
|
||||
" top_k=5,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"await zep_retriever.aget_relevant_documents(\"Who wrote Parable of the Sower?\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-05-18T20:09:20.979411Z",
|
||||
"start_time": "2023-05-18T20:09:20.604147Z"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"We can also use the Zep sync API to retrieve results:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "[Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3bedb2bf-aeaf-4849-924b-40a6d91e54b9', 'created_at': '2023-05-18T20:09:20.47556Z', 'role': 'human', 'token_count': 8}),\n Document(page_content='Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American science fiction author.', metadata={'score': 0.7545887969667749, 'uuid': 'b32c0644-2dcb-4c1d-a445-6622e7ba82e5', 'created_at': '2023-05-18T20:09:20.512044Z', 'role': 'ai', 'token_count': 31})]"
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"zep_retriever.get_relevant_documents(\"Who wrote Parable of the Sower?\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-05-18T20:09:21.296699Z",
|
||||
"start_time": "2023-05-18T20:09:20.983624Z"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"outputs": [],
|
||||
"source": [],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-05-18T20:09:21.298710Z",
|
||||
"start_time": "2023-05-18T20:09:21.297169Z"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
@ -17,6 +17,7 @@ from langchain.retrievers.time_weighted_retriever import (
|
||||
from langchain.retrievers.vespa_retriever import VespaRetriever
|
||||
from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever
|
||||
from langchain.retrievers.wikipedia import WikipediaRetriever
|
||||
from langchain.retrievers.zep import ZepRetriever
|
||||
|
||||
__all__ = [
|
||||
"ArxivRetriever",
|
||||
@ -36,4 +37,5 @@ __all__ = [
|
||||
"VespaRetriever",
|
||||
"WeaviateHybridSearchRetriever",
|
||||
"WikipediaRetriever",
|
||||
"ZepRetriever",
|
||||
]
|
||||
|
74
langchain/retrievers/zep.py
Normal file
74
langchain/retrievers/zep.py
Normal file
@ -0,0 +1,74 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from zep_python import SearchResult
|
||||
|
||||
|
||||
class ZepRetriever(BaseRetriever):
|
||||
"""A Retriever implementation for the Zep long-term memory store. Search your
|
||||
user's long-term chat history with Zep.
|
||||
|
||||
Note: You will need to provide the user's `session_id` to use this retriever.
|
||||
|
||||
More on Zep:
|
||||
Zep provides long-term conversation storage for LLM apps. The server stores,
|
||||
summarizes, embeds, indexes, and enriches conversational AI chat
|
||||
histories, and exposes them via simple, low-latency APIs.
|
||||
|
||||
For server installation instructions, see:
|
||||
https://getzep.github.io/deployment/quickstart/
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
session_id: str,
|
||||
url: str,
|
||||
top_k: Optional[int] = None,
|
||||
):
|
||||
try:
|
||||
from zep_python import ZepClient
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import zep-python package. "
|
||||
"Please install it with `pip install zep-python`."
|
||||
)
|
||||
|
||||
self.zep_client = ZepClient(base_url=url)
|
||||
self.session_id = session_id
|
||||
self.top_k = top_k
|
||||
|
||||
def _search_result_to_doc(self, results: List[SearchResult]) -> List[Document]:
|
||||
return [
|
||||
Document(
|
||||
page_content=r.message.pop("content"),
|
||||
metadata={"score": r.dist, **r.message},
|
||||
)
|
||||
for r in results
|
||||
if r.message
|
||||
]
|
||||
|
||||
def get_relevant_documents(self, query: str) -> List[Document]:
|
||||
from zep_python import SearchPayload
|
||||
|
||||
payload: SearchPayload = SearchPayload(text=query)
|
||||
|
||||
results: List[SearchResult] = self.zep_client.search_memory(
|
||||
self.session_id, payload, limit=self.top_k
|
||||
)
|
||||
|
||||
return self._search_result_to_doc(results)
|
||||
|
||||
async def aget_relevant_documents(self, query: str) -> List[Document]:
|
||||
from zep_python import SearchPayload
|
||||
|
||||
payload: SearchPayload = SearchPayload(text=query)
|
||||
|
||||
results: List[SearchResult] = await self.zep_client.asearch_memory(
|
||||
self.session_id, payload, limit=self.top_k
|
||||
)
|
||||
|
||||
return self._search_result_to_doc(results)
|
111
tests/unit_tests/retrievers/test_zep.py
Normal file
111
tests/unit_tests/retrievers/test_zep.py
Normal file
@ -0,0 +1,111 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
from typing import TYPE_CHECKING, List
|
||||
|
||||
import pytest
|
||||
from pytest_mock import MockerFixture
|
||||
|
||||
from langchain.retrievers import ZepRetriever
|
||||
from langchain.schema import Document
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from zep_python import SearchResult, ZepClient
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def search_results() -> List[SearchResult]:
|
||||
from zep_python import Message, SearchResult
|
||||
|
||||
search_result = [
|
||||
{
|
||||
"message": {
|
||||
"uuid": "66830914-19f5-490b-8677-1ba06bcd556b",
|
||||
"created_at": "2023-05-18T20:40:42.743773Z",
|
||||
"role": "user",
|
||||
"content": "I'm looking to plan a trip to Iceland. Can you help me?",
|
||||
"token_count": 17,
|
||||
},
|
||||
"summary": None,
|
||||
"dist": 0.8734284910450115,
|
||||
},
|
||||
{
|
||||
"message": {
|
||||
"uuid": "015e618c-ba9d-45b6-95c3-77a8e611570b",
|
||||
"created_at": "2023-05-18T20:40:42.743773Z",
|
||||
"role": "user",
|
||||
"content": "How much does a trip to Iceland typically cost?",
|
||||
"token_count": 12,
|
||||
},
|
||||
"summary": None,
|
||||
"dist": 0.8554048017463456,
|
||||
},
|
||||
]
|
||||
|
||||
return [
|
||||
SearchResult(
|
||||
message=Message.parse_obj(result["message"]),
|
||||
summary=result["summary"],
|
||||
dist=result["dist"],
|
||||
)
|
||||
for result in search_result
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@pytest.mark.requires("zep_python")
|
||||
def zep_retriever(
|
||||
mocker: MockerFixture, search_results: List[SearchResult]
|
||||
) -> ZepRetriever:
|
||||
mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True)
|
||||
mock_zep_client.search_memory.return_value = copy.deepcopy( # type: ignore
|
||||
search_results
|
||||
)
|
||||
mock_zep_client.asearch_memory.return_value = copy.deepcopy( # type: ignore
|
||||
search_results
|
||||
)
|
||||
zep = ZepRetriever(session_id="123", url="http://localhost:8000")
|
||||
zep.zep_client = mock_zep_client
|
||||
return zep
|
||||
|
||||
|
||||
@pytest.mark.requires("zep_python")
|
||||
def test_zep_retriever_get_relevant_documents(
|
||||
zep_retriever: ZepRetriever, search_results: List[SearchResult]
|
||||
) -> None:
|
||||
documents: List[Document] = zep_retriever.get_relevant_documents(
|
||||
query="My trip to Iceland"
|
||||
)
|
||||
_test_documents(documents, search_results)
|
||||
|
||||
|
||||
@pytest.mark.requires("zep_python")
|
||||
@pytest.mark.asyncio
|
||||
async def test_zep_retriever_aget_relevant_documents(
|
||||
zep_retriever: ZepRetriever, search_results: List[SearchResult]
|
||||
) -> None:
|
||||
documents: List[Document] = await zep_retriever.aget_relevant_documents(
|
||||
query="My trip to Iceland"
|
||||
)
|
||||
_test_documents(documents, search_results)
|
||||
|
||||
|
||||
def _test_documents(
|
||||
documents: List[Document], search_results: List[SearchResult]
|
||||
) -> None:
|
||||
assert len(documents) == 2
|
||||
for i, document in enumerate(documents):
|
||||
assert document.page_content == search_results[i].message.get( # type: ignore
|
||||
"content"
|
||||
)
|
||||
assert document.metadata.get("uuid") == search_results[
|
||||
i
|
||||
].message.get( # type: ignore
|
||||
"uuid"
|
||||
)
|
||||
assert document.metadata.get("role") == search_results[
|
||||
i
|
||||
].message.get( # type: ignore
|
||||
"role"
|
||||
)
|
||||
assert document.metadata.get("score") == search_results[i].dist
|
Loading…
Reference in New Issue
Block a user