mirror of
https://github.com/hwchase17/langchain.git
synced 2025-12-26 09:24:28 +00:00
style(core,langchain-classic,openai): fix griffe warnings (#34074)
This commit is contained in:
@@ -903,23 +903,28 @@ class ChatPromptTemplate(BaseChatPromptTemplate):
|
||||
5. A string which is shorthand for `("human", template)`; e.g.,
|
||||
`"{user_input}"`
|
||||
template_format: Format of the template.
|
||||
input_variables: A list of the names of the variables whose values are
|
||||
required as inputs to the prompt.
|
||||
optional_variables: A list of the names of the variables for placeholder
|
||||
or MessagePlaceholder that are optional.
|
||||
**kwargs: Additional keyword arguments passed to `BasePromptTemplate`,
|
||||
including (but not limited to):
|
||||
|
||||
These variables are auto inferred from the prompt and user need not
|
||||
provide them.
|
||||
partial_variables: A dictionary of the partial variables the prompt
|
||||
template carries.
|
||||
- `input_variables`: A list of the names of the variables whose values
|
||||
are required as inputs to the prompt.
|
||||
- `optional_variables`: A list of the names of the variables for
|
||||
placeholder or `MessagePlaceholder` that are optional.
|
||||
|
||||
Partial variables populate the template so that you don't need to pass
|
||||
them in every time you call the prompt.
|
||||
validate_template: Whether to validate the template.
|
||||
input_types: A dictionary of the types of the variables the prompt template
|
||||
expects.
|
||||
These variables are auto inferred from the prompt and user need not
|
||||
provide them.
|
||||
|
||||
If not provided, all variables are assumed to be strings.
|
||||
- `partial_variables`: A dictionary of the partial variables the prompt
|
||||
template carries.
|
||||
|
||||
Partial variables populate the template so that you don't need to
|
||||
pass them in every time you call the prompt.
|
||||
|
||||
- `validate_template`: Whether to validate the template.
|
||||
- `input_types`: A dictionary of the types of the variables the prompt
|
||||
template expects.
|
||||
|
||||
If not provided, all variables are assumed to be strings.
|
||||
|
||||
Examples:
|
||||
Instantiation from a list of message templates:
|
||||
|
||||
4
libs/core/uv.lock
generated
4
libs/core/uv.lock
generated
@@ -1,5 +1,5 @@
|
||||
version = 1
|
||||
revision = 2
|
||||
revision = 3
|
||||
requires-python = ">=3.10.0, <4.0.0"
|
||||
resolution-markers = [
|
||||
"python_full_version >= '3.14' and platform_python_implementation == 'PyPy'",
|
||||
@@ -1053,7 +1053,7 @@ typing = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-tests"
|
||||
version = "1.0.1"
|
||||
version = "1.0.2"
|
||||
source = { directory = "../standard-tests" }
|
||||
dependencies = [
|
||||
{ name = "httpx" },
|
||||
|
||||
@@ -26,7 +26,6 @@ class ProgressBarCallback(base_callbacks.BaseCallbackHandler):
|
||||
total: The total number of items to be processed.
|
||||
ncols: The character width of the progress bar.
|
||||
end_with: Last string to print after progress bar reaches end.
|
||||
**kwargs: Additional keyword arguments.
|
||||
"""
|
||||
self.total = total
|
||||
self.ncols = ncols
|
||||
|
||||
@@ -295,11 +295,7 @@ def _get_prompt(inputs: dict[str, Any]) -> str:
|
||||
|
||||
|
||||
class ChatModelInput(TypedDict):
|
||||
"""Input for a chat model.
|
||||
|
||||
Args:
|
||||
messages: List of chat messages.
|
||||
"""
|
||||
"""Input for a chat model."""
|
||||
|
||||
messages: list[BaseMessage]
|
||||
|
||||
|
||||
@@ -108,8 +108,8 @@ class LLMStringRunMapper(StringRunMapper):
|
||||
The serialized output text from the first generation.
|
||||
|
||||
Raises:
|
||||
ValueError: If no generations are found in the outputs,
|
||||
or if the generations are empty.
|
||||
ValueError: If no generations are found in the outputs or if the generations
|
||||
are empty.
|
||||
"""
|
||||
if not outputs.get("generations"):
|
||||
msg = "Cannot evaluate LLM Run without generations."
|
||||
@@ -436,8 +436,8 @@ class StringRunEvaluatorChain(Chain, RunEvaluator):
|
||||
The instantiated evaluation chain.
|
||||
|
||||
Raises:
|
||||
If the run type is not supported, or if the evaluator requires a
|
||||
reference from the dataset but the reference key is not provided.
|
||||
ValueError: If the run type is not supported, or if the evaluator requires a
|
||||
reference from the dataset but the reference key is not provided.
|
||||
|
||||
"""
|
||||
# Configure how run inputs/predictions are passed to the evaluator
|
||||
|
||||
@@ -905,51 +905,6 @@ class AzureChatOpenAI(BaseChatOpenAI):
|
||||
!!! note
|
||||
`strict` can only be non-null if `method` is `'json_schema'`
|
||||
or `'function_calling'`.
|
||||
tools:
|
||||
A list of tool-like objects to bind to the chat model. Requires that:
|
||||
|
||||
- `method` is `'json_schema'` (default).
|
||||
- `strict=True`
|
||||
- `include_raw=True`
|
||||
|
||||
If a model elects to call a
|
||||
tool, the resulting `AIMessage` in `'raw'` will include tool calls.
|
||||
|
||||
??? example
|
||||
|
||||
```python
|
||||
from langchain.chat_models import init_chat_model
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ResponseSchema(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
def get_weather(location: str) -> str:
|
||||
\"\"\"Get weather at a location.\"\"\"
|
||||
pass
|
||||
|
||||
model = init_chat_model("openai:gpt-4o-mini")
|
||||
|
||||
structured_model = model.with_structured_output(
|
||||
ResponseSchema,
|
||||
tools=[get_weather],
|
||||
strict=True,
|
||||
include_raw=True,
|
||||
)
|
||||
|
||||
structured_model.invoke("What's the weather in Boston?")
|
||||
```
|
||||
|
||||
```python
|
||||
{
|
||||
"raw": AIMessage(content="", tool_calls=[...], ...),
|
||||
"parsing_error": None,
|
||||
"parsed": None,
|
||||
}
|
||||
```
|
||||
|
||||
kwargs: Additional keyword args are passed through to the model.
|
||||
|
||||
Returns:
|
||||
|
||||
Reference in New Issue
Block a user