mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-09 13:00:34 +00:00
fix image generation
This commit is contained in:
parent
67fc58011a
commit
e928672306
@ -291,8 +291,8 @@ def _convert_to_v1_from_chat_completions(message: AIMessage) -> AIMessage:
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
if id_ := tool_call.get("id"):
|
||||
tool_callblock: ToolCallContentBlock = {"type": "tool_call", "id": id_}
|
||||
message.content.append(tool_callblock)
|
||||
tool_call_block: ToolCallContentBlock = {"type": "tool_call", "id": id_}
|
||||
message.content.append(tool_call_block)
|
||||
|
||||
if "tool_calls" in message.additional_kwargs:
|
||||
_ = message.additional_kwargs.pop("tool_calls")
|
||||
@ -413,7 +413,18 @@ def _convert_to_v1_from_responses(message: AIMessage) -> AIMessage:
|
||||
"source_type": "base64",
|
||||
"data": result,
|
||||
}
|
||||
for extra_key in ("id", "status"):
|
||||
if output_format := block.get("output_format"):
|
||||
new_block["mime_type"] = f"image/{output_format}"
|
||||
for extra_key in (
|
||||
"id",
|
||||
"index",
|
||||
"status",
|
||||
"background",
|
||||
"output_format",
|
||||
"quality",
|
||||
"revised_prompt",
|
||||
"size",
|
||||
):
|
||||
if extra_key in block:
|
||||
new_block[extra_key] = block[extra_key]
|
||||
yield new_block
|
||||
@ -421,11 +432,11 @@ def _convert_to_v1_from_responses(message: AIMessage) -> AIMessage:
|
||||
elif block_type == "function_call":
|
||||
new_block: ToolCallContentBlock = {
|
||||
"type": "tool_call",
|
||||
"id": block["call_id"],
|
||||
"id": block.get("call_id", ""),
|
||||
}
|
||||
if "id" in block:
|
||||
new_block["item_id"] = block["id"]
|
||||
for extra_key in ("arguments", "name"):
|
||||
for extra_key in ("arguments", "name", "index"):
|
||||
if extra_key in block:
|
||||
new_block[extra_key] = block[extra_key]
|
||||
yield new_block
|
||||
|
@ -3793,6 +3793,24 @@ def _construct_lc_result_from_responses_api(
|
||||
message = _convert_to_v03_ai_message(message)
|
||||
elif output_version == "v1":
|
||||
message = _convert_to_v1_from_responses(message)
|
||||
if response.tools and any(
|
||||
tool.type == "image_generation" for tool in response.tools
|
||||
):
|
||||
# Get mime_time from tool definition and add to image generations
|
||||
# if missing (primarily for tracing purposes).
|
||||
image_generation_call = next(
|
||||
tool for tool in response.tools if tool.type == "image_generation"
|
||||
)
|
||||
if image_generation_call.output_format:
|
||||
mime_type = f"image/{image_generation_call.output_format}"
|
||||
for block in message.content:
|
||||
# OK to mutate output message
|
||||
if (
|
||||
block.get("type") == "image"
|
||||
and block["source_type"] == "base64"
|
||||
and "mime_type" not in block
|
||||
):
|
||||
block["mime_type"] = mime_type
|
||||
else:
|
||||
pass
|
||||
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||
|
@ -569,10 +569,14 @@ def test_mcp_builtin_zdr() -> None:
|
||||
_ = llm_with_tools.invoke([input_message, full, approval_message])
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
def test_image_generation_streaming() -> None:
|
||||
@pytest.mark.default_cassette("test_image_generation_streaming.yaml.gz")
|
||||
@pytest.mark.vcr
|
||||
@pytest.mark.parametrize("output_version", ["v0", "responses/v1", "v1"])
|
||||
def test_image_generation_streaming(output_version: str) -> None:
|
||||
"""Test image generation streaming."""
|
||||
llm = ChatOpenAI(model="gpt-4.1", use_responses_api=True)
|
||||
llm = ChatOpenAI(
|
||||
model="gpt-4.1", use_responses_api=True, output_version=output_version
|
||||
)
|
||||
tool = {
|
||||
"type": "image_generation",
|
||||
# For testing purposes let's keep the quality low, so the test runs faster.
|
||||
@ -619,15 +623,35 @@ def test_image_generation_streaming() -> None:
|
||||
# At the moment, the streaming API does not pick up annotations fully.
|
||||
# So the following check is commented out.
|
||||
# _check_response(complete_ai_message)
|
||||
tool_output = complete_ai_message.additional_kwargs["tool_outputs"][0]
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
if output_version == "v0":
|
||||
assert complete_ai_message.additional_kwargs["tool_outputs"]
|
||||
tool_output = complete_ai_message.additional_kwargs["tool_outputs"][0]
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
elif output_version == "responses/v1":
|
||||
tool_output = next(
|
||||
block
|
||||
for block in complete_ai_message.content
|
||||
if block["type"] == "image_generation_call"
|
||||
)
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
else:
|
||||
# v1
|
||||
standard_keys = {"type", "source_type", "data", "id", "status", "index"}
|
||||
tool_output = next(
|
||||
block for block in complete_ai_message.content if block["type"] == "image"
|
||||
)
|
||||
assert set(standard_keys).issubset(tool_output.keys())
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
def test_image_generation_multi_turn() -> None:
|
||||
@pytest.mark.default_cassette("test_image_generation_multi_turn.yaml.gz")
|
||||
@pytest.mark.vcr
|
||||
@pytest.mark.parametrize("output_version", ["v0", "responses/v1", "v1"])
|
||||
def test_image_generation_multi_turn(output_version: str) -> None:
|
||||
"""Test multi-turn editing of image generation by passing in history."""
|
||||
# Test multi-turn
|
||||
llm = ChatOpenAI(model="gpt-4.1", use_responses_api=True)
|
||||
llm = ChatOpenAI(
|
||||
model="gpt-4.1", use_responses_api=True, output_version=output_version
|
||||
)
|
||||
# Test invocation
|
||||
tool = {
|
||||
"type": "image_generation",
|
||||
@ -644,9 +668,37 @@ def test_image_generation_multi_turn() -> None:
|
||||
]
|
||||
ai_message = llm_with_tools.invoke(chat_history)
|
||||
_check_response(ai_message)
|
||||
tool_output = ai_message.additional_kwargs["tool_outputs"][0]
|
||||
|
||||
# Example tool output for an image
|
||||
expected_keys = {
|
||||
"id",
|
||||
"background",
|
||||
"output_format",
|
||||
"quality",
|
||||
"result",
|
||||
"revised_prompt",
|
||||
"size",
|
||||
"status",
|
||||
"type",
|
||||
}
|
||||
|
||||
if output_version == "v0":
|
||||
tool_output = ai_message.additional_kwargs["tool_outputs"][0]
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
elif output_version == "responses/v1":
|
||||
tool_output = next(
|
||||
block
|
||||
for block in ai_message.content
|
||||
if block["type"] == "image_generation_call"
|
||||
)
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
else:
|
||||
standard_keys = {"type", "source_type", "data", "id", "status"}
|
||||
tool_output = next(
|
||||
block for block in ai_message.content if block["type"] == "image"
|
||||
)
|
||||
assert set(standard_keys).issubset(tool_output.keys())
|
||||
|
||||
# Example tool output for an image (v0)
|
||||
# {
|
||||
# "background": "opaque",
|
||||
# "id": "ig_683716a8ddf0819888572b20621c7ae4029ec8c11f8dacf8",
|
||||
@ -662,20 +714,6 @@ def test_image_generation_multi_turn() -> None:
|
||||
# "result": # base64 encode image data
|
||||
# }
|
||||
|
||||
expected_keys = {
|
||||
"id",
|
||||
"background",
|
||||
"output_format",
|
||||
"quality",
|
||||
"result",
|
||||
"revised_prompt",
|
||||
"size",
|
||||
"status",
|
||||
"type",
|
||||
}
|
||||
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
|
||||
chat_history.extend(
|
||||
[
|
||||
# AI message with tool output
|
||||
@ -693,5 +731,20 @@ def test_image_generation_multi_turn() -> None:
|
||||
|
||||
ai_message2 = llm_with_tools.invoke(chat_history)
|
||||
_check_response(ai_message2)
|
||||
tool_output2 = ai_message2.additional_kwargs["tool_outputs"][0]
|
||||
assert set(tool_output2.keys()).issubset(expected_keys)
|
||||
|
||||
if output_version == "v0":
|
||||
tool_output = ai_message2.additional_kwargs["tool_outputs"][0]
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
elif output_version == "responses/v1":
|
||||
tool_output = next(
|
||||
block
|
||||
for block in ai_message2.content
|
||||
if block["type"] == "image_generation_call"
|
||||
)
|
||||
assert set(tool_output.keys()).issubset(expected_keys)
|
||||
else:
|
||||
standard_keys = {"type", "source_type", "data", "id", "status"}
|
||||
tool_output = next(
|
||||
block for block in ai_message2.content if block["type"] == "image"
|
||||
)
|
||||
assert set(standard_keys).issubset(tool_output.keys())
|
||||
|
Loading…
Reference in New Issue
Block a user