mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-23 11:32:10 +00:00
fmt
This commit is contained in:
parent
b31faf6572
commit
eb7e485886
@ -44,7 +44,7 @@ from langchain_core.messages.utils import (
|
|||||||
_message_from_dict,
|
_message_from_dict,
|
||||||
convert_to_messages,
|
convert_to_messages,
|
||||||
filter_messages,
|
filter_messages,
|
||||||
format_messages_as,
|
format_messages,
|
||||||
get_buffer_string,
|
get_buffer_string,
|
||||||
merge_message_runs,
|
merge_message_runs,
|
||||||
message_chunk_to_message,
|
message_chunk_to_message,
|
||||||
@ -84,5 +84,5 @@ __all__ = [
|
|||||||
"filter_messages",
|
"filter_messages",
|
||||||
"merge_message_runs",
|
"merge_message_runs",
|
||||||
"trim_messages",
|
"trim_messages",
|
||||||
"format_messages_as",
|
"format_messages",
|
||||||
]
|
]
|
||||||
|
@ -934,30 +934,52 @@ def _runnable_generator(func: Callable) -> Callable:
|
|||||||
|
|
||||||
|
|
||||||
@_runnable_generator
|
@_runnable_generator
|
||||||
def format_messages_as(
|
def format_messages(
|
||||||
messages: Union[MessageLikeRepresentation, Sequence[MessageLikeRepresentation]],
|
messages: Union[MessageLikeRepresentation, Sequence[MessageLikeRepresentation]],
|
||||||
*,
|
*,
|
||||||
format: Literal["openai", "anthropic"],
|
format: Literal["langchain-openai", "langchain-anthropic"],
|
||||||
text_format: Literal["string", "block"],
|
text_format: Literal["string", "block"],
|
||||||
) -> Union[BaseMessage, List[BaseMessage]]:
|
) -> Union[BaseMessage, List[BaseMessage]]:
|
||||||
"""Convert message contents into a standard format.
|
"""Convert message contents into a standard format.
|
||||||
|
|
||||||
.. versionadded:: 0.2.36
|
Can be used imperatively (pass in messages, get out messages) or can be used
|
||||||
|
declaratively (call without messages, use resulting Runnable in a chain).
|
||||||
|
|
||||||
|
.. versionadded:: 0.2.37
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
messages: Message-like object or iterable of objects whose contents are already
|
messages: Message-like object or iterable of objects whose contents are
|
||||||
in OpenAI, Anthropic, Bedrock Converse, or VertexAI formats.
|
in OpenAI, Anthropic, Bedrock Converse, or VertexAI formats.
|
||||||
format: Format to convert message contents to.
|
format: Output message format:
|
||||||
text_format: How to format text contents. If ``text='string'`` then any string
|
|
||||||
contents are left as strings. If a message has content blocks that are all
|
- "langchain-openai":
|
||||||
of type 'text', these are joined with a newline to make a single string. If
|
BaseMessages with OpenAI-style contents.
|
||||||
a message has content blocks and at least one isn't of type 'text', then
|
- "langchain-anthropic":
|
||||||
all blocks are left as dicts. If ``text='block'`` then all contents are
|
BaseMessages with Anthropic-style contents.
|
||||||
turned into a list of dicts.
|
text_format: How to format string or text block contents:
|
||||||
|
|
||||||
|
- "string":
|
||||||
|
If a message has a string content, this is left as a string. If
|
||||||
|
a message has content blocks that are all of type 'text', these are
|
||||||
|
joined with a newline to make a single string. If a message has
|
||||||
|
content blocks and at least one isn't of type 'text', then
|
||||||
|
all blocks are left as dicts.
|
||||||
|
- "block":
|
||||||
|
If a message has a string content, this is turned into a list
|
||||||
|
with a single content block of type 'text'. If a message has content
|
||||||
|
blocks these are left as is.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
A single BaseMessage is a single message-like object was passed in, else list
|
The return type depends on the input type:
|
||||||
of BaseMessages.
|
- BaseMessage:
|
||||||
|
If a single message-like object is passed in, a BaseMessage is
|
||||||
|
returned.
|
||||||
|
- List[BaseMessage]:
|
||||||
|
If a sequence of message-like objects are passed in, a list
|
||||||
|
of BaseMessages are returned.
|
||||||
|
- Runnable:
|
||||||
|
If no messages are passed in, a Runnable is generated that formats
|
||||||
|
messages (per the above) when invoked.
|
||||||
|
|
||||||
.. dropdown:: Basic usage
|
.. dropdown:: Basic usage
|
||||||
:open:
|
:open:
|
||||||
@ -965,7 +987,7 @@ def format_messages_as(
|
|||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_core.messages import (
|
from langchain_core.messages import (
|
||||||
format_messages_as,
|
format_messages,
|
||||||
AIMessage,
|
AIMessage,
|
||||||
HumanMessage,
|
HumanMessage,
|
||||||
SystemMessage,
|
SystemMessage,
|
||||||
@ -979,7 +1001,7 @@ def format_messages_as(
|
|||||||
ToolMessage("foobar", tool_call_id="1", name="bar"),
|
ToolMessage("foobar", tool_call_id="1", name="bar"),
|
||||||
{"role": "assistant", "content": "thats nice"},
|
{"role": "assistant", "content": "thats nice"},
|
||||||
]
|
]
|
||||||
oai_strings = format_messages_as(messages, format="openai", text="string")
|
oai_strings = format_messages(messages, format="langchain-openai", text="string")
|
||||||
# -> [
|
# -> [
|
||||||
# SystemMessage(content='foo'),
|
# SystemMessage(content='foo'),
|
||||||
# HumanMessage(content=[{'type': 'text', 'text': 'whats in this'}, {'type': 'image_url', 'image_url': {'url': "data:image/png;base64,'/9j/4AAQSk'"}}]),
|
# HumanMessage(content=[{'type': 'text', 'text': 'whats in this'}, {'type': 'image_url', 'image_url': {'url': "data:image/png;base64,'/9j/4AAQSk'"}}]),
|
||||||
@ -988,7 +1010,7 @@ def format_messages_as(
|
|||||||
# AIMessage(content='thats nice')
|
# AIMessage(content='thats nice')
|
||||||
# ]
|
# ]
|
||||||
|
|
||||||
anthropic_blocks = format_messages_as(messages, format="anthropic", text="block")
|
anthropic_blocks = format_messages(messages, format="langchain-anthropic", text="block")
|
||||||
# -> [
|
# -> [
|
||||||
# SystemMessage(content=[{'type': 'text', 'text': 'foo'}]),
|
# SystemMessage(content=[{'type': 'text', 'text': 'foo'}]),
|
||||||
# HumanMessage(content=[{'type': 'text', 'text': 'whats in this'}, {'type': 'image', 'source': {'type': 'base64', 'media_type': 'image/png', 'data': "'/9j/4AAQSk'"}}]),
|
# HumanMessage(content=[{'type': 'text', 'text': 'whats in this'}, {'type': 'image', 'source': {'type': 'base64', 'media_type': 'image/png', 'data': "'/9j/4AAQSk'"}}]),
|
||||||
@ -997,15 +1019,15 @@ def format_messages_as(
|
|||||||
# AIMessage(content=[{'type': 'text', 'text': 'thats nice'}])
|
# AIMessage(content=[{'type': 'text', 'text': 'thats nice'}])
|
||||||
# ]
|
# ]
|
||||||
|
|
||||||
.. dropdown:: Chain usage
|
.. dropdown:: Chaining
|
||||||
:open:
|
:open:
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_core.messages import format_messages_as
|
from langchain_core.messages import format_messages
|
||||||
from langchain.chat_models import init_chat_model
|
from langchain.chat_models import init_chat_model
|
||||||
|
|
||||||
formatter = format_messages_as(format="openai", text="string")
|
formatter = format_messages(format="langchain-openai", text="string")
|
||||||
llm = init_chat_model() | formatter
|
llm = init_chat_model() | formatter
|
||||||
|
|
||||||
llm.invoke(
|
llm.invoke(
|
||||||
@ -1020,6 +1042,15 @@ def format_messages_as(
|
|||||||
)
|
)
|
||||||
# -> AIMessage(["My name is...], ...)
|
# -> AIMessage(["My name is...], ...)
|
||||||
|
|
||||||
|
.. dropdown:: Streaming
|
||||||
|
:open:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain_core.messages import format_messages
|
||||||
|
from langchain.chat_models import init_chat_model
|
||||||
|
|
||||||
|
formatter = format_messages(format="langchain-openai", text="string")
|
||||||
|
|
||||||
def multiply(a: int, b: int) -> int:
|
def multiply(a: int, b: int) -> int:
|
||||||
'''Return product of a and b.'''
|
'''Return product of a and b.'''
|
||||||
@ -1031,40 +1062,41 @@ def format_messages_as(
|
|||||||
"what's 5 times 2", config={"model": "claude-3-5-sonnet-20240620"}
|
"what's 5 times 2", config={"model": "claude-3-5-sonnet-20240620"}
|
||||||
):
|
):
|
||||||
print(chunk)
|
print(chunk)
|
||||||
# -> AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', usage_metadata={'input_tokens': 370, 'output_tokens': 0, 'total_tokens': 370}),
|
# -> AIMessageChunk(content='', id='run-6...', usage_metadata={'input_tokens': 370, 'output_tokens': 0, 'total_tokens': 370}),
|
||||||
# AIMessageChunk(content='Certainly', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content='Certainly', id='run-6...'),
|
||||||
# AIMessageChunk(content='! To', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content='! To', id='run-6...'),
|
||||||
# AIMessageChunk(content=' calculate', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' calculate', id='run-6...'),
|
||||||
# AIMessageChunk(content=' 5 times ', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' 5 times ', id='run-6...'),
|
||||||
# AIMessageChunk(content='2, we can use', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content='2, we can use', id='run-6...'),
|
||||||
# AIMessageChunk(content=' the "', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' the "', id='run-6...'),
|
||||||
# AIMessageChunk(content='multiply" function that', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content='multiply" function that', id='run-6...'),
|
||||||
# AIMessageChunk(content="'s", id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content="'s", id='run-6...'),
|
||||||
# AIMessageChunk(content=' available to', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' available to', id='run-6...'),
|
||||||
# AIMessageChunk(content=' us.', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' us.', id='run-6...'),
|
||||||
# AIMessageChunk(content=' Let', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' Let', id='run-6...'),
|
||||||
# AIMessageChunk(content="'s use", id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content="'s use", id='run-6...'),
|
||||||
# AIMessageChunk(content=' this tool', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' this tool', id='run-6...'),
|
||||||
# AIMessageChunk(content=' to', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' to', id='run-6...'),
|
||||||
# AIMessageChunk(content=' get', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' get', id='run-6...'),
|
||||||
# AIMessageChunk(content=' the result.', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'),
|
# AIMessageChunk(content=' the result.', id='run-6...'),
|
||||||
# AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', tool_calls=[{'name': 'multiply', 'args': {}, 'id': 'toolu_01PW8o6BkATCecjsJX8QgG6z', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'multiply', 'args': '', 'id': 'toolu_01PW8o6BkATCecjsJX8QgG6z', 'index': 1, 'type': 'tool_call_chunk'}]),
|
# AIMessageChunk(content='', id='run-6...', tool_calls=[{'name': 'multiply', 'args': {}, 'id': 'toolu_0...', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'multiply', 'args': '', 'id': 'toolu_0...', 'index': 1, 'type': 'tool_call_chunk'}]),
|
||||||
# AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', tool_calls=[{'name': '', 'args': {}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]),
|
# AIMessageChunk(content='', id='run-6...', tool_calls=[{'name': '', 'args': {}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]),
|
||||||
# AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', tool_calls=[{'name': '', 'args': {'a': 5}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '{"a": 5', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]),
|
# AIMessageChunk(content='', id='run-6...', tool_calls=[{'name': '', 'args': {'a': 5}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '{"a": 5', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]),
|
||||||
# AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', invalid_tool_calls=[{'name': None, 'args': ', "b": 2}', 'id': None, 'error': None, 'type': 'invalid_tool_call'}], tool_call_chunks=[{'name': None, 'args': ', "b": 2}', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]),
|
# AIMessageChunk(content='', id='run-6...', invalid_tool_calls=[{'name': None, 'args': ', "b": 2}', 'id': None, 'error': None, 'type': 'invalid_tool_call'}], tool_call_chunks=[{'name': None, 'args': ', "b": 2}', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]),
|
||||||
# AIMessageChunk(content='', response_metadata={'stop_reason': 'tool_use', 'stop_sequence': None}, id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', usage_metadata={'input_tokens': 0, 'output_tokens': 104, 'total_tokens': 104})
|
# AIMessageChunk(content='', response_metadata={'stop_reason': 'tool_use', 'stop_sequence': None}, id='run-6...', usage_metadata={'input_tokens': 0, 'output_tokens': 104, 'total_tokens': 104})
|
||||||
|
|
||||||
""" # noqa: E501
|
""" # noqa: E501
|
||||||
if is_single := isinstance(messages, (BaseMessage, dict)):
|
if is_single := isinstance(messages, (BaseMessage, dict)):
|
||||||
messages = [messages]
|
messages = [messages]
|
||||||
messages = convert_to_messages(messages, copy=True)
|
messages = convert_to_messages(messages, copy=True)
|
||||||
if format.lower() == "openai":
|
if format.lower().replace("_", "-") == "langchain-openai":
|
||||||
formatted = _format_messages_as_openai(messages, text_format=text_format)
|
formatted = _format_messages_openai(messages, text_format=text_format)
|
||||||
elif format.lower() == "anthropic":
|
elif format.lower().replace("_", "-") == "langchain-anthropic":
|
||||||
formatted = _format_messages_as_anthropic(messages, text_format=text_format)
|
formatted = _format_messages_anthropic(messages, text_format=text_format)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Unrecognized {format=}. Expected one of ('openai', 'anthropic')."
|
f"Unrecognized {format=}. Expected one of ('langchain-openai', "
|
||||||
|
f"'langchain-anthropic')."
|
||||||
)
|
)
|
||||||
if is_single:
|
if is_single:
|
||||||
return formatted[0]
|
return formatted[0]
|
||||||
@ -1072,7 +1104,7 @@ def format_messages_as(
|
|||||||
return formatted
|
return formatted
|
||||||
|
|
||||||
|
|
||||||
def _format_messages_as_openai(
|
def _format_messages_openai(
|
||||||
messages: Sequence[BaseMessage], *, text_format: Literal["string", "block"]
|
messages: Sequence[BaseMessage], *, text_format: Literal["string", "block"]
|
||||||
) -> List[BaseMessage]:
|
) -> List[BaseMessage]:
|
||||||
"""Mutates messages so their contents match OpenAI messages API."""
|
"""Mutates messages so their contents match OpenAI messages API."""
|
||||||
@ -1226,7 +1258,7 @@ def _format_messages_as_openai(
|
|||||||
)
|
)
|
||||||
# Recurse to make sure tool message contents are OpenAI format.
|
# Recurse to make sure tool message contents are OpenAI format.
|
||||||
tool_messages.extend(
|
tool_messages.extend(
|
||||||
_format_messages_as_openai(
|
_format_messages_openai(
|
||||||
[tool_message], text_format=text_format
|
[tool_message], text_format=text_format
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@ -1307,7 +1339,7 @@ def _format_messages_as_openai(
|
|||||||
_OPTIONAL_ANTHROPIC_KEYS = ("cache_control", "is_error", "index")
|
_OPTIONAL_ANTHROPIC_KEYS = ("cache_control", "is_error", "index")
|
||||||
|
|
||||||
|
|
||||||
def _format_messages_as_anthropic(
|
def _format_messages_anthropic(
|
||||||
messages: Sequence[BaseMessage], *, text_format: Literal["string", "block"]
|
messages: Sequence[BaseMessage], *, text_format: Literal["string", "block"]
|
||||||
) -> List[BaseMessage]:
|
) -> List[BaseMessage]:
|
||||||
"""Mutates messages so their contents match Anthropic messages API."""
|
"""Mutates messages so their contents match Anthropic messages API."""
|
||||||
|
@ -32,7 +32,7 @@ EXPECTED_ALL = [
|
|||||||
"filter_messages",
|
"filter_messages",
|
||||||
"merge_message_runs",
|
"merge_message_runs",
|
||||||
"trim_messages",
|
"trim_messages",
|
||||||
"format_messages_as",
|
"format_messages",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -17,7 +17,7 @@ from langchain_core.messages.utils import (
|
|||||||
_bytes_to_b64_str,
|
_bytes_to_b64_str,
|
||||||
convert_to_messages,
|
convert_to_messages,
|
||||||
filter_messages,
|
filter_messages,
|
||||||
format_messages_as,
|
format_messages,
|
||||||
merge_message_runs,
|
merge_message_runs,
|
||||||
trim_messages,
|
trim_messages,
|
||||||
)
|
)
|
||||||
@ -566,20 +566,20 @@ def create_base64_image(format: str = "jpeg") -> str:
|
|||||||
return f"" # noqa: E501
|
return f"" # noqa: E501
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_single_message() -> None:
|
def test_format_messages_single_message() -> None:
|
||||||
message = HumanMessage(content="Hello")
|
message = HumanMessage(content="Hello")
|
||||||
result = format_messages_as(message, format="openai", text_format="string")
|
result = format_messages(message, format="langchain-openai", text_format="string")
|
||||||
assert isinstance(result, BaseMessage)
|
assert isinstance(result, BaseMessage)
|
||||||
assert result.content == "Hello"
|
assert result.content == "Hello"
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_multiple_messages() -> None:
|
def test_format_messages_multiple_messages() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
SystemMessage(content="System message"),
|
SystemMessage(content="System message"),
|
||||||
HumanMessage(content="Human message"),
|
HumanMessage(content="Human message"),
|
||||||
AIMessage(content="AI message"),
|
AIMessage(content="AI message"),
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="string")
|
result = format_messages(messages, format="langchain-openai", text_format="string")
|
||||||
assert isinstance(result, list)
|
assert isinstance(result, list)
|
||||||
assert len(result) == 3
|
assert len(result) == 3
|
||||||
assert all(isinstance(msg, BaseMessage) for msg in result)
|
assert all(isinstance(msg, BaseMessage) for msg in result)
|
||||||
@ -590,7 +590,7 @@ def test_format_messages_as_multiple_messages() -> None:
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_openai_string() -> None:
|
def test_format_messages_openai_string() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
content=[
|
content=[
|
||||||
@ -602,23 +602,23 @@ def test_format_messages_as_openai_string() -> None:
|
|||||||
content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}]
|
content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}]
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="string")
|
result = format_messages(messages, format="langchain-openai", text_format="string")
|
||||||
assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"]
|
assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"]
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_openai_block() -> None:
|
def test_format_messages_openai_block() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(content="Hello"),
|
HumanMessage(content="Hello"),
|
||||||
AIMessage(content="Hi there"),
|
AIMessage(content="Hi there"),
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="block")
|
result = format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
assert [msg.content for msg in result] == [
|
assert [msg.content for msg in result] == [
|
||||||
[{"type": "text", "text": "Hello"}],
|
[{"type": "text", "text": "Hello"}],
|
||||||
[{"type": "text", "text": "Hi there"}],
|
[{"type": "text", "text": "Hi there"}],
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_anthropic_string() -> None:
|
def test_format_messages_anthropic_string() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
content=[
|
content=[
|
||||||
@ -630,30 +630,34 @@ def test_format_messages_as_anthropic_string() -> None:
|
|||||||
content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}]
|
content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}]
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="anthropic", text_format="string")
|
result = format_messages(
|
||||||
|
messages, format="langchain-anthropic", text_format="string"
|
||||||
|
)
|
||||||
assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"]
|
assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"]
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_anthropic_block() -> None:
|
def test_format_messages_anthropic_block() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(content="Hello"),
|
HumanMessage(content="Hello"),
|
||||||
AIMessage(content="Hi there"),
|
AIMessage(content="Hi there"),
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="anthropic", text_format="block")
|
result = format_messages(
|
||||||
|
messages, format="langchain-anthropic", text_format="block"
|
||||||
|
)
|
||||||
assert [msg.content for msg in result] == [
|
assert [msg.content for msg in result] == [
|
||||||
[{"type": "text", "text": "Hello"}],
|
[{"type": "text", "text": "Hello"}],
|
||||||
[{"type": "text", "text": "Hi there"}],
|
[{"type": "text", "text": "Hi there"}],
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_invalid_format() -> None:
|
def test_format_messages_invalid_format() -> None:
|
||||||
with pytest.raises(ValueError, match="Unrecognized format="):
|
with pytest.raises(ValueError, match="Unrecognized format="):
|
||||||
format_messages_as(
|
format_messages(
|
||||||
[HumanMessage(content="Hello")], format="invalid", text_format="string"
|
[HumanMessage(content="Hello")], format="invalid", text_format="string"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_openai_image() -> None:
|
def test_format_messages_openai_image() -> None:
|
||||||
base64_image = create_base64_image()
|
base64_image = create_base64_image()
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
@ -663,12 +667,12 @@ def test_format_messages_as_openai_image() -> None:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="block")
|
result = format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
assert result[0].content[1]["type"] == "image_url"
|
assert result[0].content[1]["type"] == "image_url"
|
||||||
assert result[0].content[1]["image_url"]["url"] == base64_image
|
assert result[0].content[1]["image_url"]["url"] == base64_image
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_anthropic_image() -> None:
|
def test_format_messages_anthropic_image() -> None:
|
||||||
base64_image = create_base64_image()
|
base64_image = create_base64_image()
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
@ -678,21 +682,25 @@ def test_format_messages_as_anthropic_image() -> None:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="anthropic", text_format="block")
|
result = format_messages(
|
||||||
|
messages, format="langchain-anthropic", text_format="block"
|
||||||
|
)
|
||||||
assert result[0].content[1]["type"] == "image"
|
assert result[0].content[1]["type"] == "image"
|
||||||
assert result[0].content[1]["source"]["type"] == "base64"
|
assert result[0].content[1]["source"]["type"] == "base64"
|
||||||
assert result[0].content[1]["source"]["media_type"] == "image/jpeg"
|
assert result[0].content[1]["source"]["media_type"] == "image/jpeg"
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_tool_message() -> None:
|
def test_format_messages_tool_message() -> None:
|
||||||
tool_message = ToolMessage(content="Tool result", tool_call_id="123")
|
tool_message = ToolMessage(content="Tool result", tool_call_id="123")
|
||||||
result = format_messages_as([tool_message], format="openai", text_format="block")
|
result = format_messages(
|
||||||
|
[tool_message], format="langchain-openai", text_format="block"
|
||||||
|
)
|
||||||
assert isinstance(result[0], ToolMessage)
|
assert isinstance(result[0], ToolMessage)
|
||||||
assert result[0].content == [{"type": "text", "text": "Tool result"}]
|
assert result[0].content == [{"type": "text", "text": "Tool result"}]
|
||||||
assert result[0].tool_call_id == "123"
|
assert result[0].tool_call_id == "123"
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_tool_use() -> None:
|
def test_format_messages_tool_use() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
AIMessage(
|
AIMessage(
|
||||||
content=[
|
content=[
|
||||||
@ -700,21 +708,21 @@ def test_format_messages_as_tool_use() -> None:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="block")
|
result = format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
assert result[0].tool_calls[0]["id"] == "123"
|
assert result[0].tool_calls[0]["id"] == "123"
|
||||||
assert result[0].tool_calls[0]["name"] == "calculator"
|
assert result[0].tool_calls[0]["name"] == "calculator"
|
||||||
assert result[0].tool_calls[0]["args"] == "2+2"
|
assert result[0].tool_calls[0]["args"] == "2+2"
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_json() -> None:
|
def test_format_messages_json() -> None:
|
||||||
json_data = {"key": "value"}
|
json_data = {"key": "value"}
|
||||||
messages = [HumanMessage(content=[{"type": "json", "json": json_data}])]
|
messages = [HumanMessage(content=[{"type": "json", "json": json_data}])]
|
||||||
result = format_messages_as(messages, format="openai", text_format="block")
|
result = format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
assert result[0].content[0]["type"] == "text"
|
assert result[0].content[0]["type"] == "text"
|
||||||
assert json.loads(result[0].content[0]["text"]) == json_data
|
assert json.loads(result[0].content[0]["text"]) == json_data
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_guard_content() -> None:
|
def test_format_messages_guard_content() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
content=[
|
content=[
|
||||||
@ -725,12 +733,12 @@ def test_format_messages_as_guard_content() -> None:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="block")
|
result = format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
assert result[0].content[0]["type"] == "text"
|
assert result[0].content[0]["type"] == "text"
|
||||||
assert result[0].content[0]["text"] == "Protected content"
|
assert result[0].content[0]["text"] == "Protected content"
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_vertexai_image() -> None:
|
def test_format_messages_vertexai_image() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
content=[
|
content=[
|
||||||
@ -738,7 +746,7 @@ def test_format_messages_as_vertexai_image() -> None:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="block")
|
result = format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
assert result[0].content[0]["type"] == "image_url"
|
assert result[0].content[0]["type"] == "image_url"
|
||||||
assert (
|
assert (
|
||||||
result[0].content[0]["image_url"]["url"]
|
result[0].content[0]["image_url"]["url"]
|
||||||
@ -746,27 +754,27 @@ def test_format_messages_as_vertexai_image() -> None:
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_invalid_block() -> None:
|
def test_format_messages_invalid_block() -> None:
|
||||||
messages = [HumanMessage(content=[{"type": "invalid", "foo": "bar"}])]
|
messages = [HumanMessage(content=[{"type": "invalid", "foo": "bar"}])]
|
||||||
with pytest.raises(ValueError, match="Unrecognized content block"):
|
with pytest.raises(ValueError, match="Unrecognized content block"):
|
||||||
format_messages_as(messages, format="openai", text_format="block")
|
format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
with pytest.raises(ValueError, match="Unrecognized content block"):
|
with pytest.raises(ValueError, match="Unrecognized content block"):
|
||||||
format_messages_as(messages, format="anthropic", text_format="block")
|
format_messages(messages, format="langchain-anthropic", text_format="block")
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_empty_message() -> None:
|
def test_format_messages_empty_message() -> None:
|
||||||
result = format_messages_as(
|
result = format_messages(
|
||||||
HumanMessage(content=""), format="openai", text_format="string"
|
HumanMessage(content=""), format="langchain-openai", text_format="string"
|
||||||
)
|
)
|
||||||
assert result.content == ""
|
assert result.content == ""
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_empty_list() -> None:
|
def test_format_messages_empty_list() -> None:
|
||||||
result = format_messages_as([], format="openai", text_format="string")
|
result = format_messages([], format="langchain-openai", text_format="string")
|
||||||
assert result == []
|
assert result == []
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_mixed_content_types() -> None:
|
def test_format_messages_mixed_content_types() -> None:
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
content=[
|
content=[
|
||||||
@ -776,21 +784,23 @@ def test_format_messages_as_mixed_content_types() -> None:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
result = format_messages_as(messages, format="openai", text_format="block")
|
result = format_messages(messages, format="langchain-openai", text_format="block")
|
||||||
assert len(result[0].content) == 3
|
assert len(result[0].content) == 3
|
||||||
assert isinstance(result[0].content[0], dict)
|
assert isinstance(result[0].content[0], dict)
|
||||||
assert isinstance(result[0].content[1], dict)
|
assert isinstance(result[0].content[1], dict)
|
||||||
assert isinstance(result[0].content[2], dict)
|
assert isinstance(result[0].content[2], dict)
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_anthropic_tool_calls() -> None:
|
def test_format_messages_anthropic_tool_calls() -> None:
|
||||||
message = AIMessage(
|
message = AIMessage(
|
||||||
"blah",
|
"blah",
|
||||||
tool_calls=[
|
tool_calls=[
|
||||||
{"type": "tool_call", "name": "foo", "id": "1", "args": {"bar": "baz"}}
|
{"type": "tool_call", "name": "foo", "id": "1", "args": {"bar": "baz"}}
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
result = format_messages_as(message, format="anthropic", text_format="string")
|
result = format_messages(
|
||||||
|
message, format="langchain-anthropic", text_format="string"
|
||||||
|
)
|
||||||
assert result.content == [
|
assert result.content == [
|
||||||
{"type": "text", "text": "blah"},
|
{"type": "text", "text": "blah"},
|
||||||
{"type": "tool_use", "id": "1", "name": "foo", "input": {"bar": "baz"}},
|
{"type": "tool_use", "id": "1", "name": "foo", "input": {"bar": "baz"}},
|
||||||
@ -798,8 +808,8 @@ def test_format_messages_as_anthropic_tool_calls() -> None:
|
|||||||
assert result.tool_calls == message.tool_calls
|
assert result.tool_calls == message.tool_calls
|
||||||
|
|
||||||
|
|
||||||
def test_format_messages_as_declarative() -> None:
|
def test_format_messages_declarative() -> None:
|
||||||
formatter = format_messages_as(format="openai", text_format="block")
|
formatter = format_messages(format="langchain-openai", text_format="block")
|
||||||
base64_image = create_base64_image()
|
base64_image = create_base64_image()
|
||||||
messages = [
|
messages = [
|
||||||
HumanMessage(
|
HumanMessage(
|
||||||
@ -996,7 +1006,7 @@ def _stream_anthropic(input_: Any) -> Iterator:
|
|||||||
|
|
||||||
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
||||||
def test_format_messages_openai_string_stream(stream: Callable) -> None:
|
def test_format_messages_openai_string_stream(stream: Callable) -> None:
|
||||||
formatter = format_messages_as(format="openai", text_format="string")
|
formatter = format_messages(format="langchain-openai", text_format="string")
|
||||||
|
|
||||||
chain = RunnableLambda(stream) | formatter
|
chain = RunnableLambda(stream) | formatter
|
||||||
tool_call_idx = 1 if stream == _stream_anthropic else 0
|
tool_call_idx = 1 if stream == _stream_anthropic else 0
|
||||||
@ -1090,7 +1100,7 @@ def test_format_messages_openai_string_stream(stream: Callable) -> None:
|
|||||||
|
|
||||||
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
||||||
def test_format_messages_openai_block_stream(stream: Callable) -> None:
|
def test_format_messages_openai_block_stream(stream: Callable) -> None:
|
||||||
formatter = format_messages_as(format="openai", text_format="block")
|
formatter = format_messages(format="langchain-openai", text_format="block")
|
||||||
|
|
||||||
chain = RunnableLambda(stream) | formatter
|
chain = RunnableLambda(stream) | formatter
|
||||||
tool_call_idx = 1 if stream == _stream_anthropic else 0
|
tool_call_idx = 1 if stream == _stream_anthropic else 0
|
||||||
@ -1183,7 +1193,7 @@ def test_format_messages_openai_block_stream(stream: Callable) -> None:
|
|||||||
|
|
||||||
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
||||||
def test_format_messages_anthropic_block_stream(stream: Callable) -> None:
|
def test_format_messages_anthropic_block_stream(stream: Callable) -> None:
|
||||||
formatter = format_messages_as(format="anthropic", text_format="block")
|
formatter = format_messages(format="langchain-anthropic", text_format="block")
|
||||||
|
|
||||||
chain = RunnableLambda(stream) | formatter
|
chain = RunnableLambda(stream) | formatter
|
||||||
expected = [
|
expected = [
|
||||||
@ -1285,7 +1295,7 @@ def test_format_messages_anthropic_block_stream(stream: Callable) -> None:
|
|||||||
|
|
||||||
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
@pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic])
|
||||||
def test_format_messages_anthropic_string_stream(stream: Callable) -> None:
|
def test_format_messages_anthropic_string_stream(stream: Callable) -> None:
|
||||||
formatter = format_messages_as(format="anthropic", text_format="string")
|
formatter = format_messages(format="langchain-anthropic", text_format="string")
|
||||||
|
|
||||||
chain = RunnableLambda(stream) | formatter
|
chain = RunnableLambda(stream) | formatter
|
||||||
expected = [
|
expected = [
|
||||||
|
Loading…
Reference in New Issue
Block a user