community[patch]: Add OCI Generative AI tool and structured output support (#24693)

- [x] **PR title**: 
  community: Add OCI Generative AI tool and structured output support


- [x] **PR message**: 
- **Description:** adding tool calling and structured output support for
chat models offered by OCI Generative AI services. This is an update to
our last PR 22880 with changes in
/langchain_community/chat_models/oci_generative_ai.py
    - **Issue:** NA
    - **Dependencies:** NA
    - **Twitter handle:** NA


- [x] **Add tests and docs**: 
  1. we have updated our unit tests
2. we have updated our documentation under
/docs/docs/integrations/chat/oci_generative_ai.ipynb


- [x] **Lint and test**: `make format`, `make lint` and `make test` we
run successfully

---------

Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
This commit is contained in:
Rave Harpaz 2024-07-25 23:19:00 -07:00 committed by GitHub
parent 2b6a262f84
commit ee399e3ec5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 395 additions and 31 deletions

View File

@ -33,7 +33,7 @@
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | \n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | \n",
"\n",
"## Setup\n",
"\n",

View File

@ -1,8 +1,22 @@
import json
import re
import uuid
from abc import ABC, abstractmethod
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Sequence,
Type,
Union,
)
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
@ -14,15 +28,76 @@ from langchain_core.messages import (
ChatMessage,
HumanMessage,
SystemMessage,
ToolCall,
ToolMessage,
)
from langchain_core.messages.tool import ToolCallChunk
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
JsonOutputKeyToolsParser,
PydanticToolsParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Extra
from langchain_core.pydantic_v1 import BaseModel, Extra
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_community.llms.oci_generative_ai import OCIGenAIBase
from langchain_community.llms.utils import enforce_stop_tokens
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
JSON_TO_PYTHON_TYPES = {
"string": "str",
"number": "float",
"boolean": "bool",
"integer": "int",
"array": "List",
"object": "Dict",
}
def _remove_signature_from_tool_description(name: str, description: str) -> str:
"""
Removes the `{name}{signature} - ` prefix and Args: section from tool description.
The signature is usually present for tools created with the @tool decorator,
whereas the Args: section may be present in function doc blocks.
"""
description = re.sub(rf"^{name}\(.*?\) -(?:> \w+? -)? ", "", description)
description = re.sub(r"(?s)(?:\n?\n\s*?)?Args:.*$", "", description)
return description
def _format_oci_tool_calls(
tool_calls: Optional[List[Any]] = None,
) -> List[Dict]:
"""
Formats a OCI GenAI API response into the tool call format used in Langchain.
"""
if not tool_calls:
return []
formatted_tool_calls = []
for tool_call in tool_calls:
formatted_tool_calls.append(
{
"id": uuid.uuid4().hex[:],
"function": {
"name": tool_call.name,
"arguments": json.dumps(tool_call.parameters),
},
"type": "function",
}
)
return formatted_tool_calls
def _convert_oci_tool_call_to_langchain(tool_call: Any) -> ToolCall:
"""Convert a OCI GenAI tool call into langchain_core.messages.ToolCall"""
_id = uuid.uuid4().hex[:]
return ToolCall(name=tool_call.name, args=tool_call.parameters, id=_id)
class Provider(ABC):
@property
@ -35,14 +110,28 @@ class Provider(ABC):
@abstractmethod
def chat_stream_to_text(self, event_data: Dict) -> str: ...
@abstractmethod
def is_chat_stream_end(self, event_data: Dict) -> bool: ...
@abstractmethod
def chat_generation_info(self, response: Any) -> Dict[str, Any]: ...
@abstractmethod
def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]: ...
@abstractmethod
def get_role(self, message: BaseMessage) -> str: ...
@abstractmethod
def messages_to_oci_params(self, messages: Any) -> Dict[str, Any]: ...
def messages_to_oci_params(
self, messages: Any, **kwargs: Any
) -> Dict[str, Any]: ...
@abstractmethod
def convert_to_oci_tool(
self,
tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
) -> Dict[str, Any]: ...
class CohereProvider(Provider):
@ -52,10 +141,15 @@ class CohereProvider(Provider):
from oci.generative_ai_inference import models
self.oci_chat_request = models.CohereChatRequest
self.oci_tool = models.CohereTool
self.oci_tool_param = models.CohereParameterDefinition
self.oci_tool_result = models.CohereToolResult
self.oci_tool_call = models.CohereToolCall
self.oci_chat_message = {
"USER": models.CohereUserMessage,
"CHATBOT": models.CohereChatBotMessage,
"SYSTEM": models.CohereSystemMessage,
"TOOL": models.CohereToolMessage,
}
self.chat_api_format = models.BaseChatRequest.API_FORMAT_COHERE
@ -63,15 +157,54 @@ class CohereProvider(Provider):
return response.data.chat_response.text
def chat_stream_to_text(self, event_data: Dict) -> str:
if "text" in event_data and "finishReason" not in event_data:
if "text" in event_data:
return event_data["text"]
else:
return ""
def is_chat_stream_end(self, event_data: Dict) -> bool:
return "finishReason" in event_data
def chat_generation_info(self, response: Any) -> Dict[str, Any]:
return {
generation_info: Dict[str, Any] = {
"documents": response.data.chat_response.documents,
"citations": response.data.chat_response.citations,
"search_queries": response.data.chat_response.search_queries,
"is_search_required": response.data.chat_response.is_search_required,
"finish_reason": response.data.chat_response.finish_reason,
}
if response.data.chat_response.tool_calls:
# Only populate tool_calls when 1) present on the response and
# 2) has one or more calls.
generation_info["tool_calls"] = _format_oci_tool_calls(
response.data.chat_response.tool_calls
)
return generation_info
def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]:
generation_info: Dict[str, Any] = {
"documents": event_data.get("documents"),
"citations": event_data.get("citations"),
"finish_reason": event_data.get("finishReason"),
}
if "toolCalls" in event_data:
generation_info["tool_calls"] = []
for tool_call in event_data["toolCalls"]:
generation_info["tool_calls"].append(
{
"id": uuid.uuid4().hex[:],
"function": {
"name": tool_call["name"],
"arguments": json.dumps(tool_call["parameters"]),
},
"type": "function",
}
)
generation_info = {k: v for k, v in generation_info.items() if v is not None}
return generation_info
def get_role(self, message: BaseMessage) -> str:
if isinstance(message, HumanMessage):
@ -80,21 +213,154 @@ class CohereProvider(Provider):
return "CHATBOT"
elif isinstance(message, SystemMessage):
return "SYSTEM"
elif isinstance(message, ToolMessage):
return "TOOL"
else:
raise ValueError(f"Got unknown type {message}")
def messages_to_oci_params(self, messages: Sequence[ChatMessage]) -> Dict[str, Any]:
oci_chat_history = [
self.oci_chat_message[self.get_role(msg)](message=msg.content)
for msg in messages[:-1]
]
def messages_to_oci_params(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> Dict[str, Any]:
is_force_single_step = kwargs.get("is_force_single_step") or False
oci_chat_history = []
for msg in messages[:-1]:
if self.get_role(msg) == "USER" or self.get_role(msg) == "SYSTEM":
oci_chat_history.append(
self.oci_chat_message[self.get_role(msg)](message=msg.content)
)
elif isinstance(msg, AIMessage):
if msg.tool_calls and is_force_single_step:
continue
tool_calls = (
[
self.oci_tool_call(name=tc["name"], parameters=tc["args"])
for tc in msg.tool_calls
]
if msg.tool_calls
else None
)
msg_content = msg.content if msg.content else " "
oci_chat_history.append(
self.oci_chat_message[self.get_role(msg)](
message=msg_content, tool_calls=tool_calls
)
)
# Get the messages for the current chat turn
current_chat_turn_messages = []
for message in messages[::-1]:
current_chat_turn_messages.append(message)
if isinstance(message, HumanMessage):
break
current_chat_turn_messages = current_chat_turn_messages[::-1]
oci_tool_results: Union[List[Any], None] = []
for message in current_chat_turn_messages:
if isinstance(message, ToolMessage):
tool_message = message
previous_ai_msgs = [
message
for message in current_chat_turn_messages
if isinstance(message, AIMessage) and message.tool_calls
]
if previous_ai_msgs:
previous_ai_msg = previous_ai_msgs[-1]
for lc_tool_call in previous_ai_msg.tool_calls:
if lc_tool_call["id"] == tool_message.tool_call_id:
tool_result = self.oci_tool_result()
tool_result.call = self.oci_tool_call(
name=lc_tool_call["name"],
parameters=lc_tool_call["args"],
)
tool_result.outputs = [{"output": tool_message.content}]
oci_tool_results.append(tool_result)
if not oci_tool_results:
oci_tool_results = None
message_str = "" if oci_tool_results else messages[-1].content
oci_params = {
"message": messages[-1].content,
"message": message_str,
"chat_history": oci_chat_history,
"tool_results": oci_tool_results,
"api_format": self.chat_api_format,
}
return oci_params
return {k: v for k, v in oci_params.items() if v is not None}
def convert_to_oci_tool(
self,
tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
) -> Dict[str, Any]:
"""
Convert a BaseTool instance, JSON schema dict, or BaseModel type to a OCI tool.
"""
if isinstance(tool, BaseTool):
return self.oci_tool(
name=tool.name,
description=_remove_signature_from_tool_description(
tool.name, tool.description
),
parameter_definitions={
p_name: self.oci_tool_param(
description=p_def.get("description")
if "description" in p_def
else "",
type=JSON_TO_PYTHON_TYPES.get(
p_def.get("type"), p_def.get("type")
),
is_required="default" not in p_def,
)
for p_name, p_def in tool.args.items()
},
)
elif isinstance(tool, dict):
if not all(k in tool for k in ("title", "description", "properties")):
raise ValueError(
"Unsupported dict type. Tool must be passed in as a BaseTool instance, JSON schema dict, or BaseModel type." # noqa: E501
)
return self.oci_tool(
name=tool.get("title"),
description=tool.get("description"),
parameter_definitions={
p_name: self.oci_tool_param(
description=p_def.get("description"),
type=JSON_TO_PYTHON_TYPES.get(
p_def.get("type"), p_def.get("type")
),
is_required="default" not in p_def,
)
for p_name, p_def in tool.get("properties", {}).items()
},
)
elif (isinstance(tool, type) and issubclass(tool, BaseModel)) or callable(tool):
as_json_schema_function = convert_to_openai_function(tool)
parameters = as_json_schema_function.get("parameters", {})
properties = parameters.get("properties", {})
return self.oci_tool(
name=as_json_schema_function.get("name"),
description=as_json_schema_function.get(
"description",
as_json_schema_function.get("name"),
),
parameter_definitions={
p_name: self.oci_tool_param(
description=p_def.get("description"),
type=JSON_TO_PYTHON_TYPES.get(
p_def.get("type"), p_def.get("type")
),
is_required=p_name in parameters.get("required", []),
)
for p_name, p_def in properties.items()
},
)
else:
raise ValueError(
f"Unsupported tool type {type(tool)}. Tool must be passed in as a BaseTool instance, JSON schema dict, or BaseModel type." # noqa: E501
)
class MetaProvider(Provider):
@ -116,10 +382,10 @@ class MetaProvider(Provider):
return response.data.chat_response.choices[0].message.content[0].text
def chat_stream_to_text(self, event_data: Dict) -> str:
if "message" in event_data:
return event_data["message"]["content"][0]["text"]
else:
return ""
return event_data["message"]["content"][0]["text"]
def is_chat_stream_end(self, event_data: Dict) -> bool:
return "message" not in event_data
def chat_generation_info(self, response: Any) -> Dict[str, Any]:
return {
@ -127,6 +393,11 @@ class MetaProvider(Provider):
"time_created": str(response.data.chat_response.time_created),
}
def chat_stream_generation_info(self, event_data: Dict) -> Dict[str, Any]:
return {
"finish_reason": event_data["finishReason"],
}
def get_role(self, message: BaseMessage) -> str:
# meta only supports alternating user/assistant roles
if isinstance(message, HumanMessage):
@ -138,7 +409,9 @@ class MetaProvider(Provider):
else:
raise ValueError(f"Got unknown type {message}")
def messages_to_oci_params(self, messages: List[BaseMessage]) -> Dict[str, Any]:
def messages_to_oci_params(
self, messages: List[BaseMessage], **kwargs: Any
) -> Dict[str, Any]:
oci_messages = [
self.oci_chat_message[self.get_role(msg)](
content=[self.oci_chat_message_content(text=msg.content)]
@ -153,6 +426,12 @@ class MetaProvider(Provider):
return oci_params
def convert_to_oci_tool(
self,
tool: Union[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
) -> Dict[str, Any]:
raise NotImplementedError("Tools not supported for Meta models")
class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
"""ChatOCIGenAI chat model integration.
@ -247,8 +526,8 @@ class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
self,
messages: List[BaseMessage],
stop: Optional[List[str]],
kwargs: Dict[str, Any],
stream: bool,
**kwargs: Any,
) -> Dict[str, Any]:
try:
from oci.generative_ai_inference import models
@ -258,8 +537,10 @@ class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
"Could not import oci python package. "
"Please make sure you have the oci package installed."
) from ex
oci_params = self._provider.messages_to_oci_params(messages)
oci_params["is_stream"] = stream # self.is_stream
oci_params = self._provider.messages_to_oci_params(messages, **kwargs)
oci_params["is_stream"] = stream
_model_kwargs = self.model_kwargs or {}
if stop is not None:
@ -280,6 +561,43 @@ class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
return request
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
formatted_tools = [self._provider.convert_to_oci_tool(tool) for tool in tools]
return super().bind(tools=formatted_tools, **kwargs)
def with_structured_output(
self,
schema: Union[Dict[Any, Any], Type[BaseModel]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict.
Returns:
A Runnable that takes any ChatModel input and returns either a dict or
Pydantic class as output.
"""
llm = self.bind_tools([schema], **kwargs)
if isinstance(schema, type) and issubclass(schema, BaseModel):
output_parser: OutputParserLike = PydanticToolsParser(
tools=[schema], first_tool_only=True
)
else:
key_name = getattr(self._provider.convert_to_oci_tool(schema), "name")
output_parser = JsonOutputKeyToolsParser(
key_name=key_name, first_tool_only=True
)
return llm | output_parser
def _generate(
self,
messages: List[BaseMessage],
@ -313,7 +631,7 @@ class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
)
return generate_from_stream(stream_iter)
request = self._prepare_request(messages, stop, kwargs, stream=False)
request = self._prepare_request(messages, stop=stop, stream=False, **kwargs)
response = self.client.chat(request)
content = self._provider.chat_response_to_text(response)
@ -330,11 +648,22 @@ class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
"content-length": response.headers["content-length"],
}
if "tool_calls" in generation_info:
tool_calls = [
_convert_oci_tool_call_to_langchain(tool_call)
for tool_call in response.data.chat_response.tool_calls
]
else:
tool_calls = []
message = AIMessage(
content=content,
additional_kwargs=generation_info,
tool_calls=tool_calls,
)
return ChatResult(
generations=[
ChatGeneration(
message=AIMessage(content=content), generation_info=generation_info
)
ChatGeneration(message=message, generation_info=generation_info)
],
llm_output=llm_output,
)
@ -346,12 +675,42 @@ class ChatOCIGenAI(BaseChatModel, OCIGenAIBase):
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
request = self._prepare_request(messages, stop, kwargs, stream=True)
request = self._prepare_request(messages, stop=stop, stream=True, **kwargs)
response = self.client.chat(request)
for event in response.data.events():
delta = self._provider.chat_stream_to_text(json.loads(event.data))
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
if run_manager:
run_manager.on_llm_new_token(delta, chunk=chunk)
yield chunk
event_data = json.loads(event.data)
if not self._provider.is_chat_stream_end(event_data): # still streaming
delta = self._provider.chat_stream_to_text(event_data)
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
if run_manager:
run_manager.on_llm_new_token(delta, chunk=chunk)
yield chunk
else: # stream end
generation_info = self._provider.chat_stream_generation_info(event_data)
tool_call_chunks = []
if tool_calls := generation_info.get("tool_calls"):
content = self._provider.chat_stream_to_text(event_data)
try:
tool_call_chunks = [
ToolCallChunk(
name=tool_call["function"].get("name"),
args=tool_call["function"].get("arguments"),
id=tool_call.get("id"),
index=tool_call.get("index"),
)
for tool_call in tool_calls
]
except KeyError:
pass
else:
content = ""
message = AIMessageChunk(
content=content,
additional_kwargs=generation_info,
tool_call_chunks=tool_call_chunks,
)
yield ChatGenerationChunk(
message=message,
generation_info=generation_info,
)

View File

@ -38,6 +38,11 @@ def test_llm_chat(monkeypatch: MonkeyPatch, test_model_id: str) -> None:
{
"text": response_text,
"finish_reason": "completed",
"is_search_required": None,
"search_queries": None,
"citations": None,
"documents": None,
"tool_calls": None,
}
),
"model_id": "cohere.command-r-16k",