mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-23 15:19:33 +00:00
[Core] Add support for inferring Annotated types (#23284)
in bind_tools() / convert_to_openai_function
This commit is contained in:
parent
9ac302cb97
commit
efb4c12abe
@ -3,6 +3,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import inspect
|
||||
import logging
|
||||
import uuid
|
||||
from types import FunctionType, MethodType
|
||||
from typing import (
|
||||
@ -19,7 +20,7 @@ from typing import (
|
||||
cast,
|
||||
)
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
from typing_extensions import Annotated, TypedDict, get_args, get_origin
|
||||
|
||||
from langchain_core._api import deprecated
|
||||
from langchain_core.messages import (
|
||||
@ -33,7 +34,7 @@ from langchain_core.utils.json_schema import dereference_refs
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
PYTHON_TO_JSON_TYPES = {
|
||||
"str": "string",
|
||||
"int": "integer",
|
||||
@ -160,6 +161,10 @@ def _parse_python_function_docstring(function: Callable) -> Tuple[str, dict]:
|
||||
return description, arg_descriptions
|
||||
|
||||
|
||||
def _is_annotated_type(typ: Type[Any]) -> bool:
|
||||
return get_origin(typ) is Annotated
|
||||
|
||||
|
||||
def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -> dict:
|
||||
"""Get JsonSchema describing a Python functions arguments.
|
||||
|
||||
@ -171,10 +176,27 @@ def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -
|
||||
for arg, arg_type in annotations.items():
|
||||
if arg == "return":
|
||||
continue
|
||||
if isinstance(arg_type, type) and issubclass(arg_type, BaseModel):
|
||||
# Mypy error:
|
||||
# "type" has no attribute "schema"
|
||||
properties[arg] = arg_type.schema() # type: ignore[attr-defined]
|
||||
|
||||
if _is_annotated_type(arg_type):
|
||||
annotated_args = get_args(arg_type)
|
||||
arg_type = annotated_args[0]
|
||||
if len(annotated_args) > 1:
|
||||
for annotation in annotated_args[1:]:
|
||||
if isinstance(annotation, str):
|
||||
arg_descriptions[arg] = annotation
|
||||
break
|
||||
if (
|
||||
isinstance(arg_type, type)
|
||||
and hasattr(arg_type, "model_json_schema")
|
||||
and callable(arg_type.model_json_schema)
|
||||
):
|
||||
properties[arg] = arg_type.model_json_schema()
|
||||
elif (
|
||||
isinstance(arg_type, type)
|
||||
and hasattr(arg_type, "schema")
|
||||
and callable(arg_type.schema)
|
||||
):
|
||||
properties[arg] = arg_type.schema()
|
||||
elif (
|
||||
hasattr(arg_type, "__name__")
|
||||
and getattr(arg_type, "__name__") in PYTHON_TO_JSON_TYPES
|
||||
@ -185,13 +207,20 @@ def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -
|
||||
and getattr(arg_type, "__dict__").get("__origin__", None) == Literal
|
||||
):
|
||||
properties[arg] = {
|
||||
"enum": list(arg_type.__args__), # type: ignore
|
||||
"type": PYTHON_TO_JSON_TYPES[arg_type.__args__[0].__class__.__name__], # type: ignore
|
||||
"enum": list(arg_type.__args__),
|
||||
"type": PYTHON_TO_JSON_TYPES[arg_type.__args__[0].__class__.__name__],
|
||||
}
|
||||
else:
|
||||
logger.warning(
|
||||
f"Argument {arg} of type {arg_type} from function {function.__name__} "
|
||||
"could not be not be converted to a JSON schema."
|
||||
)
|
||||
|
||||
if arg in arg_descriptions:
|
||||
if arg not in properties:
|
||||
properties[arg] = {}
|
||||
properties[arg]["description"] = arg_descriptions[arg]
|
||||
|
||||
return properties
|
||||
|
||||
|
||||
|
@ -1,6 +1,10 @@
|
||||
# mypy: disable-error-code="annotation-unchecked"
|
||||
from typing import Any, Callable, Dict, List, Literal, Optional, Type
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel as BaseModelV2Maybe # pydantic: ignore
|
||||
from pydantic import Field as FieldV2Maybe # pydantic: ignore
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
@ -22,6 +26,18 @@ def pydantic() -> Type[BaseModel]:
|
||||
return dummy_function
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def annotated_function() -> Callable:
|
||||
def dummy_function(
|
||||
arg1: Annotated[int, "foo"],
|
||||
arg2: Annotated[Literal["bar", "baz"], "one of 'bar', 'baz'"],
|
||||
) -> None:
|
||||
"""dummy function"""
|
||||
pass
|
||||
|
||||
return dummy_function
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def function() -> Callable:
|
||||
def dummy_function(arg1: int, arg2: Literal["bar", "baz"]) -> None:
|
||||
@ -53,6 +69,30 @@ def dummy_tool() -> BaseTool:
|
||||
return DummyFunction()
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def dummy_pydantic() -> Type[BaseModel]:
|
||||
class dummy_function(BaseModel):
|
||||
"""dummy function"""
|
||||
|
||||
arg1: int = Field(..., description="foo")
|
||||
arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'")
|
||||
|
||||
return dummy_function
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def dummy_pydantic_v2() -> Type[BaseModelV2Maybe]:
|
||||
class dummy_function(BaseModelV2Maybe):
|
||||
"""dummy function"""
|
||||
|
||||
arg1: int = FieldV2Maybe(..., description="foo")
|
||||
arg2: Literal["bar", "baz"] = FieldV2Maybe(
|
||||
..., description="one of 'bar', 'baz'"
|
||||
)
|
||||
|
||||
return dummy_function
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def json_schema() -> Dict:
|
||||
return {
|
||||
@ -99,6 +139,8 @@ def test_convert_to_openai_function(
|
||||
function: Callable,
|
||||
dummy_tool: BaseTool,
|
||||
json_schema: Dict,
|
||||
annotated_function: Callable,
|
||||
dummy_pydantic: Type[BaseModel],
|
||||
) -> None:
|
||||
expected = {
|
||||
"name": "dummy_function",
|
||||
@ -125,11 +167,69 @@ def test_convert_to_openai_function(
|
||||
expected,
|
||||
Dummy.dummy_function,
|
||||
DummyWithClassMethod.dummy_function,
|
||||
annotated_function,
|
||||
dummy_pydantic,
|
||||
):
|
||||
actual = convert_to_openai_function(fn) # type: ignore
|
||||
assert actual == expected
|
||||
|
||||
|
||||
def test_convert_to_openai_function_nested() -> None:
|
||||
class Nested(BaseModel):
|
||||
nested_arg1: int = Field(..., description="foo")
|
||||
nested_arg2: Literal["bar", "baz"] = Field(
|
||||
..., description="one of 'bar', 'baz'"
|
||||
)
|
||||
|
||||
class NestedV2(BaseModelV2Maybe):
|
||||
nested_v2_arg1: int = FieldV2Maybe(..., description="foo")
|
||||
nested_v2_arg2: Literal["bar", "baz"] = FieldV2Maybe(
|
||||
..., description="one of 'bar', 'baz'"
|
||||
)
|
||||
|
||||
def my_function(arg1: Nested, arg2: NestedV2) -> None:
|
||||
"""dummy function"""
|
||||
pass
|
||||
|
||||
expected = {
|
||||
"name": "my_function",
|
||||
"description": "dummy function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"nested_arg1": {"type": "integer", "description": "foo"},
|
||||
"nested_arg2": {
|
||||
"type": "string",
|
||||
"enum": ["bar", "baz"],
|
||||
"description": "one of 'bar', 'baz'",
|
||||
},
|
||||
},
|
||||
"required": ["nested_arg1", "nested_arg2"],
|
||||
},
|
||||
"arg2": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"nested_v2_arg1": {"type": "integer", "description": "foo"},
|
||||
"nested_v2_arg2": {
|
||||
"type": "string",
|
||||
"enum": ["bar", "baz"],
|
||||
"description": "one of 'bar', 'baz'",
|
||||
},
|
||||
},
|
||||
"required": ["nested_v2_arg1", "nested_v2_arg2"],
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
},
|
||||
}
|
||||
|
||||
actual = convert_to_openai_function(my_function)
|
||||
assert actual == expected
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="Pydantic converts Optional[str] to str in .schema()")
|
||||
def test_function_optional_param() -> None:
|
||||
@tool
|
||||
|
Loading…
Reference in New Issue
Block a user