[Core] Add support for inferring Annotated types (#23284)

in bind_tools() / convert_to_openai_function
This commit is contained in:
William FH
2024-06-21 15:16:30 -07:00
committed by GitHub
parent 9ac302cb97
commit efb4c12abe
2 changed files with 137 additions and 8 deletions

View File

@@ -1,6 +1,10 @@
# mypy: disable-error-code="annotation-unchecked"
from typing import Any, Callable, Dict, List, Literal, Optional, Type
import pytest
from pydantic import BaseModel as BaseModelV2Maybe # pydantic: ignore
from pydantic import Field as FieldV2Maybe # pydantic: ignore
from typing_extensions import Annotated
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
@@ -22,6 +26,18 @@ def pydantic() -> Type[BaseModel]:
return dummy_function
@pytest.fixture()
def annotated_function() -> Callable:
def dummy_function(
arg1: Annotated[int, "foo"],
arg2: Annotated[Literal["bar", "baz"], "one of 'bar', 'baz'"],
) -> None:
"""dummy function"""
pass
return dummy_function
@pytest.fixture()
def function() -> Callable:
def dummy_function(arg1: int, arg2: Literal["bar", "baz"]) -> None:
@@ -53,6 +69,30 @@ def dummy_tool() -> BaseTool:
return DummyFunction()
@pytest.fixture()
def dummy_pydantic() -> Type[BaseModel]:
class dummy_function(BaseModel):
"""dummy function"""
arg1: int = Field(..., description="foo")
arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'")
return dummy_function
@pytest.fixture()
def dummy_pydantic_v2() -> Type[BaseModelV2Maybe]:
class dummy_function(BaseModelV2Maybe):
"""dummy function"""
arg1: int = FieldV2Maybe(..., description="foo")
arg2: Literal["bar", "baz"] = FieldV2Maybe(
..., description="one of 'bar', 'baz'"
)
return dummy_function
@pytest.fixture()
def json_schema() -> Dict:
return {
@@ -99,6 +139,8 @@ def test_convert_to_openai_function(
function: Callable,
dummy_tool: BaseTool,
json_schema: Dict,
annotated_function: Callable,
dummy_pydantic: Type[BaseModel],
) -> None:
expected = {
"name": "dummy_function",
@@ -125,11 +167,69 @@ def test_convert_to_openai_function(
expected,
Dummy.dummy_function,
DummyWithClassMethod.dummy_function,
annotated_function,
dummy_pydantic,
):
actual = convert_to_openai_function(fn) # type: ignore
assert actual == expected
def test_convert_to_openai_function_nested() -> None:
class Nested(BaseModel):
nested_arg1: int = Field(..., description="foo")
nested_arg2: Literal["bar", "baz"] = Field(
..., description="one of 'bar', 'baz'"
)
class NestedV2(BaseModelV2Maybe):
nested_v2_arg1: int = FieldV2Maybe(..., description="foo")
nested_v2_arg2: Literal["bar", "baz"] = FieldV2Maybe(
..., description="one of 'bar', 'baz'"
)
def my_function(arg1: Nested, arg2: NestedV2) -> None:
"""dummy function"""
pass
expected = {
"name": "my_function",
"description": "dummy function",
"parameters": {
"type": "object",
"properties": {
"arg1": {
"type": "object",
"properties": {
"nested_arg1": {"type": "integer", "description": "foo"},
"nested_arg2": {
"type": "string",
"enum": ["bar", "baz"],
"description": "one of 'bar', 'baz'",
},
},
"required": ["nested_arg1", "nested_arg2"],
},
"arg2": {
"type": "object",
"properties": {
"nested_v2_arg1": {"type": "integer", "description": "foo"},
"nested_v2_arg2": {
"type": "string",
"enum": ["bar", "baz"],
"description": "one of 'bar', 'baz'",
},
},
"required": ["nested_v2_arg1", "nested_v2_arg2"],
},
},
"required": ["arg1", "arg2"],
},
}
actual = convert_to_openai_function(my_function)
assert actual == expected
@pytest.mark.xfail(reason="Pydantic converts Optional[str] to str in .schema()")
def test_function_optional_param() -> None:
@tool