mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-25 16:13:25 +00:00
Azure OpenAI Embeddings (#13039)
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
37561d8986
commit
f15f8e01cf
@ -2,12 +2,15 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
from langchain.chat_models.openai import ChatOpenAI, _is_openai_v1
|
||||
from langchain.chat_models.openai import ChatOpenAI
|
||||
from langchain.pydantic_v1 import BaseModel, Field, root_validator
|
||||
from langchain.schema import ChatResult
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from langchain.utils.openai import is_openai_v1
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -51,48 +54,82 @@ class AzureChatOpenAI(ChatOpenAI):
|
||||
in, even if not explicitly saved on this class.
|
||||
"""
|
||||
|
||||
deployment_name: str = Field(default="", alias="azure_deployment")
|
||||
model_version: str = ""
|
||||
openai_api_type: str = ""
|
||||
openai_api_base: str = Field(default="", alias="azure_endpoint")
|
||||
azure_endpoint: Union[str, None] = None
|
||||
"""Your Azure endpoint, including the resource.
|
||||
|
||||
Example: `https://example-resource.azure.openai.com/`
|
||||
"""
|
||||
deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment")
|
||||
"""A model deployment.
|
||||
|
||||
If given sets the base client URL to include `/deployments/{azure_deployment}`.
|
||||
Note: this means you won't be able to use non-deployment endpoints.
|
||||
"""
|
||||
openai_api_version: str = Field(default="", alias="api_version")
|
||||
openai_api_key: str = Field(default="", alias="api_key")
|
||||
openai_organization: str = Field(default="", alias="organization")
|
||||
openai_proxy: str = ""
|
||||
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
||||
openai_api_key: Union[str, None] = Field(default=None, alias="api_key")
|
||||
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
|
||||
azure_ad_token: Union[str, None] = None
|
||||
"""Your Azure Active Directory token.
|
||||
|
||||
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
|
||||
|
||||
For more:
|
||||
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
|
||||
""" # noqa: E501
|
||||
azure_ad_token_provider: Union[str, None] = None
|
||||
"""A function that returns an Azure Active Directory token.
|
||||
|
||||
Will be invoked on every request.
|
||||
"""
|
||||
model_version: str = ""
|
||||
"""Legacy, for openai<1.0.0 support."""
|
||||
openai_api_type: str = ""
|
||||
"""Legacy, for openai<1.0.0 support."""
|
||||
validate_base_url: bool = True
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["openai_api_key"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_key",
|
||||
"OPENAI_API_KEY",
|
||||
if values["n"] < 1:
|
||||
raise ValueError("n must be at least 1.")
|
||||
if values["n"] > 1 and values["streaming"]:
|
||||
raise ValueError("n must be 1 when streaming.")
|
||||
|
||||
# Check OPENAI_KEY for backwards compatibility.
|
||||
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
|
||||
# other forms of azure credentials.
|
||||
values["openai_api_key"] = (
|
||||
values["openai_api_key"]
|
||||
or os.getenv("AZURE_OPENAI_API_KEY")
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
values["openai_api_base"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_base",
|
||||
"OPENAI_API_BASE",
|
||||
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
||||
"OPENAI_API_BASE"
|
||||
)
|
||||
values["openai_api_version"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_version",
|
||||
"OPENAI_API_VERSION",
|
||||
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
|
||||
"OPENAI_API_VERSION"
|
||||
)
|
||||
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
||||
values["openai_organization"] = (
|
||||
values["openai_organization"]
|
||||
or os.getenv("OPENAI_ORG_ID")
|
||||
or os.getenv("OPENAI_ORGANIZATION")
|
||||
)
|
||||
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
|
||||
"AZURE_OPENAI_ENDPOINT"
|
||||
)
|
||||
values["azure_ad_token"] = values["azure_ad_token"] or os.getenv(
|
||||
"AZURE_OPENAI_AD_TOKEN"
|
||||
)
|
||||
|
||||
values["openai_api_type"] = get_from_dict_or_env(
|
||||
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
|
||||
)
|
||||
values["openai_organization"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_organization",
|
||||
"OPENAI_ORGANIZATION",
|
||||
default="",
|
||||
)
|
||||
values["openai_proxy"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_proxy",
|
||||
"OPENAI_PROXY",
|
||||
default="",
|
||||
values, "openai_proxy", "OPENAI_PROXY", default=""
|
||||
)
|
||||
|
||||
try:
|
||||
import openai
|
||||
|
||||
@ -101,37 +138,69 @@ class AzureChatOpenAI(ChatOpenAI):
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
if _is_openai_v1():
|
||||
values["client"] = openai.AzureOpenAI(
|
||||
azure_endpoint=values["openai_api_base"],
|
||||
api_key=values["openai_api_key"],
|
||||
timeout=values["request_timeout"],
|
||||
max_retries=values["max_retries"],
|
||||
organization=values["openai_organization"],
|
||||
api_version=values["openai_api_version"],
|
||||
azure_deployment=values["deployment_name"],
|
||||
).chat.completions
|
||||
if is_openai_v1():
|
||||
# For backwards compatibility. Before openai v1, no distinction was made
|
||||
# between azure_endpoint and base_url (openai_api_base).
|
||||
openai_api_base = values["openai_api_base"]
|
||||
if openai_api_base and values["validate_base_url"]:
|
||||
if "/openai" not in openai_api_base:
|
||||
values["openai_api_base"] = (
|
||||
values["openai_api_base"].rstrip("/") + "/openai"
|
||||
)
|
||||
warnings.warn(
|
||||
"As of openai>=1.0.0, Azure endpoints should be specified via "
|
||||
f"the `azure_endpoint` param not `openai_api_base` "
|
||||
f"(or alias `base_url`). Updating `openai_api_base` from "
|
||||
f"{openai_api_base} to {values['openai_api_base']}."
|
||||
)
|
||||
if values["deployment_name"]:
|
||||
warnings.warn(
|
||||
"As of openai>=1.0.0, if `deployment_name` (or alias "
|
||||
"`azure_deployment`) is specified then "
|
||||
"`openai_api_base` (or alias `base_url`) should not be. "
|
||||
"Instead use `deployment_name` (or alias `azure_deployment`) "
|
||||
"and `azure_endpoint`."
|
||||
)
|
||||
if values["deployment_name"] not in values["openai_api_base"]:
|
||||
warnings.warn(
|
||||
"As of openai>=1.0.0, if `openai_api_base` "
|
||||
"(or alias `base_url`) is specified it is expected to be "
|
||||
"of the form "
|
||||
"https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501
|
||||
f"Updating {openai_api_base} to "
|
||||
f"{values['openai_api_base']}."
|
||||
)
|
||||
values["openai_api_base"] += (
|
||||
"/deployments/" + values["deployment_name"]
|
||||
)
|
||||
values["deployment_name"] = None
|
||||
client_params = {
|
||||
"api_version": values["openai_api_version"],
|
||||
"azure_endpoint": values["azure_endpoint"],
|
||||
"azure_deployment": values["deployment_name"],
|
||||
"api_key": values["openai_api_key"],
|
||||
"azure_ad_token": values["azure_ad_token"],
|
||||
"azure_ad_token_provider": values["azure_ad_token_provider"],
|
||||
"organization": values["openai_organization"],
|
||||
"base_url": values["openai_api_base"],
|
||||
"timeout": values["request_timeout"],
|
||||
"max_retries": values["max_retries"],
|
||||
"default_headers": values["default_headers"],
|
||||
"default_query": values["default_query"],
|
||||
"http_client": values["http_client"],
|
||||
}
|
||||
values["client"] = openai.AzureOpenAI(**client_params).chat.completions
|
||||
values["async_client"] = openai.AsyncAzureOpenAI(
|
||||
azure_endpoint=values["openai_api_base"],
|
||||
api_key=values["openai_api_key"],
|
||||
timeout=values["request_timeout"],
|
||||
max_retries=values["max_retries"],
|
||||
organization=values["openai_organization"],
|
||||
api_version=values["openai_api_version"],
|
||||
azure_deployment=values["deployment_name"],
|
||||
**client_params
|
||||
).chat.completions
|
||||
else:
|
||||
values["client"] = openai.ChatCompletion
|
||||
if values["n"] < 1:
|
||||
raise ValueError("n must be at least 1.")
|
||||
if values["n"] > 1 and values["streaming"]:
|
||||
raise ValueError("n must be 1 when streaming.")
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling OpenAI API."""
|
||||
if _is_openai_v1():
|
||||
if is_openai_v1():
|
||||
return super()._default_params
|
||||
else:
|
||||
return {
|
||||
@ -147,7 +216,7 @@ class AzureChatOpenAI(ChatOpenAI):
|
||||
@property
|
||||
def _client_params(self) -> Dict[str, Any]:
|
||||
"""Get the config params used for the openai client."""
|
||||
if _is_openai_v1():
|
||||
if is_openai_v1():
|
||||
return super()._client_params
|
||||
else:
|
||||
return {
|
||||
|
@ -2,8 +2,8 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from importlib.metadata import version
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
@ -20,8 +20,6 @@ from typing import (
|
||||
Union,
|
||||
)
|
||||
|
||||
from packaging.version import Version, parse
|
||||
|
||||
from langchain.adapters.openai import convert_dict_to_message, convert_message_to_dict
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
@ -51,6 +49,7 @@ from langchain.utils import (
|
||||
get_from_dict_or_env,
|
||||
get_pydantic_field_names,
|
||||
)
|
||||
from langchain.utils.openai import is_openai_v1
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import httpx
|
||||
@ -98,7 +97,7 @@ async def acompletion_with_retry(
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
"""Use tenacity to retry the async completion call."""
|
||||
if _is_openai_v1():
|
||||
if is_openai_v1():
|
||||
return await llm.async_client.create(**kwargs)
|
||||
|
||||
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
||||
@ -140,11 +139,6 @@ def _convert_delta_to_message_chunk(
|
||||
return default_class(content=content)
|
||||
|
||||
|
||||
def _is_openai_v1() -> bool:
|
||||
_version = parse(version("openai"))
|
||||
return _version >= Version("1.0.0")
|
||||
|
||||
|
||||
class ChatOpenAI(BaseChatModel):
|
||||
"""`OpenAI` Chat large language models API.
|
||||
|
||||
@ -169,13 +163,13 @@ class ChatOpenAI(BaseChatModel):
|
||||
def lc_attributes(self) -> Dict[str, Any]:
|
||||
attributes: Dict[str, Any] = {}
|
||||
|
||||
if self.openai_organization != "":
|
||||
if self.openai_organization:
|
||||
attributes["openai_organization"] = self.openai_organization
|
||||
|
||||
if self.openai_api_base != "":
|
||||
if self.openai_api_base:
|
||||
attributes["openai_api_base"] = self.openai_api_base
|
||||
|
||||
if self.openai_proxy != "":
|
||||
if self.openai_proxy:
|
||||
attributes["openai_proxy"] = self.openai_proxy
|
||||
|
||||
return attributes
|
||||
@ -197,10 +191,12 @@ class ChatOpenAI(BaseChatModel):
|
||||
# Check for classes that derive from this class (as some of them
|
||||
# may assume openai_api_key is a str)
|
||||
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
|
||||
"""Base URL path for API requests,
|
||||
leave blank if not using a proxy or service emulator."""
|
||||
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
|
||||
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
|
||||
"""Base URL path for API requests, leave blank if not using a proxy or service
|
||||
emulator."""
|
||||
openai_organization: Optional[str] = Field(default=None, alias="organization")
|
||||
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
|
||||
# to support explicit proxy for OpenAI
|
||||
openai_proxy: Optional[str] = None
|
||||
request_timeout: Union[float, Tuple[float, float], httpx.Timeout, None] = Field(
|
||||
@ -225,6 +221,11 @@ class ChatOpenAI(BaseChatModel):
|
||||
when using one of the many model providers that expose an OpenAI-like
|
||||
API but with different models. In those cases, in order to avoid erroring
|
||||
when tiktoken is called, you can specify a model name to use here."""
|
||||
default_headers: Union[Mapping[str, str], None] = None
|
||||
default_query: Union[Mapping[str, object], None] = None
|
||||
# Configure a custom httpx client. See the
|
||||
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
|
||||
http_client: Union[httpx.Client, None] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
@ -260,20 +261,22 @@ class ChatOpenAI(BaseChatModel):
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
if values["n"] < 1:
|
||||
raise ValueError("n must be at least 1.")
|
||||
if values["n"] > 1 and values["streaming"]:
|
||||
raise ValueError("n must be 1 when streaming.")
|
||||
|
||||
values["openai_api_key"] = get_from_dict_or_env(
|
||||
values, "openai_api_key", "OPENAI_API_KEY"
|
||||
)
|
||||
values["openai_organization"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_organization",
|
||||
"OPENAI_ORGANIZATION",
|
||||
default="",
|
||||
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
||||
values["openai_organization"] = (
|
||||
values["openai_organization"]
|
||||
or os.getenv("OPENAI_ORG_ID")
|
||||
or os.getenv("OPENAI_ORGANIZATION")
|
||||
)
|
||||
values["openai_api_base"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_base",
|
||||
"OPENAI_API_BASE",
|
||||
default="",
|
||||
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
||||
"OPENAI_API_BASE"
|
||||
)
|
||||
values["openai_proxy"] = get_from_dict_or_env(
|
||||
values,
|
||||
@ -285,32 +288,28 @@ class ChatOpenAI(BaseChatModel):
|
||||
import openai
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
|
||||
if _is_openai_v1():
|
||||
values["client"] = openai.OpenAI(
|
||||
api_key=values["openai_api_key"],
|
||||
timeout=values["request_timeout"],
|
||||
max_retries=values["max_retries"],
|
||||
organization=values["openai_organization"],
|
||||
base_url=values["openai_api_base"] or None,
|
||||
).chat.completions
|
||||
if is_openai_v1():
|
||||
client_params = {
|
||||
"api_key": values["openai_api_key"],
|
||||
"organization": values["openai_organization"],
|
||||
"base_url": values["openai_api_base"],
|
||||
"timeout": values["request_timeout"],
|
||||
"max_retries": values["max_retries"],
|
||||
"default_headers": values["default_headers"],
|
||||
"default_query": values["default_query"],
|
||||
"http_client": values["http_client"],
|
||||
}
|
||||
values["client"] = openai.OpenAI(**client_params).chat.completions
|
||||
values["async_client"] = openai.AsyncOpenAI(
|
||||
api_key=values["openai_api_key"],
|
||||
timeout=values["request_timeout"],
|
||||
max_retries=values["max_retries"],
|
||||
organization=values["openai_organization"],
|
||||
base_url=values["openai_api_base"] or None,
|
||||
**client_params
|
||||
).chat.completions
|
||||
else:
|
||||
values["client"] = openai.ChatCompletion
|
||||
if values["n"] < 1:
|
||||
raise ValueError("n must be at least 1.")
|
||||
if values["n"] > 1 and values["streaming"]:
|
||||
raise ValueError("n must be 1 when streaming.")
|
||||
return values
|
||||
|
||||
@property
|
||||
@ -331,7 +330,7 @@ class ChatOpenAI(BaseChatModel):
|
||||
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
||||
) -> Any:
|
||||
"""Use tenacity to retry the completion call."""
|
||||
if _is_openai_v1():
|
||||
if is_openai_v1():
|
||||
return self.client.create(**kwargs)
|
||||
|
||||
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
||||
@ -510,7 +509,7 @@ class ChatOpenAI(BaseChatModel):
|
||||
openai_creds: Dict[str, Any] = {
|
||||
"model": self.model_name,
|
||||
}
|
||||
if not _is_openai_v1():
|
||||
if not is_openai_v1():
|
||||
openai_creds.update(
|
||||
{
|
||||
"api_key": self.openai_api_key,
|
||||
|
@ -19,6 +19,7 @@ from langchain.embeddings.aleph_alpha import (
|
||||
AlephAlphaSymmetricSemanticEmbedding,
|
||||
)
|
||||
from langchain.embeddings.awa import AwaEmbeddings
|
||||
from langchain.embeddings.azure_openai import AzureOpenAIEmbeddings
|
||||
from langchain.embeddings.baidu_qianfan_endpoint import QianfanEmbeddingsEndpoint
|
||||
from langchain.embeddings.bedrock import BedrockEmbeddings
|
||||
from langchain.embeddings.cache import CacheBackedEmbeddings
|
||||
@ -72,6 +73,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
__all__ = [
|
||||
"OpenAIEmbeddings",
|
||||
"AzureOpenAIEmbeddings",
|
||||
"CacheBackedEmbeddings",
|
||||
"ClarifaiEmbeddings",
|
||||
"CohereEmbeddings",
|
||||
|
149
libs/langchain/langchain/embeddings/azure_openai.py
Normal file
149
libs/langchain/langchain/embeddings/azure_openai.py
Normal file
@ -0,0 +1,149 @@
|
||||
"""Azure OpenAI embeddings wrapper."""
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.pydantic_v1 import Field, root_validator
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from langchain.utils.openai import is_openai_v1
|
||||
|
||||
|
||||
class AzureOpenAIEmbeddings(OpenAIEmbeddings):
|
||||
"""`Azure OpenAI` Embeddings API."""
|
||||
|
||||
azure_endpoint: Union[str, None] = None
|
||||
"""Your Azure endpoint, including the resource.
|
||||
|
||||
Example: `https://example-resource.azure.openai.com/`
|
||||
"""
|
||||
azure_deployment: Optional[str] = None
|
||||
"""A model deployment.
|
||||
|
||||
If given sets the base client URL to include `/deployments/{azure_deployment}`.
|
||||
Note: this means you won't be able to use non-deployment endpoints.
|
||||
"""
|
||||
openai_api_key: Union[str, None] = Field(default=None, alias="api_key")
|
||||
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
|
||||
azure_ad_token: Union[str, None] = None
|
||||
"""Your Azure Active Directory token.
|
||||
|
||||
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
|
||||
|
||||
For more:
|
||||
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
|
||||
""" # noqa: E501
|
||||
azure_ad_token_provider: Union[str, None] = None
|
||||
"""A function that returns an Azure Active Directory token.
|
||||
|
||||
Will be invoked on every request.
|
||||
"""
|
||||
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
|
||||
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
||||
validate_base_url: bool = True
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
# Check OPENAI_KEY for backwards compatibility.
|
||||
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
|
||||
# other forms of azure credentials.
|
||||
values["openai_api_key"] = (
|
||||
values["openai_api_key"]
|
||||
or os.getenv("AZURE_OPENAI_API_KEY")
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
||||
"OPENAI_API_BASE"
|
||||
)
|
||||
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
|
||||
"OPENAI_API_VERSION", default="2023-05-15"
|
||||
)
|
||||
values["openai_api_type"] = get_from_dict_or_env(
|
||||
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
|
||||
)
|
||||
values["openai_organization"] = (
|
||||
values["openai_organization"]
|
||||
or os.getenv("OPENAI_ORG_ID")
|
||||
or os.getenv("OPENAI_ORGANIZATION")
|
||||
)
|
||||
values["openai_proxy"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_proxy",
|
||||
"OPENAI_PROXY",
|
||||
default="",
|
||||
)
|
||||
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
|
||||
"AZURE_OPENAI_ENDPOINT"
|
||||
)
|
||||
values["azure_ad_token"] = values["azure_ad_token"] or os.getenv(
|
||||
"AZURE_OPENAI_AD_TOKEN"
|
||||
)
|
||||
try:
|
||||
import openai
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
if is_openai_v1():
|
||||
# For backwards compatibility. Before openai v1, no distinction was made
|
||||
# between azure_endpoint and base_url (openai_api_base).
|
||||
openai_api_base = values["openai_api_base"]
|
||||
if openai_api_base and values["validate_base_url"]:
|
||||
if "/openai" not in openai_api_base:
|
||||
values["openai_api_base"] += "/openai"
|
||||
warnings.warn(
|
||||
"As of openai>=1.0.0, Azure endpoints should be specified via "
|
||||
f"the `azure_endpoint` param not `openai_api_base` "
|
||||
f"(or alias `base_url`). Updating `openai_api_base` from "
|
||||
f"{openai_api_base} to {values['openai_api_base']}."
|
||||
)
|
||||
if values["azure_deployment"]:
|
||||
warnings.warn(
|
||||
"As of openai>=1.0.0, if `azure_deployment` (or alias "
|
||||
"`azure_deployment`) is specified then "
|
||||
"`openai_api_base` (or alias `base_url`) should not be. "
|
||||
"Instead use `azure_deployment` (or alias `azure_deployment`) "
|
||||
"and `azure_endpoint`."
|
||||
)
|
||||
if values["azure_deployment"] not in values["openai_api_base"]:
|
||||
warnings.warn(
|
||||
"As of openai>=1.0.0, if `openai_api_base` "
|
||||
"(or alias `base_url`) is specified it is expected to be "
|
||||
"of the form "
|
||||
"https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501
|
||||
f"Updating {openai_api_base} to "
|
||||
f"{values['openai_api_base']}."
|
||||
)
|
||||
values["openai_api_base"] += (
|
||||
"/deployments/" + values["azure_deployment"]
|
||||
)
|
||||
values["azure_deployment"] = None
|
||||
client_params = {
|
||||
"api_version": values["openai_api_version"],
|
||||
"azure_endpoint": values["azure_endpoint"],
|
||||
"azure_deployment": values["azure_deployment"],
|
||||
"api_key": values["openai_api_key"],
|
||||
"azure_ad_token": values["azure_ad_token"],
|
||||
"azure_ad_token_provider": values["azure_ad_token_provider"],
|
||||
"organization": values["openai_organization"],
|
||||
"base_url": values["openai_api_base"],
|
||||
"timeout": values["request_timeout"],
|
||||
"max_retries": values["max_retries"],
|
||||
"default_headers": values["default_headers"],
|
||||
"default_query": values["default_query"],
|
||||
"http_client": values["http_client"],
|
||||
}
|
||||
values["client"] = openai.AzureOpenAI(**client_params).embeddings
|
||||
values["async_client"] = openai.AsyncAzureOpenAI(**client_params).embeddings
|
||||
else:
|
||||
values["client"] = openai.Embedding
|
||||
return values
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "azure-openai-chat"
|
@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
from importlib.metadata import version
|
||||
from typing import (
|
||||
@ -10,6 +11,7 @@ from typing import (
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Mapping,
|
||||
Optional,
|
||||
Sequence,
|
||||
Set,
|
||||
@ -157,6 +159,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
.. code-block:: python
|
||||
|
||||
import os
|
||||
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
|
||||
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
|
||||
@ -178,23 +181,30 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
client: Any = None #: :meta private:
|
||||
async_client: Any = None #: :meta private:
|
||||
model: str = "text-embedding-ada-002"
|
||||
deployment: str = model # to support Azure OpenAI Service custom deployment names
|
||||
openai_api_version: Optional[str] = None
|
||||
# to support Azure OpenAI Service custom deployment names
|
||||
deployment: str = model
|
||||
# TODO: Move to AzureOpenAIEmbeddings.
|
||||
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
|
||||
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
||||
# to support Azure OpenAI Service custom endpoints
|
||||
openai_api_base: Optional[str] = None
|
||||
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
|
||||
"""Base URL path for API requests, leave blank if not using a proxy or service
|
||||
emulator."""
|
||||
# to support Azure OpenAI Service custom endpoints
|
||||
openai_api_type: Optional[str] = None
|
||||
# to support explicit proxy for OpenAI
|
||||
openai_proxy: Optional[str] = None
|
||||
embedding_ctx_length: int = 8191
|
||||
"""The maximum number of tokens to embed at once."""
|
||||
openai_api_key: Optional[str] = None
|
||||
openai_organization: Optional[str] = None
|
||||
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
|
||||
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
|
||||
openai_organization: Optional[str] = Field(default=None, alias="organization")
|
||||
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
|
||||
allowed_special: Union[Literal["all"], Set[str]] = set()
|
||||
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
|
||||
chunk_size: int = 1000
|
||||
"""Maximum number of texts to embed in each batch"""
|
||||
max_retries: int = 6
|
||||
max_retries: int = 2
|
||||
"""Maximum number of retries to make when generating."""
|
||||
request_timeout: Optional[Union[float, Tuple[float, float], httpx.Timeout]] = Field(
|
||||
default=None, alias="timeout"
|
||||
@ -218,11 +228,17 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
skip_empty: bool = False
|
||||
"""Whether to skip empty strings when embedding or raise an error.
|
||||
Defaults to not skipping."""
|
||||
default_headers: Union[Mapping[str, str], None] = None
|
||||
default_query: Union[Mapping[str, object], None] = None
|
||||
# Configure a custom httpx client. See the
|
||||
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
|
||||
http_client: Union[httpx.Client, None] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
allow_population_by_field_name = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
@ -250,17 +266,14 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@root_validator(pre=True)
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["openai_api_key"] = get_from_dict_or_env(
|
||||
values, "openai_api_key", "OPENAI_API_KEY"
|
||||
)
|
||||
values["openai_api_base"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_base",
|
||||
"OPENAI_API_BASE",
|
||||
default="",
|
||||
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
||||
"OPENAI_API_BASE"
|
||||
)
|
||||
values["openai_api_type"] = get_from_dict_or_env(
|
||||
values,
|
||||
@ -275,61 +288,61 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
default="",
|
||||
)
|
||||
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
|
||||
default_api_version = "2022-12-01"
|
||||
default_api_version = "2023-05-15"
|
||||
# Azure OpenAI embedding models allow a maximum of 16 texts
|
||||
# at a time in each batch
|
||||
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
|
||||
default_chunk_size = 16
|
||||
values["chunk_size"] = max(values["chunk_size"], 16)
|
||||
else:
|
||||
default_api_version = ""
|
||||
default_chunk_size = 1000
|
||||
values["openai_api_version"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_version",
|
||||
"OPENAI_API_VERSION",
|
||||
default=default_api_version,
|
||||
)
|
||||
values["openai_organization"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_organization",
|
||||
"OPENAI_ORGANIZATION",
|
||||
default="",
|
||||
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
||||
values["openai_organization"] = (
|
||||
values["openai_organization"]
|
||||
or os.getenv("OPENAI_ORG_ID")
|
||||
or os.getenv("OPENAI_ORGANIZATION")
|
||||
)
|
||||
if "chunk_size" not in values:
|
||||
values["chunk_size"] = default_chunk_size
|
||||
try:
|
||||
import openai
|
||||
|
||||
if _is_openai_v1():
|
||||
values["client"] = openai.OpenAI(
|
||||
api_key=values.get("openai_api_key"),
|
||||
timeout=values.get("request_timeout"),
|
||||
max_retries=values.get("max_retries"),
|
||||
organization=values.get("openai_organization"),
|
||||
base_url=values.get("openai_api_base") or None,
|
||||
).embeddings
|
||||
values["async_client"] = openai.AsyncOpenAI(
|
||||
api_key=values.get("openai_api_key"),
|
||||
timeout=values.get("request_timeout"),
|
||||
max_retries=values.get("max_retries"),
|
||||
organization=values.get("openai_organization"),
|
||||
base_url=values.get("openai_api_base") or None,
|
||||
).embeddings
|
||||
else:
|
||||
values["client"] = openai.Embedding
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
else:
|
||||
if _is_openai_v1():
|
||||
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
|
||||
warnings.warn(
|
||||
"If you have openai>=1.0.0 installed and are using Azure, "
|
||||
"please use the `AzureOpenAIEmbeddings` class."
|
||||
)
|
||||
client_params = {
|
||||
"api_key": values["openai_api_key"],
|
||||
"organization": values["openai_organization"],
|
||||
"base_url": values["openai_api_base"],
|
||||
"timeout": values["request_timeout"],
|
||||
"max_retries": values["max_retries"],
|
||||
"default_headers": values["default_headers"],
|
||||
"default_query": values["default_query"],
|
||||
"http_client": values["http_client"],
|
||||
}
|
||||
values["client"] = openai.OpenAI(**client_params).embeddings
|
||||
values["async_client"] = openai.AsyncOpenAI(**client_params).embeddings
|
||||
else:
|
||||
values["client"] = openai.Embedding
|
||||
return values
|
||||
|
||||
@property
|
||||
def _invocation_params(self) -> Dict[str, Any]:
|
||||
openai_args: Dict[str, Any] = (
|
||||
{"model": self.model, **self.model_kwargs}
|
||||
if _is_openai_v1()
|
||||
else {
|
||||
if _is_openai_v1():
|
||||
openai_args: Dict = {"model": self.model, **self.model_kwargs}
|
||||
else:
|
||||
openai_args = {
|
||||
"model": self.model,
|
||||
"request_timeout": self.request_timeout,
|
||||
"headers": self.headers,
|
||||
@ -340,22 +353,22 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
"api_version": self.openai_api_version,
|
||||
**self.model_kwargs,
|
||||
}
|
||||
)
|
||||
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
|
||||
openai_args["engine"] = self.deployment
|
||||
if self.openai_proxy:
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
|
||||
openai_args["engine"] = self.deployment
|
||||
# TODO: Look into proxy with openai v1.
|
||||
if self.openai_proxy:
|
||||
try:
|
||||
import openai
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
|
||||
openai.proxy = {
|
||||
"http": self.openai_proxy,
|
||||
"https": self.openai_proxy,
|
||||
} # type: ignore[assignment] # noqa: E501
|
||||
openai.proxy = {
|
||||
"http": self.openai_proxy,
|
||||
"https": self.openai_proxy,
|
||||
} # type: ignore[assignment] # noqa: E501
|
||||
return openai_args
|
||||
|
||||
# please refer to
|
||||
|
10
libs/langchain/langchain/utils/openai.py
Normal file
10
libs/langchain/langchain/utils/openai.py
Normal file
@ -0,0 +1,10 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from importlib.metadata import version
|
||||
|
||||
from packaging.version import Version, parse
|
||||
|
||||
|
||||
def is_openai_v1() -> bool:
|
||||
_version = parse(version("openai"))
|
||||
return _version >= Version("1.0.0")
|
@ -0,0 +1,93 @@
|
||||
"""Test openai embeddings."""
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from langchain.embeddings import AzureOpenAIEmbeddings
|
||||
|
||||
|
||||
def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings:
|
||||
return AzureOpenAIEmbeddings(
|
||||
openai_api_version=os.environ.get("AZURE_OPENAI_API_VERSION", ""),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def test_azure_openai_embedding_documents() -> None:
|
||||
"""Test openai embeddings."""
|
||||
documents = ["foo bar"]
|
||||
embedding = _get_embeddings()
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 1
|
||||
assert len(output[0]) == 1536
|
||||
|
||||
|
||||
def test_azure_openai_embedding_documents_multiple() -> None:
|
||||
"""Test openai embeddings."""
|
||||
documents = ["foo bar", "bar foo", "foo"]
|
||||
embedding = _get_embeddings(chunk_size=2)
|
||||
embedding.embedding_ctx_length = 8191
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 3
|
||||
assert len(output[0]) == 1536
|
||||
assert len(output[1]) == 1536
|
||||
assert len(output[2]) == 1536
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_azure_openai_embedding_documents_async_multiple() -> None:
|
||||
"""Test openai embeddings."""
|
||||
documents = ["foo bar", "bar foo", "foo"]
|
||||
embedding = _get_embeddings(chunk_size=2)
|
||||
embedding.embedding_ctx_length = 8191
|
||||
output = await embedding.aembed_documents(documents)
|
||||
assert len(output) == 3
|
||||
assert len(output[0]) == 1536
|
||||
assert len(output[1]) == 1536
|
||||
assert len(output[2]) == 1536
|
||||
|
||||
|
||||
def test_azure_openai_embedding_query() -> None:
|
||||
"""Test openai embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = _get_embeddings()
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 1536
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_azure_openai_embedding_async_query() -> None:
|
||||
"""Test openai embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = _get_embeddings()
|
||||
output = await embedding.aembed_query(document)
|
||||
assert len(output) == 1536
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.")
|
||||
def test_azure_openai_embedding_with_empty_string() -> None:
|
||||
"""Test openai embeddings with empty string."""
|
||||
import openai
|
||||
|
||||
document = ["", "abc"]
|
||||
embedding = _get_embeddings()
|
||||
output = embedding.embed_documents(document)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 1536
|
||||
expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[
|
||||
"data"
|
||||
][0]["embedding"]
|
||||
assert np.allclose(output[0], expected_output)
|
||||
assert len(output[1]) == 1536
|
||||
|
||||
|
||||
def test_embed_documents_normalized() -> None:
|
||||
output = _get_embeddings().embed_documents(["foo walked to the market"])
|
||||
assert np.isclose(np.linalg.norm(output[0]), 1.0)
|
||||
|
||||
|
||||
def test_embed_query_normalized() -> None:
|
||||
output = _get_embeddings().embed_query("foo walked to the market")
|
||||
assert np.isclose(np.linalg.norm(output), 1.0)
|
@ -2,6 +2,7 @@ from langchain.embeddings import __all__
|
||||
|
||||
EXPECTED_ALL = [
|
||||
"OpenAIEmbeddings",
|
||||
"AzureOpenAIEmbeddings",
|
||||
"CacheBackedEmbeddings",
|
||||
"ClarifaiEmbeddings",
|
||||
"CohereEmbeddings",
|
||||
|
Loading…
Reference in New Issue
Block a user