[feat] Added backwards compatibility for OllamaEmbeddings initialization (migration from langchain_community.embeddings to langchain_ollama.embeddings (#29296)

- [feat] **Added backwards compatibility for OllamaEmbeddings
initialization (migration from `langchain_community.embeddings` to
`langchain_ollama.embeddings`**: "langchain_ollama"
- **Description:** Given that `OllamaEmbeddings` from
`langchain_community.embeddings` is deprecated, code is being shifted to
``langchain_ollama.embeddings`. However, this does not offer backward
compatibility of initializing the parameters and `OllamaEmbeddings`
object.
    - **Issue:** #29294 
    - **Dependencies:** None
    - **Twitter handle:** @BaqarAbbas2001


## Additional Information
Previously, `OllamaEmbeddings` from `langchain_community.embeddings`
used to support the following options:

e9abe583b2/libs/community/langchain_community/embeddings/ollama.py (L125-L139)

However, in the new package `from langchain_ollama import
OllamaEmbeddings`, there is no method to set these options. I have added
these parameters to resolve this issue.

This issue was also discussed in
https://github.com/langchain-ai/langchain/discussions/29113
This commit is contained in:
Syed Baqar Abbas 2025-01-20 21:16:29 +05:00 committed by GitHub
parent 7a95ffc775
commit f175319303
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,9 +1,6 @@
"""Ollama embeddings models."""
from typing import (
List,
Optional,
)
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from ollama import AsyncClient, Client
@ -144,10 +141,89 @@ class OllamaEmbeddings(BaseModel, Embeddings):
The async client to use for making requests.
"""
mirostat: Optional[int] = None
"""Enable Mirostat sampling for controlling perplexity.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)"""
mirostat_eta: Optional[float] = None
"""Influences how quickly the algorithm responds to feedback
from the generated text. A lower learning rate will result in
slower adjustments, while a higher learning rate will make
the algorithm more responsive. (Default: 0.1)"""
mirostat_tau: Optional[float] = None
"""Controls the balance between coherence and diversity
of the output. A lower value will result in more focused and
coherent text. (Default: 5.0)"""
num_ctx: Optional[int] = None
"""Sets the size of the context window used to generate the
next token. (Default: 2048) """
num_gpu: Optional[int] = None
"""The number of GPUs to use. On macOS it defaults to 1 to
enable metal support, 0 to disable."""
num_thread: Optional[int] = None
"""Sets the number of threads to use during computation.
By default, Ollama will detect this for optimal performance.
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores)."""
repeat_last_n: Optional[int] = None
"""Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)"""
repeat_penalty: Optional[float] = None
"""Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
will be more lenient. (Default: 1.1)"""
temperature: Optional[float] = None
"""The temperature of the model. Increasing the temperature will
make the model answer more creatively. (Default: 0.8)"""
stop: Optional[List[str]] = None
"""Sets the stop tokens to use."""
tfs_z: Optional[float] = None
"""Tail free sampling is used to reduce the impact of less probable
tokens from the output. A higher value (e.g., 2.0) will reduce the
impact more, while a value of 1.0 disables this setting. (default: 1)"""
top_k: Optional[int] = None
"""Reduces the probability of generating nonsense. A higher value (e.g. 100)
will give more diverse answers, while a lower value (e.g. 10)
will be more conservative. (Default: 40)"""
top_p: Optional[float] = None
"""Works together with top-k. A higher value (e.g., 0.95) will lead
to more diverse text, while a lower value (e.g., 0.5) will
generate more focused and conservative text. (Default: 0.9)"""
model_config = ConfigDict(
extra="forbid",
)
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Ollama."""
return {
"mirostat": self.mirostat,
"mirostat_eta": self.mirostat_eta,
"mirostat_tau": self.mirostat_tau,
"num_ctx": self.num_ctx,
"num_gpu": self.num_gpu,
"num_thread": self.num_thread,
"repeat_last_n": self.repeat_last_n,
"repeat_penalty": self.repeat_penalty,
"temperature": self.temperature,
"stop": self.stop,
"tfs_z": self.tfs_z,
"top_k": self.top_k,
"top_p": self.top_p,
}
@model_validator(mode="after")
def _set_clients(self) -> Self:
"""Set clients to use for ollama."""
@ -158,7 +234,9 @@ class OllamaEmbeddings(BaseModel, Embeddings):
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
embedded_docs = self._client.embed(self.model, texts)["embeddings"]
embedded_docs = self._client.embed(
self.model, texts, options=self._default_params
)["embeddings"]
return embedded_docs
def embed_query(self, text: str) -> List[float]: