mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-21 14:43:07 +00:00
x
This commit is contained in:
@@ -31,12 +31,12 @@ from langchain_core.output_parsers.openai_tools import (
|
||||
PydanticToolsParser,
|
||||
)
|
||||
from langchain_core.outputs import ChatResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import from_env, secret_from_env
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
from langchain_core.utils.pydantic import is_basemodel_subclass
|
||||
from pydantic import BaseModel, Field, SecretStr, root_validator
|
||||
|
||||
from langchain_openai.chat_models.base import BaseChatOpenAI
|
||||
|
||||
|
||||
@@ -73,7 +73,6 @@ from langchain_core.output_parsers.openai_tools import (
|
||||
parse_tool_call,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough, chain
|
||||
from langchain_core.runnables.config import run_in_executor
|
||||
from langchain_core.tools import BaseTool
|
||||
@@ -92,6 +91,14 @@ from langchain_core.utils.pydantic import (
|
||||
is_basemodel_subclass,
|
||||
)
|
||||
from langchain_core.utils.utils import build_extra_kwargs
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
SecretStr,
|
||||
model_validator,
|
||||
root_validator,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -377,13 +384,11 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
include_response_headers: bool = False
|
||||
"""Whether to include response headers in the output message response_metadata."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
model_config = ConfigDict(populate_by_name=True)
|
||||
|
||||
allow_population_by_field_name = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
|
||||
@@ -5,8 +5,8 @@ from __future__ import annotations
|
||||
from typing import Callable, Dict, Optional, Union
|
||||
|
||||
import openai
|
||||
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
||||
from langchain_core.utils import from_env, secret_from_env
|
||||
from pydantic import Field, SecretStr, root_validator
|
||||
|
||||
from langchain_openai.embeddings.base import OpenAIEmbeddings
|
||||
|
||||
|
||||
@@ -21,8 +21,15 @@ from typing import (
|
||||
import openai
|
||||
import tiktoken
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.utils import from_env, get_pydantic_field_names, secret_from_env
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
SecretStr,
|
||||
model_validator,
|
||||
root_validator,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -261,14 +268,11 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
"""Whether to check the token length of inputs and automatically split inputs
|
||||
longer than embedding_ctx_length."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
model_config = ConfigDict(extra="forbid", populate_by_name=True)
|
||||
|
||||
extra = "forbid"
|
||||
allow_population_by_field_name = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
|
||||
@@ -4,8 +4,8 @@ import logging
|
||||
from typing import Any, Callable, Dict, List, Mapping, Optional, Union
|
||||
|
||||
import openai
|
||||
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
||||
from langchain_core.utils import from_env, secret_from_env
|
||||
from pydantic import Field, SecretStr, root_validator
|
||||
|
||||
from langchain_openai.llms.base import BaseOpenAI
|
||||
|
||||
|
||||
@@ -26,9 +26,9 @@ from langchain_core.callbacks import (
|
||||
)
|
||||
from langchain_core.language_models.llms import BaseLLM
|
||||
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||||
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
||||
from langchain_core.utils import get_pydantic_field_names
|
||||
from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env
|
||||
from pydantic import ConfigDict, Field, SecretStr, model_validator, root_validator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -152,13 +152,11 @@ class BaseOpenAI(BaseLLM):
|
||||
"""Optional additional JSON properties to include in the request parameters when
|
||||
making requests to OpenAI compatible APIs, such as vLLM."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
model_config = ConfigDict(populate_by_name=True)
|
||||
|
||||
allow_population_by_field_name = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
|
||||
@@ -19,13 +19,13 @@ from langchain_core.messages import (
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_standard_tests.integration_tests.chat_models import (
|
||||
_validate_tool_call_message,
|
||||
)
|
||||
from langchain_standard_tests.integration_tests.chat_models import (
|
||||
magic_function as invalid_magic_function,
|
||||
)
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
|
||||
|
||||
@@ -40,9 +40,7 @@ def test_initialize_more() -> None:
|
||||
|
||||
|
||||
def test_initialize_azure_openai_with_openai_api_base_set() -> None:
|
||||
with mock.patch.dict(
|
||||
os.environ, {"OPENAI_API_BASE": "https://api.openai.com"}
|
||||
):
|
||||
with mock.patch.dict(os.environ, {"OPENAI_API_BASE": "https://api.openai.com"}):
|
||||
llm = AzureChatOpenAI( # type: ignore[call-arg, call-arg]
|
||||
api_key="xyz", # type: ignore[arg-type]
|
||||
azure_endpoint="my-base-url",
|
||||
|
||||
@@ -14,7 +14,7 @@ from langchain_core.messages import (
|
||||
ToolCall,
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_openai.chat_models.base import (
|
||||
|
||||
@@ -16,9 +16,7 @@ def test_initialize_azure_openai() -> None:
|
||||
|
||||
|
||||
def test_intialize_azure_openai_with_base_set() -> None:
|
||||
with mock.patch.dict(
|
||||
os.environ, {"OPENAI_API_BASE": "https://api.openai.com"}
|
||||
):
|
||||
with mock.patch.dict(os.environ, {"OPENAI_API_BASE": "https://api.openai.com"}):
|
||||
embeddings = AzureOpenAIEmbeddings( # type: ignore[call-arg, call-arg]
|
||||
model="text-embedding-large",
|
||||
api_key="xyz", # type: ignore[arg-type]
|
||||
|
||||
@@ -6,7 +6,7 @@ from uuid import UUID
|
||||
|
||||
from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class BaseFakeCallbackHandler(BaseModel):
|
||||
|
||||
@@ -2,7 +2,7 @@ from typing import Type, cast
|
||||
|
||||
import pytest
|
||||
from langchain_core.load import dumpd
|
||||
from langchain_core.pydantic_v1 import SecretStr
|
||||
from pydantic import SecretStr
|
||||
from pytest import CaptureFixture, MonkeyPatch
|
||||
|
||||
from langchain_openai import (
|
||||
|
||||
Reference in New Issue
Block a user