langchain[minor]: add azure ai data document loader (#13404)

This PR adds an "Azure AI data" document loader, which allows Azure AI
users to load their registered data assets as a document object in
langchain.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Samuel Kemp
2023-12-02 03:25:55 +00:00
committed by GitHub
parent 24385a00de
commit fd781c89cc
4 changed files with 222 additions and 0 deletions

View File

@@ -34,6 +34,9 @@ from langchain.document_loaders.arxiv import ArxivLoader
from langchain.document_loaders.assemblyai import AssemblyAIAudioTranscriptLoader
from langchain.document_loaders.async_html import AsyncHtmlLoader
from langchain.document_loaders.azlyrics import AZLyricsLoader
from langchain.document_loaders.azure_ai_data import (
AzureAIDataLoader,
)
from langchain.document_loaders.azure_blob_storage_container import (
AzureBlobStorageContainerLoader,
)
@@ -226,6 +229,7 @@ __all__ = [
"ArxivLoader",
"AssemblyAIAudioTranscriptLoader",
"AsyncHtmlLoader",
"AzureAIDataLoader",
"AzureBlobStorageContainerLoader",
"AzureBlobStorageFileLoader",
"BSHTMLLoader",

View File

@@ -0,0 +1,43 @@
from typing import Iterator, List, Optional
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.unstructured import UnstructuredFileIOLoader
class AzureAIDataLoader(BaseLoader):
"""Load from Azure AI Data."""
def __init__(self, url: str, glob: Optional[str] = None):
"""Initialize with URL to a data asset or storage location
."""
self.url = url
"""URL to the data asset or storage location."""
self.glob_pattern = glob
"""Optional glob pattern to select files. Defaults to None."""
def load(self) -> List[Document]:
"""Load documents."""
return list(self.lazy_load())
def lazy_load(self) -> Iterator[Document]:
"""A lazy loader for Documents."""
try:
from azureml.fsspec import AzureMachineLearningFileSystem
except ImportError as exc:
raise ImportError(
"Could not import azureml-fspec package."
"Please install it with `pip install azureml-fsspec`."
) from exc
fs = AzureMachineLearningFileSystem(self.url)
if self.glob_pattern:
remote_paths_list = fs.glob(self.glob_pattern)
else:
remote_paths_list = fs.ls()
for remote_path in remote_paths_list:
with fs.open(remote_path) as f:
loader = UnstructuredFileIOLoader(file=f)
yield from loader.load()

View File

@@ -22,6 +22,7 @@ EXPECTED_ALL = [
"ArxivLoader",
"AssemblyAIAudioTranscriptLoader",
"AsyncHtmlLoader",
"AzureAIDataLoader",
"AzureBlobStorageContainerLoader",
"AzureBlobStorageFileLoader",
"BSHTMLLoader",