template: Update Vectara templates (#15363)

fixed multi-query template for Vectara
added self-query template for Vectara

Also added prompt_name parameter to summarization

CC @efriis 
 **Twitter handle:** @ofermend
This commit is contained in:
Ofer Mendelevitch 2024-01-19 17:32:33 -08:00 committed by GitHub
parent 1e29b676d5
commit ffae98d371
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 10 additions and 6 deletions

View File

@ -22,11 +22,14 @@ class SummaryConfig:
is_enabled: True if summary is enabled, False otherwise is_enabled: True if summary is enabled, False otherwise
max_results: maximum number of results to summarize max_results: maximum number of results to summarize
response_lang: requested language for the summary response_lang: requested language for the summary
prompt_name: name of the prompt to use for summarization
(see https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer)
""" """
is_enabled: bool = False is_enabled: bool = False
max_results: int = 7 max_results: int = 7
response_lang: str = "eng" response_lang: str = "eng"
prompt_name: str = "vectara-summary-ext-v1.2.0"
@dataclass @dataclass
@ -364,6 +367,7 @@ class Vectara(VectorStore):
{ {
"maxSummarizedResults": config.summary_config.max_results, "maxSummarizedResults": config.summary_config.max_results,
"responseLang": config.summary_config.response_lang, "responseLang": config.summary_config.response_lang,
"summarizerPromptName": config.summary_config.prompt_name,
} }
] ]
@ -570,6 +574,7 @@ class VectaraRetriever(VectorStoreRetriever):
"k": 5, "k": 5,
"filter": "", "filter": "",
"n_sentence_context": "2", "n_sentence_context": "2",
"summary_config": SummaryConfig(),
} }
) )

View File

@ -23,20 +23,20 @@ pip install -U langchain-cli
To create a new LangChain project and install this as the only package, you can do: To create a new LangChain project and install this as the only package, you can do:
```shell ```shell
langchain app new my-app --package rag-vectara langchain app new my-app --package rag-vectara-multiquery
``` ```
If you want to add this to an existing project, you can just run: If you want to add this to an existing project, you can just run:
```shell ```shell
langchain app add rag-vectara langchain app add rag-vectara-multiquery
``` ```
And add the following code to your `server.py` file: And add the following code to your `server.py` file:
```python ```python
from rag_vectara import chain as rag_vectara_chain from rag_vectara import chain as rag_vectara_chain
add_routes(app, rag_vectara_chain, path="/rag-vectara") add_routes(app, rag_vectara_chain, path="/rag-vectara-multiquery")
``` ```
(Optional) Let's now configure LangSmith. (Optional) Let's now configure LangSmith.
@ -61,12 +61,12 @@ This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000) [http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-vectara/playground](http://127.0.0.1:8000/rag-vectara/playground) We can access the playground at [http://127.0.0.1:8000/rag-vectara-multiquery/playground](http://127.0.0.1:8000/rag-vectara-multiquery/playground)
We can access the template from code with: We can access the template from code with:
```python ```python
from langserve.client import RemoteRunnable from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-vectara") runnable = RemoteRunnable("http://localhost:8000/rag-vectara-multiquery")
``` ```

View File

@ -41,7 +41,6 @@ retriever = MultiQueryRetriever.from_llm(retriever=vectara_retriever, llm=llm)
# We extract the summary from the RAG output, which is the last document # We extract the summary from the RAG output, which is the last document
# (if summary is enabled) # (if summary is enabled)
# Note that if you want to extract the citation information, you can use res[:-1]] # Note that if you want to extract the citation information, you can use res[:-1]]
model = ChatOpenAI()
chain = ( chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| (lambda res: res[-1]) | (lambda res: res[-1])