mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-10 05:20:39 +00:00
template: Update Vectara templates (#15363)
fixed multi-query template for Vectara added self-query template for Vectara Also added prompt_name parameter to summarization CC @efriis **Twitter handle:** @ofermend
This commit is contained in:
parent
1e29b676d5
commit
ffae98d371
@ -22,11 +22,14 @@ class SummaryConfig:
|
|||||||
is_enabled: True if summary is enabled, False otherwise
|
is_enabled: True if summary is enabled, False otherwise
|
||||||
max_results: maximum number of results to summarize
|
max_results: maximum number of results to summarize
|
||||||
response_lang: requested language for the summary
|
response_lang: requested language for the summary
|
||||||
|
prompt_name: name of the prompt to use for summarization
|
||||||
|
(see https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
is_enabled: bool = False
|
is_enabled: bool = False
|
||||||
max_results: int = 7
|
max_results: int = 7
|
||||||
response_lang: str = "eng"
|
response_lang: str = "eng"
|
||||||
|
prompt_name: str = "vectara-summary-ext-v1.2.0"
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -364,6 +367,7 @@ class Vectara(VectorStore):
|
|||||||
{
|
{
|
||||||
"maxSummarizedResults": config.summary_config.max_results,
|
"maxSummarizedResults": config.summary_config.max_results,
|
||||||
"responseLang": config.summary_config.response_lang,
|
"responseLang": config.summary_config.response_lang,
|
||||||
|
"summarizerPromptName": config.summary_config.prompt_name,
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -570,6 +574,7 @@ class VectaraRetriever(VectorStoreRetriever):
|
|||||||
"k": 5,
|
"k": 5,
|
||||||
"filter": "",
|
"filter": "",
|
||||||
"n_sentence_context": "2",
|
"n_sentence_context": "2",
|
||||||
|
"summary_config": SummaryConfig(),
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -23,20 +23,20 @@ pip install -U langchain-cli
|
|||||||
To create a new LangChain project and install this as the only package, you can do:
|
To create a new LangChain project and install this as the only package, you can do:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
langchain app new my-app --package rag-vectara
|
langchain app new my-app --package rag-vectara-multiquery
|
||||||
```
|
```
|
||||||
|
|
||||||
If you want to add this to an existing project, you can just run:
|
If you want to add this to an existing project, you can just run:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
langchain app add rag-vectara
|
langchain app add rag-vectara-multiquery
|
||||||
```
|
```
|
||||||
|
|
||||||
And add the following code to your `server.py` file:
|
And add the following code to your `server.py` file:
|
||||||
```python
|
```python
|
||||||
from rag_vectara import chain as rag_vectara_chain
|
from rag_vectara import chain as rag_vectara_chain
|
||||||
|
|
||||||
add_routes(app, rag_vectara_chain, path="/rag-vectara")
|
add_routes(app, rag_vectara_chain, path="/rag-vectara-multiquery")
|
||||||
```
|
```
|
||||||
|
|
||||||
(Optional) Let's now configure LangSmith.
|
(Optional) Let's now configure LangSmith.
|
||||||
@ -61,12 +61,12 @@ This will start the FastAPI app with a server is running locally at
|
|||||||
[http://localhost:8000](http://localhost:8000)
|
[http://localhost:8000](http://localhost:8000)
|
||||||
|
|
||||||
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||||
We can access the playground at [http://127.0.0.1:8000/rag-vectara/playground](http://127.0.0.1:8000/rag-vectara/playground)
|
We can access the playground at [http://127.0.0.1:8000/rag-vectara-multiquery/playground](http://127.0.0.1:8000/rag-vectara-multiquery/playground)
|
||||||
|
|
||||||
We can access the template from code with:
|
We can access the template from code with:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langserve.client import RemoteRunnable
|
from langserve.client import RemoteRunnable
|
||||||
|
|
||||||
runnable = RemoteRunnable("http://localhost:8000/rag-vectara")
|
runnable = RemoteRunnable("http://localhost:8000/rag-vectara-multiquery")
|
||||||
```
|
```
|
||||||
|
@ -41,7 +41,6 @@ retriever = MultiQueryRetriever.from_llm(retriever=vectara_retriever, llm=llm)
|
|||||||
# We extract the summary from the RAG output, which is the last document
|
# We extract the summary from the RAG output, which is the last document
|
||||||
# (if summary is enabled)
|
# (if summary is enabled)
|
||||||
# Note that if you want to extract the citation information, you can use res[:-1]]
|
# Note that if you want to extract the citation information, you can use res[:-1]]
|
||||||
model = ChatOpenAI()
|
|
||||||
chain = (
|
chain = (
|
||||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||||
| (lambda res: res[-1])
|
| (lambda res: res[-1])
|
||||||
|
Loading…
Reference in New Issue
Block a user