- **partner**: "Update Aiohttp for resolving vulnerability issue"
- **Description:** I have updated the upper limit of aiohttp from `3.10`
to `3.10.5` in the pyproject.toml file of langchain-pinecone. Hopefully
this will resolve#28771 . Please review this as I'm quite unsure.
---------
Co-authored-by: = <=>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Goal
Solve the following problems with `langchain-openai`:
- Structured output with `o1` [breaks out of the
box](https://langchain.slack.com/archives/C050X0VTN56/p1735232400232099).
- `with_structured_output` by default does not use OpenAI’s [structured
output
feature](https://platform.openai.com/docs/guides/structured-outputs).
- We override API defaults for temperature and other parameters.
## Breaking changes:
- Default method for structured output is changing to OpenAI’s dedicated
[structured output
feature](https://platform.openai.com/docs/guides/structured-outputs).
For schemas specified via TypedDict or JSON schema, strict schema
validation is disabled by default but can be enabled by specifying
`strict=True`.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Models that don’t support `method="json_schema"` (e.g., `gpt-4` and
`gpt-3.5-turbo`, currently the default model for ChatOpenAI) will raise
an error unless `method` is explicitly specified.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Schemas specified via Pydantic `BaseModel` that have fields with
non-null defaults or metadata (like min/max constraints) will raise an
error.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- `strict` now defaults to False for `method="json_schema"` when schemas
are specified via TypedDict or JSON schema.
- To recover previous behavior, use `with_structured_output(schema,
strict=True)`
- Schemas specified via Pydantic V1 will raise a warning (and use
`method="function_calling"`) unless `method` is explicitly specified.
- To remove the warning, pass `method="function_calling"` into
`with_structured_output`.
- Streaming with default structured output method / Pydantic schema no
longer generates intermediate streamed chunks.
- To recover previous behavior, pass `method="function_calling"` into
`with_structured_output`.
- We no longer override default temperature (was 0.7 in LangChain, now
will follow OpenAI, currently 1.0).
- To recover previous behavior, initialize `ChatOpenAI` or
`AzureChatOpenAI` with `temperature=0.7`.
- Note: conceptually there is a difference between forcing a tool call
and forcing a response format. Tool calls may have more concise
arguments vs. generating content adhering to a schema. Prompts may need
to be adjusted to recover desired behavior.
---------
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Title: langchain-pinecone: improve test structure and async handling
Description: This PR improves the test infrastructure for the
langchain-pinecone package by:
1. Implementing LangChain's standard test patterns for embeddings
2. Adding comprehensive configuration testing
3. Improving async test coverage
4. Fixing integration test issues with namespaces and async markers
The changes make the tests more robust, maintainable, and aligned with
LangChain's testing standards while ensuring proper async behavior in
the embeddings implementation.
Key improvements:
- Added standard EmbeddingsTests implementation
- Split custom configuration tests into a separate test class
- Added proper async test coverage with pytest-asyncio
- Fixed namespace handling in vector store integration tests
- Improved test organization and documentation
Dependencies: None (uses existing test dependencies)
Tests and Documentation:
- ✅ Added standard test implementation following LangChain's patterns
- ✅ Added comprehensive unit tests for configuration and async behavior
- ✅ All tests passing locally
- No documentation changes needed (internal test improvements only)
Twitter handle: N/A
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:**
This PR addresses an issue with the `stop_sequences` field in the
`ChatGroq` class. Currently, the field is defined as:
```python
stop: Optional[Union[List[str], str]] = Field(None, alias="stop_sequences")
```
This causes the language server (LSP) to raise an error indicating that
the `stop_sequences` parameter must be implemented. The issue occurs
because `Field(None, alias="stop_sequences")` is different compared to
`Field(default=None, alias="stop_sequences")`.

To resolve the issue, the field is updated to:
```python
stop: Optional[Union[List[str], str]] = Field(default=None, alias="stop_sequences")
```
While this issue does not affect runtime behavior, it ensures
compatibility with LSPs and improves the development experience.
- **Issue:** N/A
- **Dependencies:** None
**Description:**
Added ability to set `prefix` attribute to prevent error :
```
httpx.HTTPStatusError: Error response 400 while fetching https://api.mistral.ai/v1/chat/completions: {"object":"error","message":"Expected last role User or Tool (or Assistant with prefix True) for serving but got assistant","type":"invalid_request_error","param":null,"code":null}
```
Co-authored-by: Sylvain DEPARTE <sylvain.departe@wizbii.com>
- Convert developer openai messages to SystemMessage
- store additional_kwargs={"__openai_role__": "developer"} so that the
correct role can be reconstructed if needed
- update ChatOpenAI to read in openai_role
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
…ent path given.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** This PR introduces a `model` alias for the embedding
classes that contain the attribute `model_name`, to ensure consistency
across the codebase, as suggested by a moderator in a previous PR. The
change aligns the usage of attribute names across the project (see for
example
[here](65deeddd5d/libs/partners/groq/langchain_groq/chat_models.py (L304))).
**Issue:** This PR addresses the suggestion from the review of issue
#28269.
**Dependencies:** None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Currently `_convert_TGI_message_to_LC_message` replaces `'` in the tool
arguments, so an argument like "It's" will be converted to `It"s` and
could cause a json parser to fail.
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Vadym Barda <vadym@langchain.dev>
- **Description:**: In the event of a Rate Limit Error from the
MistralAI server, the response JSON raises a KeyError. To address this,
a simple retry mechanism has been implemented to handle cases where the
request limit is exceeded.
- **Issue:** #27790
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** Streaming response from Mistral model using Vertex AI
raises KeyError when trying to access `choices` key, that the last chunk
doesn't have. The fix is to access the key safely using `get()`.
- **Issue:** https://github.com/langchain-ai/langchain/issues/27886
- **Dependencies:**
- **Twitter handle:**
- Description: Azure AI takes an issue with the safe_mode parameter
being set to False instead of None. Therefore, this PR changes the
default value of safe_mode from False to None. This results in it being
filtered out before the request is sent - avoind the extra-parameter
issue described below.
- Issue: #26029
- Dependencies: /
---------
Co-authored-by: blaufink <sebastian.brueckner@outlook.de>
Co-authored-by: Erick Friis <erick@langchain.dev>
- Run standard integration tests in Chroma
- Add `get_by_ids` method
- Fix bug in `add_texts`: if a list of `ids` is passed but any of them
are None, Chroma will raise an exception. Here we assign a uuid.
Description:
* Added internal `Document.id` support to Chroma VectorStore
Dependencies:
* https://github.com/langchain-ai/langchain/pull/27968 should be merged
first and this PR should be re-based on top of those changes.
Tests:
* Modified/Added tests for `Document.id` support. All tests are passing.
Note: I am not a member of the Chroma team.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR updates the Pinecone client to `5.4.0`, as well as its
dependencies (`pinecone-plugin-inference` and
`pinecone-plugin-interface`).
Note: `pinecone-client` is now simply called `pinecone`.
**Question for reviewer(s):** should this PR also update the `pinecone`
dep in [the root dir's `poetry.lock`
file](https://github.com/langchain-ai/langchain/blob/master/poetry.lock#L6729)?
Was unsure. (I don't believe so b/c it seems pinned to a lower version
likely based on 3rd-party deps (e.g. Unstructured).)
--
TW: @audrey_sage_
---
- To see the specific tasks where the Asana app for GitHub is being
used, see below:
- https://app.asana.com/0/0/1208693659122374
This PR adds an additional method to `Chroma` to retrieve the embedding
vectors, besides the most relevant Documents. This is sometimes of use
when you need to run a postprocessing algorithm on the retrieved results
based on the vectors, which has been the case for me lately.
Example issue (discussion) requesting this change:
https://github.com/langchain-ai/langchain/discussions/20383
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
## Description
This PR addresses the following:
**Fixes Issue #25343:**
- Adds additional logic to parse shallowly nested JSON-encoded strings
in tool call arguments, allowing for proper parsing of responses like
that of Llama3.1 and 3.2 with nested schemas.
**Adds Integration Test for Fix:**
- Adds a Ollama specific integration test to ensure the issue is
resolved and to prevent regressions in the future.
**Fixes Failing Integration Tests:**
- Fixes failing integration tests (even prior to changes) caused by
`llama3-groq-tool-use` model. Previously,
tests`test_structured_output_async` and
`test_structured_output_optional_param` failed due to the model not
issuing a tool call in the response. Resolved by switching to
`llama3.1`.
## Issue
Fixes#25343.
## Dependencies
No dependencies.
____
Done in collaboration with @ishaan-upadhyay @mirajismail @ZackSteine.
v0.4 of the Python SDK is already installed via the lock file in CI, but
our current implementation is not compatible with it.
This also addresses an issue introduced in
https://github.com/langchain-ai/langchain/pull/28299. @RyanMagnuson
would you mind explaining the motivation for that change? From what I
can tell the Ollama SDK [does not support
kwargs](6c44bb2729/ollama/_client.py (L286)).
Previously, unsupported kwargs were ignored, but they currently raise
`TypeError`.
Some of LangChain's standard test suite expects `tool_choice` to be
supported, so here we catch it in `bind_tools` so it is ignored and not
passed through to the client.
From what I can tell response using SDK is not deterministic:
```python
import numpy as np
import openai
documents = ["disallowed special token '<|endoftext|>'"]
model = "text-embedding-ada-002"
direct_output_1 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
for i in range(10):
direct_output_2 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
print(f"{i}: {np.isclose(direct_output_1, direct_output_2).all()}")
```
```
0: True
1: True
2: True
3: True
4: False
5: True
6: True
7: True
8: True
9: True
```
See related discussion here:
https://community.openai.com/t/can-text-embedding-ada-002-be-made-deterministic/318054
Found the same result using `"text-embedding-3-small"`.
This change refines the handling of _model_kwargs in POST requests.
Instead of nesting _model_kwargs as a dictionary under the parameters
key, it is now directly unpacked and merged into the request's JSON
payload. This ensures that the model parameters are passed correctly and
avoids unnecessary nesting.E. g.:
```python
import asyncio
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
embedding_input = ["This input will get multiplied" * 10000]
embeddings = HuggingFaceEndpointEmbeddings(
model="http://127.0.0.1:8081/embed",
model_kwargs={"truncate": True},
)
# Truncated parameters in synchronized methods are handled correctly
embeddings.embed_documents(texts=embedding_input)
# The truncate parameter is not handled correctly in the asynchronous method,
# and 413 Request Entity Too Large is returned.
asyncio.run(embeddings.aembed_documents(texts=embedding_input))
```
Co-authored-by: af su <saf@zjuici.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Description:
* I'm planning to add `Document.id` support to the Chroma VectorStore,
but first I wanted to make sure all the integration tests were passing
first. They weren't. This PR fixes the broken tests.
* I found 2 issues:
* This change (from a year ago, exactly :) ) for supporting multi-modal
embeddings:
https://docs.trychroma.com/deployment/migration#migration-to-0.4.16---november-7,-2023
* This change https://github.com/langchain-ai/langchain/pull/27827 due
to an update in the chroma client.
Also ran `format` and `lint` on the changes.
Note: I am not a member of the Chroma team.
**Description:** The issue concerns the unexpected behavior observed
using the bind_tools method in LangChain's ChatOllama. When tools are
not bound, the llm.stream() method works as expected, returning
incremental chunks of content, which is crucial for real-time
applications such as conversational agents and live feedback systems.
However, when bind_tools([]) is used, the streaming behavior changes,
causing the output to be delivered in full chunks rather than
incrementally. This change negatively impacts the user experience by
breaking the real-time nature of the streaming mechanism.
**Issue:** #26971
---------
Co-authored-by: 4meyDam1e <amey.damle@mail.utoronto.ca>
Co-authored-by: Chester Curme <chester.curme@gmail.com>