We currently return string (and therefore no content blocks / citations)
if the response is of the form
```
[
{"text": "a claim", "citations": [...]},
]
```
There are other cases where we do return citations as-is:
```
[
{"text": "a claim", "citations": [...]},
{"text": "some other text"},
{"text": "another claim", "citations": [...]},
]
```
Here we update to return content blocks including citations in the first
case as well.
- **Description:** The ValueError raised on certain structured-outputs
parsing errors, in langchain openai community integration, was missing a
f-string modifier and so didn't produce useful outputs. This is a
2-line, 2-character change.
- **Issue:** None open that this fixes
- **Dependencies:** Nothing changed
- **Twitter handle:** None
- [X] **Add tests and docs**: There's nothing to add for.
- [-] **Lint and test**: Happy to run this if you deem it necessary.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [feat] **Added backwards compatibility for OllamaEmbeddings
initialization (migration from `langchain_community.embeddings` to
`langchain_ollama.embeddings`**: "langchain_ollama"
- **Description:** Given that `OllamaEmbeddings` from
`langchain_community.embeddings` is deprecated, code is being shifted to
``langchain_ollama.embeddings`. However, this does not offer backward
compatibility of initializing the parameters and `OllamaEmbeddings`
object.
- **Issue:** #29294
- **Dependencies:** None
- **Twitter handle:** @BaqarAbbas2001
## Additional Information
Previously, `OllamaEmbeddings` from `langchain_community.embeddings`
used to support the following options:
e9abe583b2/libs/community/langchain_community/embeddings/ollama.py (L125-L139)
However, in the new package `from langchain_ollama import
OllamaEmbeddings`, there is no method to set these options. I have added
these parameters to resolve this issue.
This issue was also discussed in
https://github.com/langchain-ai/langchain/discussions/29113
The tokens I get are:
```
['', '\n\n', 'The', ' sun', ' was', ' setting', ' over', ' the', ' horizon', ',', ' casting', '']
```
so possibly an extra empty token is included in the output.
lmk @efriis if we should look into this further.
- **partner**: "Update Aiohttp for resolving vulnerability issue"
- **Description:** I have updated the upper limit of aiohttp from `3.10`
to `3.10.5` in the pyproject.toml file of langchain-pinecone. Hopefully
this will resolve#28771 . Please review this as I'm quite unsure.
---------
Co-authored-by: = <=>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Goal
Solve the following problems with `langchain-openai`:
- Structured output with `o1` [breaks out of the
box](https://langchain.slack.com/archives/C050X0VTN56/p1735232400232099).
- `with_structured_output` by default does not use OpenAI’s [structured
output
feature](https://platform.openai.com/docs/guides/structured-outputs).
- We override API defaults for temperature and other parameters.
## Breaking changes:
- Default method for structured output is changing to OpenAI’s dedicated
[structured output
feature](https://platform.openai.com/docs/guides/structured-outputs).
For schemas specified via TypedDict or JSON schema, strict schema
validation is disabled by default but can be enabled by specifying
`strict=True`.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Models that don’t support `method="json_schema"` (e.g., `gpt-4` and
`gpt-3.5-turbo`, currently the default model for ChatOpenAI) will raise
an error unless `method` is explicitly specified.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Schemas specified via Pydantic `BaseModel` that have fields with
non-null defaults or metadata (like min/max constraints) will raise an
error.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- `strict` now defaults to False for `method="json_schema"` when schemas
are specified via TypedDict or JSON schema.
- To recover previous behavior, use `with_structured_output(schema,
strict=True)`
- Schemas specified via Pydantic V1 will raise a warning (and use
`method="function_calling"`) unless `method` is explicitly specified.
- To remove the warning, pass `method="function_calling"` into
`with_structured_output`.
- Streaming with default structured output method / Pydantic schema no
longer generates intermediate streamed chunks.
- To recover previous behavior, pass `method="function_calling"` into
`with_structured_output`.
- We no longer override default temperature (was 0.7 in LangChain, now
will follow OpenAI, currently 1.0).
- To recover previous behavior, initialize `ChatOpenAI` or
`AzureChatOpenAI` with `temperature=0.7`.
- Note: conceptually there is a difference between forcing a tool call
and forcing a response format. Tool calls may have more concise
arguments vs. generating content adhering to a schema. Prompts may need
to be adjusted to recover desired behavior.
---------
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Title: langchain-pinecone: improve test structure and async handling
Description: This PR improves the test infrastructure for the
langchain-pinecone package by:
1. Implementing LangChain's standard test patterns for embeddings
2. Adding comprehensive configuration testing
3. Improving async test coverage
4. Fixing integration test issues with namespaces and async markers
The changes make the tests more robust, maintainable, and aligned with
LangChain's testing standards while ensuring proper async behavior in
the embeddings implementation.
Key improvements:
- Added standard EmbeddingsTests implementation
- Split custom configuration tests into a separate test class
- Added proper async test coverage with pytest-asyncio
- Fixed namespace handling in vector store integration tests
- Improved test organization and documentation
Dependencies: None (uses existing test dependencies)
Tests and Documentation:
- ✅ Added standard test implementation following LangChain's patterns
- ✅ Added comprehensive unit tests for configuration and async behavior
- ✅ All tests passing locally
- No documentation changes needed (internal test improvements only)
Twitter handle: N/A
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:**
This PR addresses an issue with the `stop_sequences` field in the
`ChatGroq` class. Currently, the field is defined as:
```python
stop: Optional[Union[List[str], str]] = Field(None, alias="stop_sequences")
```
This causes the language server (LSP) to raise an error indicating that
the `stop_sequences` parameter must be implemented. The issue occurs
because `Field(None, alias="stop_sequences")` is different compared to
`Field(default=None, alias="stop_sequences")`.

To resolve the issue, the field is updated to:
```python
stop: Optional[Union[List[str], str]] = Field(default=None, alias="stop_sequences")
```
While this issue does not affect runtime behavior, it ensures
compatibility with LSPs and improves the development experience.
- **Issue:** N/A
- **Dependencies:** None
**Description:**
Added ability to set `prefix` attribute to prevent error :
```
httpx.HTTPStatusError: Error response 400 while fetching https://api.mistral.ai/v1/chat/completions: {"object":"error","message":"Expected last role User or Tool (or Assistant with prefix True) for serving but got assistant","type":"invalid_request_error","param":null,"code":null}
```
Co-authored-by: Sylvain DEPARTE <sylvain.departe@wizbii.com>