Commit Graph

78 Commits

Author SHA1 Message Date
ccurme
00e7b2dada anthropic[patch]: add examples to API ref (#28065) 2024-11-12 20:17:02 +00:00
ccurme
1538ee17f9 anthropic[major]: support python 3.13 (#27916)
Last week Anthropic released version 0.39.0 of its python sdk, which
enabled support for Python 3.13. This release deleted a legacy
`client.count_tokens` method, which we currently access during init of
the `Anthropic` LLM. Anthropic has replaced this functionality with the
[client.beta.messages.count_tokens()
API](https://github.com/anthropics/anthropic-sdk-python/pull/726).

To enable support for `anthropic >= 0.39.0` and Python 3.13, here we
drop support for the legacy token counting method, and add support for
the new method via `ChatAnthropic.get_num_tokens_from_messages`.

To fully support the token counting API, we update the signature of
`get_num_tokens_from_message` to accept tools everywhere.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-11-12 14:31:07 -05:00
Bagatur
06420de2e7 integrations[patch]: bump core to 0.3.15 (#27805) 2024-10-31 11:27:05 -07:00
Bagatur
6691202998 anthropic[patch]: allow multiple sys not at start (#27725) 2024-10-30 23:56:47 +00:00
Bagatur
a4392b070d core[patch]: add convert_to_openai_messages util (#27263)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-16 17:10:10 +00:00
William FH
0a3e089827 [Anthropic] Shallow Copy (#27105)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-15 15:50:48 +00:00
Bagatur
38099800cc docs: fix anthropic max_tokens docstring (#27166) 2024-10-07 16:51:42 +00:00
Bagatur
0b8416bd2e anthropic[patch]: fix input_tokens when cached (#27125) 2024-10-04 22:35:51 +00:00
Bagatur
1e768a9ec7 anthropic[patch]: correctly handle tool msg with empty list (#27109) 2024-10-04 11:30:50 -07:00
Bagatur
4935a14314 core,integrations[minor]: Dont error on fields in model_kwargs (#27110)
Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.

Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
2024-10-04 11:30:27 -07:00
Bagatur
0495b7f441 anthropic[patch]: add usage_metadata details (#27087)
fixes https://github.com/langchain-ai/langchain/pull/27087
2024-10-04 08:46:49 -07:00
Bagatur
5ced41bf50 anthropic[patch]: fix tool call and tool res image_url handling (#26587)
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-09-17 14:30:07 -07:00
Bagatur
97b05d70e6 docs: anthropic api ref nit (#26591) 2024-09-17 20:39:53 +00:00
Erick Friis
c2a3021bb0 multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00
ccurme
b83f1eb0d5 core, partners: implement standard tracing params for LLMs (#25410) 2024-08-16 13:18:09 -04:00
Eugene Yurtsev
e18511bb22 core[minor], anthropic[patch]: Upgrade @root_validator usage to be consistent with pydantic 2 (#25457)
anthropic: Upgrade `@root_validator` usage to be consistent with
pydantic 2
core: support looking up multiple keys from env in from_env factory
2024-08-15 20:09:34 +00:00
Bagatur
eec7bb4f51 anthropic[patch]: Release 0.1.23 (#25394) 2024-08-14 09:03:39 -07:00
Bagatur
8461934c2b core[patch], integrations[patch]: convert TypedDict to tool schema support (#24641)
supports following UX

```python
    class SubTool(TypedDict):
        """Subtool docstring"""

        args: Annotated[Dict[str, Any], {}, "this does bar"]

    class Tool(TypedDict):
        """Docstring
        Args:
            arg1: foo
        """

        arg1: str
        arg2: Union[int, str]
        arg3: Optional[List[SubTool]]
        arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
        arg5: Annotated[Optional[float], None]
```

- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
2024-07-31 18:27:24 +00:00
Bagatur
a6d1fb4275 core[patch]: introduce ToolMessage.status (#24628)
Anthropic models (including via Bedrock and other cloud platforms)
accept a status/is_error attribute on tool messages/results
(specifically in `tool_result` content blocks for Anthropic API). Adding
a ToolMessage.status attribute so that users can set this attribute when
using those models
2024-07-29 14:01:53 -07:00
Bagatur
236e957abb core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.


```python
import pydantic
print(pydantic.__version__)
```
2.8.2

```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```


```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```

Addresses issues: https://github.com/langchain-ai/langchain/issues/22782

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
Bagatur
5fd1e67808 core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)

Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
    arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
    """A Structured Tool"""
    return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}


def test_tool_call_input_tool_message_with_raw_output() -> None:
    tool_call: Dict = {
        "name": "structured_api",
        "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
        "id": "123",
        "type": "tool_call",
    }
    expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
    tool = _mock_structured_tool_with_raw_output
    actual = tool.invoke(tool_call)
    assert actual == expected

    tool_call.pop("type")
    with pytest.raises(ValidationError):
        tool.invoke(tool_call)

    actual_content = tool.invoke(tool_call["args"])
    assert actual_content == expected.content
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 14:54:02 -07:00
Bagatur
ed200bf2c4 anthropic[patch]: expose payload (#23291)
![Screenshot 2024-06-21 at 4 56 02
PM](https://github.com/langchain-ai/langchain/assets/22008038/a2c6224f-3741-4502-9607-1a726a0551c9)
2024-07-02 17:43:47 -04:00
Bagatur
7a6c06cadd anthropic[patch]: tool output parser fix (#23647) 2024-07-02 16:33:22 -04:00
ccurme
46cbf0e4aa anthropic[patch]: use core output parsers for structured output (#23776)
Also add to standard tests for structured output.
2024-07-02 16:15:26 -04:00
kiarina
dc396835ed langchain_anthropic: add stop_reason in ChatAnthropic stream result (#23689)
`ChatAnthropic` can get `stop_reason` from the resulting `AIMessage` in
`invoke` and `ainvoke`, but not in `stream` and `astream`.
This is a different behavior from `ChatOpenAI`.
It is possible to get `stop_reason` from `stream` as well, since it is
needed to determine the next action after the LLM call. This would be
easier to handle in situations where only `stop_reason` is needed.

- Issue: NA
- Dependencies: NA
- Twitter handle: https://x.com/kiarina37
2024-07-02 15:16:20 -04:00
Bagatur
fc8fd49328 openai, anthropic, ...: with_structured_output to pass in explicit tool choice (#23645)
...community, mistralai, groq, fireworks

part of #23644
2024-06-28 16:39:53 -07:00
Leonid Ganeline
3dfd055411 anthropic: docstrings (#23145)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
2024-06-18 22:26:45 -04:00
Jacob Lee
181a61982f anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.

One thing - Anthropic events look like this:

```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```

Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.

We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?

If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?

CC @ccurme @efriis @baskaryan
2024-06-14 09:14:43 -07:00
ccurme
73c76b9628 anthropic[patch]: always add tool_result type to ToolMessage content (#22721)
Anthropic tool results can contain image data, which are typically
represented with content blocks having `"type": "image"`. Currently,
these content blocks are passed as-is as human/user messages to
Anthropic, which raises BadRequestError as it expects a tool_result
block to follow a tool_use.

Here we update ChatAnthropic to nest the content blocks inside a
tool_result content block.

Example:
```python
import base64

import httpx
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field


# Fetch image
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")


class FetchImage(BaseModel):
    should_fetch: bool = Field(..., description="Whether an image is requested.")


llm = ChatAnthropic(model="claude-3-sonnet-20240229").bind_tools([FetchImage])

messages = [
    HumanMessage(content="Could you summon a beautiful image please?"),
    AIMessage(
        content=[
            {
                "type": "tool_use",
                "id": "toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
                "name": "FetchImage",
                "input": {"should_fetch": True},
            },
        ],
        tool_calls=[
            {
                "name": "FetchImage",
                "args": {"should_fetch": True},
                "id": "toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
            },
        ],
    ),
    ToolMessage(
        name="FetchImage",
        content=[
            {
                "type": "image",
                "source": {
                    "type": "base64",
                    "media_type": "image/jpeg",
                    "data": image_data,
                },
            },
        ],
        tool_call_id="toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
    ),
]

llm.invoke(messages)
```

Trace:
https://smith.langchain.com/public/d27e4fc1-a96d-41e1-9f52-54f5004122db/r
2024-06-13 20:14:23 -07:00
ccurme
f32d57f6f0 anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.

There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
    for text in stream.text_stream:
        snapshot = stream.current_message_snapshot
        print(f"{count}: {snapshot.usage} -- {text}")
        count = count + 1

final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) --  How
4: Usage(input_tokens=8, output_tokens=1) --  can
5: Usage(input_tokens=8, output_tokens=1) --  I
6: Usage(input_tokens=8, output_tokens=1) --  assist
7: Usage(input_tokens=8, output_tokens=1) --  you
8: Usage(input_tokens=8, output_tokens=1) --  today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.

2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
    print(f"{count}: {event}")
    count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```

Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.

This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.

Usage:
```python
from langchain_anthropic import ChatAnthropic

model = ChatAnthropic(
    model="claude-3-haiku-20240307",
    temperature=0
)

full = None
for chunk in model.stream("hi"):
    full = chunk if full is None else full + chunk
    print(chunk)

print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}

Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
ccurme
c1ef731503 anthropic: update attribute name and alias (#22625)
update name to `stop_sequences` and alias to `stop` (instead of the
other way around), since `stop_sequences` is the name used by anthropic.
2024-06-06 12:29:10 -04:00
ccurme
3999761201 multiple: add stop attribute (#22573) 2024-06-06 12:11:52 -04:00
ccurme
e08879147b Revert "anthropic: stream token usage" (#22624)
Reverts langchain-ai/langchain#20180
2024-06-06 12:05:08 -04:00
Bagatur
0d495f3f63 anthropic: stream token usage (#20180)
open to other ideas
<img width="1181" alt="Screenshot 2024-04-08 at 5 34 08 PM"
src="https://github.com/langchain-ai/langchain/assets/22008038/03eb11c4-5eb5-43e3-9109-a13f76098fa4">

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-06 11:51:34 -04:00
Bagatur
cb183a9bf1 docs: update anthropic chat model (#22483)
Related to #22296

And update anthropic to accept base_url
2024-06-04 12:42:06 -07:00
Bagatur
678a19a5f7 infra: bump anthropic mypy 1 (#22373) 2024-06-03 08:21:55 -07:00
Bagatur
a8098f5ddb anthropic[patch]: Release 0.1.15, fix sdk tools break (#22369) 2024-05-31 12:10:22 -07:00
Bagatur
baa3c975cb anthropic[patch]: allow tool call mutation (#22130)
If tool_use blocks and tool_calls with overlapping IDs are present,
prefer the values of the tool_calls. Allows for mutating AIMessages just
via tool_calls.
2024-05-24 08:18:14 -07:00
ccurme
fbfed65fb1 core, partners: add token usage attribute to AIMessage (#21944)
```python
class UsageMetadata(TypedDict):
    """Usage metadata for a message, such as token counts.

    Attributes:
        input_tokens: (int) count of input (or prompt) tokens
        output_tokens: (int) count of output (or completion) tokens
        total_tokens: (int) total token count
    """

    input_tokens: int
    output_tokens: int
    total_tokens: int
```
```python
class AIMessage(BaseMessage):
    ...
    usage_metadata: Optional[UsageMetadata] = None
    """If provided, token usage information associated with the message."""
    ...
```
2024-05-23 14:21:58 -04:00
ccurme
4be5537837 Revert "anthropic: set default model" (#21987)
Reverts langchain-ai/langchain#21986
2024-05-21 17:28:32 +00:00
ccurme
35439cf3bd anthropic: set default model (#21986)
Various docs reference `ChatAnthropic()`, but this currently raises
ValidationError.
2024-05-21 17:24:31 +00:00
ccurme
181dfef118 core, standard tests, partner packages: add test for model params (#21677)
1. Adds `.get_ls_params` to BaseChatModel which returns
```python
class LangSmithParams(TypedDict, total=False):
    ls_provider: str
    ls_model_name: str
    ls_model_type: Literal["chat"]
    ls_temperature: Optional[float]
    ls_max_tokens: Optional[int]
    ls_stop: Optional[List[str]]
```
by default it will only return
```python
{ls_model_type="chat", ls_stop=stop}
```

2. Add these params to inheritable metadata in
`CallbackManager.configure`

3. Implement `.get_ls_params` and populate all params for Anthropic +
all subclasses of BaseChatOpenAI

Sample trace:
https://smith.langchain.com/public/d2962673-4c83-47c7-b51e-61d07aaffb1b/r

**OpenAI**:
<img width="984" alt="Screenshot 2024-05-17 at 10 03 35 AM"
src="https://github.com/langchain-ai/langchain/assets/26529506/2ef41f74-a9df-4e0e-905d-da74fa82a910">

**Anthropic**:
<img width="978" alt="Screenshot 2024-05-17 at 10 06 07 AM"
src="https://github.com/langchain-ai/langchain/assets/26529506/39701c9f-7da5-4f1a-ab14-84e9169d63e7">

**Mistral** (and all others for which params are not yet populated):
<img width="977" alt="Screenshot 2024-05-17 at 10 08 43 AM"
src="https://github.com/langchain-ai/langchain/assets/26529506/37d7d894-fec2-4300-986f-49a5f0191b03">
2024-05-17 13:51:26 -04:00
Bagatur
6416d16d39 anthropic[patch]: Release 0.1.13, tool_choice support (#21773) 2024-05-16 17:56:29 +00:00
ccurme
6da3d92b42 (all): update removal in deprecation warnings from 0.2 to 0.3 (#21265)
We are pushing out the removal of these to 0.3.

`find . -type f -name "*.py" -exec sed -i ''
's/removal="0\.2/removal="0.3/g' {} +`
2024-05-03 14:29:36 -04:00
ccurme
481d3855dc patch: remove usage of llm, chat model __call__ (#20788)
- `llm(prompt)` -> `llm.invoke(prompt)`
- `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`)
- `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt,
config={"callbacks": callbacks})`
- `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
2024-04-24 19:39:23 -04:00
Erick Friis
8c95ac3145 docs, multiple: de-beta with_structured_output (#20850) 2024-04-24 19:34:57 +00:00
Bagatur
54e9271504 anthropic[patch]: fix msg mutation (#20572) 2024-04-17 15:47:19 -07:00
Eugene Yurtsev
7a7851aa06 anthropic[patch]: Handle empty text block (#20566)
Handle empty text block
2024-04-17 15:37:04 -04:00
Erick Friis
e7fe5f7d3f anthropic[patch]: serialization in partner package (#18828) 2024-04-16 16:05:58 -07:00
Bagatur
96d8769eae anthropic[patch]: release 0.1.9, use tool calls if content is empty (#20535) 2024-04-16 15:27:29 -07:00