Commit Graph

5 Commits

Author SHA1 Message Date
Steve Moss
24605bcdb6
community[patch]: Fix missing protected_namespaces(). (#27610)
- [x] **PR message**:
- **Description:** Fixes warning messages raised due to missing
`protected_namespaces` parameter in `ConfigDict`.
    - **Issue:** https://github.com/langchain-ai/langchain/issues/27609
    - **Dependencies:** No dependencies
    - **Twitter handle:** @gawbul
2024-10-25 02:16:26 +00:00
ZhangShenao
f3925d71b9
community: Fix word spelling in Text2vecEmbeddings (#27183)
Fix word spelling in `Text2vecEmbeddings`
2024-10-15 09:28:48 -07:00
Erick Friis
c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00
hulitaitai
dc2c9dd4d7
Update text2vec.py (#19657)
Add that URL of the embedding tool "text2vec".
Fix minor mistakes in the doc-string.
2024-03-27 13:13:30 -04:00
hulitaitai
d7c14cb6f9
community[minor]: Add embeddings integration for text2vec (#19267)
Create a Class which allows to use the "text2vec" open source embedding
model.

It should install the model by running 'pip install -U text2vec'.
Example to call the model through LangChain:

from langchain_community.embeddings.text2vec import Text2vecEmbeddings

            embedding = Text2vecEmbeddings()
            bookend.embed_documents([
                "This is a CoSENT(Cosine Sentence) model.",
"It maps sentences to a 768 dimensional dense vector space.",
            ])
            bookend.embed_query(
                "It can be used for text matching or semantic search."
            )

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-26 11:06:58 -04:00