Commit Graph

175 Commits

Author SHA1 Message Date
Mason Daugherty
ee4c2510eb feat: port various nit changes from wip-v0.4 (#32506)
Lots of work that wasn't directly related to core
improvements/messages/testing functionality
2025-08-11 15:09:08 -04:00
Mason Daugherty
c31236264e chore: formatting across codebase (#32466) 2025-08-08 10:20:10 -04:00
ccurme
02001212b0 fix(openai): revert some changes (#32462)
Keep coverage on `output_version="v0"` (increasing coverage is being
managed in v0.4 branch).
2025-08-08 08:51:18 -04:00
Mason Daugherty
00244122bd feat(openai): minimal and verbosity (#32455) 2025-08-08 02:24:21 +00:00
ccurme
ec2b34a02d feat(openai): custom tools (#32449) 2025-08-07 16:30:01 -04:00
Mason Daugherty
145d38f7dd test(openai): add tests for prompt_cache_key parameter and update docs (#32363)
Introduce tests to validate the behavior and inclusion of the
`prompt_cache_key` parameter in request payloads for the `ChatOpenAI`
model.
2025-08-07 15:29:47 -04:00
ccurme
a9e52ca605 chore(openai): bump openai sdk (#32322) 2025-07-30 10:58:18 -04:00
Mason Daugherty
e79e0bd6b4 fix(openai): add max_retries parameter to ChatOpenAI for handling 503 capacity errors (#32286)
Some integration tests were failing
2025-07-28 13:58:23 -04:00
niceg
0d6f915442 fix: LLM mimicking Unicode responses due to forced Unicode conversion of non-ASCII characters. (#32222)
fix: Fix LLM mimicking Unicode responses due to forced Unicode
conversion of non-ASCII characters.

- **Description:** This PR fixes an issue where the LLM would mimic
Unicode responses due to forced Unicode conversion of non-ASCII
characters in tool calls. The fix involves disabling the `ensure_ascii`
flag in `json.dumps()` when converting tool calls to OpenAI format.
- **Issue:** Fixes ↓↓↓
input:
```json
{'role': 'assistant', 'tool_calls': [{'type': 'function', 'id': 'call_nv9trcehdpihr21zj9po19vq', 'function': {'name': 'create_customer', 'arguments': '{"customer_name": "你好啊集团"}'}}]}
```
output:
```json
{'role': 'assistant', 'tool_calls': [{'type': 'function', 'id': 'call_nv9trcehdpihr21zj9po19vq', 'function': {'name': 'create_customer', 'arguments': '{"customer_name": "\\u4f60\\u597d\\u554a\\u96c6\\u56e2"}'}}]}
```
then:
llm will mimic outputting unicode. Unicode's vast number of symbols can
lengthen LLM responses, leading to slower performance.
<img width="686" height="277" alt="image"
src="https://github.com/user-attachments/assets/28f3b007-3964-4455-bee2-68f86ac1906d"
/>

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-24 17:01:31 -04:00
Copilot
54542b9385 docs(openai): add comprehensive documentation and examples for extra_body + others (#32149)
This PR addresses the common issue where users struggle to pass custom
parameters to OpenAI-compatible APIs like LM Studio, vLLM, and others.
The problem occurs when users try to use `model_kwargs` for custom
parameters, which causes API errors.

## Problem

Users attempting to pass custom parameters (like LM Studio's `ttl`
parameter) were getting errors:

```python
#  This approach fails
llm = ChatOpenAI(
    base_url="http://localhost:1234/v1",
    model="mlx-community/QwQ-32B-4bit",
    model_kwargs={"ttl": 5}  # Causes TypeError: unexpected keyword argument 'ttl'
)
```

## Solution

The `extra_body` parameter is the correct way to pass custom parameters
to OpenAI-compatible APIs:

```python
#  This approach works correctly
llm = ChatOpenAI(
    base_url="http://localhost:1234/v1",
    model="mlx-community/QwQ-32B-4bit",
    extra_body={"ttl": 5}  # Custom parameters go in extra_body
)
```

## Changes Made

1. **Enhanced Documentation**: Updated the `extra_body` parameter
docstring with comprehensive examples for LM Studio, vLLM, and other
providers

2. **Added Documentation Section**: Created a new "OpenAI-compatible
APIs" section in the main class docstring with practical examples

3. **Unit Tests**: Added tests to verify `extra_body` functionality
works correctly:
- `test_extra_body_parameter()`: Verifies custom parameters are included
in request payload
- `test_extra_body_with_model_kwargs()`: Ensures `extra_body` and
`model_kwargs` work together

4. **Clear Guidance**: Documented when to use `extra_body` vs
`model_kwargs`

## Examples Added

**LM Studio with TTL (auto-eviction):**
```python
ChatOpenAI(
    base_url="http://localhost:1234/v1",
    api_key="lm-studio",
    model="mlx-community/QwQ-32B-4bit",
    extra_body={"ttl": 300}  # Auto-evict after 5 minutes
)
```

**vLLM with custom sampling:**
```python
ChatOpenAI(
    base_url="http://localhost:8000/v1",
    api_key="EMPTY",
    model="meta-llama/Llama-2-7b-chat-hf",
    extra_body={
        "use_beam_search": True,
        "best_of": 4
    }
)
```

## Why This Works

- `model_kwargs` parameters are passed directly to the OpenAI client's
`create()` method, causing errors for non-standard parameters
- `extra_body` parameters are included in the HTTP request body, which
is exactly what OpenAI-compatible APIs expect for custom parameters

Fixes #32115.

<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-24 16:43:16 -04:00
ccurme
de13f6ae4f fix(openai): support acknowledged safety checks in computer use (#31984) 2025-07-14 07:33:37 -03:00
Mason Daugherty
33c9bf1adc langchain-openai[patch]: Add ruff bandit rules to linter (#31788) 2025-06-30 14:01:32 -04:00
Andrew Jaeger
0189c50570 openai[fix]: Correctly set usage metadata for OpenAI Responses API (#31756) 2025-06-27 15:35:14 +00:00
ccurme
ea1345a58b openai[patch]: update cassette (#31752)
Following changes in `openai==1.92`.
2025-06-26 14:52:12 -04:00
ccurme
066be383e3 openai[patch]: update test following release of openai 1.92 (#31751)
Added new required fields for `ResponseFunctionWebSearch`
2025-06-26 18:22:58 +00:00
ccurme
88d5f3edcc openai[patch]: allow specification of output format for Responses API (#31686) 2025-06-26 13:41:43 -04:00
ccurme
0bf223d6cf openai[patch]: add attribute to always use previous_response_id (#31734) 2025-06-25 19:01:43 +00:00
ccurme
b268ab6a28 openai[patch]: fix client caching when request_timeout is specified via httpx.Timeout (#31698)
Resolves https://github.com/langchain-ai/langchain/issues/31697
2025-06-23 14:37:49 +00:00
ccurme
6409498f6c openai[patch]: route to Responses API if relevant attributes are set (#31645)
Following https://github.com/langchain-ai/langchain/pull/30329.
2025-06-17 16:04:38 -04:00
ccurme
c1c3e13a54 openai[patch]: add Responses API attributes to BaseChatOpenAI (#30329)
`reasoning`, `include`, `store`, `truncation`.

Previously these had to be added through `model_kwargs`.
2025-06-17 14:45:50 -04:00
ccurme
b610859633 openai[patch]: support Responses streaming in AzureChatOpenAI (#31641)
Resolves https://github.com/langchain-ai/langchain/issues/31303,
https://github.com/langchain-ai/langchain/issues/31624
2025-06-17 14:41:09 -04:00
ccurme
b9357d456e openai[patch]: refactor handling of Responses API (#31587) 2025-06-16 14:01:39 -04:00
ccurme
575662d5f1 openai[patch]: accommodate change in image generation API (#31522)
OpenAI changed their API to require the `partial_images` parameter when
using image generation + streaming.

As described in https://github.com/langchain-ai/langchain/pull/31424, we
are ignoring partial images. Here, we accept the `partial_images`
parameter (as required by OpenAI), but emit a warning and continue to
ignore partial images.
2025-06-09 14:57:46 -04:00
ccurme
ece9e31a7a openai[patch]: VCR some tests (#31524) 2025-06-06 23:00:57 +00:00
ccurme
4cc2f6b807 openai[patch]: guard against None text completions in BaseOpenAI (#31514)
Some chat completions APIs will return null `text` output (even though
this is typed as string).
2025-06-06 09:14:37 -04:00
Eugene Yurtsev
17f34baa88 openai[minor]: add image generation to responses api (#31424)
Does not support partial images during generation at the moment. Before
doing that I'd like to figure out how to specify the aggregation logic
without requiring changes in core.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-02 10:03:54 -04:00
ccurme
3db1aa0ba6 standard-tests: migrate to pytest-recording (#31425)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-31 15:21:15 -04:00
ccurme
c8951ca124 infra: drop azure from streaming benchmarks (#31421)
Covered by BaseChatOpenAI
2025-05-29 15:06:12 -04:00
ccurme
49eeb0f3c3 standard-tests: add benchmarks (#31302)
Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
2025-05-29 15:21:37 +00:00
ccurme
ab8b4003be openai[patch]: add test case for code interpreter (#31383) 2025-05-27 19:11:31 +00:00
ccurme
851fd438cf openai[patch]: relax Azure llm streaming callback test (#31319)
Effectively reverts
https://github.com/langchain-ai/langchain/pull/29302, but check that
counts are "less than" instead of equal to an expected count.
2025-05-22 16:14:53 +00:00
ccurme
053a1246da openai[patch]: support built-in code interpreter and remote MCP tools (#31304) 2025-05-22 11:47:57 -04:00
ccurme
beacedd6b3 openai[patch]: update tests for strict schemas (#31306)
Following recent [changes](https://platform.openai.com/docs/changelog).
2025-05-21 22:06:17 +00:00
ccurme
dcb5aba999 openai[patch]: reduce tested constraints on strict schema adherence for Responses API (#31290)
Scheduled testing started failing today because the Responses API
stopped raising `BadRequestError` for a schema that was previously
invalid when `strict=True`.

Although docs still say that [some type-specific keywords are not yet
supported](https://platform.openai.com/docs/guides/structured-outputs#some-type-specific-keywords-are-not-yet-supported)
(including `minimum` and `maximum` for numbers), the below appears to
run and correctly respect the constraints:
```python
import json
import openai

maximums = list(range(1, 11))
arg_values = []
for maximum in maximums:

    tool = {
        "type": "function",
        "name": "magic_function",
        "description": "Applies a magic function to an input.",
        "parameters": {
            "properties": {
                "input": {"maximum": maximum, "minimum": 0, "type": "integer"}
            },
            "required": ["input"],
            "type": "object",
            "additionalProperties": False
        },
        "strict": True
    }
    
    client = openai.OpenAI()
    
    response = client.responses.create(
        model="gpt-4.1",
        input=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
        tools=[tool],
    )
    function_call = next(item for item in response.output if item.type == "function_call")
    args = json.loads(function_call.arguments)
    arg_values.append(args["input"])


print(maximums)
print(arg_values)

# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# [1, 2, 3, 3, 3, 3, 3, 3, 3, 3]
```
Until yesterday this raised BadRequestError.

The same is not true of Chat Completions, which appears to still raise
BadRequestError
```python
tool = {
    "type": "function",
    "function": {
        "name": "magic_function",
        "description": "Applies a magic function to an input.",
        "parameters": {
            "properties": {
                "input": {"maximum": 5, "minimum": 0, "type": "integer"}
            },
            "required": ["input"],
            "type": "object",
            "additionalProperties": False
        },
        "strict": True
    }
}

response = client.chat.completions.create(
    model="gpt-4.1",
    messages=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
    tools=[tool],
)
response  # raises BadRequestError
```

Here we update tests accordingly.
2025-05-20 14:50:31 +00:00
ccurme
32fcc97a90 openai[patch]: compat with Bedrock Converse (#31280)
ChatBedrockConverse passes through reasoning content blocks in [Bedrock
Converse
format](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ContentBlock.html).

Similar to how we handle Anthropic thinking blocks, here we ensure these
are filtered out of OpenAI request payloads.

Resolves https://github.com/langchain-ai/langchain/issues/31279.
2025-05-19 10:35:26 -04:00
ccurme
0b8837a0cc openai: support runtime kwargs in embeddings (#31195) 2025-05-14 09:14:40 -04:00
ccurme
868cfc4a8f openai: ignore function_calls if tool_calls are present (#31198)
Some providers include (legacy) function calls in `additional_kwargs` in
addition to tool calls. We currently unpack both function calls and tool
calls if present, but OpenAI will raise 400 in this case.

This can come up if providers are mixed in a tool-calling loop. Example:
```python
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool


@tool
def get_weather(location: str) -> str:
    """Get weather at a location."""
    return "It's sunny."



gemini = init_chat_model("google_genai:gemini-2.0-flash-001").bind_tools([get_weather])
openai = init_chat_model("openai:gpt-4.1-mini").bind_tools([get_weather])

input_message = HumanMessage("What's the weather in Boston?")
tool_call_message = gemini.invoke([input_message])

assert len(tool_call_message.tool_calls) == 1
tool_call = tool_call_message.tool_calls[0]
tool_message = get_weather.invoke(tool_call)

response = openai.invoke(  # currently raises 400 / BadRequestError
    [input_message, tool_call_message, tool_message]
)
```

Here we ignore function calls if tool calls are present.
2025-05-12 13:50:56 -04:00
ccurme
94139ffcd3 openai[patch]: format system content blocks for Responses API (#31096)
```python
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI


llm = ChatOpenAI(model="gpt-4.1", use_responses_api=True)

messages = [
    SystemMessage("test"),                                   # Works
    HumanMessage("test"),                                    # Works
    SystemMessage([{"type": "text", "text": "test"}]),       # Bug in this case
    HumanMessage([{"type": "text", "text": "test"}]),        # Works
    SystemMessage([{"type": "input_text", "text": "test"}])  # Works
]

llm._get_request_payload(messages)
```
2025-05-02 15:22:30 +00:00
ccurme
26ad239669 core, openai[patch]: prefer provider-assigned IDs when aggregating message chunks (#31080)
When aggregating AIMessageChunks in a stream, core prefers the leftmost
non-null ID. This is problematic because:
- Core assigns IDs when they are null to `f"run-{run_manager.run_id}"`
- The desired meaningful ID might not be available until midway through
the stream, as is the case for the OpenAI Responses API.

For the OpenAI Responses API, we assign message IDs to the top-level
`AIMessage.id`. This works in `.(a)invoke`, but during `.(a)stream` the
IDs get overwritten by the defaults assigned in langchain-core. These
IDs
[must](https://community.openai.com/t/how-to-solve-badrequesterror-400-item-rs-of-type-reasoning-was-provided-without-its-required-following-item-error-in-responses-api/1151686/9)
be available on the AIMessage object to support passing reasoning items
back to the API (e.g., if not using OpenAI's `previous_response_id`
feature). We could add them elsewhere, but seeing as we've already made
the decision to store them in `.id` during `.(a)invoke`, addressing the
issue in core lets us fix the problem with no interface changes.
2025-05-02 11:18:18 -04:00
ccurme
c51eadd54f openai[patch]: propagate service_tier to response metadata (#31089) 2025-05-01 13:50:48 -04:00
ccurme
629b7a5a43 openai[patch]: add explicit attribute for service tier (#31005) 2025-04-25 18:38:23 +00:00
ccurme
a7903280dd openai[patch]: delete redundant tests (#31004)
These are covered by standard tests.
2025-04-24 17:56:32 +00:00
ccurme
faef3e5d50 core, standard-tests: support PDF and audio input in Chat Completions format (#30979)
Chat models currently implement support for:
- images in OpenAI Chat Completions format
- other multimodal types (e.g., PDF and audio) in a cross-provider
[standard
format](https://python.langchain.com/docs/how_to/multimodal_inputs/)

Here we update core to extend support to PDF and audio input in Chat
Completions format. **If an OAI-format PDF or audio content block is
passed into any chat model, it will be transformed to the LangChain
standard format**. We assume that any chat model supporting OAI-format
PDF or audio has implemented support for the standard format.
2025-04-23 18:32:51 +00:00
ccurme
a7c1bccd6a openai[patch]: remove xfails from image token counting tests (#30963)
These appear to be passing again.
2025-04-22 15:55:33 +00:00
Dmitrii Rashchenko
a43df006de Support of openai reasoning summary streaming (#30909)
**langchain_openai: Support of reasoning summary streaming**

**Description:**
OpenAI API now supports streaming reasoning summaries for reasoning
models (o1, o3, o3-mini, o4-mini). More info about it:
https://platform.openai.com/docs/guides/reasoning#reasoning-summaries

It is supported only in Responses API (not Completion API), so you need
to create LangChain Open AI model as follows to support reasoning
summaries streaming:

```
llm = ChatOpenAI(
    model="o4-mini", # also o1, o3, o3-mini support reasoning streaming
    use_responses_api=True,  # reasoning streaming works only with responses api, not completion api
    model_kwargs={
        "reasoning": {
            "effort": "high",  # also "low" and "medium" supported
            "summary": "auto"  # some models support "concise" summary, some "detailed", but auto will always work
        }
    }
)
```

Now, if you stream events from llm:

```
async for event in llm.astream_events(prompt, version="v2"):
    print(event)
```

or

```
for chunk in llm.stream(prompt):
    print (chunk)
```

OpenAI API will send you new types of events:
`response.reasoning_summary_text.added`
`response.reasoning_summary_text.delta`
`response.reasoning_summary_text.done`

These events are new, so they were ignored. So I have added support of
these events in function `_convert_responses_chunk_to_generation_chunk`,
so reasoning chunks or full reasoning added to the chunk
additional_kwargs.

Example of how this reasoning summary may be printed:

```
    async for event in llm.astream_events(prompt, version="v2"):
        if event["event"] == "on_chat_model_stream":
            chunk: AIMessageChunk = event["data"]["chunk"]
            if "reasoning_summary_chunk" in chunk.additional_kwargs:
                print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
            elif "reasoning_summary" in chunk.additional_kwargs:
                print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
            elif chunk.content and chunk.content[0]["type"] == "text":
                print(chunk.content[0]["text"], end="")
```

or

```
    for chunk in llm.stream(prompt):
        if "reasoning_summary_chunk" in chunk.additional_kwargs:
            print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
        elif "reasoning_summary" in chunk.additional_kwargs:
            print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
        elif chunk.content and chunk.content[0]["type"] == "text":
            print(chunk.content[0]["text"], end="")
```

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-22 14:51:13 +00:00
Aubrey Ford
b344f34635 partners/openai: OpenAIEmbeddings not respecting chunk_size argument (#30757)
When calling `embed_documents` and providing a `chunk_size` argument,
that argument is ignored when `OpenAIEmbeddings` is instantiated with
its default configuration (where `check_embedding_ctx_length=True`).

`_get_len_safe_embeddings` specifies a `chunk_size` parameter but it's
not being passed through in `embed_documents`, which is its only caller.
This appears to be an oversight, especially given that the
`_get_len_safe_embeddings` docstring states it should respect "the set
embedding context length and chunk size."

Developers typically expect method parameters to take effect (also, take
precedence) when explicitly provided, especially when instantiating
using defaults. I was confused as to why my API calls were being
rejected regardless of the chunk size I provided.

This bug also exists in langchain_community package. I can add that to
this PR if requested otherwise I will create a new one once this passes.
2025-04-18 15:27:27 -04:00
ccurme
add6a78f98 standard-tests, openai[patch]: add support standard audio inputs (#30904) 2025-04-17 10:30:57 -04:00
ccurme
86d51f6be6 multiple: permit optional fields on multimodal content blocks (#30887)
Instead of stuffing provider-specific fields in `metadata`, they can go
directly on the content block.
2025-04-17 12:48:46 +00:00
ccurme
9cfe6bcacd multiple: multi-modal content blocks (#30746)
Introduces standard content block format for images, audio, and files.

## Examples

Image from url:
```
{
    "type": "image",
    "source_type": "url",
    "url": "https://path.to.image.png",
}
```


Image, in-line data:
```
{
    "type": "image",
    "source_type": "base64",
    "data": "<base64 string>",
    "mime_type": "image/png",
}
```


PDF, in-line data:
```
{
    "type": "file",
    "source_type": "base64",
    "data": "<base64 string>",
    "mime_type": "application/pdf",
}
```


File from ID:
```
{
    "type": "file",
    "source_type": "id",
    "id": "file-abc123",
}
```


Plain-text file:
```
{
    "type": "file",
    "source_type": "text",
    "text": "foo bar",
}
```
2025-04-15 09:48:06 -04:00
ccurme
f7c4965fb6 openai[patch]: update imports in test (#30828)
Quick fix to unblock CI, will need to address in core separately.
2025-04-14 19:33:38 +00:00