Commit Graph

26 Commits

Author SHA1 Message Date
af su
7c7ee07d30
huggingface[fix]: HuggingFaceEndpointEmbeddings model parameter passing error when async embed (#27953)
This change refines the handling of _model_kwargs in POST requests.
Instead of nesting _model_kwargs as a dictionary under the parameters
key, it is now directly unpacked and merged into the request's JSON
payload. This ensures that the model parameters are passed correctly and
avoids unnecessary nesting.E. g.:

```python
import asyncio

from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

embedding_input = ["This input will get multiplied" * 10000]

embeddings = HuggingFaceEndpointEmbeddings(
    model="http://127.0.0.1:8081/embed",
    model_kwargs={"truncate": True},
)

# Truncated parameters in synchronized methods are handled correctly
embeddings.embed_documents(texts=embedding_input)
# The truncate parameter is not handled correctly in the asynchronous method,
# and 413 Request Entity Too Large is returned.
asyncio.run(embeddings.aembed_documents(texts=embedding_input))
```

Co-authored-by: af su <saf@zjuici.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-11-20 19:08:56 +00:00
Roman Solomatin
0f85dea8c8
langchain-huggingface: use separate kwargs for queries and docs (#27857)
Now `encode_kwargs` used for both for documents and queries and this
leads to wrong embeddings. E. g.:
```python
    model_kwargs = {"device": "cuda", "trust_remote_code": True}
    encode_kwargs = {"normalize_embeddings": False, "prompt_name": "s2p_query"}

    model = HuggingFaceEmbeddings(
        model_name="dunzhang/stella_en_400M_v5",
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs,
    )

    query_embedding = np.array(
        model.embed_query("What are some ways to reduce stress?",)
    )
    document_embedding = np.array(
        model.embed_documents(
            [
                "There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.",
                "Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.",
            ]
        )
    )
    print(model._client.similarity(query_embedding, document_embedding)) # output: tensor([[0.8421, 0.3317]], dtype=torch.float64)
```
But from the [model
card](https://huggingface.co/dunzhang/stella_en_400M_v5#sentence-transformers)
expexted like this:
```python
    model_kwargs = {"device": "cuda", "trust_remote_code": True}
    encode_kwargs = {"normalize_embeddings": False}
    query_encode_kwargs = {"normalize_embeddings": False, "prompt_name": "s2p_query"}

    model = HuggingFaceEmbeddings(
        model_name="dunzhang/stella_en_400M_v5",
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs,
        query_encode_kwargs=query_encode_kwargs,
    )

    query_embedding = np.array(
        model.embed_query("What are some ways to reduce stress?", )
    )
    document_embedding = np.array(
        model.embed_documents(
            [
                "There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.",
                "Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.",
            ]
        )
    )
    print(model._client.similarity(query_embedding, document_embedding)) # tensor([[0.8398, 0.2990]], dtype=torch.float64)
```
2024-11-06 17:35:39 -05:00
Andrew Effendi
49517cc1e7
partners/huggingface[patch]: fix HuggingFacePipeline model_id parameter (#27514)
**Description:** Fixes issue with model parameter not getting
initialized correctly when passing transformers pipeline
**Issue:** https://github.com/langchain-ai/langchain/issues/25915
2024-10-29 14:34:46 +00:00
Hyejun An
6227396e20
partners/HuggingFacePipeline[stream]: Change to use pipeline instead of pipeline.model.generate in stream() (#26531)
## Description

I encountered an error while using the` gemma-2-2b-it model` with the
`HuggingFacePipeline` class and have implemented a fix to resolve this
issue.

### What is Problem

```python
model_id="google/gemma-2-2b-it"


gemma_2_model = AutoModelForCausalLM.from_pretrained(model_id)
gemma_2_tokenizer = AutoTokenizer.from_pretrained(model_id)

gen = pipeline( 
    task='text-generation',
    model=gemma_2_model,
    tokenizer=gemma_2_tokenizer,
    max_new_tokens=1024,
    device=0 if torch.cuda.is_available() else -1,
    temperature=.5,
    top_p=0.7,
    repetition_penalty=1.1,
    do_sample=True,
    )

llm = HuggingFacePipeline(pipeline=gen)

for chunk in llm.stream("Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World."):
    print(chunk, end="", flush=True)
```

This code outputs the following error message:

```
/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1258: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.
  warnings.warn(
Exception in thread Thread-19 (generate):
Traceback (most recent call last):
  File "/usr/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
    self.run()
  File "/usr/lib/python3.10/threading.py", line 953, in run
    self._target(*self._args, **self._kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py", line 1874, in generate
    self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
  File "/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py", line 1266, in _validate_generated_length
    raise ValueError(
ValueError: Input length of input_ids is 31, but `max_length` is set to 20. This can lead to unexpected behavior. You should consider increasing `max_length` or, better yet, setting `max_new_tokens`.
```

In addition, the following error occurs when the number of tokens is
reduced.

```python
for chunk in llm.stream("Hello World"):
    print(chunk, end="", flush=True)
```

```
/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1258: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1885: UserWarning: You are calling .generate() with the `input_ids` being on a device type different than your model's device. `input_ids` is on cpu, whereas the model is on cuda. You may experience unexpected behaviors or slower generation. Please make sure that you have put `input_ids` to the correct device by calling for example input_ids = input_ids.to('cuda') before running `.generate()`.
  warnings.warn(
Exception in thread Thread-20 (generate):
Traceback (most recent call last):
  File "/usr/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
    self.run()
  File "/usr/lib/python3.10/threading.py", line 953, in run
    self._target(*self._args, **self._kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py", line 2024, in generate
    result = self._sample(
  File "/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py", line 2982, in _sample
    outputs = self(**model_inputs, return_dict=True)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/transformers/models/gemma2/modeling_gemma2.py", line 994, in forward
    outputs = self.model(
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/transformers/models/gemma2/modeling_gemma2.py", line 803, in forward
    inputs_embeds = self.embed_tokens(input_ids)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/sparse.py", line 164, in forward
    return F.embedding(
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py", line 2267, in embedding
    return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)
```

On the other hand, in the case of invoke, the output is normal:

```
llm.invoke("Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World.")
```
```
'Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World. Hello World.\n\nThis is a simple program that prints the phrase "Hello World" to the console. \n\n**Here\'s how it works:**\n\n* **`print("Hello World")`**: This line of code uses the `print()` function, which is a built-in function in most programming languages (like Python). The `print()` function takes whatever you put inside its parentheses and displays it on the screen.\n* **`"Hello World"`**:  The text within the double quotes (`"`) is called a string. It represents the message we want to print.\n\n\nLet me know if you\'d like to explore other programming concepts or see more examples! \n'
```

### Problem Analysis

- Apparently, I put kwargs in while generating pipelines and it applied
to `invoke()`, but it's not applied in the `stream()`.
- When using the stream, `inputs = self.pipeline.tokenizer (prompt,
return_tensors = "pt")` enters cpu.
  - This can crash when the model is in gpu.

### Solution

Just use `self.pipeline` instead of `self.pipeline.model.generate`.

- **Original Code**

```python
stopping_criteria = StoppingCriteriaList([StopOnTokens()])

inputs = self.pipeline.tokenizer(prompt, return_tensors="pt")
streamer = TextIteratorStreamer(
    self.pipeline.tokenizer,
    timeout=60.0,
    skip_prompt=skip_prompt,
    skip_special_tokens=True,
)
generation_kwargs = dict(
    inputs,
    streamer=streamer,
    stopping_criteria=stopping_criteria,
    **pipeline_kwargs,
)
t1 = Thread(target=self.pipeline.model.generate, kwargs=generation_kwargs)
t1.start()
```

- **Updated Code**

```python
stopping_criteria = StoppingCriteriaList([StopOnTokens()])

streamer = TextIteratorStreamer(
    self.pipeline.tokenizer,
    timeout=60.0,
    skip_prompt=skip_prompt,
    skip_special_tokens=True,
)
generation_kwargs = dict(
    text_inputs= prompt,
    streamer=streamer,
    stopping_criteria=stopping_criteria,
    **pipeline_kwargs,
)
t1 = Thread(target=self.pipeline, kwargs=generation_kwargs)
t1.start()
```

By using the `pipeline` directly, the `kwargs` of the pipeline are
applied, and there is no need to consider the `device` of the `tensor`
made with the `tokenizer`.

> According to the change to use `pipeline`, it was modified to put
`text_inputs=prompts` directly into `generation_kwargs`.

## Issue

None

## Dependencies

None

## Twitter handle

None

---------

Co-authored-by: Vadym Barda <vadym@langchain.dev>
2024-10-24 16:49:43 -04:00
Kwan Kin Chan
6d2a76ac05
langchain_huggingface: Fix multiple GPU usage bug in from_model_id function (#23628)
- [ ]  **Description:**   
   - pass the device_map into model_kwargs 
- removing the unused device_map variable in the hf_pipeline function
call
- [ ] **Issue:** issue #13128 
When using the from_model_id function to load a Hugging Face model for
text generation across multiple GPUs, the model defaults to loading on
the CPU despite multiple GPUs being available using the expected format
``` python
llm = HuggingFacePipeline.from_model_id(
    model_id="model-id",
    task="text-generation",
    device_map="auto",
)
```
Currently, to enable multiple GPU , we have to pass in variable in this
format instead
``` python
llm = HuggingFacePipeline.from_model_id(
    model_id="model-id",
    task="text-generation",
    device=None,
    model_kwargs={
        "device_map": "auto",
    }
)
```
This issue arises due to improper handling of the device and device_map
parameters.

- [ ] **Explanation:**
1. In from_model_id, the model is created using model_kwargs and passed
as the model variable of the pipeline function. So at this moment, to
load the model with multiple GPUs, "device_map" needs to be set to
"auto" within model_kwargs. Otherwise, the model defaults to loading on
the CPU.
2. The device_map variable in from_model_id is not utilized correctly.
In the pipeline function's source code of tnansformer:
- The device_map variable is stored in the model_kwargs dictionary
(lines 867-878 of transformers/src/transformers/pipelines/\__init__.py).
```python
    if device_map is not None:
        ......
        model_kwargs["device_map"] = device_map
```
- The model is constructed with model_kwargs containing the device_map
value ONLY IF it is a string (lines 893-903 of
transformers/src/transformers/pipelines/\__init__.py).
```python
    if isinstance(model, str) or framework is None:
        model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]}
        framework, model = infer_framework_load_model( ... , **model_kwargs, )
```
- Consequently, since a model object is already passed to the pipeline
function, the device_map variable from from_model_id is never used.

3. The device_map variable in from_model_id not only appears unused but
also causes errors. Without explicitly setting device=None, attempting
to load the model on multiple GPUs may result in the following error:
 ```
Device has 2 GPUs available. Provide device={deviceId} to
`from_model_id` to use available GPUs for execution. deviceId is -1
(default) for CPU and can be a positive integer associated with CUDA
device id.
  Traceback (most recent call last):
    File "foo.py", line 15, in <module>
      llm = HuggingFacePipeline.from_model_id(
File
"foo\site-packages\langchain_huggingface\llms\huggingface_pipeline.py",
line 217, in from_model_id
      pipeline = hf_pipeline(
File "foo\lib\site-packages\transformers\pipelines\__init__.py", line
1108, in pipeline
return pipeline_class(model=model, framework=framework, task=task,
**kwargs)
File "foo\lib\site-packages\transformers\pipelines\text_generation.py",
line 96, in __init__
      super().__init__(*args, **kwargs)
File "foo\lib\site-packages\transformers\pipelines\base.py", line 835,
in __init__
      raise ValueError(
ValueError: The model has been loaded with `accelerate` and therefore
cannot be moved to a specific device. Please discard the `device`
argument when creating your pipeline object.
```
This error occurs because, in from_model_id, the default values in from_model_id for device and device_map are -1 and None, respectively. It would passes the statement (`device_map is not None and device < 0`) and keep the device as -1 so the pipeline function later raises an error when trying to move a GPU-loaded model back to the CPU. 
19eb82e68b/libs/community/langchain_community/llms/huggingface_pipeline.py (L204-L213)




If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: vbarda <vadym@langchain.dev>
2024-10-22 21:41:47 -04:00
Vadym Barda
0640cbf2f1
huggingface[patch]: hide client field in HuggingFaceEmbeddings (#27522) 2024-10-21 17:37:07 -04:00
Bagatur
099235da01
Revert "huggingface[patch]: make HuggingFaceEndpoint serializable (#2… (#27032)
…7027)"

This reverts commit b5e28d3a6d.
2024-10-01 21:26:38 +00:00
Bagatur
b5e28d3a6d
huggingface[patch]: make HuggingFaceEndpoint serializable (#27027) 2024-10-01 13:16:10 -07:00
Lucain
a2023a1e96
huggingface; fix huggingface_endpoint.py (initialize clients only with supported kwargs) (#26378)
## Description

By default, `HuggingFaceEndpoint` instantiates both the
`InferenceClient` and the `AsyncInferenceClient` with the
`"server_kwargs"` passed as input. This is an issue as both clients
might not support exactly the same kwargs. This has been highlighted in
https://github.com/huggingface/huggingface_hub/issues/2522 by
@morgandiverrez with the `trust_env` parameter. In order to make
`langchain` integration future-proof, I do think it's wiser to forward
only the supported parameters to each client. Parameters that are not
supported are simply ignored with a warning to the user. From a
`huggingface_hub` maintenance perspective, this allows us much more
flexibility as we are not constrained to support the exact same kwargs
in both clients.

## Issue

https://github.com/huggingface/huggingface_hub/issues/2522

## Dependencies

None

## Twitter 

https://x.com/Wauplin

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-20 16:05:24 -07:00
Erick Friis
c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00
Mohammad Mohtashim
9a29398fe6
huggingface: fix model param population (#24743)
- **Description:** Fix the validation error for `endpoint_url` for
HuggingFaceEndpoint. I have given a descriptive detail of the isse in
the issue that I have created.
- **Issue:** #24742

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-24 00:45:28 +00:00
Eugene Yurtsev
5f5e8c9a60
huggingface[patch], pinecone[patch], fireworks[patch], mistralai[patch], voyageai[patch], togetherai[path]: convert Pydantic extras to literals (#25384)
Backwards compatible change that converts pydantic extras to literals
which is consistent with pydantic 2 usage.

- fireworks
- voyage ai
- mistralai
- mistral ai
- together ai
- huggigng face
- pinecone
2024-08-14 09:55:30 -04:00
Bagatur
8461934c2b
core[patch], integrations[patch]: convert TypedDict to tool schema support (#24641)
supports following UX

```python
    class SubTool(TypedDict):
        """Subtool docstring"""

        args: Annotated[Dict[str, Any], {}, "this does bar"]

    class Tool(TypedDict):
        """Docstring
        Args:
            arg1: foo
        """

        arg1: str
        arg2: Union[int, str]
        arg3: Optional[List[SubTool]]
        arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
        arg5: Annotated[Optional[float], None]
```

- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
2024-07-31 18:27:24 +00:00
Ethan Yang
13855ef0c3
[HuggingFace Pipeline] add streaming support (#23852) 2024-07-09 17:02:00 -04:00
Jiejun Tan
2be66a38d8
huggingface: Fix huggingface tei support (#22653)
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22595.

Modified
`libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py`,
where the API call function does not match current [Text Embeddings
Inference
API](https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed).
One example is:
```json
{
  "inputs": "string",
  "normalize": true,
  "truncate": false
}
```
Parameters in `_model_kwargs` are not passed properly in the latest
version. By the way, the issue *[why cause 413?
#50](https://github.com/huggingface/text-embeddings-inference/issues/50)*
might be solved.
2024-07-03 13:30:29 -07:00
Bagatur
a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
wenngong
ee5eedfa04
partners: support reading HuggingFace params from env (#23309)
Description: 
1. partners/HuggingFace module support reading params from env. Not
adjust langchain_community/.../huggingfaceXX modules since they are
deprecated.
  2. pydantic 2 @root_validator migration.

Issue: #22448 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-02 10:12:45 -04:00
Mohammad Mohtashim
4796b7eb15
[Community [HuggingFace]]: Small Fix for ChatHuggingFace. (#22925)
- **Description:** A small fix where I moved the `available_endpoints`
in order to avoid the token error in the below issue. Also I have added
conftest file and updated the `scripy`,`numpy` versions to support newer
python versions in poetry files.
- **Issue:** #22804

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-27 19:37:20 +00:00
Leonid Ganeline
41f7620989
huggingface: docstrings (#23148)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-06-20 13:22:40 +00:00
Lucas Tucker
cb79e80b0b
docs: standardize ChatHuggingFace (#22693)
**Updated ChatHuggingFace doc string as per issue #22296**:
"langchain_huggingface: updated docstring for ChatHuggingFace in
langchain_huggingface to match that of the description (in the appendix)
provided in issue #22296. "

**Issue:** This PR is in response to issue #22296, and more specifically
ChatHuggingFace model. In particular, this PR updates the docstring for
langchain/libs/partners/hugging_face/langchain_huggingface/chat_models/huggingface.py
by adding the following sections: Instantiate, Invoke, Stream, Async,
Tool calling, and Response metadata. I used the template from the
Anthropic implementation and referenced the Appendix of the original
issue post. I also noted that: langchain_community hugging face llms do
not work with langchain_huggingface's ChatHuggingFace model (at least
for me); the .stream(messages) functionality of ChatHuggingFace only
returned a block of response.

---------

Co-authored-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-10 20:54:36 +00:00
Ethan Yang
29064848f9
[Community]add option to delete the prompt from HF output (#22225)
This will help to solve pattern mismatching issue when parsing the
output in Agent.

https://github.com/langchain-ai/langchain/issues/21912
2024-06-05 18:38:54 -04:00
Michal Gregor
98b2e7b195
huggingface[patch]: Support for HuggingFacePipeline in ChatHuggingFace. (#22194)
- **Description:** Added support for using HuggingFacePipeline in
ChatHuggingFace (previously it was only usable with API endpoints,
probably by oversight).
- **Issue:** #19997 
- **Dependencies:** none
- **Twitter handle:** none

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-04 00:47:35 +00:00
Miroslav
cbd5720011
huggingface[patch]: Skip Login to HuggingFaceHub when token is not set (#22365) 2024-06-03 15:20:32 -07:00
Erick Friis
2a984e8e3f
docs: huggingface package (#21645) 2024-05-14 03:17:40 +00:00
Erick Friis
9b51ca08bc
huggingface: fix community dep checking (#21628) 2024-05-13 21:52:18 +00:00
Jofthomas
afd85b60fc
huggingface: init package (#21097)
First Pr for the langchain_huggingface partner Package

- Moved some of the hugging face related class from `community` to the
new `partner package`

Still needed :
- Documentation
- Tests
- Support for the new apply_chat_template in `ChatHuggingFace`
- Confirm choice of class to support for embeddings witht he
sentence-transformer team.

cc : @efriis

---------

Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-13 20:53:15 +00:00