- **Description:** Standardize SparkLLM, include:
- docs, the issue #24803
- to support stream
- update api url
- model init arg names, the issue #20085
- In the in ` embedding-3 ` and later models of Zhipu AI, it is
supported to specify the dimensions parameter of Embedding. Ref:
https://bigmodel.cn/dev/api#text_embedding-3 .
- Add test case for `embedding-3` model by assigning dimensions.
This PR gets rid `root_validators(allow_reuse=True)` logic used in
EdenAI Tool in preparation for pydantic 2 upgrade.
- add another test to secret_from_env_factory
Change all usages of __fields__ with get_fields adapter merged into
langchain_core.
Code mod generated using the following grit pattern:
```
engine marzano(0.1)
language python
`$X.__fields__` => `get_fields($X)` where {
add_import(source="langchain_core.utils.pydantic", name="get_fields")
}
```
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
- **Description:** Instantiating `GPT4AllEmbeddings` with no
`gpt4all_kwargs` argument raised a `ValidationError`. Root cause: #21238
added the capability to pass `gpt4all_kwargs` through to the `GPT4All`
instance via `Embed4All`, but broke code that did not specify a
`gpt4all_kwargs` argument.
- **Issue:** #25119
- **Dependencies:** None
- **Twitter handle:** [`@metadaddy`](https://twitter.com/metadaddy)
**Description:**
In this PR, I am adding three stock market tools from
financialdatasets.ai (my API!):
- get balance sheets
- get cash flow statements
- get income statements
Twitter handle: [@virattt](https://twitter.com/virattt)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- description: I remove the limitation of mandatory existence of
`QIANFAN_AK` and default model name which langchain uses cause there is
already a default model nama underlying `qianfan` SDK powering langchain
component.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **Description:**
Support ChatMlflow.bind_tools method
Tested in Databricks:
<img width="836" alt="image"
src="https://github.com/user-attachments/assets/fa28ef50-0110-4698-8eda-4faf6f0b9ef8">
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
This PR adds annotations in comunity package.
Annotations are only strictly needed in subclasses of BaseModel for
pydantic 2 compatibility.
This PR adds some unnecessary annotations, but they're not bad to have
regardless for documentation pages.
- **Title:** [PebbloSafeLoader] Implement content-size-based batching in
the classification flow(loader/doc API)
- **Description:**
- Implemented content-size-based batching in the loader/doc API, set to
100KB with no external configuration option, intentionally hard-coded to
prevent timeouts.
- Remove unused field(pb_id) from doc_metadata
- **Issue:** NA
- **Dependencies:** NA
- **Add tests and docs:** Updated
Description: The old method will be discontinued; use the official SDK
for more model options.
Issue: None
Dependencies: None
Twitter handle: None
Co-authored-by: trumanyan <trumanyan@tencent.com>
## Description
This PR:
- Fixes the validation error in `FastEmbedEmbeddings`.
- Adds support for `batch_size`, `parallel` params.
- Removes support for very old FastEmbed versions.
- Updates the FastEmbed doc with the new params.
Associated Issues:
- Resolves#24039
- Resolves #https://github.com/qdrant/fastembed/issues/296
Thank you for contributing to LangChain!
- [x] **PR title**: "community:add Yi LLM", "docs:add Yi Documentation"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds support for the Yi model to LangChain.
- **Dependencies:**
[langchain_core,requests,contextlib,typing,logging,json,langchain_community]
- **Twitter handle:** 01.AI
- [x] **Add tests and docs**: I've added the corresponding documentation
to the relevant paths
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Description:
- This PR adds a self query retriever implementation for SAP HANA Cloud
Vector Engine. The retriever supports all operators except for contains.
- Issue: N/A
- Dependencies: no new dependencies added
**Add tests and docs:**
Added integration tests to:
libs/community/tests/unit_tests/query_constructors/test_hanavector.py
**Documentation for self query retriever:**
/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Expanded the chat model functionality to support tools
in the 'baichuan.py' file. Updated module imports and added tool object
handling in message conversions. Additional changes include the
implementation of tool binding and related unit tests. The alterations
offer enhanced model capabilities by enabling interaction with tool-like
objects.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- [x] **PR title**:
community: Add OCI Generative AI tool and structured output support
- [x] **PR message**:
- **Description:** adding tool calling and structured output support for
chat models offered by OCI Generative AI services. This is an update to
our last PR 22880 with changes in
/langchain_community/chat_models/oci_generative_ai.py
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** NA
- [x] **Add tests and docs**:
1. we have updated our unit tests
2. we have updated our documentation under
/docs/docs/integrations/chat/oci_generative_ai.ipynb
- [x] **Lint and test**: `make format`, `make lint` and `make test` we
run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
**Description:**
- This PR exposes some functions in VDMS vectorstore, updates VDMS
related notebooks, updates tests, and upgrade version of VDMS (>=0.0.20)
**Issue:** N/A
**Dependencies:**
- Update vdms>=0.0.20
Fixes for Eden AI Custom tools and ChatEdenAI:
- add missing import in __init__ of chat_models
- add `args_schema` to custom tools. otherwise '__arg1' would sometimes
be passed to the `run` method
- fix IndexError when no human msg is added in ChatEdenAI
Thank you for contributing to LangChain!
**Description:**
This PR allows users of `langchain_community.llms.ollama.Ollama` to
specify the `auth` parameter, which is then forwarded to all internal
calls of `requests.request`. This works in the same way as the existing
`headers` parameters. The auth parameter enables the usage of the given
class with Ollama instances, which are secured by more complex
authentication mechanisms, that do not only rely on static headers. An
example are AWS API Gateways secured by the IAM authorizer, which
expects signatures dynamically calculated on the specific HTTP request.
**Issue:**
Integrating a remote LLM running through Ollama using
`langchain_community.llms.ollama.Ollama` only allows setting static HTTP
headers with the parameter `headers`. This does not work, if the given
instance of Ollama is secured with an authentication mechanism that
makes use of dynamically created HTTP headers which for example may
depend on the content of a given request.
**Dependencies:**
None
**Twitter handle:**
None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Added [ScrapingAnt](https://scrapingant.com/) Web Loader integration.
ScrapingAnt is a web scraping API that allows extracting web page data
into accessible and well-formatted markdown.
Description: Added ScrapingAnt web loader for retrieving web page data
as markdown
Dependencies: scrapingant-client
Twitter: @WeRunTheWorld3
---------
Co-authored-by: Oleg Kulyk <oleg@scrapingant.com>
This PR is under WIP and adds the following functionalities:
- [X] Supports tool calling across the langchain ecosystem. (However
streaming is not supported)
- [X] Update documentation
- [ ] **Community**: "Retrievers: Product Quantization"
- [X] This PR adds Product Quantization feature to the retrievers to the
Langchain Community. PQ is one of the fastest retrieval methods if the
embeddings are rich enough in context due to the concepts of
quantization and representation through centroids
- **Description:** Adding PQ as one of the retrievers
- **Dependencies:** using the package nanopq for this PR
- **Twitter handle:** vishnunkumar_
- [X] **Add tests and docs**: If you're adding a new integration, please
include
- [X] Added unit tests for the same in the retrievers.
- [] Will add an example notebook subsequently
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/ -
done the same
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- This PR adds vector search filtering for Azure Cosmos DB Mongo vCore
and NoSQL.
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
### Description
This pull request added new document loaders to load documents of
various formats using [Dedoc](https://github.com/ispras/dedoc):
- `DedocFileLoader` (determine file types automatically and parse)
- `DedocPDFLoader` (for `PDF` and images parsing)
- `DedocAPIFileLoader` (determine file types automatically and parse
using Dedoc API without library installation)
[Dedoc](https://dedoc.readthedocs.io) is an open-source library/service
that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats. The
library is actively developed and maintained by a group of developers.
`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images
and more.
Full list of supported formats can be found
[here](https://dedoc.readthedocs.io/en/latest/#id1).
For `PDF` documents, `Dedoc` allows to determine textual layer
correctness and split the document into paragraphs.
### Issue
This pull request extends variety of document loaders supported by
`langchain_community` allowing users to choose the most suitable option
for raw documents parsing.
### Dependencies
The PR added a new (optional) dependency `dedoc>=2.2.5` ([library
documentation](https://dedoc.readthedocs.io)) to the
`extended_testing_deps.txt`
### Twitter handle
None
### Add tests and docs
1. Test for the integration:
`libs/community/tests/integration_tests/document_loaders/test_dedoc.py`
2. Example notebook:
`docs/docs/integrations/document_loaders/dedoc.ipynb`
3. Information about the library:
`docs/docs/integrations/providers/dedoc.mdx`
### Lint and test
Done locally:
- `make format`
- `make lint`
- `make integration_tests`
- `make docs_build` (from the project root)
---------
Co-authored-by: Nasty <bogatenkova.anastasiya@mail.ru>
- **Description:** Add a DocumentTransformer for executing one or more
`LinkExtractor`s and adding the extracted links to each document.
- **Issue:** n/a
- **Depedencies:** none
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
- **Description:** `QianfanChatEndpoint` When using tool result to
answer questions, the content of the tool is required to be in Dict
format. Of course, this can require users to return Dict format when
calling the tool, but in order to be consistent with other Chat Models,
I think such modifications are necessary.
Regardless of whether `embedding_func` is set or not, the 'text'
attribute of document should be assigned, otherwise the `page_content`
in the document of the final search result will be lost
xfailing some sql tests that do not currently work on sqlalchemy v1
#22207 was very much not sqlalchemy v1 compatible.
Moving forward, implementations should be compatible with both to pass
CI
The `MongoDBStore` can manage only documents.
It's not possible to use MongoDB for an `CacheBackedEmbeddings`.
With this new implementation, it's possible to use:
```python
CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings=embeddings,
document_embedding_cache=MongoDBByteStore(
connection_string=db_uri,
db_name=db_name,
collection_name=collection_name,
),
)
```
and use MongoDB to cache the embeddings !
- **Description:**
- Updated checksum in doc metadata
- Sending checksum and removing actual content, while sending data to
`pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`/loader/doc` API
- Adding `pb_id` i.e. pebblo id to doc metadata
- Refactoring as needed.
- Sending `content-checksum` and removing actual content, while sending
data to `pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`prmopt` API
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** Updated
- **Docs** NA
---------
Co-authored-by: dristy.cd <dristy@clouddefense.io>
**Description:**
**TextEmbed** is a high-performance embedding inference server designed
to provide a high-throughput, low-latency solution for serving
embeddings. It supports various sentence-transformer models and includes
the ability to deploy image and text embedding models. TextEmbed offers
flexibility and scalability for diverse applications.
- **PyPI Package:** [TextEmbed on
PyPI](https://pypi.org/project/textembed/)
- **Docker Image:** [TextEmbed on Docker
Hub](https://hub.docker.com/r/kevaldekivadiya/textembed)
- **GitHub Repository:** [TextEmbed on
GitHub](https://github.com/kevaldekivadiya2415/textembed)
**PR Description**
This PR adds functionality for embedding documents and queries using the
`TextEmbedEmbeddings` class. The implementation allows for both
synchronous and asynchronous embedding requests to a TextEmbed API
endpoint. The class handles batching and permuting of input texts to
optimize the embedding process.
**Example Usage:**
```python
from langchain_community.embeddings import TextEmbedEmbeddings
# Initialise the embeddings class
embeddings = TextEmbedEmbeddings(model="your-model-id", api_key="your-api-key", api_url="your_api_url")
# Define a list of documents
documents = [
"Data science involves extracting insights from data.",
"Artificial intelligence is transforming various industries.",
"Cloud computing provides scalable computing resources over the internet.",
"Big data analytics helps in understanding large datasets.",
"India has a diverse cultural heritage."
]
# Define a query
query = "What is the cultural heritage of India?"
# Embed all documents
document_embeddings = embeddings.embed_documents(documents)
# Embed the query
query_embedding = embeddings.embed_query(query)
# Print embeddings for each document
for i, embedding in enumerate(document_embeddings):
print(f"Document {i+1} Embedding:", embedding)
# Print the query embedding
print("Query Embedding:", query_embedding)
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
- **Description:** Add a `KeybertLinkExtractor` for graph vectorstores.
This allows extracting links from keywords in a Document and linking
nodes that have common keywords.
- **Issue:** None
- **Dependencies:** None.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** This allows extracting links between documents with
common named entities using [GLiNER](https://github.com/urchade/GLiNER).
- **Issue:** None
- **Dependencies:** None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>