Add a utility that can be used as a default factory
The goal will be to start migrating from of the pydantic models to use
`from_env` as a default factory if possible.
```python
from pydantic import Field, BaseModel
from langchain_core.utils import from_env
class Foo(BaseModel):
name: str = Field(default_factory=from_env('HELLO'))
```
- **Description:** This includes Pydantic field metadata in
`_create_subset_model_v2` so that it gets included in the final
serialized form that get sent out.
- **Issue:** #25031
- **Dependencies:** n/a
- **Twitter handle:** @gramliu
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Add compatibility for pydantic 2 for a utility function.
This will help push some small changes to master, so they don't have to
be kept track of on a separate branch.
supports following UX
```python
class SubTool(TypedDict):
"""Subtool docstring"""
args: Annotated[Dict[str, Any], {}, "this does bar"]
class Tool(TypedDict):
"""Docstring
Args:
arg1: foo
"""
arg1: str
arg2: Union[int, str]
arg3: Optional[List[SubTool]]
arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
arg5: Annotated[Optional[float], None]
```
- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
This will allow tools and parsers to accept pydantic models from any of
the
following namespaces:
* pydantic.BaseModel with pydantic 1
* pydantic.BaseModel with pydantic 2
* pydantic.v1.BaseModel with pydantic 2
Description:
This PR fixes a KeyError: 400 that occurs in the JSON schema processing
within the reduce_openapi_spec function. The _retrieve_ref function in
json_schema.py was modified to handle missing components gracefully by
continuing to the next component if the current one is not found. This
ensures that the OpenAPI specification is fully interpreted and the
agent executes without errors.
Issue:
Fixes issue #24335
Dependencies:
No additional dependencies are required for this change.
Twitter handle:
@lunara_x
Disabled by default.
```python
from langchain_core.tools import tool
@tool(parse_docstring=True)
def foo(bar: str, baz: int) -> str:
"""The foo.
Args:
bar: this is the bar
baz: this is the baz
"""
return bar
foo.args_schema.schema()
```
```json
{
"title": "fooSchema",
"description": "The foo.",
"type": "object",
"properties": {
"bar": {
"title": "Bar",
"description": "this is the bar",
"type": "string"
},
"baz": {
"title": "Baz",
"description": "this is the baz",
"type": "integer"
}
},
"required": [
"bar",
"baz"
]
}
```
Decisions to discuss:
1. is a new attr needed or could additional_kwargs be used for this
2. is raw_output a good name for this attr
3. should raw_output default to {} or None
4. should raw_output be included in serialization
5. do we need to update repr/str to exclude raw_output
- add version of AIMessageChunk.__add__ that can add many chunks,
instead of only 2
- In agenerate_from_stream merge and parse chunks in bg thread
- In output parse base classes do more work in bg threads where
appropriate
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.
The PR makes the following changes:
1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.
A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Use pydantic to infer nested schemas and all that fun.
Include bagatur's convenient docstring parser
Include annotation support
Previously we didn't adequately support many typehints in the
bind_tools() method on raw functions (like optionals/unions, nested
types, etc.)
Example error message:
line 206, in _get_python_function_required_args
if is_function_type and required[0] == "self":
~~~~~~~~^^^
IndexError: list index out of range
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Issues (nit):
1. `utils.guard_import` prints wrong error message when there is an
import `error.` It prints the whole `module_name` but should be only the
first part as the pip package name. E.i. `langchain_core.utils` -> print
not `langchain-core` but `langchain_core.utils`. Also replace '_' with
'-' in the pip package name.
2. it does not handle the `ModuleNotFoundError` which raised if
`guard_import("wrong_module")`
Fixed issues; added ut-s. Controversial: I've reraised
`ModuleNotFoundError` as `ImportError`, since in case of the error, the
proposed action is the same - we need to install a missed package.
Removed redundant self/cls from required args of class functions in
_get_python_function_required_args:
```python
class MemberTool:
def search_member(
self,
keyword: str,
*args,
**kwargs,
):
"""Search on members with any keyword like first_name, last_name, email
Args:
keyword: Any keyword of member
"""
headers = dict(authorization=kwargs['token'])
members = []
try:
members = request_(
method='SEARCH',
url=f'{service_url}/apiv1/members',
headers=headers,
json=dict(query=keyword),
)
except Exception as e:
logger.info(e.__doc__)
return members
convert_to_openai_tool(MemberTool.search_member)
```
expected result:
```
{'type': 'function', 'function': {'name': 'search_member', 'description': 'Search on members with any keyword like first_name, last_name, username, email', 'parameters': {'type': 'object', 'properties': {'keyword': {'type': 'string', 'description': 'Any keyword of member'}}, 'required': ['keyword']}}}
```
#20685
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**: This update enhances the `extract_sub_links` function
within the `langchain_core/utils/html.py` module to include query
parameters in the extracted URLs.
**Issue**: N/A
**Dependencies**: No additional dependencies required for this change.
**Twitter handle**: N/A
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor]
```python
class ToolCall(TypedDict):
name: str
args: Dict[str, Any]
id: Optional[str]
class InvalidToolCall(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
error: Optional[str]
class ToolCallChunk(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
index: Optional[int]
class AIMessage(BaseMessage):
...
tool_calls: List[ToolCall] = []
invalid_tool_calls: List[InvalidToolCall] = []
...
class AIMessageChunk(AIMessage, BaseMessageChunk):
...
tool_call_chunks: Optional[List[ToolCallChunk]] = None
...
```
Important considerations:
- Parsing logic occurs within different providers;
- ~Changing output type is a breaking change for anyone doing explicit
type checking;~
- ~Langsmith rendering will need to be updated:
https://github.com/langchain-ai/langchainplus/pull/3561~
- ~Langserve will need to be updated~
- Adding chunks:
- ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has
non-null .tool_calls.~
- Tool call chunks are appended, merging when having equal values of
`index`.
- additional_kwargs accumulate the normal way.
- During streaming:
- ~Messages can change types (e.g., from AIMessageChunk to
AIToolCallsMessageChunk)~
- Output parsers parse additional_kwargs (during .invoke they read off
tool calls).
Packages outside of `partners/`:
- https://github.com/langchain-ai/langchain-cohere/pull/7
- https://github.com/langchain-ai/langchain-google/pull/123/files
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Removes required usage of `requests` from `langchain-core`, all of which
has been deprecated.
- removes Tracer V1 implementations
- removes old `try_load_from_hub` github-based hub implementations
Removal done in a way where imports will still succeed, and usage will
fail with a `RuntimeError`.
**Description:**
While not technically incorrect, the TypeVar used for the `@beta`
decorator prevented pyright (and thus most vscode users) from correctly
seeing the types of functions/classes decorated with `@beta`.
This is in part due to a small bug in pyright
(https://github.com/microsoft/pyright/issues/7448 ) - however, the
`Type` bound in the typevar `C = TypeVar("C", Type, Callable)` is not
doing anything - classes are `Callables` by default, so by my
understanding binding to `Type` does not actually provide any more
safety - the modified annotation still works correctly for both
functions, properties, and classes.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
Currently, `CacheBackedEmbeddings` computes vectors for *all* uncached
documents before updating the store. This pull request updates the
embedding computation loop to compute embeddings in batches, updating
the store after each batch.
I noticed this when I tried `CacheBackedEmbeddings` on our 30k document
set and the cache directory hadn't appeared on disk after 30 minutes.
The motivation is to minimize compute/data loss when problems occur:
* If there is a transient embedding failure (e.g. a network outage at
the embedding endpoint triggers an exception), at least the completed
vectors are written to the store instead of being discarded.
* If there is an issue with the store (e.g. no write permissions), the
condition is detected early without computing (and discarding!) all the
vectors.
**Issue:**
Implements enhancement #18026.
**Testing:**
I was unable to run unit tests; details in [this
post](https://github.com/langchain-ai/langchain/discussions/15019#discussioncomment-8576684).
---------
Signed-off-by: chrispy <chrispy@synopsys.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Issue : For functions which have an argument with the name 'title', the
convert_pydantic_to_openai_function generates an incorrect output and
omits the argument all together. This is because the _rm_titles function
removes all instances of the the key 'title' from the output.
Description : Updates the _rm_titles function to check the presence of
the 'type' key as well before removing the 'title' key. As the title key
that we wish to omit always has a type key along with it.
Potential gap if there is a function defined which has both title and
key as argument names, in which case this would fail. Maybe we could set
a filter on the function argument names and reject those with keyword
argument names.
No dependencies. Passed all tests.
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** Circular dependencies when parsing references leading
to `RecursionError: maximum recursion depth exceeded` issue. This PR
address the issue by handling previously seen refs as in any typical DFS
to avoid infinite depths.
**Issue:** https://github.com/langchain-ai/langchain/issues/12163
**Twitter handle:** https://twitter.com/theBhulawat
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>