**Description:** fix an issue I discovered when attempting to merge
messages in which one message has an `index` key in its content
dictionary and another does not.
**Description:** This PR improves the contribution setup guide by adding
comprehensive Windows-specific instructions. The changes address a
common pain point for Windows contributors who don't have `make`
installed by default, making the LangChain contribution process more
accessible across different operating systems.
The main improvements include:
- Added a dedicated "Windows Users" section with multiple installation
options for `make` (Chocolatey, Scoop, WSL)
- Provided direct `uv` commands as alternatives to all `make` commands
throughout the setup guide
- Included Windows-specific instructions for testing, formatting,
linting, and spellchecking
- Enhanced the documentation to be more inclusive for Windows developers
This change makes it easier for Windows users to contribute to LangChain
without requiring additional tool installation, while maintaining the
existing workflow for users who already have `make` available.
**Issue:** This addresses the common barrier Windows users face when
trying to contribute to LangChain due to missing `make` commands.
**Dependencies:** None required - this is purely a documentation
improvement.
---------
Co-authored-by: Mason Daugherty <mason@langchain.dev>
## **Description:**
Updated incorrect package names across multiple integration docs by
replacing underscores with hyphens to reflect their actual names on
PyPI. This aligns with the actual PyPI package names and prevents
potential confusion or installation issues.
## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
---------
Co-authored-by: Mason Daugherty <mason@langchain.dev>
langchain-gradientai is Digitalocean's integration with Langchain. It
will help users to build langchain applications using Digitalocean's
GradientAI platform.
---------
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Description:
Fixed minor typos in the `google_imagen.ipynb` integration notebook
related to image generation prompt formatting. No functional changes
were made — just a documentation correction to improve clarity.
## **Description:**
Updated incorrect package names in `FeatureTables.js` by replacing
underscores with hyphens to reflect their actual names on PyPI. This
aligns with the actual PyPI package names and prevents potential
confusion or installation issues.
The following package names were corrected:
- `langchain_aws` ➝ `langchain-aws`
- `langchain_community` ➝ `langchain-community`
- `langchain_elasticsearch` ➝ `langchain-elasticsearch`
- `langchain_google_community` ➝ `langchain-google-community`
## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
Description: Documentation is inconsistent with API docs.
Current documentation implies that to use the integration you must have
credentials configured AND store the path to a service account JSON
file.
API docs explain that you must only complete EITHER of the steps
regarding credentials.
I have updated the docs to make them consistent with the API wording.
## **Description:**
Refactored multiple entries in `kv_store_feat_table.py` to ensure that
all vector store metadata is accurate, consistent, and aligned with
LangChain's latest documentation structure and PyPI naming standards.
**Key improvements across all updated entries:**
- Updated `class` links to point to their respective **docs-based
integration pages** (e.g., `/docs/integrations/stores/...`) instead of
raw API reference URLs.
- Corrected `package` display names to use **hyphenated PyPI-compliant
names** (e.g., `langchain-astradb` instead of `langchain_astradb`).
- Updated `package` links to point to the **specific class-level API
references** (e.g., `/api_reference/.../storage/...ClassName.html`) for
precision.
These improvements enhance:
- Navigation experience for users
- Alignment with PyPI and docs naming conventions
- Clarity across LangChain’s integrations documentation
## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
docs(alpha_vantage): add link for ALPHAVANTAGE_API_KEY generation in
integration notebook
**Description:**
This PR updates the `docs/docs/integrations/tools/alpha_vantage.ipynb`
integration notebook to help users locate the API key registration page
for Alpha Vantage. The following markdown line was added:
---------
Co-authored-by: Mason Daugherty <mason@langchain.dev>
## **Description:**
This PR updates the internal documentation link for the RAG tutorials to
reflect the updated path. Previously, the link pointed to the root
`/docs/tutorials/`, which was generic. It now correctly routes to the
RAG-specific tutorial page for the following vector store docs.
1. AstraDBVectorStore
2. Clickhouse
3. CouchbaseSearchVectorStore
4. DatabricksVectorSearch
5. ElasticsearchStore
6. FAISS
7. Milvus
8. MongoDBAtlasVectorSearch
9. openGauss
10. PGVector
11. PGVectorStore
12. PineconeVectorStore
13. QdrantVectorStore
14. Redis
15. SQLServer
## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
Fixes a streaming bug where models like Qwen3 (using OpenAI interface)
send tool call chunks with inconsistent indices, resulting in
duplicate/erroneous tool calls instead of a single merged tool call.
## Problem
When Qwen3 streams tool calls, it sends chunks with inconsistent `index`
values:
- First chunk: `index=1` with tool name and partial arguments
- Subsequent chunks: `index=0` with `name=None`, `id=None` and argument
continuation
The existing `merge_lists` function only merges chunks when their
`index` values match exactly, causing these logically related chunks to
remain separate, resulting in multiple incomplete tool calls instead of
one complete tool call.
```python
# Before fix: Results in 1 valid + 1 invalid tool call
chunk1 = AIMessageChunk(tool_call_chunks=[
{"name": "search", "args": '{"query":', "id": "call_123", "index": 1}
])
chunk2 = AIMessageChunk(tool_call_chunks=[
{"name": None, "args": ' "test"}', "id": None, "index": 0}
])
merged = chunk1 + chunk2 # Creates 2 separate tool calls
# After fix: Results in 1 complete tool call
merged = chunk1 + chunk2 # Creates 1 merged tool call: search({"query": "test"})
```
## Solution
Enhanced the `merge_lists` function in `langchain_core/utils/_merge.py`
with intelligent tool call chunk merging:
1. **Preserves existing behavior**: Same-index chunks still merge as
before
2. **Adds special handling**: Tool call chunks with
`name=None`/`id=None` that don't match any existing index are now merged
with the most recent complete tool call chunk
3. **Maintains backward compatibility**: All existing functionality
works unchanged
4. **Targeted fix**: Only affects tool call chunks, doesn't change
behavior for other list items
The fix specifically handles the pattern where:
- A continuation chunk has `name=None` and `id=None` (indicating it's
part of an ongoing tool call)
- No matching index is found in existing chunks
- There exists a recent tool call chunk with a valid name or ID to merge
with
## Testing
Added comprehensive test coverage including:
- ✅ Qwen3-style chunks with different indices now merge correctly
- ✅ Existing same-index behavior preserved
- ✅ Multiple distinct tool calls remain separate
- ✅ Edge cases handled (empty chunks, orphaned continuations)
- ✅ Backward compatibility maintained
Fixes#31511.
<!-- START COPILOT CODING AGENT TIPS -->
---
💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
## Problem
ChatLiteLLM encounters a `ValidationError` when using cache on
subsequent calls, causing the following error:
```
ValidationError(model='ChatResult', errors=[{'loc': ('generations', 0, 'type'), 'msg': "unexpected value; permitted: 'ChatGeneration'", 'type': 'value_error.const', 'ctx': {'given': 'Generation', 'permitted': ('ChatGeneration',)}}])
```
This occurs because:
1. The cache stores `Generation` objects (with `type="Generation"`)
2. But `ChatResult` expects `ChatGeneration` objects (with
`type="ChatGeneration"` and a required `message` field)
3. When cached values are retrieved, validation fails due to the type
mismatch
## Solution
Added graceful handling in both sync (`_generate_with_cache`) and async
(`_agenerate_with_cache`) cache methods to:
1. **Detect** when cached values contain `Generation` objects instead of
expected `ChatGeneration` objects
2. **Convert** them to `ChatGeneration` objects by wrapping the text
content in an `AIMessage`
3. **Preserve** all original metadata (`generation_info`)
4. **Allow** `ChatResult` creation to succeed without validation errors
## Example
```python
# Before: This would fail with ValidationError
from langchain_community.chat_models import ChatLiteLLM
from langchain_community.cache import SQLiteCache
from langchain.globals import set_llm_cache
set_llm_cache(SQLiteCache(database_path="cache.db"))
llm = ChatLiteLLM(model_name="openai/gpt-4o", cache=True, temperature=0)
print(llm.predict("test")) # Works fine (cache empty)
print(llm.predict("test")) # Now works instead of ValidationError
# After: Seamlessly handles both Generation and ChatGeneration objects
```
## Changes
- **`libs/core/langchain_core/language_models/chat_models.py`**:
- Added `Generation` import from `langchain_core.outputs`
- Enhanced cache retrieval logic in `_generate_with_cache` and
`_agenerate_with_cache` methods
- Added conversion from `Generation` to `ChatGeneration` objects when
needed
-
**`libs/core/tests/unit_tests/language_models/chat_models/test_cache.py`**:
- Added test case to validate the conversion logic handles mixed object
types
## Impact
- **Backward Compatible**: Existing code continues to work unchanged
- **Minimal Change**: Only affects cache retrieval path, no API changes
- **Robust**: Handles both legacy cached `Generation` objects and new
`ChatGeneration` objects
- **Preserves Data**: All original content and metadata is maintained
during conversion
Fixes#22389.
<!-- START COPILOT CODING AGENT TIPS -->
---
💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
**Description:** Fixes incorrect `num_skipped` count in the LangChain
indexing API. The current implementation only counts documents that
already exist in RecordManager (cross-batch duplicates) but fails to
count documents removed during within-batch deduplication via
`_deduplicate_in_order()`.
This PR adds tracking of the original batch size before deduplication
and includes the difference in `num_skipped`, ensuring that `num_added +
num_skipped` equals the total number of input documents.
**Issue:** Fixes incorrect document count reporting in indexing
statistics
**Dependencies:** None
Fixes#32272
---------
Co-authored-by: Alex Feel <afilippov@spotware.com>
Ensures proper reStructuredText formatting by adding the required blank
line before closing docstring quotes, which resolves the "Block quote
ends without a blank line; unexpected unindent" warning.