Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
## Description
- Updates the self-query retriever factory to check for the new Qdrant
vector store class. i.e. `langchain_qdrant.QdrantVectorstore`.
- Deprecates `QdrantSparseVectorRetriever`, since the vector store
implementation natively supports it now.
Resolves#25798
- [x] **PR title - community: add neo4j query constructor for self
query**
- [x] **PR message**
- **Description:** adding a Neo4jTranslator so that the Neo4j vector
database can use SelfQueryRetriever
- **Issue:** this issue had been raised before in #19748
- **Dependencies:** none.
- **Twitter handle:** @moyi_dang
- p.s. I have not added the query constructor in BUILTIN_TRANSLATORS in
this PR, I want to make changes to only one package at a time.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** OpenAI recently introduced a "strict" parameter for
[structured outputs in their
API](https://openai.com/index/introducing-structured-outputs-in-the-api/).
An optional `strict` parameter has been added to
`create_openai_functions_agent()` and `create_openai_tools_agent()` so
developers can use this feature in those agents.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
[This
commit](d3ca2cc8c3)
has broken the moderation chain so we've faced a crash when migrating
the LangChain from v0.1 to v0.2.
The issue appears that the class attribute the code refers to doesn't
hold the value processed in the `validate_environment` method. We had
`extras={}` in this attribute, and it was casted to `True` when it
should've been `False`. Adding a simple assignment seems to resolve the
issue, though I'm not sure it's the right way.
---
---------
Co-authored-by: Michael Rubél <mrubel@oroinc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "langchain: Chains: query_constructor: add date time
parser"
- [x] **PR message**:
- **Description:** add date time parser to langchain Chains
query_constructor
- **Issue: https://github.com/langchain-ai/langchain/issues/25526
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
* Removed `ruff check --select I` as `I` is already selected and checked
in the main `ruff check` command
* Added checks for non-empty `PYTHON_FILES`
* Run `ruff check` only on `PYTHON_FILES`
Co-authored-by: Erick Friis <erick@langchain.dev>
…he prompt in the create_stuff_documents_chain
Thank you for contributing to LangChain!
- [ ] **PR title**: "langchain:add document_variable_name in the
function _validate_prompt in create_stuff_documents_chain"
- [ ] **PR message**:
- **Description:** add document_variable_name in the function
_validate_prompt in create_stuff_documents_chain
- **Issue:** according to the description of
create_stuff_documents_chain function, the parameter
document_variable_name can be used to override the "context" in the
prompt, but in the function, _validate_prompt it still use DOCUMENTS_KEY
to check if it is a valid prompt, the value of DOCUMENTS_KEY is always
"context", so even through the user use document_variable_name to
override it, the code still tries to check if "context" is in the
prompt, and finally it reports error. so I use document_variable_name to
replace DOCUMENTS_KEY, the default value of document_variable_name is
"context" which is same as DOCUMENTS_KEY, but it can be override by
users.
- **Dependencies:** none
- **Twitter handle:** https://x.com/xjr199703
- [ ] **Add tests and docs**: none
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [x] NatbotChain: move to community, deprecate langchain version.
Update to use `prompt | llm | output_parser` instead of LLMChain.
- [x] LLMMathChain: deprecate + add langgraph replacement example to API
ref
- [x] HypotheticalDocumentEmbedder (retriever): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] FlareChain: update to use `prompt | llm | output_parser` instead
of LLMChain
- [x] ConstitutionalChain: deprecate + add langgraph replacement example
to API ref
- [x] LLMChainExtractor (document compressor): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] LLMChainFilter (document compressor): update to use `prompt | llm
| output_parser` instead of LLMChain
- [x] RePhraseQueryRetriever (retriever): update to use `prompt | llm |
output_parser` instead of LLMChain
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
Description: RetryWithErrorOutputParser.from_llm() creates a retry chain
that returns a Generation instance, when it should actually just return
a string.
This class was forgotten when fixing the issue in PR #24687
The @pre_init validator is a temporary solution for base models. It has
similar (but not identical) semantics to @root_validator(), but it works
strictly as a pre-init validator.
It'll work as expected as long as the pydantic model type hints were
correct.
Description: Since moving away from `langchain-community` is
recommended, `init_chat_models()` should import ChatOllama from
`langchain-ollama` instead.