- There was some ambiguous wording that has been updated to hopefully
clarify the functionality of `reasoning_format` in ChatGroq.
- Added support for `reasoning_effort`
- Added links to see models capable of `reasoning_format` and
`reasoning_effort`
- Other minor nits
- docs: for the Ollama notebooks, improve the specificity of some links,
add `homebrew` install info, update some wording
- tests: reduce number of local models needed to run in half from 4 → 2
(shedding 8gb of required installs)
- bump deps (non-breaking) in anticipation of upcoming "thinking" PR
Add additional hashing options to the indexing API, warn on SHA-1
Requires:
- Bumping langchain-core version
- bumping min langchain-core in langchain
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
`Runnable`'s `Input` is contravariant so we need to enumerate all
possible inputs and it's not possible to put them in a `Union`.
Also, it's better to only require a runnable that
accepts`list[BaseMessage]` instead of a broader `Sequence[BaseMessage]`
as internally the runnable is only called with a list.
**Description:**
Previously, when transitioning from a deeper Markdown header (e.g., ###)
to a shallower one (e.g., ##), the
ExperimentalMarkdownSyntaxTextSplitter retained the deeper header in the
metadata.
This commit updates the `_resolve_header_stack` method to remove headers
at the same or deeper levels before appending the current header. As a
result, each chunk now reflects only the active header context.
Fixes unexpected metadata leakage across sections in nested Markdown
documents.
Additionally, test cases have been updated to:
- Validate correct header resolution and metadata assignment.
- Cover edge cases with nested headers and horizontal rules.
**Issue:**
Fixes [#31596](https://github.com/langchain-ai/langchain/issues/31596)
**Dependencies:**
None
**Twitter handle:** -> [_RaghuKapur](https://twitter.com/_RaghuKapur)
**LinkedIn:** ->
[https://www.linkedin.com/in/raghukapur/](https://www.linkedin.com/in/raghukapur/)
## Description
<!-- What does this pull request accomplish? -->
- When parsing MistralAI chunk dicts to Langchain to `AIMessageChunk`
schemas via the `_convert_chunk_to_message_chunk` utility function, the
`finish_reason` was not being included in `response_metadata` as it is
for other providers.
- This PR adds a one-liner fix to include the finish reason.
- fixes: https://github.com/langchain-ai/langchain/issues/31666
* Simplified Pydantic handling since Pydantic v1 is not supported
anymore.
* Replace use of deprecated v1 methods by corresponding v2 methods.
* Remove use of other deprecated methods.
* Activate mypy errors on deprecated methods use.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>