Commit Graph

1362 Commits

Author SHA1 Message Date
ccurme
6d6f305748 openai[patch]: clarify docs on api_version in docstring for AzureChatOpenAI (#31502) 2025-06-05 16:06:22 +00:00
Simon Stone
815bfa5408 huggingface[major]: Reduce disk footprint by 95% by making large dependencies optional (#31268)
**Description:** 
`langchain_huggingface` has a very large installation size of around 600
MB (on a Mac with Python 3.11). This is due to its dependency on
`sentence-transformers`, which in turn depends on `torch`, which is 320
MB all by itself. Similarly, the depedency on `transformers` adds
another set of heavy dependencies. With those dependencies removed, the
installation of `langchain_huggingface` only takes up ~26 MB. This is
only 5 % of the full installation!

These libraries are not necessary to use `langchain_huggingface`'s API
wrapper classes, only for local inferences/embeddings. All import
statements for those two libraries already have import guards in place
(try/catch with a helpful "please install x" message).

This PR therefore moves those two libraries to an optional dependency
group `full`. So a `pip install langchain_huggingface` will only install
the lightweight version, and a `pip install
"langchain_huggingface[full]"` will install all dependencies.

I know this may break existing code, because `sentence-transformers` and
`transformers` are now no longer installed by default. Given that users
will see helpful error messages when that happens, and the major impact
of this small change, I hope that you will still consider this PR.

**Dependencies:** No new dependencies, but new optional grouping.
2025-06-05 12:04:19 -04:00
Bagatur
ec8bab83f8 anthropic[fix]: bump langchain-core dep (#31483) 2025-06-03 10:56:48 -04:00
Bagatur
310e643842 release[anthropic]: 0.3.15 (#31479)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-06-03 10:38:11 -04:00
Eugene Yurtsev
6cb3ea514a openai: release 0.3.19 (#31466)
Release 0.3.19
2025-06-02 12:44:49 -04:00
Eugene Yurtsev
17f34baa88 openai[minor]: add image generation to responses api (#31424)
Does not support partial images during generation at the moment. Before
doing that I'd like to figure out how to specify the aggregation logic
without requiring changes in core.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-02 10:03:54 -04:00
ccurme
d3be4a0c56 infra: remove use of --vcr-record=none (#31452)
This option is specific to `pytest-vcr`. `pytest-recording` runs in this
mode by default.
2025-06-01 10:49:59 -04:00
ccurme
3db1aa0ba6 standard-tests: migrate to pytest-recording (#31425)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-31 15:21:15 -04:00
ccurme
5bf89628bf groq[patch]: update model for integration tests (#31440)
Llama-3.1 started failing consistently with
> groq.BadRequestError: Error code: 400 - ***'error': ***'message':
"Failed to call a function. Please adjust your prompt. See
'failed_generation' for more details.", 'type': 'invalid_request_error',
'code': 'tool_use_failed', 'failed_generation':
'<function=brave_search>***"query": "Hello!"***</function>'***
2025-05-30 17:27:12 +00:00
अंkur गोswami
729526ff7c huggingface: Undefined model_id fix (#31358)
**Description:** This change fixes the undefined model_id issue when
instantiating
[ChatHuggingFace](https://github.com/langchain-ai/langchain/blob/master/libs/partners/huggingface/langchain_huggingface/chat_models/huggingface.py#L306)
**Issue:** Fixes https://github.com/langchain-ai/langchain/issues/31357


@baskaryan @hwchase17
2025-05-29 15:59:35 -04:00
ccurme
c8951ca124 infra: drop azure from streaming benchmarks (#31421)
Covered by BaseChatOpenAI
2025-05-29 15:06:12 -04:00
ccurme
afd349cc95 openai: cache httpx client (#31260)
![Screenshot 2025-05-16 at 3 49
54 PM](https://github.com/user-attachments/assets/4b377384-a769-4487-b801-bd1aa0ed66c1)

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-05-29 14:03:06 -04:00
ccurme
49eeb0f3c3 standard-tests: add benchmarks (#31302)
Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
2025-05-29 15:21:37 +00:00
ccurme
0e3f35effe anthropic: store cache ttl details on usage metadata (#31393) 2025-05-28 13:52:37 -04:00
ccurme
ab8b4003be openai[patch]: add test case for code interpreter (#31383) 2025-05-27 19:11:31 +00:00
ccurme
c8a656c05b docs: update xai docs (#31382) 2025-05-27 15:09:51 -04:00
ccurme
6ecc85c163 xai: document live search feature (#31381) 2025-05-27 14:51:19 -04:00
ccurme
5bff018951 xai: release 0.2.4 (#31380) 2025-05-27 14:33:36 -04:00
ccurme
8b1f54c419 xai: support live search (#31379)
https://docs.x.ai/docs/guides/live-search
2025-05-27 14:08:59 -04:00
ccurme
443341a20d anthropic: release 0.3.14 (#31378) 2025-05-27 17:31:05 +00:00
ccurme
580986b260 anthropic: support for code execution, MCP connector, files API features (#31340)
Support for the new [batch of beta
features](https://www.anthropic.com/news/agent-capabilities-api)
released yesterday:

- [Code
execution](https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool)
- [MCP
connector](https://docs.anthropic.com/en/docs/agents-and-tools/mcp-connector)
- [Files
API](https://docs.anthropic.com/en/docs/build-with-claude/files)

Also verified support for [prompt cache
TTL](https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#1-hour-cache-duration-beta).
2025-05-27 12:45:45 -04:00
ccurme
0ce2e69cc1 openai: release 0.3.18 (#31320) 2025-05-22 12:53:53 -04:00
ccurme
851fd438cf openai[patch]: relax Azure llm streaming callback test (#31319)
Effectively reverts
https://github.com/langchain-ai/langchain/pull/29302, but check that
counts are "less than" instead of equal to an expected count.
2025-05-22 16:14:53 +00:00
ccurme
053a1246da openai[patch]: support built-in code interpreter and remote MCP tools (#31304) 2025-05-22 11:47:57 -04:00
ccurme
1b5ffe4107 openai[patch]: run _tokenize in background thread in async embedding invocations (#31312) 2025-05-22 10:27:33 -04:00
Ishan Goswami
f16456139b exa docs and python package update (#31307)
Added support for new Exa API features. Updated Exa docs and python
package (langchain-exa).

Description

Added support for new Exa API features in the langchain-exa package:
- Added max_characters option for text content
- Added support for summary and custom summary prompts
- Added livecrawl option with "always", "fallback", "never" settings
- Added "auto" option for search type
- Updated documentation and tests

Dependencies
- No new dependencies required. Using existing features from exa-py.

twitter: @theishangoswami

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-21 21:33:30 -04:00
ccurme
beacedd6b3 openai[patch]: update tests for strict schemas (#31306)
Following recent [changes](https://platform.openai.com/docs/changelog).
2025-05-21 22:06:17 +00:00
ccurme
dcb5aba999 openai[patch]: reduce tested constraints on strict schema adherence for Responses API (#31290)
Scheduled testing started failing today because the Responses API
stopped raising `BadRequestError` for a schema that was previously
invalid when `strict=True`.

Although docs still say that [some type-specific keywords are not yet
supported](https://platform.openai.com/docs/guides/structured-outputs#some-type-specific-keywords-are-not-yet-supported)
(including `minimum` and `maximum` for numbers), the below appears to
run and correctly respect the constraints:
```python
import json
import openai

maximums = list(range(1, 11))
arg_values = []
for maximum in maximums:

    tool = {
        "type": "function",
        "name": "magic_function",
        "description": "Applies a magic function to an input.",
        "parameters": {
            "properties": {
                "input": {"maximum": maximum, "minimum": 0, "type": "integer"}
            },
            "required": ["input"],
            "type": "object",
            "additionalProperties": False
        },
        "strict": True
    }
    
    client = openai.OpenAI()
    
    response = client.responses.create(
        model="gpt-4.1",
        input=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
        tools=[tool],
    )
    function_call = next(item for item in response.output if item.type == "function_call")
    args = json.loads(function_call.arguments)
    arg_values.append(args["input"])


print(maximums)
print(arg_values)

# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# [1, 2, 3, 3, 3, 3, 3, 3, 3, 3]
```
Until yesterday this raised BadRequestError.

The same is not true of Chat Completions, which appears to still raise
BadRequestError
```python
tool = {
    "type": "function",
    "function": {
        "name": "magic_function",
        "description": "Applies a magic function to an input.",
        "parameters": {
            "properties": {
                "input": {"maximum": 5, "minimum": 0, "type": "integer"}
            },
            "required": ["input"],
            "type": "object",
            "additionalProperties": False
        },
        "strict": True
    }
}

response = client.chat.completions.create(
    model="gpt-4.1",
    messages=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
    tools=[tool],
)
response  # raises BadRequestError
```

Here we update tests accordingly.
2025-05-20 14:50:31 +00:00
ccurme
bf645c83f4 voyageai: remove from monorepo (#31281)
langchain-voyageai is now maintained at
https://github.com/voyage-ai/langchain-voyageai.
2025-05-19 16:33:38 +00:00
ccurme
32fcc97a90 openai[patch]: compat with Bedrock Converse (#31280)
ChatBedrockConverse passes through reasoning content blocks in [Bedrock
Converse
format](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ContentBlock.html).

Similar to how we handle Anthropic thinking blocks, here we ensure these
are filtered out of OpenAI request payloads.

Resolves https://github.com/langchain-ai/langchain/issues/31279.
2025-05-19 10:35:26 -04:00
mathislindner
e1af509966 anthropic: emit informative error message if there are only system messages in a prompt (#30822)
**PR message**: Not sure if I put the check at the right spot, but I
thought throwing the error before the loop made sense to me.
**Description:** Checks if there are only system messages using
AnthropicChat model and throws an error if it's the case. Check Issue
for more details
**Issue:** #30764

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-16 20:43:59 +00:00
ccurme
a401d7e52a ollama: release 0.3.3 (#31253) 2025-05-15 16:24:04 -04:00
Alexey Bondarenko
9efafe3337 ollama: Add separate kwargs parameter for async client (#31209)
**Description**:

Add a `async_client_kwargs` field to ollama chat/llm/embeddings adapters
that is passed to async httpx client constructor.

**Motivation:**

In my use-case:
- chat/embedding model adapters may be created frequently, sometimes to
be called just once or to never be called at all
- they may be used in bots sunc and async mode (not known at the moment
they are created)

So, I want to keep a static transport instance maintaining connection
pool, so model adapters can be created and destroyed freely. But that
doesn't work when both sync and async functions are in use as I can only
pass one transport instance for both sync and async client, while
transport types must be different for them. So I can't make both sync
and async calls use shared transport with current model adapter
interfaces.

In this PR I add a separate `async_client_kwargs` that gets passed to
async client constructor, so it will be possible to pass a separate
transport instance. For sake of backwards compatibility, it is merged
with `client_kwargs`, so nothing changes when it is not set.

I am unable to run linter right now, but the changes look ok.
2025-05-15 16:10:10 -04:00
ccurme
6bbc12b7f7 chroma: release 0.2.4 (#31252) 2025-05-15 15:58:29 -04:00
Jai Radhakrishnan
aa4890c136 partners: update deps for langchain-chroma (#31251)
Updates dependencies to Chroma to integrate the major release of Chroma
with improved performance, and to fix issues users have been seeing
using the latest chroma docker image with langchain-chroma

https://github.com/langchain-ai/langchain/issues/31047#issuecomment-2850790841
Updates chromadb dependency to >=1.0.9

This also removes the dependency of chroma-hnswlib, meaning it can run
against python 3.13 runners for tests as well.

Tested this by pulling the latest Chroma docker image, running
langchain-chroma using client mode
```
httpClient = chromadb.HttpClient(host="localhost", port=8000)

vector_store = Chroma(
    client=httpClient,
    collection_name="test",
    embedding_function=embeddings,
)
```
2025-05-15 15:55:15 -04:00
ccurme
8b145d5dc3 openai: release 0.3.17 (#31246) 2025-05-15 09:18:22 -04:00
ccurme
0b8837a0cc openai: support runtime kwargs in embeddings (#31195) 2025-05-14 09:14:40 -04:00
ccurme
868cfc4a8f openai: ignore function_calls if tool_calls are present (#31198)
Some providers include (legacy) function calls in `additional_kwargs` in
addition to tool calls. We currently unpack both function calls and tool
calls if present, but OpenAI will raise 400 in this case.

This can come up if providers are mixed in a tool-calling loop. Example:
```python
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool


@tool
def get_weather(location: str) -> str:
    """Get weather at a location."""
    return "It's sunny."



gemini = init_chat_model("google_genai:gemini-2.0-flash-001").bind_tools([get_weather])
openai = init_chat_model("openai:gpt-4.1-mini").bind_tools([get_weather])

input_message = HumanMessage("What's the weather in Boston?")
tool_call_message = gemini.invoke([input_message])

assert len(tool_call_message.tool_calls) == 1
tool_call = tool_call_message.tool_calls[0]
tool_message = get_weather.invoke(tool_call)

response = openai.invoke(  # currently raises 400 / BadRequestError
    [input_message, tool_call_message, tool_message]
)
```

Here we ignore function calls if tool calls are present.
2025-05-12 13:50:56 -04:00
ccurme
9aac8923a3 docs: add web search to anthropic docs (#31169) 2025-05-08 16:20:11 -04:00
ccurme
2d202f9762 anthropic[patch]: split test into two (#31167) 2025-05-08 09:23:36 -04:00
ccurme
d4555ac924 anthropic: release 0.3.13 (#31162) 2025-05-08 03:13:15 +00:00
ccurme
e34f9fd6f7 anthropic: update streaming usage metadata (#31158)
Anthropic updated how they report token counts during streaming today.
See changes to `MessageDeltaUsage` in [this
commit](2da00f26c5 (diff-1a396eba0cd9cd8952dcdb58049d3b13f6b7768ead1411888d66e28211f7bfc5)).

It's clean and simple to grab these fields from the final
`message_delta` event. However, some of them are typed as Optional, and
language
[here](e42451ab3f/src/anthropic/lib/streaming/_messages.py (L462))
suggests they may not always be present. So here we take the required
field from the `message_delta` event as we were doing previously, and
ignore the rest.
2025-05-07 23:09:56 -04:00
ccurme
682f338c17 anthropic[patch]: support web search (#31157) 2025-05-07 18:04:06 -04:00
ccurme
d7e016c5fc huggingface: release 0.2 (#31153) 2025-05-07 15:33:07 -04:00
ccurme
4b11cbeb47 huggingface[patch]: update lockfile (#31152) 2025-05-07 15:17:33 -04:00
ccurme
b5b90b5929 anthropic[patch]: be robust to null fields when translating usage metadata (#31151) 2025-05-07 18:30:21 +00:00
zhurou603
1df3ee91e7 partners: (langchain-openai) total_tokens should not add 'Nonetype' t… (#31146)
partners: (langchain-openai) total_tokens should not add 'Nonetype' t…

# PR Description

## Description
Fixed an issue in `langchain-openai` where `total_tokens` was
incorrectly adding `None` to an integer, causing a TypeError. The fix
ensures proper type checking before adding token counts.

## Issue
Fixes the TypeError traceback shown in the image where `'NoneType'`
cannot be added to an integer.

## Dependencies
None

## Twitter handle
None

![image](https://github.com/user-attachments/assets/9683a795-a003-455a-ada9-fe277245e2b2)

Co-authored-by: qiulijie <qiulijie@yuaiweiwu.com>
2025-05-07 11:09:50 -04:00
唐小鸭
50fa524a6d partners: (langchain-deepseek) fix deepseek-r1 always returns an empty reasoning_content when reasoning (#31065)
## Description
deepseek-r1 always returns an empty string `reasoning_content` to the
first chunk when thinking, and sets `reasoning_content` to None when
thinking is over, to determine when to switch to normal output.

Therefore, whether the reasoning_content field exists should be judged
as None.

## Demo
deepseek-r1 reasoning output: 

```
{'delta': {'content': None, 'function_call': None, 'refusal': None, 'role': 'assistant', 'tool_calls': None, 'reasoning_content': ''}, 'finish_reason': None, 'index': 0, 'logprobs': None}
{'delta': {'content': None, 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None, 'reasoning_content': '好的'}, 'finish_reason': None, 'index': 0, 'logprobs': None}
{'delta': {'content': None, 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None, 'reasoning_content': ','}, 'finish_reason': None, 'index': 0, 'logprobs': None}
{'delta': {'content': None, 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None, 'reasoning_content': '用户'}, 'finish_reason': None, 'index': 0, 'logprobs': None}
...
```

deepseek-r1 first normal output
```
...
{'delta': {'content': ' main', 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None, 'reasoning_content': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}
{'delta': {'content': '\n\nimport', 'function_call': None, 'refusal': None, 'role': None, 'tool_calls': None, 'reasoning_content': None}, 'finish_reason': None, 'index': 0, 'logprobs': None}
...
```

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-05-05 22:31:58 +00:00
Asif Mehmood
00ac49dd3e Replace deprecated .dict() with .model_dump() for Pydantic v2 compatibility (#31107)
**What does this PR do?**
This PR replaces deprecated usages of ```.dict()``` with
```.model_dump()``` to ensure compatibility with Pydantic v2 and prepare
for v3, addressing the deprecation warning
```PydanticDeprecatedSince20``` as required in [Issue#
31103](https://github.com/langchain-ai/langchain/issues/31103).

**Changes made:**
* Replaced ```.dict()``` with ```.model_dump()``` in multiple locations
* Ensured consistency with Pydantic v2 migration guidelines
* Verified compatibility across affected modules

**Notes**
* This is a code maintenance and compatibility update
* Tested locally with Pydantic v2.11
* No functional logic changes; only internal method replacements to
prevent deprecation issues
2025-05-03 13:40:54 -04:00
ccurme
77ecf47f6d openai: release 0.3.16 (#31100) 2025-05-02 13:14:46 -04:00