Commit Graph

197 Commits

Author SHA1 Message Date
ccurme
868cfc4a8f
openai: ignore function_calls if tool_calls are present (#31198)
Some providers include (legacy) function calls in `additional_kwargs` in
addition to tool calls. We currently unpack both function calls and tool
calls if present, but OpenAI will raise 400 in this case.

This can come up if providers are mixed in a tool-calling loop. Example:
```python
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool


@tool
def get_weather(location: str) -> str:
    """Get weather at a location."""
    return "It's sunny."



gemini = init_chat_model("google_genai:gemini-2.0-flash-001").bind_tools([get_weather])
openai = init_chat_model("openai:gpt-4.1-mini").bind_tools([get_weather])

input_message = HumanMessage("What's the weather in Boston?")
tool_call_message = gemini.invoke([input_message])

assert len(tool_call_message.tool_calls) == 1
tool_call = tool_call_message.tool_calls[0]
tool_message = get_weather.invoke(tool_call)

response = openai.invoke(  # currently raises 400 / BadRequestError
    [input_message, tool_call_message, tool_message]
)
```

Here we ignore function calls if tool calls are present.
2025-05-12 13:50:56 -04:00
zhurou603
1df3ee91e7
partners: (langchain-openai) total_tokens should not add 'Nonetype' t… (#31146)
partners: (langchain-openai) total_tokens should not add 'Nonetype' t…

# PR Description

## Description
Fixed an issue in `langchain-openai` where `total_tokens` was
incorrectly adding `None` to an integer, causing a TypeError. The fix
ensures proper type checking before adding token counts.

## Issue
Fixes the TypeError traceback shown in the image where `'NoneType'`
cannot be added to an integer.

## Dependencies
None

## Twitter handle
None

![image](https://github.com/user-attachments/assets/9683a795-a003-455a-ada9-fe277245e2b2)

Co-authored-by: qiulijie <qiulijie@yuaiweiwu.com>
2025-05-07 11:09:50 -04:00
Asif Mehmood
00ac49dd3e
Replace deprecated .dict() with .model_dump() for Pydantic v2 compatibility (#31107)
**What does this PR do?**
This PR replaces deprecated usages of ```.dict()``` with
```.model_dump()``` to ensure compatibility with Pydantic v2 and prepare
for v3, addressing the deprecation warning
```PydanticDeprecatedSince20``` as required in [Issue#
31103](https://github.com/langchain-ai/langchain/issues/31103).

**Changes made:**
* Replaced ```.dict()``` with ```.model_dump()``` in multiple locations
* Ensured consistency with Pydantic v2 migration guidelines
* Verified compatibility across affected modules

**Notes**
* This is a code maintenance and compatibility update
* Tested locally with Pydantic v2.11
* No functional logic changes; only internal method replacements to
prevent deprecation issues
2025-05-03 13:40:54 -04:00
ccurme
94139ffcd3
openai[patch]: format system content blocks for Responses API (#31096)
```python
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI


llm = ChatOpenAI(model="gpt-4.1", use_responses_api=True)

messages = [
    SystemMessage("test"),                                   # Works
    HumanMessage("test"),                                    # Works
    SystemMessage([{"type": "text", "text": "test"}]),       # Bug in this case
    HumanMessage([{"type": "text", "text": "test"}]),        # Works
    SystemMessage([{"type": "input_text", "text": "test"}])  # Works
]

llm._get_request_payload(messages)
```
2025-05-02 15:22:30 +00:00
ccurme
26ad239669
core, openai[patch]: prefer provider-assigned IDs when aggregating message chunks (#31080)
When aggregating AIMessageChunks in a stream, core prefers the leftmost
non-null ID. This is problematic because:
- Core assigns IDs when they are null to `f"run-{run_manager.run_id}"`
- The desired meaningful ID might not be available until midway through
the stream, as is the case for the OpenAI Responses API.

For the OpenAI Responses API, we assign message IDs to the top-level
`AIMessage.id`. This works in `.(a)invoke`, but during `.(a)stream` the
IDs get overwritten by the defaults assigned in langchain-core. These
IDs
[must](https://community.openai.com/t/how-to-solve-badrequesterror-400-item-rs-of-type-reasoning-was-provided-without-its-required-following-item-error-in-responses-api/1151686/9)
be available on the AIMessage object to support passing reasoning items
back to the API (e.g., if not using OpenAI's `previous_response_id`
feature). We could add them elsewhere, but seeing as we've already made
the decision to store them in `.id` during `.(a)invoke`, addressing the
issue in core lets us fix the problem with no interface changes.
2025-05-02 11:18:18 -04:00
ccurme
c51eadd54f
openai[patch]: propagate service_tier to response metadata (#31089) 2025-05-01 13:50:48 -04:00
湛露先生
5fb8fd863a
langchain_openai: clean duplicate code for openai embedding. (#30872)
The `_chunk_size` has not changed by method `self._tokenize`, So i think
these is duplicate code.

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-04-27 15:07:41 -04:00
ccurme
a60fd06784
docs: document OpenAI flex processing (#31023)
Following https://github.com/langchain-ai/langchain/pull/31005
2025-04-25 15:10:25 -04:00
ccurme
629b7a5a43
openai[patch]: add explicit attribute for service tier (#31005) 2025-04-25 18:38:23 +00:00
ccurme
10a9c24dae
openai: fix streaming reasoning without summaries (#30999)
Following https://github.com/langchain-ai/langchain/pull/30909: need to
retain "empty" reasoning output when streaming, e.g.,
```python
{'id': 'rs_...', 'summary': [], 'type': 'reasoning'}
```
Tested by existing integration tests, which are currently failing.
2025-04-24 16:01:45 +00:00
ccurme
4bc70766b5
core, openai: support standard multi-modal blocks in convert_to_openai_messages (#30968) 2025-04-23 11:20:44 -04:00
Dmitrii Rashchenko
a43df006de
Support of openai reasoning summary streaming (#30909)
**langchain_openai: Support of reasoning summary streaming**

**Description:**
OpenAI API now supports streaming reasoning summaries for reasoning
models (o1, o3, o3-mini, o4-mini). More info about it:
https://platform.openai.com/docs/guides/reasoning#reasoning-summaries

It is supported only in Responses API (not Completion API), so you need
to create LangChain Open AI model as follows to support reasoning
summaries streaming:

```
llm = ChatOpenAI(
    model="o4-mini", # also o1, o3, o3-mini support reasoning streaming
    use_responses_api=True,  # reasoning streaming works only with responses api, not completion api
    model_kwargs={
        "reasoning": {
            "effort": "high",  # also "low" and "medium" supported
            "summary": "auto"  # some models support "concise" summary, some "detailed", but auto will always work
        }
    }
)
```

Now, if you stream events from llm:

```
async for event in llm.astream_events(prompt, version="v2"):
    print(event)
```

or

```
for chunk in llm.stream(prompt):
    print (chunk)
```

OpenAI API will send you new types of events:
`response.reasoning_summary_text.added`
`response.reasoning_summary_text.delta`
`response.reasoning_summary_text.done`

These events are new, so they were ignored. So I have added support of
these events in function `_convert_responses_chunk_to_generation_chunk`,
so reasoning chunks or full reasoning added to the chunk
additional_kwargs.

Example of how this reasoning summary may be printed:

```
    async for event in llm.astream_events(prompt, version="v2"):
        if event["event"] == "on_chat_model_stream":
            chunk: AIMessageChunk = event["data"]["chunk"]
            if "reasoning_summary_chunk" in chunk.additional_kwargs:
                print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
            elif "reasoning_summary" in chunk.additional_kwargs:
                print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
            elif chunk.content and chunk.content[0]["type"] == "text":
                print(chunk.content[0]["text"], end="")
```

or

```
    for chunk in llm.stream(prompt):
        if "reasoning_summary_chunk" in chunk.additional_kwargs:
            print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
        elif "reasoning_summary" in chunk.additional_kwargs:
            print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
        elif chunk.content and chunk.content[0]["type"] == "text":
            print(chunk.content[0]["text"], end="")
```

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-22 14:51:13 +00:00
Aubrey Ford
b344f34635
partners/openai: OpenAIEmbeddings not respecting chunk_size argument (#30757)
When calling `embed_documents` and providing a `chunk_size` argument,
that argument is ignored when `OpenAIEmbeddings` is instantiated with
its default configuration (where `check_embedding_ctx_length=True`).

`_get_len_safe_embeddings` specifies a `chunk_size` parameter but it's
not being passed through in `embed_documents`, which is its only caller.
This appears to be an oversight, especially given that the
`_get_len_safe_embeddings` docstring states it should respect "the set
embedding context length and chunk size."

Developers typically expect method parameters to take effect (also, take
precedence) when explicitly provided, especially when instantiating
using defaults. I was confused as to why my API calls were being
rejected regardless of the chunk size I provided.

This bug also exists in langchain_community package. I can add that to
this PR if requested otherwise I will create a new one once this passes.
2025-04-18 15:27:27 -04:00
ccurme
add6a78f98
standard-tests, openai[patch]: add support standard audio inputs (#30904) 2025-04-17 10:30:57 -04:00
ccurme
86d51f6be6
multiple: permit optional fields on multimodal content blocks (#30887)
Instead of stuffing provider-specific fields in `metadata`, they can go
directly on the content block.
2025-04-17 12:48:46 +00:00
ccurme
fa362189a1
docs: document OpenAI reasoning summaries (#30882) 2025-04-16 19:21:14 +00:00
ccurme
9cfe6bcacd
multiple: multi-modal content blocks (#30746)
Introduces standard content block format for images, audio, and files.

## Examples

Image from url:
```
{
    "type": "image",
    "source_type": "url",
    "url": "https://path.to.image.png",
}
```


Image, in-line data:
```
{
    "type": "image",
    "source_type": "base64",
    "data": "<base64 string>",
    "mime_type": "image/png",
}
```


PDF, in-line data:
```
{
    "type": "file",
    "source_type": "base64",
    "data": "<base64 string>",
    "mime_type": "application/pdf",
}
```


File from ID:
```
{
    "type": "file",
    "source_type": "id",
    "id": "file-abc123",
}
```


Plain-text file:
```
{
    "type": "file",
    "source_type": "text",
    "text": "foo bar",
}
```
2025-04-15 09:48:06 -04:00
Sydney Runkle
8c6734325b
partners[lint]: run pyupgrade to get code in line with 3.9 standards (#30781)
Using `pyupgrade` to get all `partners` code up to 3.9 standards
(mostly, fixing old `typing` imports).
2025-04-11 07:18:44 -04:00
Bagatur
111dd90a46
openai[patch]: support structured output and tools (#30581)
Co-authored-by: ccurme <chester.curme@gmail.com>
2025-04-02 09:14:02 -04:00
ccurme
8a69de5c24
openai[patch]: ignore file blocks when counting tokens (#30601)
OpenAI does not appear to document how it transforms PDF pages to
images, which determines how tokens are counted:
https://platform.openai.com/docs/guides/pdf-files?api-mode=chat#usage-considerations

Currently these block types raise ValueError inside
`get_num_tokens_from_messages`. Here we update to generate a warning and
continue.
2025-04-01 15:29:33 -04:00
ccurme
8119a7bc5c
openai[patch]: support streaming token counts in AzureChatOpenAI (#30494)
When OpenAI originally released `stream_options` to enable token usage
during streaming, it was not supported in AzureOpenAI. It is now
supported.

Like the [OpenAI
SDK](f66d2e6fdc/src/openai/resources/completions.py (L68)),
ChatOpenAI does not return usage metadata during streaming by default
(which adds an extra chunk to the stream). The OpenAI SDK requires users
to pass `stream_options={"include_usage": True}`. ChatOpenAI implements
a convenience argument `stream_usage: Optional[bool]`, and an attribute
`stream_usage: bool = False`.

Here we extend this to AzureChatOpenAI by moving the `stream_usage`
attribute and `stream_usage` kwarg (on `_(a)stream`) from ChatOpenAI to
BaseChatOpenAI.

---

Additional consideration: we must be sensitive to the number of users
using BaseChatOpenAI to interact with other APIs that do not support the
`stream_options` parameter.

Suppose OpenAI in the future updates the default behavior to stream
token usage. Currently, BaseChatOpenAI only passes `stream_options` if
`stream_usage` is True, so there would be no way to disable this new
default behavior.

To address this, we could update the `stream_usage` attribute to
`Optional[bool] = None`, but this is technically a breaking change (as
currently values of False are not passed to the client). IMO: if / when
this change happens, we could accompany it with this update in a minor
bump.

--- 

Related previous PRs:
- https://github.com/langchain-ai/langchain/pull/22628
- https://github.com/langchain-ai/langchain/pull/22854
- https://github.com/langchain-ai/langchain/pull/23552

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-26 15:16:37 -04:00
ccurme
ed5e589191
openai[patch]: support multi-turn computer use (#30410)
Here we accept ToolMessages of the form
```python
ToolMessage(
    content=<representation of screenshot> (see below),
    tool_call_id="abc123",
    additional_kwargs={"type": "computer_call_output"},
)
```
and translate them to `computer_call_output` items for the Responses
API.

We also propagate `reasoning_content` items from AIMessages.

## Example

### Load screenshots
```python
import base64

def load_png_as_base64(file_path):
    with open(file_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
        return encoded_string.decode('utf-8')

screenshot_1_base64 = load_png_as_base64("/path/to/screenshot/of/application.png")
screenshot_2_base64 = load_png_as_base64("/path/to/screenshot/of/desktop.png")
```

### Initial message and response
```python
from langchain_core.messages import HumanMessage, ToolMessage
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="computer-use-preview",
    model_kwargs={"truncation": "auto"},
)

tool = {
    "type": "computer_use_preview",
    "display_width": 1024,
    "display_height": 768,
    "environment": "browser"
}
llm_with_tools = llm.bind_tools([tool])

input_message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": (
                "Click the red X to close and reveal my Desktop. "
                "Proceed, no confirmation needed."
            )
        },
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_1_base64}",
        }
    ]
)

response = llm_with_tools.invoke(
    [input_message],
    reasoning={
        "generate_summary": "concise",
    },
)
response.additional_kwargs["tool_outputs"]
```

### Construct ToolMessage
```python
tool_call_id = response.additional_kwargs["tool_outputs"][0]["call_id"]

tool_message = ToolMessage(
    content=[
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_2_base64}"
        }
    ],
    #  content=f"data:image/png;base64,{screenshot_2_base64}",  # <-- also acceptable
    tool_call_id=tool_call_id,
    additional_kwargs={"type": "computer_call_output"},
)
```

### Invoke again
```python
messages = [
    input_message,
    response,
    tool_message,
]

response_2 = llm_with_tools.invoke(
    messages,
    reasoning={
        "generate_summary": "concise",
    },
)
```
2025-03-24 15:25:36 +00:00
ccurme
b78ae7817e
openai[patch]: trace strict in structured_output_kwargs (#30425) 2025-03-21 14:37:28 -04:00
Ashwin
83cfb9691f
Fix typo: change 'ben' to 'be' in comment (#30358)
**Description:**  
This PR fixes a minor typo in the comments within
`libs/partners/openai/langchain_openai/chat_models/base.py`. The word
"ben" has been corrected to "be" for clarity and professionalism.

**Issue:**  
N/A

**Dependencies:**  
None
2025-03-19 10:35:35 -04:00
ccurme
eb9b992aa6
openai[patch]: support additional Responses API features (#30322)
- Include response headers
- Max tokens
- Reasoning effort
- Fix bug with structured output / strict
- Fix bug with simultaneous tool calling + structured output
2025-03-17 12:02:21 -04:00
ccurme
c74e7b997d
openai[patch]: support structured output via Responses API (#30265)
Also runs all standard tests using Responses API.
2025-03-14 15:14:23 -04:00
ccurme
cd1ea8e94d
openai[patch]: support Responses API (#30231)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2025-03-12 12:25:46 -04:00
ccurme
806211475a
core[patch]: update structured output tracing (#30123)
- Trace JSON schema in `options`
- Rename to `ls_structured_output_format`
2025-03-07 13:05:25 -05:00
ccurme
52b0570bec
core, openai, standard-tests: improve OpenAI compatibility with Anthropic content blocks (#30128)
- Support thinking blocks in core's `convert_to_openai_messages` (pass
through instead of error)
- Ignore thinking blocks in ChatOpenAI (instead of error)
- Support Anthropic-style image blocks in ChatOpenAI

---

Standard integration tests include a `supports_anthropic_inputs`
property which is currently enabled only for tests on `ChatAnthropic`.
This test enforces compatibility with message histories of the form:
```
- system message
- human message
- AI message with tool calls specified only through `tool_use` content blocks
- human message containing `tool_result` and an additional `text` block
```
It additionally checks support for Anthropic-style image inputs if
`supports_image_inputs` is enabled.

Here we change this test, such that if you enable
`supports_anthropic_inputs`:
- You support AI messages with text and `tool_use` content blocks
- You support Anthropic-style image inputs (if `supports_image_inputs`
is enabled)
- You support thinking content blocks.

That is, we add a test case for thinking content blocks, but we also
remove the requirement of handling tool results within HumanMessages
(motivated by existing agent abstractions, which should all return
ToolMessage). We move that requirement to a ChatAnthropic-specific test.
2025-03-06 09:53:14 -05:00
Samuel Dion-Girardeau
ccb64e9f4f
docs: Fix typo in code samples for max_tokens_for_prompt (#30088)
- **Description:** Fix typo in code samples for max_tokens_for_prompt.
Code blocks had singular "token" but the method has plural "tokens".
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
2025-03-04 09:11:21 -05:00
ccurme
291a232fb8
openai[patch]: set global ssl context (#29932)
We set 
```python
global_ssl_context = ssl.create_default_context(cafile=certifi.where())
```
at the module-level and share it among httpx clients.
2025-02-24 11:25:16 -05:00
ccurme
b1a7f4e106
core, openai[patch]: support serialization of pydantic models in messages (#29940)
Resolves https://github.com/langchain-ai/langchain/issues/29003,
https://github.com/langchain-ai/langchain/issues/27264
Related: https://github.com/langchain-ai/langchain-redis/issues/52

```python
from langchain.chat_models import init_chat_model
from langchain.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
from pydantic import BaseModel

cache = SQLiteCache()

set_llm_cache(cache)

class Temperature(BaseModel):
    value: int
    city: str

llm = init_chat_model("openai:gpt-4o-mini")
structured_llm = llm.with_structured_output(Temperature)
```
```python
# 681 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
```python
# 6.98 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
2025-02-24 09:34:27 -05:00
ccurme
927ec20b69
openai[patch]: update system role to developer for o-series models (#29785)
Some o-series models will raise a 400 error for `"role": "system"`
(`o1-mini` and `o1-preview` will raise, `o1` and `o3-mini` will not).

Here we update `ChatOpenAI` to update the role to `"developer"` for all
model names matching `^o\d`.

We only make this change on the ChatOpenAI class (not BaseChatOpenAI).
2025-02-24 08:59:46 -05:00
Hankyeol Kyung
2dd0ce3077
openai: Update reasoning_effort arg documentation (#29897)
**Description:** Update docstring for `reasoning_effort` argument to
specify that it applies to reasoning models only (e.g., OpenAI o1 and
o3-mini), clarifying its supported models.
**Issue:** None
**Dependencies:** None
2025-02-20 09:03:42 -05:00
Erick Friis
6c1e21d128
core: basemessage.text() (#29078) 2025-02-18 17:45:44 -08:00
ccurme
65a6dce428
openai[patch]: enable streaming for o1 (#29823)
Verified streaming works for the `o1-2024-12-17` snapshot as well.
2025-02-15 12:42:05 -05:00
Chaymae El Aattabi
4b08a7e8e8
Fix #29759: Use local chunk_size_ for looping in embed_documents (#29761)
This fix ensures that the chunk size is correctly determined when
processing text embeddings. Previously, the code did not properly handle
cases where chunk_size was None, potentially leading to incorrect
chunking behavior.

Now, chunk_size_ is explicitly set to either the provided chunk_size or
the default self.chunk_size, ensuring consistent chunking. This update
improves reliability when processing large text inputs in batches and
prevents unintended behavior when chunk_size is not specified.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-13 01:28:26 +00:00
ccurme
9477f49409
openai, deepseek: make _convert_chunk_to_generation_chunk an instance method (#29731)
1. Make `_convert_chunk_to_generation_chunk` an instance method on
BaseChatOpenAI
2. Override on ChatDeepSeek to add `"reasoning_content"` to message
additional_kwargs.

Resolves https://github.com/langchain-ai/langchain/issues/29513
2025-02-11 11:13:23 -08:00
Marlene
4fa3ef0d55
Community/Partner: Adding Azure community and partner user agent to better track usage in Python (#29561)
- This pull request includes various changes to add a `user_agent`
parameter to Azure OpenAI, Azure Search and Whisper in the Community and
Partner packages. This helps in identifying the source of API requests
so we can better track usage and help support the community better. I
will also be adding the user_agent to the new `langchain-azure` repo as
well.

- No issue connected or  updated dependencies. 
- Utilises existing tests and docs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2025-02-07 23:28:30 +00:00
ccurme
92e2239414
openai[patch]: make parallel_tool_calls explicit kwarg of bind_tools (#29669)
Improves discoverability and documentation.

cc @vbarda
2025-02-07 13:34:32 -05:00
Marc Ammann
5690575f13
openai: Removed tool_calls from completion chunk after other chunks have already been sent. (#29649)
- **Description:** Before sending a completion chunk at the end of an
OpenAI stream, removing the tool_calls as those have already been sent
as chunks.
- **Issue:** -
- **Dependencies:** -
- **Twitter handle:** -

@ccurme as mentioned in another PR

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-07 10:15:52 -05:00
Erick Friis
8f95da4eb1
multiple: structured output tracing standard metadata (#29421)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-01-29 14:00:26 -08:00
Bagatur
8d566a8fe7
openai[patch]: detect old models in with_structured_output (#29392)
Co-authored-by: ccurme <chester.curme@gmail.com>
2025-01-23 20:47:32 +00:00
Hugo Berg
32c9c58adf
Community: fix missing f-string modifier in oai structured output parsing error (#29326)
- **Description:** The ValueError raised on certain structured-outputs
parsing errors, in langchain openai community integration, was missing a
f-string modifier and so didn't produce useful outputs. This is a
2-line, 2-character change.
- **Issue:** None open that this fixes
- **Dependencies:** Nothing changed
- **Twitter handle:** None

- [X] **Add tests and docs**: There's nothing to add for.
- [-] **Lint and test**: Happy to run this if you deem it necessary.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-01-21 14:26:38 +00:00
Bagatur
4ab04ad6be
docs: oai api ref nit (#29210) 2025-01-14 17:55:16 +00:00
Erick Friis
bbc3e3b2cf
openai: disable streaming for o1 by default (#29147)
Currently 400s
https://community.openai.com/t/streaming-support-for-o1-o1-2024-12-17-resulting-in-400-unsupported-value/1085043

o1-mini and o1-preview stream fine
2025-01-11 02:24:11 +00:00
ccurme
6e63ccba84
openai[minor]: release 0.3 (#29100)
## Goal

Solve the following problems with `langchain-openai`:

- Structured output with `o1` [breaks out of the
box](https://langchain.slack.com/archives/C050X0VTN56/p1735232400232099).
- `with_structured_output` by default does not use OpenAI’s [structured
output
feature](https://platform.openai.com/docs/guides/structured-outputs).
- We override API defaults for temperature and other parameters.

## Breaking changes:

- Default method for structured output is changing to OpenAI’s dedicated
[structured output
feature](https://platform.openai.com/docs/guides/structured-outputs).
For schemas specified via TypedDict or JSON schema, strict schema
validation is disabled by default but can be enabled by specifying
`strict=True`.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Models that don’t support `method="json_schema"` (e.g., `gpt-4` and
`gpt-3.5-turbo`, currently the default model for ChatOpenAI) will raise
an error unless `method` is explicitly specified.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Schemas specified via Pydantic `BaseModel` that have fields with
non-null defaults or metadata (like min/max constraints) will raise an
error.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- `strict` now defaults to False for `method="json_schema"` when schemas
are specified via TypedDict or JSON schema.
- To recover previous behavior, use `with_structured_output(schema,
strict=True)`
- Schemas specified via Pydantic V1 will raise a warning (and use
`method="function_calling"`) unless `method` is explicitly specified.
- To remove the warning, pass `method="function_calling"` into
`with_structured_output`.
- Streaming with default structured output method / Pydantic schema no
longer generates intermediate streamed chunks.
- To recover previous behavior, pass `method="function_calling"` into
`with_structured_output`.
- We no longer override default temperature (was 0.7 in LangChain, now
will follow OpenAI, currently 1.0).
- To recover previous behavior, initialize `ChatOpenAI` or
`AzureChatOpenAI` with `temperature=0.7`.
- Note: conceptually there is a difference between forcing a tool call
and forcing a response format. Tool calls may have more concise
arguments vs. generating content adhering to a schema. Prompts may need
to be adjusted to recover desired behavior.

---------

Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2025-01-10 10:50:32 -05:00
ccurme
815bfa1913
openai[patch]: support streaming with json_schema response format (#29044)
- Stream JSON string content. Final chunk includes parsed representation
(following OpenAI
[docs](https://platform.openai.com/docs/guides/structured-outputs#streaming)).
- Mildly (?) breaking change: if you were using streaming with
`response_format` before, usage metadata will disappear unless you set
`stream_usage=True`.

## Response format

Before:

![Screenshot 2025-01-06 at 11 59
01 AM](https://github.com/user-attachments/assets/e54753f7-47d5-421d-b8f3-172f32b3364d)


After:

![Screenshot 2025-01-06 at 11 58
13 AM](https://github.com/user-attachments/assets/34882c6c-2284-45b4-92f7-5b5b69896903)


## with_structured_output

For pydantic output, behavior of `with_structured_output` is unchanged
(except for warning disappearing), because we pluck the parsed
representation straight from OpenAI, and OpenAI doesn't return it until
the stream is completed. Open to alternatives (e.g., parsing from
content or intermediate dict chunks generated by OpenAI).

Before:

![Screenshot 2025-01-06 at 12 38
11 PM](https://github.com/user-attachments/assets/913d320d-f49e-4cbb-a800-b394ae817fd1)

After:

![Screenshot 2025-01-06 at 12 38
58 PM](https://github.com/user-attachments/assets/f7a45dd6-d886-48a6-8d76-d0e21ca767c6)
2025-01-09 10:32:30 -05:00
Erick Friis
187131c55c
Revert "integrations[patch]: remove non-required chat param defaults" (#29048)
Reverts langchain-ai/langchain#26730

discuss best way to release default changes (esp openai temperature)
2025-01-06 14:45:34 -08:00
Bagatur
3d7ae8b5d2
integrations[patch]: remove non-required chat param defaults (#26730)
anthropic:
  - max_retries

openai:
  - n
  - temperature
  - max_retries

fireworks
  - temperature

groq
  - n
  - max_retries
  - temperature

mistral
  - max_retries
  - timeout
  - max_concurrent_requests
  - temperature
  - top_p
  - safe_mode

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2025-01-06 22:26:22 +00:00