Commit Graph

192 Commits

Author SHA1 Message Date
ccurme
de13f6ae4f
fix(openai): support acknowledged safety checks in computer use (#31984) 2025-07-14 07:33:37 -03:00
ccurme
612ccf847a
chore: [openai] bump sdk (#31958) 2025-07-10 15:53:41 -04:00
Mason Daugherty
6594eb8cc1
docs(xai): update for Grok 4 (#31953) 2025-07-10 11:06:37 -04:00
Mason Daugherty
33c9bf1adc
langchain-openai[patch]: Add ruff bandit rules to linter (#31788) 2025-06-30 14:01:32 -04:00
Andrew Jaeger
0189c50570
openai[fix]: Correctly set usage metadata for OpenAI Responses API (#31756) 2025-06-27 15:35:14 +00:00
ccurme
e8e89b0b82
docs: updates from langchain-openai 0.3.26 (#31764) 2025-06-27 11:27:25 -04:00
ccurme
88d5f3edcc
openai[patch]: allow specification of output format for Responses API (#31686) 2025-06-26 13:41:43 -04:00
ccurme
84500704ab
openai[patch]: fix bug where function call IDs were not populated (#31735)
(optional) IDs were getting dropped in some cases.
2025-06-25 19:08:27 +00:00
ccurme
0bf223d6cf
openai[patch]: add attribute to always use previous_response_id (#31734) 2025-06-25 19:01:43 +00:00
joshy-deshaw
8a0782c46c
openai[patch]: fix dropping response headers while streaming / Azure (#31580) 2025-06-23 17:59:58 -04:00
ccurme
b268ab6a28
openai[patch]: fix client caching when request_timeout is specified via httpx.Timeout (#31698)
Resolves https://github.com/langchain-ai/langchain/issues/31697
2025-06-23 14:37:49 +00:00
Li-Kuang Chen
4ee6112161
openai[patch]: Improve error message when response type is malformed (#31619) 2025-06-21 14:15:21 -04:00
ccurme
e2a0ff07fd
openai[patch]: include 'type' key internally when streaming reasoning blocks (#31661)
Covered by existing tests.

Will make it easier to process streamed reasoning blocks.
2025-06-18 15:01:54 -04:00
ccurme
6409498f6c
openai[patch]: route to Responses API if relevant attributes are set (#31645)
Following https://github.com/langchain-ai/langchain/pull/30329.
2025-06-17 16:04:38 -04:00
ccurme
c1c3e13a54
openai[patch]: add Responses API attributes to BaseChatOpenAI (#30329)
`reasoning`, `include`, `store`, `truncation`.

Previously these had to be added through `model_kwargs`.
2025-06-17 14:45:50 -04:00
ccurme
b610859633
openai[patch]: support Responses streaming in AzureChatOpenAI (#31641)
Resolves https://github.com/langchain-ai/langchain/issues/31303,
https://github.com/langchain-ai/langchain/issues/31624
2025-06-17 14:41:09 -04:00
ccurme
b9357d456e
openai[patch]: refactor handling of Responses API (#31587) 2025-06-16 14:01:39 -04:00
ccurme
0c10ff6418
openai[patch]: handle annotation change in openai==1.82.0 (#31597)
https://github.com/openai/openai-python/pull/2372/files#diff-91cfd5576e71b4b72da91e04c3a029bab50a72b5f7a2ac8393fca0a06e865fb3
2025-06-12 23:38:41 -04:00
Mohammad Mohtashim
42eb356a44
[OpenAI]: Encoding Model (#31402)
- **Description:** Small Fix for when getting the encoder in case of
KeyError and using the correct encoder for newer models
- **Issue:** #31390
2025-06-10 16:00:00 -04:00
ccurme
575662d5f1
openai[patch]: accommodate change in image generation API (#31522)
OpenAI changed their API to require the `partial_images` parameter when
using image generation + streaming.

As described in https://github.com/langchain-ai/langchain/pull/31424, we
are ignoring partial images. Here, we accept the `partial_images`
parameter (as required by OpenAI), but emit a warning and continue to
ignore partial images.
2025-06-09 14:57:46 -04:00
Bagatur
761f8c3231
openai[patch]: pass through with_structured_output kwargs (#31518)
Support 
```python
from langchain.chat_models import init_chat_model
from pydantic import BaseModel


class ResponseSchema(BaseModel):
    response: str


def get_weather(location: str) -> str:
    """Get weather"""
    pass

llm = init_chat_model("openai:gpt-4o-mini")

structured_llm = llm.with_structured_output(
    ResponseSchema,
    tools=[get_weather],
    strict=True,
    include_raw=True,
    tool_choice="required",
    parallel_tool_calls=False,
)

structured_llm.invoke("whats up?")
```
2025-06-06 11:17:34 -04:00
Bagatur
0375848f6c
openai[patch]: update with_structured_outputs docstring (#31517)
Update docstrings
2025-06-06 10:03:47 -04:00
ccurme
6d6f305748
openai[patch]: clarify docs on api_version in docstring for AzureChatOpenAI (#31502) 2025-06-05 16:06:22 +00:00
Eugene Yurtsev
17f34baa88
openai[minor]: add image generation to responses api (#31424)
Does not support partial images during generation at the moment. Before
doing that I'd like to figure out how to specify the aggregation logic
without requiring changes in core.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-06-02 10:03:54 -04:00
ccurme
afd349cc95
openai: cache httpx client (#31260)
![Screenshot 2025-05-16 at 3 49
54 PM](https://github.com/user-attachments/assets/4b377384-a769-4487-b801-bd1aa0ed66c1)

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-05-29 14:03:06 -04:00
ccurme
053a1246da
openai[patch]: support built-in code interpreter and remote MCP tools (#31304) 2025-05-22 11:47:57 -04:00
ccurme
32fcc97a90
openai[patch]: compat with Bedrock Converse (#31280)
ChatBedrockConverse passes through reasoning content blocks in [Bedrock
Converse
format](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ContentBlock.html).

Similar to how we handle Anthropic thinking blocks, here we ensure these
are filtered out of OpenAI request payloads.

Resolves https://github.com/langchain-ai/langchain/issues/31279.
2025-05-19 10:35:26 -04:00
ccurme
868cfc4a8f
openai: ignore function_calls if tool_calls are present (#31198)
Some providers include (legacy) function calls in `additional_kwargs` in
addition to tool calls. We currently unpack both function calls and tool
calls if present, but OpenAI will raise 400 in this case.

This can come up if providers are mixed in a tool-calling loop. Example:
```python
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool


@tool
def get_weather(location: str) -> str:
    """Get weather at a location."""
    return "It's sunny."



gemini = init_chat_model("google_genai:gemini-2.0-flash-001").bind_tools([get_weather])
openai = init_chat_model("openai:gpt-4.1-mini").bind_tools([get_weather])

input_message = HumanMessage("What's the weather in Boston?")
tool_call_message = gemini.invoke([input_message])

assert len(tool_call_message.tool_calls) == 1
tool_call = tool_call_message.tool_calls[0]
tool_message = get_weather.invoke(tool_call)

response = openai.invoke(  # currently raises 400 / BadRequestError
    [input_message, tool_call_message, tool_message]
)
```

Here we ignore function calls if tool calls are present.
2025-05-12 13:50:56 -04:00
zhurou603
1df3ee91e7
partners: (langchain-openai) total_tokens should not add 'Nonetype' t… (#31146)
partners: (langchain-openai) total_tokens should not add 'Nonetype' t…

# PR Description

## Description
Fixed an issue in `langchain-openai` where `total_tokens` was
incorrectly adding `None` to an integer, causing a TypeError. The fix
ensures proper type checking before adding token counts.

## Issue
Fixes the TypeError traceback shown in the image where `'NoneType'`
cannot be added to an integer.

## Dependencies
None

## Twitter handle
None

![image](https://github.com/user-attachments/assets/9683a795-a003-455a-ada9-fe277245e2b2)

Co-authored-by: qiulijie <qiulijie@yuaiweiwu.com>
2025-05-07 11:09:50 -04:00
ccurme
94139ffcd3
openai[patch]: format system content blocks for Responses API (#31096)
```python
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI


llm = ChatOpenAI(model="gpt-4.1", use_responses_api=True)

messages = [
    SystemMessage("test"),                                   # Works
    HumanMessage("test"),                                    # Works
    SystemMessage([{"type": "text", "text": "test"}]),       # Bug in this case
    HumanMessage([{"type": "text", "text": "test"}]),        # Works
    SystemMessage([{"type": "input_text", "text": "test"}])  # Works
]

llm._get_request_payload(messages)
```
2025-05-02 15:22:30 +00:00
ccurme
26ad239669
core, openai[patch]: prefer provider-assigned IDs when aggregating message chunks (#31080)
When aggregating AIMessageChunks in a stream, core prefers the leftmost
non-null ID. This is problematic because:
- Core assigns IDs when they are null to `f"run-{run_manager.run_id}"`
- The desired meaningful ID might not be available until midway through
the stream, as is the case for the OpenAI Responses API.

For the OpenAI Responses API, we assign message IDs to the top-level
`AIMessage.id`. This works in `.(a)invoke`, but during `.(a)stream` the
IDs get overwritten by the defaults assigned in langchain-core. These
IDs
[must](https://community.openai.com/t/how-to-solve-badrequesterror-400-item-rs-of-type-reasoning-was-provided-without-its-required-following-item-error-in-responses-api/1151686/9)
be available on the AIMessage object to support passing reasoning items
back to the API (e.g., if not using OpenAI's `previous_response_id`
feature). We could add them elsewhere, but seeing as we've already made
the decision to store them in `.id` during `.(a)invoke`, addressing the
issue in core lets us fix the problem with no interface changes.
2025-05-02 11:18:18 -04:00
ccurme
c51eadd54f
openai[patch]: propagate service_tier to response metadata (#31089) 2025-05-01 13:50:48 -04:00
ccurme
a60fd06784
docs: document OpenAI flex processing (#31023)
Following https://github.com/langchain-ai/langchain/pull/31005
2025-04-25 15:10:25 -04:00
ccurme
629b7a5a43
openai[patch]: add explicit attribute for service tier (#31005) 2025-04-25 18:38:23 +00:00
ccurme
10a9c24dae
openai: fix streaming reasoning without summaries (#30999)
Following https://github.com/langchain-ai/langchain/pull/30909: need to
retain "empty" reasoning output when streaming, e.g.,
```python
{'id': 'rs_...', 'summary': [], 'type': 'reasoning'}
```
Tested by existing integration tests, which are currently failing.
2025-04-24 16:01:45 +00:00
ccurme
4bc70766b5
core, openai: support standard multi-modal blocks in convert_to_openai_messages (#30968) 2025-04-23 11:20:44 -04:00
Dmitrii Rashchenko
a43df006de
Support of openai reasoning summary streaming (#30909)
**langchain_openai: Support of reasoning summary streaming**

**Description:**
OpenAI API now supports streaming reasoning summaries for reasoning
models (o1, o3, o3-mini, o4-mini). More info about it:
https://platform.openai.com/docs/guides/reasoning#reasoning-summaries

It is supported only in Responses API (not Completion API), so you need
to create LangChain Open AI model as follows to support reasoning
summaries streaming:

```
llm = ChatOpenAI(
    model="o4-mini", # also o1, o3, o3-mini support reasoning streaming
    use_responses_api=True,  # reasoning streaming works only with responses api, not completion api
    model_kwargs={
        "reasoning": {
            "effort": "high",  # also "low" and "medium" supported
            "summary": "auto"  # some models support "concise" summary, some "detailed", but auto will always work
        }
    }
)
```

Now, if you stream events from llm:

```
async for event in llm.astream_events(prompt, version="v2"):
    print(event)
```

or

```
for chunk in llm.stream(prompt):
    print (chunk)
```

OpenAI API will send you new types of events:
`response.reasoning_summary_text.added`
`response.reasoning_summary_text.delta`
`response.reasoning_summary_text.done`

These events are new, so they were ignored. So I have added support of
these events in function `_convert_responses_chunk_to_generation_chunk`,
so reasoning chunks or full reasoning added to the chunk
additional_kwargs.

Example of how this reasoning summary may be printed:

```
    async for event in llm.astream_events(prompt, version="v2"):
        if event["event"] == "on_chat_model_stream":
            chunk: AIMessageChunk = event["data"]["chunk"]
            if "reasoning_summary_chunk" in chunk.additional_kwargs:
                print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
            elif "reasoning_summary" in chunk.additional_kwargs:
                print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
            elif chunk.content and chunk.content[0]["type"] == "text":
                print(chunk.content[0]["text"], end="")
```

or

```
    for chunk in llm.stream(prompt):
        if "reasoning_summary_chunk" in chunk.additional_kwargs:
            print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
        elif "reasoning_summary" in chunk.additional_kwargs:
            print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
        elif chunk.content and chunk.content[0]["type"] == "text":
            print(chunk.content[0]["text"], end="")
```

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-22 14:51:13 +00:00
ccurme
add6a78f98
standard-tests, openai[patch]: add support standard audio inputs (#30904) 2025-04-17 10:30:57 -04:00
ccurme
86d51f6be6
multiple: permit optional fields on multimodal content blocks (#30887)
Instead of stuffing provider-specific fields in `metadata`, they can go
directly on the content block.
2025-04-17 12:48:46 +00:00
ccurme
fa362189a1
docs: document OpenAI reasoning summaries (#30882) 2025-04-16 19:21:14 +00:00
ccurme
9cfe6bcacd
multiple: multi-modal content blocks (#30746)
Introduces standard content block format for images, audio, and files.

## Examples

Image from url:
```
{
    "type": "image",
    "source_type": "url",
    "url": "https://path.to.image.png",
}
```


Image, in-line data:
```
{
    "type": "image",
    "source_type": "base64",
    "data": "<base64 string>",
    "mime_type": "image/png",
}
```


PDF, in-line data:
```
{
    "type": "file",
    "source_type": "base64",
    "data": "<base64 string>",
    "mime_type": "application/pdf",
}
```


File from ID:
```
{
    "type": "file",
    "source_type": "id",
    "id": "file-abc123",
}
```


Plain-text file:
```
{
    "type": "file",
    "source_type": "text",
    "text": "foo bar",
}
```
2025-04-15 09:48:06 -04:00
Sydney Runkle
8c6734325b
partners[lint]: run pyupgrade to get code in line with 3.9 standards (#30781)
Using `pyupgrade` to get all `partners` code up to 3.9 standards
(mostly, fixing old `typing` imports).
2025-04-11 07:18:44 -04:00
Bagatur
111dd90a46
openai[patch]: support structured output and tools (#30581)
Co-authored-by: ccurme <chester.curme@gmail.com>
2025-04-02 09:14:02 -04:00
ccurme
8a69de5c24
openai[patch]: ignore file blocks when counting tokens (#30601)
OpenAI does not appear to document how it transforms PDF pages to
images, which determines how tokens are counted:
https://platform.openai.com/docs/guides/pdf-files?api-mode=chat#usage-considerations

Currently these block types raise ValueError inside
`get_num_tokens_from_messages`. Here we update to generate a warning and
continue.
2025-04-01 15:29:33 -04:00
ccurme
8119a7bc5c
openai[patch]: support streaming token counts in AzureChatOpenAI (#30494)
When OpenAI originally released `stream_options` to enable token usage
during streaming, it was not supported in AzureOpenAI. It is now
supported.

Like the [OpenAI
SDK](f66d2e6fdc/src/openai/resources/completions.py (L68)),
ChatOpenAI does not return usage metadata during streaming by default
(which adds an extra chunk to the stream). The OpenAI SDK requires users
to pass `stream_options={"include_usage": True}`. ChatOpenAI implements
a convenience argument `stream_usage: Optional[bool]`, and an attribute
`stream_usage: bool = False`.

Here we extend this to AzureChatOpenAI by moving the `stream_usage`
attribute and `stream_usage` kwarg (on `_(a)stream`) from ChatOpenAI to
BaseChatOpenAI.

---

Additional consideration: we must be sensitive to the number of users
using BaseChatOpenAI to interact with other APIs that do not support the
`stream_options` parameter.

Suppose OpenAI in the future updates the default behavior to stream
token usage. Currently, BaseChatOpenAI only passes `stream_options` if
`stream_usage` is True, so there would be no way to disable this new
default behavior.

To address this, we could update the `stream_usage` attribute to
`Optional[bool] = None`, but this is technically a breaking change (as
currently values of False are not passed to the client). IMO: if / when
this change happens, we could accompany it with this update in a minor
bump.

--- 

Related previous PRs:
- https://github.com/langchain-ai/langchain/pull/22628
- https://github.com/langchain-ai/langchain/pull/22854
- https://github.com/langchain-ai/langchain/pull/23552

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-03-26 15:16:37 -04:00
ccurme
ed5e589191
openai[patch]: support multi-turn computer use (#30410)
Here we accept ToolMessages of the form
```python
ToolMessage(
    content=<representation of screenshot> (see below),
    tool_call_id="abc123",
    additional_kwargs={"type": "computer_call_output"},
)
```
and translate them to `computer_call_output` items for the Responses
API.

We also propagate `reasoning_content` items from AIMessages.

## Example

### Load screenshots
```python
import base64

def load_png_as_base64(file_path):
    with open(file_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
        return encoded_string.decode('utf-8')

screenshot_1_base64 = load_png_as_base64("/path/to/screenshot/of/application.png")
screenshot_2_base64 = load_png_as_base64("/path/to/screenshot/of/desktop.png")
```

### Initial message and response
```python
from langchain_core.messages import HumanMessage, ToolMessage
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="computer-use-preview",
    model_kwargs={"truncation": "auto"},
)

tool = {
    "type": "computer_use_preview",
    "display_width": 1024,
    "display_height": 768,
    "environment": "browser"
}
llm_with_tools = llm.bind_tools([tool])

input_message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": (
                "Click the red X to close and reveal my Desktop. "
                "Proceed, no confirmation needed."
            )
        },
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_1_base64}",
        }
    ]
)

response = llm_with_tools.invoke(
    [input_message],
    reasoning={
        "generate_summary": "concise",
    },
)
response.additional_kwargs["tool_outputs"]
```

### Construct ToolMessage
```python
tool_call_id = response.additional_kwargs["tool_outputs"][0]["call_id"]

tool_message = ToolMessage(
    content=[
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_2_base64}"
        }
    ],
    #  content=f"data:image/png;base64,{screenshot_2_base64}",  # <-- also acceptable
    tool_call_id=tool_call_id,
    additional_kwargs={"type": "computer_call_output"},
)
```

### Invoke again
```python
messages = [
    input_message,
    response,
    tool_message,
]

response_2 = llm_with_tools.invoke(
    messages,
    reasoning={
        "generate_summary": "concise",
    },
)
```
2025-03-24 15:25:36 +00:00
ccurme
b78ae7817e
openai[patch]: trace strict in structured_output_kwargs (#30425) 2025-03-21 14:37:28 -04:00
Ashwin
83cfb9691f
Fix typo: change 'ben' to 'be' in comment (#30358)
**Description:**  
This PR fixes a minor typo in the comments within
`libs/partners/openai/langchain_openai/chat_models/base.py`. The word
"ben" has been corrected to "be" for clarity and professionalism.

**Issue:**  
N/A

**Dependencies:**  
None
2025-03-19 10:35:35 -04:00
ccurme
eb9b992aa6
openai[patch]: support additional Responses API features (#30322)
- Include response headers
- Max tokens
- Reasoning effort
- Fix bug with structured output / strict
- Fix bug with simultaneous tool calling + structured output
2025-03-17 12:02:21 -04:00
ccurme
c74e7b997d
openai[patch]: support structured output via Responses API (#30265)
Also runs all standard tests using Responses API.
2025-03-14 15:14:23 -04:00