## **Description:**
This PR updates the internal documentation link for the RAG tutorials to
reflect the updated path. Previously, the link pointed to the root
`/docs/tutorials/`, which was generic. It now correctly routes to the
RAG-specific tutorial page for the following vector store docs.
1. AstraDBVectorStore
2. Clickhouse
3. CouchbaseSearchVectorStore
4. DatabricksVectorSearch
5. ElasticsearchStore
6. FAISS
7. Milvus
8. MongoDBAtlasVectorSearch
9. openGauss
10. PGVector
11. PGVectorStore
12. PineconeVectorStore
13. QdrantVectorStore
14. Redis
15. SQLServer
## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
Fixes a streaming bug where models like Qwen3 (using OpenAI interface)
send tool call chunks with inconsistent indices, resulting in
duplicate/erroneous tool calls instead of a single merged tool call.
## Problem
When Qwen3 streams tool calls, it sends chunks with inconsistent `index`
values:
- First chunk: `index=1` with tool name and partial arguments
- Subsequent chunks: `index=0` with `name=None`, `id=None` and argument
continuation
The existing `merge_lists` function only merges chunks when their
`index` values match exactly, causing these logically related chunks to
remain separate, resulting in multiple incomplete tool calls instead of
one complete tool call.
```python
# Before fix: Results in 1 valid + 1 invalid tool call
chunk1 = AIMessageChunk(tool_call_chunks=[
{"name": "search", "args": '{"query":', "id": "call_123", "index": 1}
])
chunk2 = AIMessageChunk(tool_call_chunks=[
{"name": None, "args": ' "test"}', "id": None, "index": 0}
])
merged = chunk1 + chunk2 # Creates 2 separate tool calls
# After fix: Results in 1 complete tool call
merged = chunk1 + chunk2 # Creates 1 merged tool call: search({"query": "test"})
```
## Solution
Enhanced the `merge_lists` function in `langchain_core/utils/_merge.py`
with intelligent tool call chunk merging:
1. **Preserves existing behavior**: Same-index chunks still merge as
before
2. **Adds special handling**: Tool call chunks with
`name=None`/`id=None` that don't match any existing index are now merged
with the most recent complete tool call chunk
3. **Maintains backward compatibility**: All existing functionality
works unchanged
4. **Targeted fix**: Only affects tool call chunks, doesn't change
behavior for other list items
The fix specifically handles the pattern where:
- A continuation chunk has `name=None` and `id=None` (indicating it's
part of an ongoing tool call)
- No matching index is found in existing chunks
- There exists a recent tool call chunk with a valid name or ID to merge
with
## Testing
Added comprehensive test coverage including:
- ✅ Qwen3-style chunks with different indices now merge correctly
- ✅ Existing same-index behavior preserved
- ✅ Multiple distinct tool calls remain separate
- ✅ Edge cases handled (empty chunks, orphaned continuations)
- ✅ Backward compatibility maintained
Fixes#31511.
<!-- START COPILOT CODING AGENT TIPS -->
---
💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
## Problem
ChatLiteLLM encounters a `ValidationError` when using cache on
subsequent calls, causing the following error:
```
ValidationError(model='ChatResult', errors=[{'loc': ('generations', 0, 'type'), 'msg': "unexpected value; permitted: 'ChatGeneration'", 'type': 'value_error.const', 'ctx': {'given': 'Generation', 'permitted': ('ChatGeneration',)}}])
```
This occurs because:
1. The cache stores `Generation` objects (with `type="Generation"`)
2. But `ChatResult` expects `ChatGeneration` objects (with
`type="ChatGeneration"` and a required `message` field)
3. When cached values are retrieved, validation fails due to the type
mismatch
## Solution
Added graceful handling in both sync (`_generate_with_cache`) and async
(`_agenerate_with_cache`) cache methods to:
1. **Detect** when cached values contain `Generation` objects instead of
expected `ChatGeneration` objects
2. **Convert** them to `ChatGeneration` objects by wrapping the text
content in an `AIMessage`
3. **Preserve** all original metadata (`generation_info`)
4. **Allow** `ChatResult` creation to succeed without validation errors
## Example
```python
# Before: This would fail with ValidationError
from langchain_community.chat_models import ChatLiteLLM
from langchain_community.cache import SQLiteCache
from langchain.globals import set_llm_cache
set_llm_cache(SQLiteCache(database_path="cache.db"))
llm = ChatLiteLLM(model_name="openai/gpt-4o", cache=True, temperature=0)
print(llm.predict("test")) # Works fine (cache empty)
print(llm.predict("test")) # Now works instead of ValidationError
# After: Seamlessly handles both Generation and ChatGeneration objects
```
## Changes
- **`libs/core/langchain_core/language_models/chat_models.py`**:
- Added `Generation` import from `langchain_core.outputs`
- Enhanced cache retrieval logic in `_generate_with_cache` and
`_agenerate_with_cache` methods
- Added conversion from `Generation` to `ChatGeneration` objects when
needed
-
**`libs/core/tests/unit_tests/language_models/chat_models/test_cache.py`**:
- Added test case to validate the conversion logic handles mixed object
types
## Impact
- **Backward Compatible**: Existing code continues to work unchanged
- **Minimal Change**: Only affects cache retrieval path, no API changes
- **Robust**: Handles both legacy cached `Generation` objects and new
`ChatGeneration` objects
- **Preserves Data**: All original content and metadata is maintained
during conversion
Fixes#22389.
<!-- START COPILOT CODING AGENT TIPS -->
---
💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
**Description:** Fixes incorrect `num_skipped` count in the LangChain
indexing API. The current implementation only counts documents that
already exist in RecordManager (cross-batch duplicates) but fails to
count documents removed during within-batch deduplication via
`_deduplicate_in_order()`.
This PR adds tracking of the original batch size before deduplication
and includes the difference in `num_skipped`, ensuring that `num_added +
num_skipped` equals the total number of input documents.
**Issue:** Fixes incorrect document count reporting in indexing
statistics
**Dependencies:** None
Fixes#32272
---------
Co-authored-by: Alex Feel <afilippov@spotware.com>
Ensures proper reStructuredText formatting by adding the required blank
line before closing docstring quotes, which resolves the "Block quote
ends without a blank line; unexpected unindent" warning.
- **Description:** This PR updates the internal documentation link for
the RAG tutorials to reflect the updated path. Previously, the link
pointed to the root `/docs/tutorials/`, which was generic. It now
correctly routes to the RAG-specific tutorial page.
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** N/A
> × No solution found when resolving dependencies:
╰─▶ Because only langchain-neo4j==0.5.0 is available and
langchain-neo4j==0.5.0 depends on neo4j-graphrag>=1.9.0, we can conclude
that all versions of langchain-neo4j depend on neo4j-graphrag>=1.9.0.
And because only neo4j-graphrag<=1.9.0 is available and
neo4j-graphrag==1.9.0 depends on pypdf>=5.1.0,<6.0.0, we can conclude
that all versions of langchain-neo4j depend on pypdf>=5.1.0,<6.0.0.
And because langchain-upstage==0.6.0 depends on pypdf>=4.2.0,<5.0.0
and only langchain-upstage==0.6.0 is available, we can conclude that
all versions of langchain-neo4j and all versions of langchain-upstage
are incompatible.
And because you require langchain-neo4j and langchain-upstage, we can
conclude that your requirements are unsatisfiable.
---------
Co-authored-by: Mason Daugherty <mason@langchain.dev>
**TL;DR much of the provided `Makefile` targets were broken, and any
time I wanted to preview changes locally I either had to refer to a
command Chester gave me or try waiting on a Vercel preview deployment.
With this PR, everything should behave like normal.**
Significant updates to the `Makefile` and documentation files, focusing
on improving usability, adding clear messaging, and fixing/enhancing
documentation workflows.
### Updates to `Makefile`:
#### Enhanced build and cleaning processes:
- Added informative messages (e.g., "📚 Building LangChain
documentation...") to makefile targets like `docs_build`, `docs_clean`,
and `api_docs_build` for better user feedback during execution.
- Introduced a `clean-cache` target to the `docs` `Makefile` to clear
cached dependencies and ensure clean builds.
#### Improved dependency handling:
- Modified `install-py-deps` to create a `.venv/deps_installed` marker,
preventing redundant/duplicate dependency installations and improving
efficiency.
#### Streamlined file generation and infrastructure setup:
- Added caching for the LangServe README download and parallelized
feature table generation
- Added user-friendly completion messages for targets like `copy-infra`
and `render`.
#### Documentation server updates:
- Enhanced the `start` target with messages indicating server start and
URL for local documentation viewing.
---
### Documentation Improvements:
#### Content clarity and consistency:
- Standardized section titles for consistency across documentation
files.
[[1]](diffhunk://#diff-9b1a85ea8a9dcf79f58246c88692cd7a36316665d7e05a69141cfdc50794c82aL1-R1)
[[2]](diffhunk://#diff-944008ad3a79d8a312183618401fcfa71da0e69c75803eff09b779fc8e03183dL1-R1)
- Refined phrasing and formatting in sections like "Dependency
management" and "Formatting and linting" for better readability.
[[1]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L6-R6)
[[2]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L84-R82)
#### Enhanced workflows:
- Updated instructions for building and viewing documentation locally,
including tips for specifying server ports and handling API reference
previews.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L60-R94)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L82-R126)
- Expanded guidance on cleaning documentation artifacts and using
linting tools effectively.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L82-R126)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L107-R142)
#### API reference documentation:
- Improved instructions for generating and formatting in-code
documentation, highlighting best practices for docstring writing.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L107-R142)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L144-R186)
---
### Minor Changes:
- Added support for a new package name (`langchain_v1`) in the API
documentation generation script.
- Fixed minor capitalization and formatting issues in documentation
files.
[[1]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L40-R40)
[[2]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L166-R160)
---------
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>