This PR fixes the PostgreSQL NUL byte issue that causes
`psycopg.DataError` when inserting documents containing `\x00` bytes
into PostgreSQL-based vector stores.
## Problem
PostgreSQL text fields cannot contain NUL (0x00) bytes. When documents
with such characters are processed by PGVector or langchain-postgres
implementations, they fail with:
```
(psycopg.DataError) PostgreSQL text fields cannot contain NUL (0x00) bytes
```
This commonly occurs when processing PDFs, documents from various
loaders, or text extracted by libraries like unstructured that may
contain embedded NUL bytes.
## Solution
Added `sanitize_for_postgres()` utility function to
`langchain_core.utils.strings` that removes or replaces NUL bytes from
text content.
### Key Features
- **Simple API**: `sanitize_for_postgres(text, replacement="")`
- **Configurable**: Replace NUL bytes with empty string (default) or
space for readability
- **Comprehensive**: Handles all problematic examples from the original
issue
- **Well-tested**: Complete unit tests with real-world examples
- **Backward compatible**: No breaking changes, purely additive
### Usage Example
```python
from langchain_core.utils import sanitize_for_postgres
from langchain_core.documents import Document
# Before: This would fail with DataError
problematic_content = "Getting\x00Started with embeddings"
# After: Clean the content before database insertion
clean_content = sanitize_for_postgres(problematic_content)
# Result: "GettingStarted with embeddings"
# Or preserve readability with spaces
readable_content = sanitize_for_postgres(problematic_content, " ")
# Result: "Getting Started with embeddings"
# Use in Document processing
doc = Document(page_content=clean_content, metadata={...})
```
### Integration Pattern
PostgreSQL vector store implementations should sanitize content before
insertion:
```python
def add_documents(self, documents: List[Document]) -> List[str]:
# Sanitize documents before insertion
sanitized_docs = []
for doc in documents:
sanitized_content = sanitize_for_postgres(doc.page_content, " ")
sanitized_doc = Document(
page_content=sanitized_content,
metadata=doc.metadata,
id=doc.id
)
sanitized_docs.append(sanitized_doc)
return self._insert_documents_to_db(sanitized_docs)
```
## Changes Made
- Added `sanitize_for_postgres()` function in
`langchain_core/utils/strings.py`
- Updated `langchain_core/utils/__init__.py` to export the new function
- Added comprehensive unit tests in
`tests/unit_tests/utils/test_strings.py`
- Validated against all examples from the original issue report
## Testing
All tests pass, including:
- Basic NUL byte removal and replacement
- Multiple consecutive NUL bytes
- Empty string handling
- Real examples from the GitHub issue
- Backward compatibility with existing string utilities
This utility enables PostgreSQL integrations in both langchain-community
and langchain-postgres packages to handle documents with NUL bytes
reliably.
Fixes#26033.
<!-- START COPILOT CODING AGENT TIPS -->
---
💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Fixes#32042
## Summary
Fixes a critical bug in JSON Schema reference resolution that prevented
correctly dereferencing numeric components in JSON pointer paths,
specifically for list indices in `anyOf`, `oneOf`, and `allOf` arrays.
## Changes
- Fixed `_retrieve_ref` function in
`libs/core/langchain_core/utils/json_schema.py` to properly handle
numeric components
- Added comprehensive test function `test_dereference_refs_list_index()`
in `libs/core/tests/unit_tests/utils/test_json_schema.py`
- Resolved line length formatting issues
- Improved type checking and index validation for list and dictionary
references
## Key Improvements
- Correctly handles list index references in JSON pointer paths
- Maintains backward compatibility with existing dictionary numeric key
functionality
- Adds robust error handling for out-of-bounds and invalid indices
- Passes all test cases covering various reference scenarios
## Test Coverage
- Verified fix for `#/properties/payload/anyOf/1/properties/startDate`
reference
- Tested edge cases including out-of-bounds and negative indices
- Ensured no regression in existing reference resolution functionality
Resolves the reported issue with JSON Schema reference dereferencing for
list indices.
---------
Co-authored-by: open-swe-dev[bot] <open-swe-dev@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
* Simplified Pydantic handling since Pydantic v1 is not supported
anymore.
* Replace use of deprecated v1 methods by corresponding v2 methods.
* Remove use of other deprecated methods.
* Activate mypy errors on deprecated methods use.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Issue:**[
#309070](https://github.com/langchain-ai/langchain/issues/30970)
**Cause**
Arg type in python code
```
arg: Union[SubSchema1, SubSchema2]
```
is translated to `anyOf` in **json schema**
```
"anyOf" : [{sub schema 1 ...}, {sub schema 1 ...}]
```
The value of anyOf is a list sub schemas.
The bug is caused since the sub schemas inside `anyOf` list is not taken
care of.
The location where the issue happens is `convert_to_openai_function`
function -> `_recursive_set_additional_properties_false` function, that
recursively adds `"additionalProperties": false` to json schema which is
[required by OpenAI's strict function
calling](https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#additionalproperties-false-must-always-be-set-in-objects)
**Solution:**
This PR fixes this issue by iterating each sub schema inside `anyOf`
list.
A unit test is added.
**Twitter handle:** shengboma
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
This pull request includes various changes to the `langchain_core`
library, focusing on improving compatibility with different versions of
Pydantic. The primary change involves replacing checks for Pydantic
major versions with boolean flags, which simplifies the code and
improves readability.
This also solves ruff rule checks for
[RUF048](https://docs.astral.sh/ruff/rules/map-int-version-parsing/) and
[PLR2004](https://docs.astral.sh/ruff/rules/magic-value-comparison/).
Key changes include:
### Compatibility Improvements:
*
[`libs/core/langchain_core/output_parsers/json.py`](diffhunk://#diff-5add0cf7134636ae4198a1e0df49ee332ae0c9123c3a2395101e02687c717646L22-R24):
Replaced `PYDANTIC_MAJOR_VERSION` with `IS_PYDANTIC_V1` to check for
Pydantic version 1.
*
[`libs/core/langchain_core/output_parsers/pydantic.py`](diffhunk://#diff-2364b5b4aee01c462aa5dbda5dc3a877dcd20f29df173ad540dc8adf8b192361L14-R14):
Updated version checks from `PYDANTIC_MAJOR_VERSION` to `IS_PYDANTIC_V2`
in the `PydanticOutputParser` class.
[[1]](diffhunk://#diff-2364b5b4aee01c462aa5dbda5dc3a877dcd20f29df173ad540dc8adf8b192361L14-R14)
[[2]](diffhunk://#diff-2364b5b4aee01c462aa5dbda5dc3a877dcd20f29df173ad540dc8adf8b192361L27-R27)
### Utility Enhancements:
*
[`libs/core/langchain_core/utils/pydantic.py`](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896R23):
Introduced `IS_PYDANTIC_V1` and `IS_PYDANTIC_V2` flags and deprecated
the `get_pydantic_major_version` function. Updated various functions to
use these flags instead of version numbers.
[[1]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896R23)
[[2]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896R42-R78)
[[3]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L90-R89)
[[4]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L104-R101)
[[5]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L120-R122)
[[6]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L135-R132)
[[7]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L149-R151)
[[8]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L164-R161)
[[9]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L248-R250)
[[10]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L330-R335)
[[11]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L356-R357)
[[12]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L393-R390)
[[13]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L403-R400)
### Test Updates:
*
[`libs/core/tests/unit_tests/output_parsers/test_openai_tools.py`](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L19-R22):
Updated tests to use `IS_PYDANTIC_V1` and `IS_PYDANTIC_V2` for version
checks.
[[1]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L19-R22)
[[2]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L532-R535)
[[3]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L567-R570)
[[4]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L602-R605)
*
[`libs/core/tests/unit_tests/prompts/test_chat.py`](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84R7):
Replaced version tuple checks with `PYDANTIC_VERSION` comparisons.
[[1]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84R7)
[[2]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84L35-R38)
[[3]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84L924-R927)
[[4]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84L935-R938)
*
[`libs/core/tests/unit_tests/runnables/test_graph.py`](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dR3):
Simplified version checks using `PYDANTIC_VERSION`.
[[1]](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dR3)
[[2]](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dL15-R18)
[[3]](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dL234-L239)
*
[`libs/core/tests/unit_tests/runnables/test_runnable.py`](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L18-R20):
Introduced `PYDANTIC_VERSION_AT_LEAST_29` and
`PYDANTIC_VERSION_AT_LEAST_210` for more readable version checks.
[[1]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L18-R20)
[[2]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L92-R99)
[[3]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L230-R233)
[[4]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L652-R655)
Thank you for contributing to LangChain!
- [ ] **PR title**: "core: google docstring parsing fix"
- [x] **PR message**:
- **Description:** Added a solution for invalid parsing of google
docstring such as:
Args:
net_annual_income (float): The user's net annual income (in current year
dollars).
- **Issue:** Previous code would return arg = "net_annual_income
(float)" which would cause exception in
_validate_docstring_args_against_annotations
- **Dependencies:** None
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Erick Friis <erick@langchain.dev>
We have a test
[test_structured_few_shot_examples](ad4333ca03/libs/standard-tests/langchain_tests/integration_tests/chat_models.py (L546))
in standard integration tests that implements a version of tool-calling
few shot examples that works with ~all tested providers. The formulation
supported by ~all providers is: `human message, tool call, tool message,
AI reponse`.
Here we update
`langchain_core.utils.function_calling.tool_example_to_messages` to
support this formulation.
The `tool_example_to_messages` util is undocumented outside of our API
reference. IMO, if we are testing that this function works across all
providers, it can be helpful to feature it in our guides. The structured
few-shot examples we document at the moment require users to implement
this function and can be simplified.
Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.
Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
Ruff doesn't know about the python version in
`[tool.poetry.dependencies]`. It can get it from
`project.requires-python`.
Notes:
* poetry seems to have issues getting the python constraints from
`requires-python` and using `python` in per dependency constraints. So I
had to duplicate the info. I will open an issue on poetry.
* `inspect.isclass()` doesn't work correctly with `GenericAlias`
(`list[...]`, `dict[..., ...]`) on Python <3.11 so I added some `not
isinstance(type, GenericAlias)` checks:
Python 3.11
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
False
```
Python 3.9
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
True
```
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Hello.
First of all, thank you for maintaining such a great project.
## Description
In https://github.com/langchain-ai/langchain/pull/25123, support for
structured_output is added. However, `"additionalProperties": false`
needs to be included at all levels when a nested object is generated.
error from current code:
https://gist.github.com/fufufukakaka/e9b475300e6934853d119428e390f204
```
BadRequestError: Error code: 400 - {'error': {'message': "Invalid schema for response_format 'JokeWithEvaluation': In context=('properties', 'self_evaluation'), 'additionalProperties' is required to be supplied and to be false", 'type': 'invalid_request_error', 'param': 'response_format', 'code': None}}
```
Reference: [Introducing Structured Outputs in the
API](https://openai.com/index/introducing-structured-outputs-in-the-api/)
```json
{
"model": "gpt-4o-2024-08-06",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor."
},
{
"role": "user",
"content": "solve 8x + 31 = 2"
}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "math_response",
"strict": true,
"schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": ["explanation", "output"],
"additionalProperties": false
}
},
"final_answer": {
"type": "string"
}
},
"required": ["steps", "final_answer"],
"additionalProperties": false
}
}
}
}
```
In the current code, `"additionalProperties": false` is only added at
the last level.
This PR introduces the `_add_additional_properties_key` function, which
recursively adds `"additionalProperties": false` to the entire JSON
schema for the request.
Twitter handle: `@fukkaa1225`
Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
[langchain_core] Fix UnionType type var replacement
- Added types.UnionType to typing.Union mapping
Type replacement cause `TypeError: 'type' object is not subscriptable`
if any of union type comes as function `_py_38_safe_origin` return
`types.UnionType` instead of `typing.Union`
```python
>>> from types import UnionType
>>> from typing import Union, get_origin
>>> type_ = get_origin(str | None)
>>> type_
<class 'types.UnionType'>
>>> UnionType[(str, None)]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'type' object is not subscriptable
>>> Union[(str, None)]
typing.Optional[str]
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR gets rid `root_validators(allow_reuse=True)` logic used in
EdenAI Tool in preparation for pydantic 2 upgrade.
- add another test to secret_from_env_factory
Add a utility that can be used as a default factory
The goal will be to start migrating from of the pydantic models to use
`from_env` as a default factory if possible.
```python
from pydantic import Field, BaseModel
from langchain_core.utils import from_env
class Foo(BaseModel):
name: str = Field(default_factory=from_env('HELLO'))
```
- **Description:** This includes Pydantic field metadata in
`_create_subset_model_v2` so that it gets included in the final
serialized form that get sent out.
- **Issue:** #25031
- **Dependencies:** n/a
- **Twitter handle:** @gramliu
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Add compatibility for pydantic 2 for a utility function.
This will help push some small changes to master, so they don't have to
be kept track of on a separate branch.
supports following UX
```python
class SubTool(TypedDict):
"""Subtool docstring"""
args: Annotated[Dict[str, Any], {}, "this does bar"]
class Tool(TypedDict):
"""Docstring
Args:
arg1: foo
"""
arg1: str
arg2: Union[int, str]
arg3: Optional[List[SubTool]]
arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
arg5: Annotated[Optional[float], None]
```
- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
Description:
This PR fixes a KeyError: 400 that occurs in the JSON schema processing
within the reduce_openapi_spec function. The _retrieve_ref function in
json_schema.py was modified to handle missing components gracefully by
continuing to the next component if the current one is not found. This
ensures that the OpenAPI specification is fully interpreted and the
agent executes without errors.
Issue:
Fixes issue #24335
Dependencies:
No additional dependencies are required for this change.
Twitter handle:
@lunara_x