https://github.com/langchain-ai/langchain/pull/31286 included an update
to the return type for `BaseChatModel.(a)stream`, from
`Iterator[BaseMessageChunk]` to `Iterator[BaseMessage]`.
This change is correct, because when streaming is disabled, the stream
methods return an iterator of `BaseMessage`, and the inheritance is such
that an `BaseMessage` is not a `BaseMessageChunk` (but the reverse is
true).
However, LangChain includes a pattern throughout its docs of [summing
BaseMessageChunks](https://python.langchain.com/docs/how_to/streaming/#llms-and-chat-models)
to accumulate a chat model stream. This pattern is implemented in tests
for most integration packages and appears in application code. So
https://github.com/langchain-ai/langchain/pull/31286 introduces mypy
errors throughout the ecosystem (or maybe more accurately, it reveals
that this pattern does not account for use of the `.stream` method when
streaming is disabled).
Here we revert just the change to the stream return type to unblock
things. A fix for this should address docs + integration packages (or if
we elect to just force people to update code, be explicit about that).
* It is possible to chain a `Runnable` with an `AsyncIterator` as seen
in `test_runnable.py`.
* Iterator and AsyncIterator Input/Output of Callables must be put
before `Callable[[Other], Any]` otherwise the pattern matching picks the
latter.
**Issue:**[
#309070](https://github.com/langchain-ai/langchain/issues/30970)
**Cause**
Arg type in python code
```
arg: Union[SubSchema1, SubSchema2]
```
is translated to `anyOf` in **json schema**
```
"anyOf" : [{sub schema 1 ...}, {sub schema 1 ...}]
```
The value of anyOf is a list sub schemas.
The bug is caused since the sub schemas inside `anyOf` list is not taken
care of.
The location where the issue happens is `convert_to_openai_function`
function -> `_recursive_set_additional_properties_false` function, that
recursively adds `"additionalProperties": false` to json schema which is
[required by OpenAI's strict function
calling](https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#additionalproperties-false-must-always-be-set-in-objects)
**Solution:**
This PR fixes this issue by iterating each sub schema inside `anyOf`
list.
A unit test is added.
**Twitter handle:** shengboma
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:** Before this commit, if one record is batched in more
than 32k rows for sqlite3 >= 3.32 or more than 999 rows for sqlite3 <
3.31, the `record_manager.delete_keys()` will fail, as we are creating a
query with too many variables.
This commit ensures that we are batching the delete operation leveraging
the `cleanup_batch_size` as it is already done for `full` cleanup.
Added unit tests for incremental mode as well on different deleting
batch size.
**Description**: The 'inspect' package in python skips over the aliases
set in the schema of a pydantic model. This is a workound to include the
aliases from the original input.
**issue**: #31035
Cc: @ccurme @eyurtsev
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
When aggregating AIMessageChunks in a stream, core prefers the leftmost
non-null ID. This is problematic because:
- Core assigns IDs when they are null to `f"run-{run_manager.run_id}"`
- The desired meaningful ID might not be available until midway through
the stream, as is the case for the OpenAI Responses API.
For the OpenAI Responses API, we assign message IDs to the top-level
`AIMessage.id`. This works in `.(a)invoke`, but during `.(a)stream` the
IDs get overwritten by the defaults assigned in langchain-core. These
IDs
[must](https://community.openai.com/t/how-to-solve-badrequesterror-400-item-rs-of-type-reasoning-was-provided-without-its-required-following-item-error-in-responses-api/1151686/9)
be available on the AIMessage object to support passing reasoning items
back to the API (e.g., if not using OpenAI's `previous_response_id`
feature). We could add them elsewhere, but seeing as we've already made
the decision to store them in `.id` during `.(a)invoke`, addressing the
issue in core lets us fix the problem with no interface changes.
Chat models currently implement support for:
- images in OpenAI Chat Completions format
- other multimodal types (e.g., PDF and audio) in a cross-provider
[standard
format](https://python.langchain.com/docs/how_to/multimodal_inputs/)
Here we update core to extend support to PDF and audio input in Chat
Completions format. **If an OAI-format PDF or audio content block is
passed into any chat model, it will be transformed to the LangChain
standard format**. We assume that any chat model supporting OAI-format
PDF or audio has implemented support for the standard format.
Addresses #30158
When using the output parser—either in a chain or standalone—hitting
max_tokens triggers a misleading “missing variable” error instead of
indicating the output was truncated. This subtle bug often surfaces with
Anthropic models.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
We only need to rebuild model schemas if type annotation information
isn't available during declaration - that shouldn't be the case for
these types corrected here.
Need to do more thorough testing to make sure these structures have
complete schemas, but hopefully this boosts startup / import time.
Fix CI to trigger benchmarks on `run-codspeed-benchmarks` label addition
Reduce scope of async benchmark to save time on CI
Waiting to merge this PR until we figure out how to use walltime on
local runners.
Looks like `pyupgrade` was already used here but missed some docs and
tests.
This helps to keep our docs looking professional and up to date.
Eventually, we should lint / format our inline docs.
The first in a sequence of PRs focusing on improving performance in
core. We're starting with reducing import times for common structures,
hence the benchmarks here.
The benchmark looks a little bit complicated - we have to use a process
so that we don't suffer from Python's import caching system. I tried
doing manual modification of `sys.modules` between runs, but that's
pretty tricky / hacky to get right, hence the subprocess approach.
Motivated by extremely slow baseline for common imports (we're talking
2-5 seconds):
<img width="633" alt="Screenshot 2025-04-09 at 12 48 12 PM"
src="https://github.com/user-attachments/assets/994616fe-1798-404d-bcbe-48ad0eb8a9a0"
/>
Also added a `make benchmark` command to make local runs easy :).
Currently using walltimes so that we can track total time despite using
a manual proces.
Add ruff rules PGH: https://docs.astral.sh/ruff/rules/#pygrep-hooks-pgh
Except PGH003 which will be dealt in a dedicated PR.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
**Description:**
Fixed a bug in `BaseCallbackManager.remove_handler()` that caused a
`ValueError` when removing a handler added via the constructor's
`handlers` parameter. The issue occurred because handlers passed to the
constructor were added only to the `handlers` list and not automatically
to `inheritable_handlers` unless explicitly specified. However,
`remove_handler()` attempted to remove the handler from both lists
unconditionally, triggering a `ValueError` when it wasn't in
`inheritable_handlers`.
The fix ensures the method checks for the handler’s presence in each
list before attempting removal, making it more robust while preserving
its original behavior.
**Issue:** Fixes#30640
**Dependencies:** None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This pull request includes various changes to the `langchain_core`
library, focusing on improving compatibility with different versions of
Pydantic. The primary change involves replacing checks for Pydantic
major versions with boolean flags, which simplifies the code and
improves readability.
This also solves ruff rule checks for
[RUF048](https://docs.astral.sh/ruff/rules/map-int-version-parsing/) and
[PLR2004](https://docs.astral.sh/ruff/rules/magic-value-comparison/).
Key changes include:
### Compatibility Improvements:
*
[`libs/core/langchain_core/output_parsers/json.py`](diffhunk://#diff-5add0cf7134636ae4198a1e0df49ee332ae0c9123c3a2395101e02687c717646L22-R24):
Replaced `PYDANTIC_MAJOR_VERSION` with `IS_PYDANTIC_V1` to check for
Pydantic version 1.
*
[`libs/core/langchain_core/output_parsers/pydantic.py`](diffhunk://#diff-2364b5b4aee01c462aa5dbda5dc3a877dcd20f29df173ad540dc8adf8b192361L14-R14):
Updated version checks from `PYDANTIC_MAJOR_VERSION` to `IS_PYDANTIC_V2`
in the `PydanticOutputParser` class.
[[1]](diffhunk://#diff-2364b5b4aee01c462aa5dbda5dc3a877dcd20f29df173ad540dc8adf8b192361L14-R14)
[[2]](diffhunk://#diff-2364b5b4aee01c462aa5dbda5dc3a877dcd20f29df173ad540dc8adf8b192361L27-R27)
### Utility Enhancements:
*
[`libs/core/langchain_core/utils/pydantic.py`](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896R23):
Introduced `IS_PYDANTIC_V1` and `IS_PYDANTIC_V2` flags and deprecated
the `get_pydantic_major_version` function. Updated various functions to
use these flags instead of version numbers.
[[1]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896R23)
[[2]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896R42-R78)
[[3]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L90-R89)
[[4]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L104-R101)
[[5]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L120-R122)
[[6]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L135-R132)
[[7]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L149-R151)
[[8]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L164-R161)
[[9]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L248-R250)
[[10]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L330-R335)
[[11]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L356-R357)
[[12]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L393-R390)
[[13]](diffhunk://#diff-ff28020c5f1073a8b63bcd9d8b756a187fd682cb81935295120c63b207071896L403-R400)
### Test Updates:
*
[`libs/core/tests/unit_tests/output_parsers/test_openai_tools.py`](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L19-R22):
Updated tests to use `IS_PYDANTIC_V1` and `IS_PYDANTIC_V2` for version
checks.
[[1]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L19-R22)
[[2]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L532-R535)
[[3]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L567-R570)
[[4]](diffhunk://#diff-694cc0318edbd6bbca34f53304934062ad59ba9f5a788252ce6c5f5452489d67L602-R605)
*
[`libs/core/tests/unit_tests/prompts/test_chat.py`](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84R7):
Replaced version tuple checks with `PYDANTIC_VERSION` comparisons.
[[1]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84R7)
[[2]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84L35-R38)
[[3]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84L924-R927)
[[4]](diffhunk://#diff-3e60e744842086a4f3c4b21bc83e819c3435720eab210078e77e2430fb8c7e84L935-R938)
*
[`libs/core/tests/unit_tests/runnables/test_graph.py`](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dR3):
Simplified version checks using `PYDANTIC_VERSION`.
[[1]](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dR3)
[[2]](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dL15-R18)
[[3]](diffhunk://#diff-99a290330ef40103d0ce02e52e21310d6fadea142bfdea13c94d23fc81c0bb5dL234-L239)
*
[`libs/core/tests/unit_tests/runnables/test_runnable.py`](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L18-R20):
Introduced `PYDANTIC_VERSION_AT_LEAST_29` and
`PYDANTIC_VERSION_AT_LEAST_210` for more readable version checks.
[[1]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L18-R20)
[[2]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L92-R99)
[[3]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L230-R233)
[[4]](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L652-R655)
Add ruff rules:
* FIX: https://docs.astral.sh/ruff/rules/#flake8-fixme-fix
* TD: https://docs.astral.sh/ruff/rules/#flake8-todos-td
Code cleanup:
*
[`libs/core/langchain_core/outputs/chat_generation.py`](diffhunk://#diff-a1017ee46f58fa4005b110ffd4f8e1fb08f6a2a11d6ca4c78ff8be641cbb89e5L56-R56):
Removed the "HACK" prefix from a comment in the `set_text` method.
Configuration adjustments:
*
[`libs/core/pyproject.toml`](diffhunk://#diff-06baaee12b22a370fef9f170c9ed13e2727e377d3b32f5018430f4f0a39d3537R85-R93):
Added new rules `FIX002`, `TD002`, and `TD003` to the ignore list.
*
[`libs/core/pyproject.toml`](diffhunk://#diff-06baaee12b22a370fef9f170c9ed13e2727e377d3b32f5018430f4f0a39d3537L102-L108):
Removed the `FIX` and `TD` rules from the ignore list.
Test refinement:
*
[`libs/core/tests/unit_tests/runnables/test_runnable.py`](diffhunk://#diff-06bed920c0dad0cfd41d57a8d9e47a7b56832409649c10151061a791860d5bb5L3231-R3232):
Updated a TODO comment to improve clarity in the `test_map_stream`
function.
- **Description:** Propagates config_factories when calling decoration
methods for RunnableBinding--e.g. bind, with_config, with_types,
with_retry, and with_listeners. This ensures that configs attached to
the original RunnableBinding are kept when creating the new
RunnableBinding and the configs are merged during invocation. Picks up
where #30551 left off.
- **Issue:** #30531
Co-authored-by: ccurme <chester.curme@gmail.com>
Release notes: https://pydantic.dev/articles/pydantic-v2-11-release
Covered here:
- We no longer access `model_fields` on class instances (that is now
deprecated);
- Update schema normalization for Pydantic version testing to reflect
changes to generated JSON schema (addition of `"additionalProperties":
True` for dict types with value Any or object).
## Considerations:
### Changes to JSON schema generation
#### Tool-calling / structured outputs
This may impact tool-calling + structured outputs for some providers,
but schema generation only changes if you have parameters of the form
`dict`, `dict[str, Any]`, `dict[str, object]`, etc. If dict parameters
are typed my understanding is there are no changes.
For OpenAI for example, untyped dicts work for structured outputs with
default settings before and after updating Pydantic, and error both
before/after if `strict=True`.
### Use of `model_fields`
There is one spot where we previously accessed `super(cls,
self).model_fields`, where `cls` is an object in the MRO. This was done
for the purpose of tracking aliases in secrets. I've updated this to
always be `type(self).model_fields`-- see comment in-line for detail.
---------
Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
**Description:**
This PR addresses the loss of partially initialised variables when
composing different prompts. I.e. it allows the following snippet to
run:
```python
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([('system', 'Prompt {x} {y}')]).partial(x='1')
appendix = ChatPromptTemplate.from_messages([('system', 'Appendix {z}')])
(prompt + appendix).invoke({'y': '2', 'z': '3'})
```
Previously, this would have raised a `KeyError`, stating that variable
`x` remains undefined.
**Issue**
References issue #30049
**Todo**
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Stripped-down version of
[OpenAICallbackHandler](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/callbacks/openai_info.py)
that just tracks `AIMessage.usage_metadata`.
```python
from langchain_core.callbacks import get_usage_metadata_callback
from langgraph.prebuilt import create_react_agent
def get_weather(location: str) -> str:
"""Get the weather at a location."""
return "It's sunny."
tools = [get_weather]
agent = create_react_agent("openai:gpt-4o-mini", tools)
with get_usage_metadata_callback() as cb:
result = await agent.ainvoke({"messages": "What's the weather in Boston?"})
print(cb.usage_metadata)
```
- Support thinking blocks in core's `convert_to_openai_messages` (pass
through instead of error)
- Ignore thinking blocks in ChatOpenAI (instead of error)
- Support Anthropic-style image blocks in ChatOpenAI
---
Standard integration tests include a `supports_anthropic_inputs`
property which is currently enabled only for tests on `ChatAnthropic`.
This test enforces compatibility with message histories of the form:
```
- system message
- human message
- AI message with tool calls specified only through `tool_use` content blocks
- human message containing `tool_result` and an additional `text` block
```
It additionally checks support for Anthropic-style image inputs if
`supports_image_inputs` is enabled.
Here we change this test, such that if you enable
`supports_anthropic_inputs`:
- You support AI messages with text and `tool_use` content blocks
- You support Anthropic-style image inputs (if `supports_image_inputs`
is enabled)
- You support thinking content blocks.
That is, we add a test case for thinking content blocks, but we also
remove the requirement of handling tool results within HumanMessages
(motivated by existing agent abstractions, which should all return
ToolMessage). We move that requirement to a ChatAnthropic-specific test.
See https://docs.astral.sh/ruff/rules/#flake8-type-checking-tc
Some fixes done for TC001,TC002 and TC003 but these rules are excluded
since they don't play well with Pydantic.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Resolves https://github.com/langchain-ai/langchain/issues/29003,
https://github.com/langchain-ai/langchain/issues/27264
Related: https://github.com/langchain-ai/langchain-redis/issues/52
```python
from langchain.chat_models import init_chat_model
from langchain.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
from pydantic import BaseModel
cache = SQLiteCache()
set_llm_cache(cache)
class Temperature(BaseModel):
value: int
city: str
llm = init_chat_model("openai:gpt-4o-mini")
structured_llm = llm.with_structured_output(Temperature)
```
```python
# 681 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
```python
# 6.98 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
See https://docs.astral.sh/ruff/rules/#flake8-annotations-ann
The interest compared to only mypy is that ruff is very fast at
detecting missing annotations.
ANN101 and ANN102 are deprecated so we ignore them
ANN401 (no Any type) ignored to be in sync with mypy config
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** Add tests for respecting max_concurrency and
implement it for abatch_as_completed so that test passes
- **Issue:** #29425
- **Dependencies:** none
- **Twitter handle:** keenanpepper
**Description**
Currently, when parsing a partial JSON, if a string ends with the escape
character, the whole key/value is removed. For example:
```
>>> from langchain_core.utils.json import parse_partial_json
>>> my_str = '{"foo": "bar", "baz": "qux\\'
>>>
>>> parse_partial_json(my_str)
{'foo': 'bar'}
```
My expectation (and with this fix) would be for `parse_partial_json()`
to return:
```
>>> from langchain_core.utils.json import parse_partial_json
>>>
>>> my_str = '{"foo": "bar", "baz": "qux\\'
>>> parse_partial_json(my_str)
{'foo': 'bar', 'baz': 'qux'}
```
Notes:
1. It could be argued that current behavior is still desired.
2. I have experienced this issue when the streaming output from an LLM
and the chunk happens to end with `\\`
3. I haven't included tests. Will do if change is accepted.
4. This is specially troublesome when this function is used by
187131c55c/libs/core/langchain_core/output_parsers/transform.py (L111)
since what happens is that, for example, if the received sequence of
chunks are: `{"foo": "b` , `ar\\` :
Then, the result of calling `self.parse_result()` is:
```
{"foo": "b"}
```
and the second time:
```
{}
```
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR uses the [blockbuster](https://github.com/cbornet/blockbuster)
library in langchain-core to detect blocking calls made in the asyncio
event loop during unit tests.
Avoiding blocking calls is hard as these can be deeply buried in the
code or made in 3rd party libraries.
Blockbuster makes it easier to detect them by raising an exception when
a call is made to a known blocking function (eg: `time.sleep`).
Adding blockbuster allowed to find a blocking call in
`aconfig_with_context` (it ends up calling `get_function_nonlocals`
which loads function code).
**Dependencies:**
- blockbuster (test)
**Twitter handle:** cbornet_
TRY004 ("use TypeError rather than ValueError") existing errors are
marked as ignore to preserve backward compatibility.
LMK if you prefer to fix some of them.
Co-authored-by: Erick Friis <erick@langchain.dev>
Add option to return content and artifacts, to also be able to access
the full info of the retrieved documents.
They are returned as a list of dicts in the `artifacts` property if
parameter `response_format` is set to `"content_and_artifact"`.
Defaults to `"content"` to keep current behavior.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
When using `create_xml_agent` or `create_json_chat_agent` to create a
agent, and the function corresponding to the tool is a parameterless
function, the `XMLAgentOutputParser` or `JSONAgentOutputParser` will
parse the tool input into an empty string, `BaseTool` will parse it into
a positional argument.
So, the program will crash finally because we invoke a parameterless
function but with a positional argument.Specially, below code will raise
StopIteration in
[_parse_input](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/tools/base.py#L419)
```python
from langchain import hub
from langchain.agents import AgentExecutor, create_json_chat_agent, create_xml_agent
from langchain_openai import ChatOpenAI
prompt = hub.pull("hwchase17/react-chat-json")
llm = ChatOpenAI()
# agent = create_xml_agent(llm, tools, prompt)
agent = create_json_chat_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke(......)
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- Convert developer openai messages to SystemMessage
- store additional_kwargs={"__openai_role__": "developer"} so that the
correct role can be reconstructed if needed
- update ChatOpenAI to read in openai_role
---------
Co-authored-by: Erick Friis <erick@langchain.dev>