Ensures proper reStructuredText formatting by adding the required blank
line before closing docstring quotes, which resolves the "Block quote
ends without a blank line; unexpected unindent" warning.
**TL;DR much of the provided `Makefile` targets were broken, and any
time I wanted to preview changes locally I either had to refer to a
command Chester gave me or try waiting on a Vercel preview deployment.
With this PR, everything should behave like normal.**
Significant updates to the `Makefile` and documentation files, focusing
on improving usability, adding clear messaging, and fixing/enhancing
documentation workflows.
### Updates to `Makefile`:
#### Enhanced build and cleaning processes:
- Added informative messages (e.g., "📚 Building LangChain
documentation...") to makefile targets like `docs_build`, `docs_clean`,
and `api_docs_build` for better user feedback during execution.
- Introduced a `clean-cache` target to the `docs` `Makefile` to clear
cached dependencies and ensure clean builds.
#### Improved dependency handling:
- Modified `install-py-deps` to create a `.venv/deps_installed` marker,
preventing redundant/duplicate dependency installations and improving
efficiency.
#### Streamlined file generation and infrastructure setup:
- Added caching for the LangServe README download and parallelized
feature table generation
- Added user-friendly completion messages for targets like `copy-infra`
and `render`.
#### Documentation server updates:
- Enhanced the `start` target with messages indicating server start and
URL for local documentation viewing.
---
### Documentation Improvements:
#### Content clarity and consistency:
- Standardized section titles for consistency across documentation
files.
[[1]](diffhunk://#diff-9b1a85ea8a9dcf79f58246c88692cd7a36316665d7e05a69141cfdc50794c82aL1-R1)
[[2]](diffhunk://#diff-944008ad3a79d8a312183618401fcfa71da0e69c75803eff09b779fc8e03183dL1-R1)
- Refined phrasing and formatting in sections like "Dependency
management" and "Formatting and linting" for better readability.
[[1]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L6-R6)
[[2]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L84-R82)
#### Enhanced workflows:
- Updated instructions for building and viewing documentation locally,
including tips for specifying server ports and handling API reference
previews.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L60-R94)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L82-R126)
- Expanded guidance on cleaning documentation artifacts and using
linting tools effectively.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L82-R126)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L107-R142)
#### API reference documentation:
- Improved instructions for generating and formatting in-code
documentation, highlighting best practices for docstring writing.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L107-R142)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L144-R186)
---
### Minor Changes:
- Added support for a new package name (`langchain_v1`) in the API
documentation generation script.
- Fixed minor capitalization and formatting issues in documentation
files.
[[1]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L40-R40)
[[2]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L166-R160)
---------
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This PR addresses the common issue where users struggle to pass custom
parameters to OpenAI-compatible APIs like LM Studio, vLLM, and others.
The problem occurs when users try to use `model_kwargs` for custom
parameters, which causes API errors.
## Problem
Users attempting to pass custom parameters (like LM Studio's `ttl`
parameter) were getting errors:
```python
# ❌ This approach fails
llm = ChatOpenAI(
base_url="http://localhost:1234/v1",
model="mlx-community/QwQ-32B-4bit",
model_kwargs={"ttl": 5} # Causes TypeError: unexpected keyword argument 'ttl'
)
```
## Solution
The `extra_body` parameter is the correct way to pass custom parameters
to OpenAI-compatible APIs:
```python
# ✅ This approach works correctly
llm = ChatOpenAI(
base_url="http://localhost:1234/v1",
model="mlx-community/QwQ-32B-4bit",
extra_body={"ttl": 5} # Custom parameters go in extra_body
)
```
## Changes Made
1. **Enhanced Documentation**: Updated the `extra_body` parameter
docstring with comprehensive examples for LM Studio, vLLM, and other
providers
2. **Added Documentation Section**: Created a new "OpenAI-compatible
APIs" section in the main class docstring with practical examples
3. **Unit Tests**: Added tests to verify `extra_body` functionality
works correctly:
- `test_extra_body_parameter()`: Verifies custom parameters are included
in request payload
- `test_extra_body_with_model_kwargs()`: Ensures `extra_body` and
`model_kwargs` work together
4. **Clear Guidance**: Documented when to use `extra_body` vs
`model_kwargs`
## Examples Added
**LM Studio with TTL (auto-eviction):**
```python
ChatOpenAI(
base_url="http://localhost:1234/v1",
api_key="lm-studio",
model="mlx-community/QwQ-32B-4bit",
extra_body={"ttl": 300} # Auto-evict after 5 minutes
)
```
**vLLM with custom sampling:**
```python
ChatOpenAI(
base_url="http://localhost:8000/v1",
api_key="EMPTY",
model="meta-llama/Llama-2-7b-chat-hf",
extra_body={
"use_beam_search": True,
"best_of": 4
}
)
```
## Why This Works
- `model_kwargs` parameters are passed directly to the OpenAI client's
`create()` method, causing errors for non-standard parameters
- `extra_body` parameters are included in the HTTP request body, which
is exactly what OpenAI-compatible APIs expect for custom parameters
Fixes#32115.
<!-- START COPILOT CODING AGENT TIPS -->
---
💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
**Description:**
`langchain_huggingface` has a very large installation size of around 600
MB (on a Mac with Python 3.11). This is due to its dependency on
`sentence-transformers`, which in turn depends on `torch`, which is 320
MB all by itself. Similarly, the depedency on `transformers` adds
another set of heavy dependencies. With those dependencies removed, the
installation of `langchain_huggingface` only takes up ~26 MB. This is
only 5 % of the full installation!
These libraries are not necessary to use `langchain_huggingface`'s API
wrapper classes, only for local inferences/embeddings. All import
statements for those two libraries already have import guards in place
(try/catch with a helpful "please install x" message).
This PR therefore moves those two libraries to an optional dependency
group `full`. So a `pip install langchain_huggingface` will only install
the lightweight version, and a `pip install
"langchain_huggingface[full]"` will install all dependencies.
I know this may break existing code, because `sentence-transformers` and
`transformers` are now no longer installed by default. Given that users
will see helpful error messages when that happens, and the major impact
of this small change, I hope that you will still consider this PR.
**Dependencies:** No new dependencies, but new optional grouping.
Hi there, I'm Célina from 🤗,
This PR introduces support for Hugging Face's serverless Inference
Providers (documentation
[here](https://huggingface.co/docs/inference-providers/index)), allowing
users to specify different providers for chat completion and text
generation tasks.
This PR also removes the usage of `InferenceClient.post()` method in
`HuggingFaceEndpoint`, in favor of the task-specific `text_generation`
method. `InferenceClient.post()` is deprecated and will be removed in
`huggingface_hub v0.31.0`.
---
## Changes made
- bumped the minimum required version of the `huggingface-hub` package
to ensure compatibility with the latest API usage.
- added a `provider` field to `HuggingFaceEndpoint`, enabling users to
select the inference provider (e.g., 'cerebras', 'together',
'fireworks-ai'). Defaults to `hf-inference` (HF Inference API).
- replaced the deprecated `InferenceClient.post()` call in
`HuggingFaceEndpoint` with the task-specific `text_generation` method
for future-proofing, `post()` will be removed in huggingface-hub
v0.31.0.
- updated the `ChatHuggingFace` component:
- added async and streaming support.
- added support for tool calling.
- exposed underlying chat completion parameters for more granular
control.
- Added integration tests for `ChatHuggingFace` and updated the
corresponding unit tests.
✅ All changes are backward compatible.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Follow up to https://github.com/langchain-ai/langsmith-sdk/pull/1696,
I've bumped the `langsmith` version where applicable in `uv.lock`.
Type checking problems here because deps have been updated in
`pyproject.toml` and `uv lock` hasn't been run - we should enforce that
in the future - goes with the other dependabot todos :).
Hi there, This is a complementary PR to #30733.
This PR introduces support for Hugging Face's serverless Inference
Providers (documentation
[here](https://huggingface.co/docs/inference-providers/index)), allowing
users to specify different providers
This PR also removes the usage of `InferenceClient.post()` method in
`HuggingFaceEndpointEmbeddings`, in favor of the task-specific
`feature_extraction` method. `InferenceClient.post()` is deprecated and
will be removed in `huggingface_hub` v0.31.0.
## Changes made
- bumped the minimum required version of the `huggingface_hub` package
to ensure compatibility with the latest API usage.
- added a provider field to `HuggingFaceEndpointEmbeddings`, enabling
users to select the inference provider.
- replaced the deprecated `InferenceClient.post()` call in
`HuggingFaceEndpointEmbeddings` with the task-specific
`feature_extraction` method for future-proofing, `post()` will be
removed in `huggingface-hub` v0.31.0.
✅ All changes are backward compatible.
---------
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Generally, this PR is CI performance focused + aims to clean up some
dependencies at the same time.
1. Unpins upper bounds for `numpy` in all `pyproject.toml` files where
`numpy` is specified
2. Requires `numpy >= 2.1.0` for Python 3.13 and `numpy > v1.26.0` for
Python 3.12, plus a `numpy` min version bump for `chroma`
3. Speeds up CI by minutes - linting on Python 3.13, installing `numpy <
2.1.0` was taking [~3
minutes](https://github.com/langchain-ai/langchain/actions/runs/14316342925/job/40123305868?pr=30713),
now the entire env setup takes a few seconds
4. Deleted the `numpy` test dependency from partners where that was not
used, specifically `huggingface`, `voyageai`, `xai`, and `nomic`.
It's a bit unfortunate that `langchain-community` depends on `numpy`, we
might want to try to fix that in the future...
Closes https://github.com/langchain-ai/langchain/issues/26026
Fixes https://github.com/langchain-ai/langchain/issues/30555
ONNX and OpenVINO models are available by specifying the `backend`
argument (the model is loaded using `optimum`
https://github.com/huggingface/optimum)
```python
from langchain_huggingface import HuggingFaceEmbeddings
embedding = HuggingFaceEmbeddings(
model_name=model_id,
model_kwargs={"backend": "onnx"},
)
```
With this PR we also enable the IPEX backend
```python
from langchain_huggingface import HuggingFaceEmbeddings
embedding = HuggingFaceEmbeddings(
model_name=model_id,
model_kwargs={"backend": "ipex"},
)
```
These are set in Github workflows, but forgot to add them to most
makefiles for convenience when developing locally.
`uv run` will automatically sync the lock file. Because many of our
development dependencies are local installs, it will pick up version
changes and update the lock file. Passing `--frozen` or setting this
environment variable disables the behavior.
- **Description:** Add to check pad_token_id and eos_token_id of model
config. It seems that this is the same bug as the HuggingFace TGI bug.
It's same bug as #29434
- **Issue:** #29431
- **Dependencies:** none
- **Twitter handle:** tell14
Example code is followings:
```python
from langchain_huggingface.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="meta-llama/Llama-3.2-3B-Instruct",
task="text-generation",
pipeline_kwargs={"max_new_tokens": 10},
)
from langchain_core.prompts import PromptTemplate
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
chain = prompt | hf
question = "What is electroencephalography?"
print(chain.invoke({"question": question}))
```
**Description:** This PR introduces a `model` alias for the embedding
classes that contain the attribute `model_name`, to ensure consistency
across the codebase, as suggested by a moderator in a previous PR. The
change aligns the usage of attribute names across the project (see for
example
[here](65deeddd5d/libs/partners/groq/langchain_groq/chat_models.py (L304))).
**Issue:** This PR addresses the suggestion from the review of issue
#28269.
**Dependencies:** None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Currently `_convert_TGI_message_to_LC_message` replaces `'` in the tool
arguments, so an argument like "It's" will be converted to `It"s` and
could cause a json parser to fail.
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Vadym Barda <vadym@langchain.dev>
This change refines the handling of _model_kwargs in POST requests.
Instead of nesting _model_kwargs as a dictionary under the parameters
key, it is now directly unpacked and merged into the request's JSON
payload. This ensures that the model parameters are passed correctly and
avoids unnecessary nesting.E. g.:
```python
import asyncio
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings
embedding_input = ["This input will get multiplied" * 10000]
embeddings = HuggingFaceEndpointEmbeddings(
model="http://127.0.0.1:8081/embed",
model_kwargs={"truncate": True},
)
# Truncated parameters in synchronized methods are handled correctly
embeddings.embed_documents(texts=embedding_input)
# The truncate parameter is not handled correctly in the asynchronous method,
# and 413 Request Entity Too Large is returned.
asyncio.run(embeddings.aembed_documents(texts=embedding_input))
```
Co-authored-by: af su <saf@zjuici.com>
Co-authored-by: Erick Friis <erick@langchain.dev>