Commit Graph

14399 Commits

Author SHA1 Message Date
Eugene Yurtsev
06ce94ca06 x 2025-10-06 00:00:02 -04:00
Nuno Campos
a9aa3f232d feat(langchain_v1): Add retry_model_request middleware hook, add ModelFallbackMiddleware (#33275)
- retry_model_request hook lets a middleware decide to retry a failed
model request, with full ability to modify as much or as little of the
request before doing so
- ModelFallbackMiddleware tries each fallback model in order, until one
is successful, or fallback list is exhausted

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-10-05 20:32:45 +00:00
Sydney Runkle
20514f5d44 fix(langchain_v1): linting fixes for llm tool selector (#33278)
* Including server side tools by default
* Fixing up typing / linting on `master`
2025-10-05 16:30:27 -04:00
Eugene Yurtsev
df2ecd9448 feat(langchain_v1): add llm selection middleware (#33272)
* Add llm based tool selection middleware.
* Note that we might want some form of caching for when the agent is
inside an active tool calling loop as the tool selection isn't expected
to change during that time.

API:

```python
class LLMToolSelectorMiddleware(AgentMiddleware):
    """Uses an LLM to select relevant tools before calling the main model.

    When an agent has many tools available, this middleware filters them down
    to only the most relevant ones for the user's query. This reduces token usage
    and helps the main model focus on the right tools.

    Examples:
        Limit to 3 tools:
        ```python
        from langchain.agents.middleware import LLMToolSelectorMiddleware

        middleware = LLMToolSelectorMiddleware(max_tools=3)

        agent = create_agent(
            model="openai:gpt-4o",
            tools=[tool1, tool2, tool3, tool4, tool5],
            middleware=[middleware],
        )
        ```

        Use a smaller model for selection:
        ```python
        middleware = LLMToolSelectorMiddleware(model="openai:gpt-4o-mini", max_tools=2)
        ```
    """

    def __init__(
        self,
        *,
        model: str | BaseChatModel | None = None,
        system_prompt: str = DEFAULT_SYSTEM_PROMPT,
        max_tools: int | None = None,
        always_include: list[str] | None = None,
    ) -> None:
        """Initialize the tool selector.

        Args:
            model: Model to use for selection. If not provided, uses the agent's main model.
                Can be a model identifier string or BaseChatModel instance.
            system_prompt: Instructions for the selection model.
            max_tools: Maximum number of tools to select. If the model selects more,
                only the first max_tools will be used. No limit if not specified.
            always_include: Tool names to always include regardless of selection.
                These do not count against the max_tools limit.
        """
```



```python
"""Test script for LLM tool selection middleware."""

from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolSelectorMiddleware
from langchain_core.tools import tool


@tool
def get_weather(location: str) -> str:
    """Get current weather for a location."""
    return f"Weather in {location}: 72°F, sunny"


@tool
def search_web(query: str) -> str:
    """Search the web for information."""
    return f"Search results for: {query}"


@tool
def calculate(expression: str) -> str:
    """Perform mathematical calculations."""
    return f"Result of {expression}: 42"


@tool
def send_email(to: str, subject: str) -> str:
    """Send an email to someone."""
    return f"Email sent to {to} with subject: {subject}"


@tool
def get_stock_price(symbol: str) -> str:
    """Get current stock price for a symbol."""
    return f"Stock price for {symbol}: $150.25"


@tool
def translate_text(text: str, target_language: str) -> str:
    """Translate text to another language."""
    return f"Translated '{text}' to {target_language}"


@tool
def set_reminder(task: str, time: str) -> str:
    """Set a reminder for a task."""
    return f"Reminder set: {task} at {time}"


@tool
def get_news(topic: str) -> str:
    """Get latest news about a topic."""
    return f"Latest news about {topic}"


@tool
def book_flight(destination: str, date: str) -> str:
    """Book a flight to a destination."""
    return f"Flight booked to {destination} on {date}"


@tool
def get_restaurant_recommendations(city: str, cuisine: str) -> str:
    """Get restaurant recommendations."""
    return f"Top {cuisine} restaurants in {city}"


# Create agent with tool selection middleware
middleware = LLMToolSelectorMiddleware(
    model="openai:gpt-4o-mini",
    max_tools=3,
)

agent = create_agent(
    model="openai:gpt-4o",
    tools=[
        get_weather,
        search_web,
        calculate,
        send_email,
        get_stock_price,
        translate_text,
        set_reminder,
        get_news,
        book_flight,
        get_restaurant_recommendations,
    ],
    middleware=[middleware],
)

# Test with a query that should select specific tools
response = agent.invoke(
    {"messages": [{"role": "user", "content": "I need to find restaurants"}]}
)

print(response)
```
2025-10-05 15:55:55 -04:00
Eugene Yurtsev
bdb7dbbf16 feat(langchain_v1): represent server side tools in modifyModelRequest and update tool handling (#33274)
* Add server side tools to modifyModelRequest (represented as dicts)
* Update some of the logic in terms of which tools are bound to ToolNode
* We still have a constraint on changing the response format dynamically
when using tool strategy. structured_output_tools are being using in
some of the edges. The code is now raising an exception to explain that
it's a limitation of the implementation. (We can add support later.)
2025-10-05 15:55:46 -04:00
Nuno Campos
30f7c87b6f feat(langchain_v1): Implement PIIMiddleware (#33271)
- supports 6 well-known PII types (email, credit_card, ip, mac_address,
url)
- 4 handling strategies (block, redact, mask, hash)
- supports custom PII types with detector functions or regex
- the built-in types were chosen because they are common, and detection
can be reliably implemented with stdlib
2025-10-04 22:27:51 -04:00
Eugene Yurtsev
fdf8181f58 fix(langchain_v1): dynamic response format (#33273)
* Preserve Auto type for the response format. cc @sydney-runkle Creating
an extra type was the nicest devx I could find for this (makes it easy
to do isinstance(thingy, AutoStrategy)

Remaining issue to address:
* Going to sort out why we're including tools in the tool node
2025-10-04 16:58:32 -04:00
Eugene Yurtsev
8a95eb1ef7 chore(langchain_v1): remove union return type in init_embeddings (#33062)
Fix the return type of init_embeddings
2025-10-04 16:40:36 -04:00
Eugene Yurtsev
4d1cfa494a chore(langchain,prompty): rename to langchain-classic (#33256)
* Rename to langchain-classic
* After release of community, we should add the [community] option back
into the pyproject.toml file.
2025-10-04 16:04:43 -04:00
Nuno Campos
2286d0d993 feat(langchain_v1): Add ToolCallLimitMiddleware (#33269)
which implements a tool call budget for either all tools, or a specific tool

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-10-04 15:03:45 -04:00
Eugene Yurtsev
46b87e435c chore(langchain_v1): change modifyModelRequest back to tools (#33270)
Seems like a much better devx with fairly little downside (we'll
document that you can't register new tools)
2025-10-04 12:33:54 -04:00
Eugene Yurtsev
905c6d7bad fix(langchain_v1): handle switching resposne format strategy based on model identity (#33259)
Change response format strategy dynamically based on model.

After this PR there are two remaining issues:

- [ ] Review binding of tools used for output to ToolNode (shouldn't be
required)
- [ ] Update ModelRequest to also support the original schema provided
by the user (to correctly support auto mode)
2025-10-04 11:56:56 -04:00
Sydney Runkle
acd1aa813c feat(langchain_v1): implement nicer devx for dynamic prompt (#33264)
Adding a `dynamic_prompt` decorator to support smoother devx for dynamic
system prompts

```py
from langchain.agents.middleware.types import dynamic_prompt, ModelRequest, AgentState
from langchain.agents.middleware_agent import create_agent
from langgraph.runtime import Runtime
from dataclasses import dataclass
from langchain_core.messages import HumanMessage


@dataclass
class Context:
    user_name: str


@dynamic_prompt
def my_prompt(request: ModelRequest, state: AgentState, runtime: Runtime[Context]) -> str:
    user_name = runtime.context.user_name
    return (
        f"You are a helpful assistant helping {user_name}. Please refer to the user as {user_name}."
    )


agent = create_agent(model="openai:gpt-4o", middleware=[my_prompt]).compile()

result = agent.invoke({"messages": [HumanMessage("Hello")]}, context=Context(user_name="Sydney"))
for msg in result["messages"]:
    msg.pretty_print()

"""
================================ Human Message =================================

Hello
================================== Ai Message ==================================

Hello Sydney! How can I assist you today?
"""

```
2025-10-03 21:06:23 -04:00
Sydney Runkle
2671fee2c6 feat(langchain_v1): description generator for HITL middleware (#33195)
Need to decide - what information should we feed to this description
factory? Right now, feeding:
* state
* runtime
* tool call (so the developer doesn't have to search through the state's
messages for the corresponding tool call)

I can see a case for just passing tool call. But again, this abstraction
is semi-bound to interrupts for tools... though we pretend it's more
abstract than that.

Right now:

```py
def custom_description(state: AgentState, runtime: Runtime, tool_call: ToolCall) -> str:
        """Generate a custom description."""
        return f"Custom: {tool_call['name']} with args {tool_call['args']}"

middleware = HumanInTheLoopMiddleware(
    interrupt_on={
        "tool_with_callable": {"allow_accept": True, "description": custom_description},
        "tool_with_string": {"allow_accept": True, "description": "Static description"},
    }
)
```
2025-10-04 01:01:44 +00:00
ccurme
010ed5d096 fix(anthropic,openai): fix tests (#33257)
following https://github.com/langchain-ai/langchain/pull/33192
2025-10-03 13:41:37 -04:00
Eugene Yurtsev
7f5be6b65c chore(core,langchain,langchain_v1)!: remove globals from langchain-v1, update globals in langchain-classic, langchain-core (#33251)
* Remove globals.py from langchain_v1
* Adjust langchain-core to not inspect langchain namespace
2025-10-03 12:53:33 -04:00
Eugene Yurtsev
1074ce5fe5 chore(langchain_v1)!: Remove ToolNode from agents (#33250)
Remove ToolNode from agents namespace. It should only be present in tools
2025-10-03 10:57:54 -04:00
Sydney Runkle
3d2f13a2f1 feat(langchain): model call limits (#33178)
This PR adds a model call limit middleware that helps to manage:

* number of model calls during a run (helps w/ avoiding tool calling
loops) - implemented w/ `UntrackedValue`
* number of model calls on a thread (helps w/ avoiding lengthy convos) -
standard state

Concern here is w/ other middlewares overwriting the model call count...
we could use a `_` prefixed field?
2025-10-03 08:28:56 -04:00
SN
99361e623a feat(core): add optional include_id param to convert_to_openai_messages function (#33242) 2025-10-03 08:22:43 -04:00
Mason Daugherty
5a016de53f chore: delete deprecated items (#33192)
Removed:
- `libs/core/langchain_core/chat_history.py`: `add_user_message` and
`add_ai_message` in favor of `add_messages` and `aadd_messages`
- `libs/core/langchain_core/language_models/base.py`: `predict`,
`predict_messages`, and async versions in favor of `invoke`. removed
`_all_required_field_names` since it was a wrapper on
`get_pydantic_field_names`
- `libs/core/langchain_core/language_models/chat_models.py`:
`callback_manager` param in favor of `callbacks`. `__call__` and
`call_as_llm` method in favor of `invoke`
- `libs/core/langchain_core/language_models/llms.py`: `callback_manager`
param in favor of `callbacks`. `__call__`, `predict`, `apredict`, and
`apredict_messages` methods in favor of `invoke`
- `libs/core/langchain_core/prompts/chat.py`: `from_role_strings` and
`from_strings` in favor of `from_messages`
- `libs/core/langchain_core/prompts/pipeline.py`: removed
`PipelinePromptTemplate`
- `libs/core/langchain_core/prompts/prompt.py`: `input_variables` param
on `from_file` as it wasn't used
- `libs/core/langchain_core/tools/base.py`: `callback_manager` param in
favor of `callbacks`
- `libs/core/langchain_core/tracers/context.py`: `tracing_enabled` in
favor of `tracing_enabled_v2`
- `libs/core/langchain_core/tracers/langchain_v1.py`: entire module
- `libs/core/langchain_core/utils/loading.py`: entire module,
`try_load_from_hub`
- `libs/core/langchain_core/vectorstores/in_memory.py`: `upsert` in
favor of `add_documents`
- `libs/standard-tests/langchain_tests/integration_tests/chat_models.py`
and `libs/standard-tests/langchain_tests/unit_tests/chat_models.py`:
`tool_choice_value` as models should accept `tool_choice="any"`
- `langchain` will consequently no longer expose these items if it was
previously

---------

Co-authored-by: Mohammad Mohtashim <45242107+keenborder786@users.noreply.github.com>
Co-authored-by: Caspar Broekhuizen <caspar@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
Co-authored-by: Vadym Barda <vadim.barda@gmail.com>
2025-10-03 03:33:24 +00:00
Mason Daugherty
b541a56c66 chore(langchain): uncomment some optional deps (#33243)
remaining:
- azure-ai
- cohere
- huggingface
- community
2025-10-02 23:29:14 -04:00
Mason Daugherty
4a6890a4e5 chore(langchain_v1): uncomment some optional deps (#33244)
remaining:
- azure-ai
- cohere
- huggingface
- community
2025-10-02 23:18:06 -04:00
Mason Daugherty
e2e0327c90 ci: add workflow for manually building API ref for v0.3 (#33241) 2025-10-02 20:33:12 -04:00
Mason Daugherty
bba37bd6be chore: add libs/ note (#33238) 2025-10-02 19:57:50 -04:00
Mason Daugherty
b051ff4a84 chore(infra): remove formatting and linting hook for root (#33237) 2025-10-02 19:43:09 -04:00
Mason Daugherty
13812f0df8 release(qdrant): 1.0.0a1 (#33236) langchain-qdrant==1.0.0a1 2025-10-02 19:37:00 -04:00
Mason Daugherty
420dcf5c4a release(prompty): 1.0.0a1 (#33235) langchain-prompty==1.0.0a1 2025-10-02 19:29:55 -04:00
Mason Daugherty
9f75e20d4f release(perplexity): 1.0.0a1 (#33234) langchain-perplexity==1.0.0a1 2025-10-02 19:23:22 -04:00
Mason Daugherty
743e9b2ad1 release(nomic): 1.0.0a1 (#33233) langchain-nomic==1.0.0a1 2025-10-02 19:23:06 -04:00
Mason Daugherty
ea438f9e8a release(groq): 1.0.0a1 (#33231) langchain-chroma==1.0.0a1 langchain-cli==1.0.0a1 langchain-deepseek==1.0.0a1 langchain-exa==1.0.0a1 langchain-fireworks==1.0.0a1 langchain-groq==1.0.0a1 2025-10-02 19:04:27 -04:00
Mason Daugherty
86cf3fad4d release(chroma): 1.0.0a1 (#33227) 2025-10-02 19:04:14 -04:00
Mason Daugherty
79a12c8f27 release(mistralai): 1.0.0a1 (#33232) 2025-10-02 19:04:03 -04:00
Mason Daugherty
e85b03d5e4 release(fireworks): 1.0.0a1 (#33230) 2025-10-02 19:03:54 -04:00
Mason Daugherty
21ba7adbab release(exa): 1.0.0a1 (#33229) 2025-10-02 19:03:45 -04:00
Mason Daugherty
f9a87971ba release(deepseek): 1.0.0a1 (#33228) 2025-10-02 19:03:39 -04:00
Mason Daugherty
638d1ff912 release(cli): 1.0.0a1 (#33226) 2025-10-02 19:03:29 -04:00
Mason Daugherty
ae5b105d11 docs: v1 docs updates (#33173)
Co-authored-by: Mohammad Mohtashim <45242107+keenborder786@users.noreply.github.com>
Co-authored-by: Caspar Broekhuizen <caspar@langchain.dev>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Sadra Barikbin <sadraqazvin1@yahoo.com>
Co-authored-by: Vadym Barda <vadim.barda@gmail.com>
2025-10-02 18:46:26 -04:00
Mason Daugherty
d07cb63c75 fix(xai): update langchain dependencies to latest alpha versions (#33224) langchain-xai==1.0.0a1 2025-10-02 17:08:16 -04:00
Mason Daugherty
b8c9b20db4 release(xai): 1.0.0a1 (#33223)
Drop Python 3.9
2025-10-02 17:00:14 -04:00
Mason Daugherty
89b4d7b6c1 fix(infra): _release.yml permissions (#33222) langchain-tests==1.0.0a2 2025-10-02 16:41:51 -04:00
Mason Daugherty
65cd214f67 chore(infra): more tweaks to PR linting (#33220) 2025-10-02 20:11:05 +00:00
Mason Daugherty
38a971cb3b release(standard-tests): 1.0.0a2 (#33219) 2025-10-02 16:09:57 -04:00
Mason Daugherty
9c9b80c70a docs(standard-tests): add clarity to docstrings (#33218) 2025-10-02 16:09:34 -04:00
Mason Daugherty
5fd4b192bc chore(infra): update integration test workflow (#33216) 2025-10-02 14:49:16 -04:00
Mason Daugherty
ae16392ada release(text-splitters): 1.0.0a1 (#33214) langchain-text-splitters==1.0.0a1 2025-10-02 13:56:10 -04:00
Mason Daugherty
ccfea37d17 style(infra): update release guidelines for IDE autogen (#33215)
VSCode looks at this file. Should help auto-gen commits for releases.
2025-10-02 17:55:35 +00:00
Mason Daugherty
5e8cb58e6a refactor(text-splitters): drop python 3.9 (#33212) 2025-10-02 13:51:10 -04:00
Mason Daugherty
740ad00d36 chore(infra): add text-splitters labeling (#33213) 2025-10-02 13:50:34 -04:00
Mason Daugherty
9459ab189a docs(openai): use text property instead of method (#33211) 2025-10-02 13:50:25 -04:00
Mason Daugherty
63097db4fc fix(ollama): exclude None parameters from options dictionary (#33208) 2025-10-02 11:25:15 -04:00