- **Description:** add a `gpu: bool = False` field to the
`FastEmbedEmbeddings` class which enables to use GPU (through ONNX CUDA
provider) when generating embeddings with any fastembed model. It just
requires the user to install a different dependency and we use a
different provider when instantiating `fastembed.TextEmbedding`
- **Issue:** when generating embeddings for a really large amount of
documents this drastically increase performance (honestly that is a must
have in some situations, you can't just use CPU it is way too slow)
- **Dependencies:** no direct change to dependencies, but internally the
users will need to install `fastembed-gpu` instead of `fastembed`, I
made all the changes to the init function to properly let the user know
which dependency they should install depending on if they enabled `gpu`
or not
cf. fastembed docs about GPU for more details:
https://qdrant.github.io/fastembed/examples/FastEmbed_GPU/
I did not added test because it would require access to a GPU in the
testing environment
### PR Title:
**community: add latest OpenAI models pricing**
### Description:
This PR updates the OpenAI model cost calculation mapping by adding the
latest OpenAI models, **o1 (non-preview)** and **o3-mini**, based on the
pricing listed on the [OpenAI pricing
page](https://platform.openai.com/docs/pricing).
### Changes:
- Added pricing for `o1`, `o1-2024-12-17`, `o1-cached`, and
`o1-2024-12-17-cached` for input tokens.
- Added pricing for `o1-completion` and `o1-2024-12-17-completion` for
output tokens.
- Added pricing for `o3-mini`, `o3-mini-2025-01-31`, `o3-mini-cached`,
and `o3-mini-2025-01-31-cached` for input tokens.
- Added pricing for `o3-mini-completion` and
`o3-mini-2025-01-31-completion` for output tokens.
### Issue:
N/A
### Dependencies:
None
### Testing & Validation:
- No functional changes outside of updating the cost mapping.
- No tests were added or modified.
**Description:**
The response from `tool.invoke()` is always a ToolMessage, with content
and artifact fields, not a tuple.
The tuple is converted to a ToolMessage here
b6ae7ca91d/libs/core/langchain_core/tools/base.py (L726)
**Issue:**
Currently `ToolsIntegrationTests` requires `invoke()` to return a tuple
and so standard tests fail for "content_and_artifact" tools. This fixes
that to check the returned ToolMessage.
This PR also adds a test that now passes.
Description: Fixes PreFilter value handling in Azure Cosmos DB NoSQL
vectorstore. The current implementation fails to handle numeric values
in filter conditions, causing an undefined value variable error. This PR
adds support for numeric, boolean, and NULL values while maintaining the
existing string and list handling.
Changes:
Added handling for numeric types (int/float)
Added boolean value support
Added NULL value handling
Added type validation for unsupported values
Fixed scope of value variable initialization
Issue:
Fixes#29610
Implementation Notes:
No changes to public API
Backwards compatible
Maintains consistent behavior with existing MongoDB-style filtering
Preserves SQL injection prevention through proper value handling
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This is one part of a larger Pull Request (PR) that is too large to be
submitted all at once. This specific part focuses on updating the XXX
parser.
For more details, see [PR
28970](https://github.com/langchain-ai/langchain/pull/28970).
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
## Description
- Removed broken link for the API Reference
- Added `OPENAI_API_KEY` setter for the chains to properly run
- renamed one of our examples so it won't override the original
retriever and cause confusion due to it using a different mode of
retrieving
- Moved one of our simple examples to be the first example of our
retriever :)