## Description
To integrate ModelScope inference API endpoints for both Embeddings,
LLMs and ChatModels, install the package
`langchain-modelscope-integration` (as discussed in issue #28928 ). This
is necessary because the package name `langchain-modelscope` was already
registered by another party.
ModelScope is a premier platform designed to connect model checkpoints
with model applications. It provides the necessary infrastructure to
share open models and promote model-centric development. For more
information, visit GitHub page:
[ModelScope](https://github.com/modelscope).
Hi Erick. Coming back from a previous attempt, we now made a separate
package for the CrateDB adapter, called `langchain-cratedb`, as advised.
Other than registering the package within `libs/packages.yml`, this
patch includes a minimal amount of documentation to accompany the advent
of this new package. Let us know about any mistakes we made, or changes
you would like to see. Thanks, Andreas.
## About
- **Description:** Register a new database adapter package,
`langchain-cratedb`, providing traditional vector store, document
loader, and chat message history features for a start.
- **Addressed to:** @efriis, @eyurtsev
- **References:** GH-27710
- **Preview:** [Providers » More »
CrateDB](https://langchain-git-fork-crate-workbench-register-la-4bf945-langchain.vercel.app/docs/integrations/providers/cratedb/)
## Status
- **PyPI:** https://pypi.org/project/langchain-cratedb/
- **GitHub:** https://github.com/crate/langchain-cratedb
- **Documentation (CrateDB):**
https://cratedb.com/docs/guide/integrate/langchain/
- **Documentation (LangChain):** _This PR._
## Backlog?
Is this applicable for this kind of patch?
> - [ ] **Add tests and docs**: If you're adding a new integration,
please include
> 1. a test for the integration, preferably unit tests that do not rely
on network access,
> 2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
## Q&A
1. Notebooks that use the LangChain CrateDB adapter are currently at
[CrateDB LangChain
Examples](https://github.com/crate/cratedb-examples/tree/main/topic/machine-learning/llm-langchain),
and the documentation refers to them. Because they are derived from very
old blueprints coming from LangChain 0.0.x times, we guess they need a
refresh before adding them to `docs/docs/integrations`. Is it applicable
to merge this minimal package registration + documentation patch, which
already includes valid code snippets in `cratedb.mdx`, and add
corresponding notebooks on behalf of a subsequent patch later?
2. How would it work getting into the tabular list of _Integration
Packages_ enumerated on the [documentation entrypoint page about
Providers](https://python.langchain.com/docs/integrations/providers/)?
/cc Please also review, @ckurze, @wierdvanderhaar, @kneth,
@simonprickett, if you can find the time. Thanks!
- *[x] **PR title**: "community: adding langchain-predictionguard
partner package documentation"
- *[x] **PR message**:
- **Description:** This PR adds documentation for the
langchain-predictionguard package to main langchain repo, along with
deprecating current Prediction Guard LLMs package. The LLMs package was
previously broken, so I also updated it one final time to allow it to
continue working from this point onward. . This enables users to chat
with LLMs through the Prediction Guard ecosystem.
- **Package Links**:
- [PyPI](https://pypi.org/project/langchain-predictionguard/)
- [Github
Repo](https://www.github.com/predictionguard/langchain-predictionguard)
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** [@predictionguard](https://x.com/predictionguard)
- *[x] **Add tests and docs**: All docs have been added for the partner
package, and the current LLMs package test was updated to reflect
changes.
- *[x] **Lint and test**: Linting tests are all passing.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
## Overview
This PR adds documentation for the `langchain-yt-dlp` package, a YouTube
document loader that uses `yt-dlp` for Youtube videos metadata
extraaction.
## Changes
- Added documentation notebook for YoutubeLoader
- Updated packages.yml to include langchain-yt-dlp
## Motivation
The existing LangChain YoutubeLoader was unable to fetch YouTube
metadata due to changes in YouTube's structure. This package resolves
those issues by leveraging the `yt-dlp` library.
## Features
- Reliable YouTube metadata extraction
## Related
- Package Repository: https://github.com/aqib0770/langchain-yt-dlp
- PyPI Package: https://pypi.org/project/langchain-yt-dlp/
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
First of all, thanks for the great framework that is LangChain!
At [Linkup](https://www.linkup.so/) we're working on an API to connect
LLMs and agents to the internet and our partner sources. We'd be super
excited to see our API integrated in LangChain! This essentially
consists in adding a LangChain retriever and tool, which is done in our
own [package](https://pypi.org/project/langchain-linkup/). Here we're
simply following the [integration
documentation](https://python.langchain.com/docs/contributing/how_to/integrations/)
and update the documentation of LangChain to mention the Linkup
integration.
We do have tests (both units & integration) in our [source
code](https://github.com/LinkupPlatform/langchain-linkup), and tried to
follow as close as possible the [integration
documentation](https://python.langchain.com/docs/contributing/how_to/integrations/)
which specifically requests to focus on documentation changes for an
integration PR, so I'm not adding tests here, even though the PR
checklist seems to suggest so. Feel free to correct me if I got this
wrong!
By the way, we would be thrilled by being mentioned in the list of
providers which have standalone packages
[here](https://langchain-git-fork-linkupplatform-cj-doc-langchain.vercel.app/docs/integrations/providers/),
is there something in particular for us to do for that? 🙂
## Twitter handle
Linkup_platform
<!--
## PR Checklist
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
--!>
Hi Langchain team!
I'm the co-founder and mantainer at
[ScrapeGraphAI](https://scrapegraphai.com/).
By following the integration
[guide](https://python.langchain.com/docs/contributing/how_to/integrations/publish/)
on your site, I have created a new lib called
[langchain-scrapegraph](https://github.com/ScrapeGraphAI/langchain-scrapegraph).
With this PR I would like to integrate Scrapegraph as provider in
Langchain, adding the required documentation files.
Let me know if there are some changes to be made to be properly
integrated both in the lib and in the documentation.
Thank you 🕷️🦜
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>