Integrate RankLLM reranker (https://github.com/castorini/rank_llm) into
LangChain
An example notebook is given in
`docs/docs/integrations/retrievers/rankllm-reranker.ipynb`
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Bug code**: In
langchain_community/document_loaders/csv_loader.py:100
- **Description**: currently, when 'CSVLoader' reads the column as None
in the 'csv' file, it will report an error because the 'CSVLoader' does
not verify whether the column is of str type and does not consider how
to handle the corresponding 'row_data' when the column is' None 'in the
csv. This pr provides a solution.
- **Issue:** Fix#20699
- **thinking:**
1. Refer to the processing method for
'langchain_community/document_loaders/csv_loader.py:100' when **'v'**
equals'None', and apply the same method to '**k**'.
(Reference`csv.DictReader` ,**'k'** will only be None when `
len(columns) < len(number_row_data)` is established)
2. **‘k’** equals None only holds when it is the last column, and its
corresponding **'v'** type is a list. Therefore, I referred to the data
format in 'Document' and used ',' to concatenated the elements in the
list.(But I'm not sure if you accept this form, if you have any other
ideas, communicate)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
We add a tool and retriever for the [AskNews](https://asknews.app)
platform with example notebooks.
The retriever can be invoked with:
```py
from langchain_community.retrievers import AskNewsRetriever
retriever = AskNewsRetriever(k=3)
retriever.invoke("impact of fed policy on the tech sector")
```
To retrieve 3 documents in then news related to fed policy impacts on
the tech sector. The included notebook also includes deeper details
about controlling filters such as category and time, as well as
including the retriever in a chain.
The tool is quite interesting, as it allows the agent to decide how to
obtain the news by forming a query and deciding how far back in time to
look for the news:
```py
from langchain_community.tools.asknews import AskNewsSearch
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_openai import ChatOpenAI
tool = AskNewsSearch()
instructions = """You are an assistant."""
base_prompt = hub.pull("langchain-ai/openai-functions-template")
prompt = base_prompt.partial(instructions=instructions)
llm = ChatOpenAI(temperature=0)
asknews_tool = AskNewsSearch()
tools = [asknews_tool]
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
)
agent_executor.invoke({"input": "How is the tech sector being affected by fed policy?"})
```
---------
Co-authored-by: Emre <e@emre.pm>
Please let me know if you see any possible areas of improvement. I would
very much appreciate your constructive criticism if time allows.
**Description:**
- Added a aerospike vector store integration that utilizes
[Aerospike-Vector-Search](https://aerospike.com/products/vector-database-search-llm/)
add-on.
- Added both unit tests and integration tests
- Added a docker compose file for spinning up a test environment
- Added a notebook
**Dependencies:** any dependencies required for this change
- aerospike-vector-search
**Twitter handle:**
- No twitter, you can use my GitHub handle or LinkedIn if you'd like
Thanks!
---------
Co-authored-by: Jesse Schumacher <jschumacher@aerospike.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Patch Summary
community:openai[patch]: standardize init args
## Details
I made changes to the OpenAI Chat API wrapper test in the Langchain
open-source repository
- **File**: `libs/community/tests/unit_tests/chat_models/test_openai.py`
- **Changes**:
- Updated `max_retries` with Pydantic Field
- Updated the corresponding unit test
- **Related Issues**: #20085
- Updated max_retries with Pydantic Field, updated the unit test.
---------
Co-authored-by: JuHyung Son <sonju0427@gmail.com>
Description: Adds NeuralDBClientVectorStore to the langchain, which is
our enterprise client.
---------
Co-authored-by: kartikTAI <129414343+kartikTAI@users.noreply.github.com>
Co-authored-by: Kartik Sarangmath <kartik@thirdai.com>
- Added new document_transformer: MarkdonifyTransformer, that uses
`markdonify` package with customizable options to convert HTML to
Markdown. It's similar to Html2TextTransformer, but has more flexible
options and also I've noticed that sometimes MarkdownifyTransformer
performs better than html2text one, so that's why I use markdownify on
my project.
- Added docs and tests
- Usage:
```python
from langchain_community.document_transformers import MarkdownifyTransformer
markdownify = MarkdownifyTransformer()
docs_transform = markdownify.transform_documents(docs)
```
- Example of better performance on simple task, that I've noticed:
```
<html>
<head><title>Reports on product movement</title></head>
<body>
<p data-block-key="2wst7">The reports on product movement will be useful for forming supplier orders and controlling outcomes.</p>
</body>
```
**Html2TextTransformer**:
```python
[Document(page_content='The reports on product movement will be useful for forming supplier orders and\ncontrolling outcomes.\n\n')]
# Here we can see 'and\ncontrolling', which has extra '\n' in it
```
**MarkdownifyTranformer**:
```python
[Document(page_content='Reports on product movement\n\nThe reports on product movement will be useful for forming supplier orders and controlling outcomes.')]
```
---------
Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.bbrouter>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.local>
Co-authored-by: Sokolov Fedor <f.sokolov@192.168.1.6>
0.2rc
migrations
- [x] Move memory
- [x] Move remaining retrievers
- [x] graph_qa chains
- [x] some dependency from evaluation code potentially on math utils
- [x] Move openapi chain from `langchain.chains.api.openapi` to
`langchain_community.chains.openapi`
- [x] Migrate `langchain.chains.ernie_functions` to
`langchain_community.chains.ernie_functions`
- [x] migrate `langchain/chains/llm_requests.py` to
`langchain_community.chains.llm_requests`
- [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder`
->
`langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder`
(namespace not ideal, but it needs to be moved to `langchain` to avoid
circular deps)
- [x] unit tests langchain -- add pytest.mark.community to some unit
tests that will stay in langchain
- [x] unit tests community -- move unit tests that depend on community
to community
- [x] mv integration tests that depend on community to community
- [x] mypy checks
Other todo
- [x] Make deprecation warnings not noisy (need to use warn deprecated
and check that things are implemented properly)
- [x] Update deprecation messages with timeline for code removal (likely
we actually won't be removing things until 0.4 release) -- will give
people more time to transition their code.
- [ ] Add information to deprecation warning to show users how to
migrate their code base using langchain-cli
- [ ] Remove any unnecessary requirements in langchain (e.g., is
SQLALchemy required?)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
[Standardized model init args
#20085](https://github.com/langchain-ai/langchain/issues/20085)
- Enable premai chat model to be initialized with `model_name` as an
alias for `model`, `api_key` as an alias for `premai_api_key`.
- Add initialization test `test_premai_initialization`
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** fix: variable names in root validator not allowing
pass credentials as named parameters in llm instancing, also added
sambanova's sambaverse and sambastudio llms to __init__.py for module
import
Thank you for contributing to LangChain!
community:baichuan[patch]: standardize init args
updated `baichuan_api_key` so that aliased to `api_key`. Added test that
it continues to set the same underlying attribute. Test checks for
`SecretStr`
updated `temperature` with Pydantic Field, added unit test.
Related to https://github.com/langchain-ai/langchain/issues/20085
Thank you for contributing to LangChain!
- Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
- Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
This Pull Requests Adds the following functionalities
Oracle AI Vector Search : Vector Store
Oracle AI Vector Search : Document Loader
Oracle AI Vector Search : Document Splitter
Oracle AI Vector Search : Summary
Oracle AI Vector Search : Oracle Embeddings
- We have added unit tests and have our own local unit test suite which
verifies all the code is correct. We have made sure to add guides for
each of the components and one end to end guide that shows how the
entire thing runs.
- We have made sure that make format and make lint run clean.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: skmishraoracle <shailendra.mishra@oracle.com>
Co-authored-by: hroyofc <harichandan.roy@oracle.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
This pull request introduces a new feature for LangChain: the
integration with the Rememberizer API through a custom retriever.
This enables LangChain applications to allow users to load and sync
their data from Dropbox, Google Drive, Slack, their hard drive into a
vector database that LangChain can query. Queries involve sending text
chunks generated within LangChain and retrieving a collection of
semantically relevant user data for inclusion in LLM prompts.
User knowledge dramatically improved AI applications.
The Rememberizer integration will also allow users to access general
purpose vectorized data such as Reddit channel discussions and US
patents.
**Issue:**
N/A
**Dependencies:**
N/A
**Twitter handle:**
https://twitter.com/Rememberizer
**Issue:**
Currently `AzureSearch` vector store does not implement `delete` method.
This PR implements it. This also makes it compatible with LangChain
indexer.
**Dependencies:**
None
**Twitter handle:**
@martintriska1
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Adding `UpstashVectorStore` to utilize [Upstash
Vector](https://upstash.com/docs/vector/overall/getstarted)!
#17012 was opened to add Upstash Vector to langchain but was closed to
wait for filtering. Now filtering is added to Upstash vector and we open
a new PR. Additionally, [embedding
feature](https://upstash.com/docs/vector/features/embeddingmodels) was
added and we add this to our vectorstore aswell.
## Dependencies
[upstash-vector](https://pypi.org/project/upstash-vector/) should be
installed to use `UpstashVectorStore`. Didn't update dependencies
because of [this comment in the previous
PR](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1876522450).
## Tests
Tests are added and they pass. Tests are naturally network bound since
Upstash Vector is offered through an API.
There was [a discussion in the previous PR about mocking the
unittests](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1891820567).
We didn't make changes to this end yet. We can update the tests if you
can explain how the tests should be mocked.
---------
Co-authored-by: ytkimirti <yusuftaha9@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**: ToolKit and Tools for accessing data in a Cassandra
Database primarily for Agent integration. Initially, this includes the
following tools:
- `cassandra_db_schema` Gathers all schema information for the connected
database or a specific schema. Critical for the agent when determining
actions.
- `cassandra_db_select_table_data` Selects data from a specific keyspace
and table. The agent can pass paramaters for a predicate and limits on
the number of returned records.
- `cassandra_db_query` Expiriemental alternative to
`cassandra_db_select_table_data` which takes a query string completely
formed by the agent instead of parameters. May be removed in future
versions.
Includes unit test and two notebooks to demonstrate usage.
**Dependencies**: cassio
**Twitter handle**: @PatrickMcFadin
---------
Co-authored-by: Phil Miesle <phil.miesle@datastax.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This pull request introduces a new feature to community
tools, enhancing its search capabilities by integrating the Mojeek
search engine
**Dependencies:** None
---------
Co-authored-by: Igor Brai <igor@mojeek.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Issue: When the third-party package is not installed, whenever we need
to `pip install <package>` the ImportError is raised.
But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It
is bad for consistency.
Change: replaced the `ValueError` or `ModuleNotFoundError` with
`ImportError` when we raise an error with the `pip install <package>`
message.
Note: Ideally, we replace all `try: import... except... raise ... `with
helper functions like `import_aim` or just use the existing
[langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import)
But it would be much bigger refactoring. @baskaryan Please, advice on
this.
**Description:** AzureSearch vector store has no tests. This PR adds
initial tests to validate the code can be imported and used.
**Issue:** N/A
**Dependencies:** azure-search-documents and azure-identity are added as
optional dependencies for testing
---------
Co-authored-by: Matt Gotteiner <[email protected]>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [ ] **Kinetica Document Loader**: "community: a class to load
Documents from Kinetica"
- [ ] **Kinetica Document Loader**:
- **Description:** implemented KineticaLoader in `kinetica_loader.py`
- **Dependencies:** install the Kinetica API using `pip install
gpudb==7.2.0.1 `
- **Description:** Adapt JinaEmbeddings to run with the new Jina AI
Rerank API
- **Twitter handle:** https://twitter.com/JinaAI_
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description :
- added functionalities - delete, index creation, using existing
connection object etc.
- updated usage
- Added LaceDB cloud OSS support
make lint_diff , make test checks done
Thank you for contributing to LangChain!
community:perplexity[patch]: standardize init args
updated pplx_api_key and request_timeout so that aliased to api_key, and
timeout respectively. Added test that both continue to set the same
underlying attributes.
Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This PR moves the implementations for chat history to core. So it's
easier to determine which dependencies need to be broken / add
deprecation warnings
**Description:** implemented GraphStore class for Apache Age graph db
**Dependencies:** depends on psycopg2
Unit and integration tests included. Formatting and linting have been
run.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>