Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:**
- Trim functions were incorrectly deleting nodes with more than 1
outgoing/incoming edge, so an extra condition was added to check for
this directly. A unit test "test_trim_multi_edge" was written to test
this test case specifically.
- **Issue:**
- Fixes#28411
- Fixes https://github.com/langchain-ai/langgraph/issues/1676
- **Dependencies:**
- No changes were made to the dependencies
- [x] Unit tests were added to verify the changes.
- [x] Updated documentation where necessary.
- [x] Ran make format, make lint, and make test to ensure compliance
with project standards.
---------
Co-authored-by: Tasif Hussain <tasif006@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] **description**
langchain_core.runnables.graph_mermaid.draw_mermaid_png calls this
function, but the Mermaid API returns JPEG by default. To be consistent,
add the option `file_type` with the default `png` type.
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
With this small change, I didn't add tests and docs.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more:
One long sentence was divided into two.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "core: use friendlier names for duplicated nodes in
mermaid output"
- **Description:** When generating the Mermaid visualization of a chain,
if the chain had multiple nodes of the same type, the reid function
would replace their names with the UUID node_id. This made the generated
graph difficult to understand. This change deduplicates the nodes in a
chain by appending an index to their names.
- **Issue:** None
- **Discussion:**
https://github.com/langchain-ai/langchain/discussions/27714
- **Dependencies:** None
- [ ] **Add tests and docs**:
- Currently this functionality is not covered by unit tests, happy to
add tests if you'd like
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
# Example Code:
```python
from langchain_core.runnables import RunnablePassthrough
def fake_llm(prompt: str) -> str: # Fake LLM for the example
return "completion"
runnable = {
'llm1': fake_llm,
'llm2': fake_llm,
} | RunnablePassthrough.assign(
total_chars=lambda inputs: len(inputs['llm1'] + inputs['llm2'])
)
print(runnable.get_graph().draw_mermaid(with_styles=False))
```
# Before
```mermaid
graph TD;
Parallel_llm1_llm2_Input --> 0b01139db5ed4587ad37964e3a40c0ec;
0b01139db5ed4587ad37964e3a40c0ec --> Parallel_llm1_llm2_Output;
Parallel_llm1_llm2_Input --> a98d4b56bd294156a651230b9293347f;
a98d4b56bd294156a651230b9293347f --> Parallel_llm1_llm2_Output;
Parallel_total_chars_Input --> Lambda;
Lambda --> Parallel_total_chars_Output;
Parallel_total_chars_Input --> Passthrough;
Passthrough --> Parallel_total_chars_Output;
Parallel_llm1_llm2_Output --> Parallel_total_chars_Input;
```
# After
```mermaid
graph TD;
Parallel_llm1_llm2_Input --> fake_llm_1;
fake_llm_1 --> Parallel_llm1_llm2_Output;
Parallel_llm1_llm2_Input --> fake_llm_2;
fake_llm_2 --> Parallel_llm1_llm2_Output;
Parallel_total_chars_Input --> Lambda;
Lambda --> Parallel_total_chars_Output;
Parallel_total_chars_Input --> Passthrough;
Passthrough --> Parallel_total_chars_Output;
Parallel_llm1_llm2_Output --> Parallel_total_chars_Input;
```
This commit addresses a typographical error in the documentation for the
async astream_events method. The word 'evens' was incorrectly used in
the introductory sentence for the reference table, which could lead to
confusion for users.\n\n### Changes Made:\n- Corrected 'Below is a table
that illustrates some evens that might be emitted by various chains.' to
'Below is a table that illustrates some events that might be emitted by
various chains.'\n\nThis enhancement improves the clarity of the
documentation and ensures accurate terminology is used throughout the
reference material.\n\nIssue Reference: #27107
Ruff doesn't know about the python version in
`[tool.poetry.dependencies]`. It can get it from
`project.requires-python`.
Notes:
* poetry seems to have issues getting the python constraints from
`requires-python` and using `python` in per dependency constraints. So I
had to duplicate the info. I will open an issue on poetry.
* `inspect.isclass()` doesn't work correctly with `GenericAlias`
(`list[...]`, `dict[..., ...]`) on Python <3.11 so I added some `not
isinstance(type, GenericAlias)` checks:
Python 3.11
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
False
```
Python 3.9
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
True
```
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Previously the code was able to only handle a single level of nesting
for subgraphs in mermaid. This change adds support for arbitrary nesting
of subgraphs.
- **Description:**
This PR will slove error messages about `ValueError` when use model with
history.
Detail in #24660.
#22933 causes that
`langchain_core.runnables.history.RunnableWithMessageHistory._get_output_messages`
miss type check of `output_val` if `output_val` is `False`. After
running `RunnableWithMessageHistory._is_not_async`, `output` is `False`.
249945a572/libs/core/langchain_core/runnables/history.py (L323-L334)15a36dd0a2/libs/core/langchain_core/runnables/history.py (L461-L471)
~~I suggest that `_get_output_messages` return empty list when
`output_val == False`.~~
- **Issue**:
- #24660
- **Dependencies:**: No Change.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This PR proposes to create a rate limiter in the chat model directly,
and would replace: https://github.com/langchain-ai/langchain/pull/21992
It resolves most of the constraints that the Runnable rate limiter
introduced:
1. It's not annoying to apply the rate limiter to existing code; i.e.,
possible to roll out the change at the location where the model is
instantiated,
rather than at every location where the model is used! (Which is
necessary
if the model is used in different ways in a given application.)
2. batch rate limiting is enforced properly
3. the rate limiter works correctly with streaming
4. the rate limiter is aware of the cache
5. The rate limiter can take into account information about the inputs
into the
model (we can add optional inputs to it down-the road together with
outputs!)
The only downside is that information will not be properly reflected in
tracing
as we don't have any metadata evens about a rate limiter. So the total
time
spent on a model invocation will be:
* time spent waiting for the rate limiter
* time spend on the actual model request
## Example
```python
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_groq import ChatGroq
groq = ChatGroq(rate_limiter=InMemoryRateLimiter(check_every_n_seconds=1))
groq.invoke('hello')
```
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This PR introduces the following Runnables:
1. BaseRateLimiter: an abstraction for specifying a time based rate
limiter as a Runnable
2. InMemoryRateLimiter: Provides an in-memory implementation of a rate
limiter
## Example
```python
from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda
from datetime import datetime
foo = InMemoryRateLimiter(requests_per_second=0.5)
def meow(x):
print(datetime.now().strftime("%H:%M:%S.%f"))
return x
chain = foo | meow
for _ in range(10):
print(chain.invoke('hello'))
```
Produces:
```
17:12:07.530151
hello
17:12:09.537932
hello
17:12:11.548375
hello
17:12:13.558383
hello
17:12:15.568348
hello
17:12:17.578171
hello
17:12:19.587508
hello
17:12:21.597877
hello
17:12:23.607707
hello
17:12:25.617978
hello
```

## Interface
The rate limiter uses the following interface for acquiring a token:
```python
class BaseRateLimiter(Runnable[Input, Output], abc.ABC):
@abc.abstractmethod
def acquire(self, *, blocking: bool = True) -> bool:
"""Attempt to acquire the necessary tokens for the rate limiter.```
```
The flag `blocking` has been added to the abstraction to allow
supporting streaming (which is easier if blocking=False).
## Limitations
- The rate limiter is not designed to work across different processes.
It is an in-memory rate limiter, but it is thread safe.
- The rate limiter only supports time-based rate limiting. It does not
take into account the size of the request or any other factors.
- The current implementation does not handle streaming inputs well and
will consume all inputs even if the rate limit has been reached. Better
support for streaming inputs will be added in the future.
- When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.
One way to mitigate this is to use batch_as_completed() or
abatch_as_completed().
## Bursty behavior in `batch` and `abatch`
When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.
This becomes a problem if users are using `batch` and `abatch` with many
inputs (e.g., 100). In this case, there will be a burst of 100 inputs
into the batch of the rate limited runnable.
1. Using a RunnableBinding
The API would look like:
```python
from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda
rate_limiter = InMemoryRateLimiter(requests_per_second=0.5)
def meow(x):
return x
rate_limited_meow = RunnableLambda(meow).with_rate_limiter(rate_limiter)
```
2. Another option is to add some init option to RunnableSequence that
changes `.batch()` to be depth first (e.g., by delegating to
`batch_as_completed`)
```python
RunnableSequence(first=rate_limiter, last=model, how='batch-depth-first')
```
Pros: Does not require Runnable Binding
Cons: Feels over-complicated
Feedback that `RunnableWithMessageHistory` is unwieldy compared to
ConversationChain and similar legacy abstractions is common.
Legacy chains using memory typically had no explicit notion of threads
or separate sessions. To use `RunnableWithMessageHistory`, users are
forced to introduce this concept into their code. This possibly felt
like unnecessary boilerplate.
Here we enable `RunnableWithMessageHistory` to run without a config if
the `get_session_history` callable has no arguments. This enables
minimal implementations like the following:
```python
from langchain_core.chat_history import InMemoryChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
memory = InMemoryChatMessageHistory()
chain = RunnableWithMessageHistory(llm, lambda: memory)
chain.invoke("Hi I'm Bob") # Hello Bob!
chain.invoke("What is my name?") # Your name is Bob.
```
Before, if an exception was raised in the outer `try` block in
`Runnable._atransform_stream_with_config` before `iterator_` is
assigned, the corresponding `finally` block would blow up with an
`UnboundLocalError`:
```txt
UnboundLocalError: cannot access local variable 'iterator_' where it is not associated with a value
```
By assigning an initial value to `iterator_` before entering the `try`
block, this commit ensures that the `finally` can run, and not bury the
"true" exception under a "During handling of the above exception [...]"
traceback.
Thanks for your consideration!