## Summary
Adds test coverage for the `stringify_value` utility function to handle
complex nested data structures that weren't previously tested.
## Changes
- Added `test_stringify_value_nested_structures()` to `test_strings.py`
- Tests nested dictionaries within lists
- Tests mixed-type lists with various data types
- Verifies proper stringification of complex nested structures
## Why This Matters
- Fills a gap in test coverage for edge cases
- Ensures `stringify_value` handles complex data structures correctly
- Improves confidence in string utility functions used throughout the
codebase
- Low risk addition that strengthens existing test suite
## Testing
```bash
uv run --group test pytest libs/core/tests/unit_tests/utils/test_strings.py::test_stringify_value_nested_structures -v
```
This test addition follows the project's testing patterns and adds
meaningful coverage without introducing any breaking changes.
---------
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Enhance the pull request workflows by updating the `pull_request_target`
types and ensuring safety by avoiding checkout of the PR's head. Update
the action to use a specific commit from the archived repository.
**Description:** Right now, we interrupt even if the provided ToolConfig
has all false values. We should ignore ToolConfigs which do not have at
least one value marked as true (just as we would if tool_name: False was
passed into the dict).
# Main Changes
1. Adding decorator utilities for dynamically defining middleware with
single hook functions (see an example below for dynamic system prompt)
2. Adding better conditional edge drawing with jump configuration
attached to middleware. Can be registered w/ the decorator new
decorator!
## Decorator Utilities
```py
from langchain.agents.middleware_agent import create_agent, AgentState, ModelRequest
from langchain.agents.middleware.types import modify_model_request
from langchain_core.messages import HumanMessage
from langgraph.checkpoint.memory import InMemorySaver
@modify_model_request
def modify_system_prompt(request: ModelRequest, state: AgentState) -> ModelRequest:
request.system_prompt = (
"You are a helpful assistant."
f"Please record the number of previous messages in your response: {len(state['messages'])}"
)
return request
agent = create_agent(
model="openai:gpt-4o-mini",
middleware=[modify_system_prompt]
).compile(checkpointer=InMemorySaver())
```
## Visualization and Routing improvements
We now require that middlewares define the valid jumps for each hook.
If using the new decorator syntax, this can be done with:
```py
@before_model(jump_to=["__end__"])
@after_model(jump_to=["tools", "__end__"])
```
If using the subclassing syntax, you can use these two class vars:
```py
class MyMiddlewareAgentMiddleware):
before_model_jump_to = ["__end__"]
after_model_jump_to = ["tools", "__end__"]
```
Open for debate if we want to bundle these in a single jump map / config
for a middleware. Easy to migrate later if we decide to add more hooks.
We will need to **really clearly document** that these must be
explicitly set in order to enable conditional edges.
Notice for the below case, `Middleware2` does actually enable jumps.
<table>
<thead>
<tr>
<th>Before (broken), adding conditional edges unconditionally</th>
<th>After (fixed), adding conditional edges sparingly</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<img width="619" height="508" alt="Screenshot 2025-09-23 at 10 23 23 AM"
src="https://github.com/user-attachments/assets/bba2d098-a839-4335-8e8c-b50dd8090959"
/>
</td>
<td>
<img width="469" height="490" alt="Screenshot 2025-09-23 at 10 23 13 AM"
src="https://github.com/user-attachments/assets/717abf0b-fc73-4d5f-9313-b81247d8fe26"
/>
</td>
</tr>
</tbody>
</table>
<details>
<summary>Snippet for the above</summary>
```py
from typing import Any
from langchain.agents.tool_node import InjectedState
from langgraph.runtime import Runtime
from langchain.agents.middleware.types import AgentMiddleware, AgentState
from langchain.agents.middleware_agent import create_agent
from langchain_core.tools import tool
from typing import Annotated
from langchain_core.messages import HumanMessage
from typing_extensions import NotRequired
@tool
def simple_tool(input: str) -> str:
"""A simple tool."""
return "successful tool call"
class Middleware1(AgentMiddleware):
"""Custom middleware that adds a simple tool."""
tools = [simple_tool]
def before_model(self, state: AgentState, runtime: Runtime) -> None:
return None
def after_model(self, state: AgentState, runtime: Runtime) -> None:
return None
class Middleware2(AgentMiddleware):
before_model_jump_to = ["tools", "__end__"]
def before_model(self, state: AgentState, runtime: Runtime) -> None:
return None
def after_model(self, state: AgentState, runtime: Runtime) -> None:
return None
class Middleware3(AgentMiddleware):
def before_model(self, state: AgentState, runtime: Runtime) -> None:
return None
def after_model(self, state: AgentState, runtime: Runtime) -> None:
return None
builder = create_agent(
model="openai:gpt-4o-mini",
middleware=[Middleware1(), Middleware2(), Middleware3()],
system_prompt="You are a helpful assistant.",
)
agent = builder.compile()
```
</details>
## More Examples
### Guardrails `after_model`
<img width="379" height="335" alt="Screenshot 2025-09-23 at 10 40 09 AM"
src="https://github.com/user-attachments/assets/45bac7dd-398e-45d1-ae58-6ecfa27dfc87"
/>
<details>
<summary>Code</summary>
```py
from langchain.agents.middleware_agent import create_agent, AgentState, ModelRequest
from langchain.agents.middleware.types import after_model
from langchain_core.messages import HumanMessage, AIMessage
from langgraph.checkpoint.memory import InMemorySaver
from typing import cast, Any
@after_model(jump_to=["model", "__end__"])
def after_model_hook(state: AgentState) -> dict[str, Any]:
"""Check the last AI message for safety violations."""
last_message_content = cast(AIMessage, state["messages"][-1]).content.lower()
print(last_message_content)
unsafe_keywords = ["pineapple"]
if any(keyword in last_message_content for keyword in unsafe_keywords):
# Jump back to model to regenerate response
return {"jump_to": "model", "messages": [HumanMessage("Please regenerate your response, and don't talk about pineapples. You can talk about apples instead.")]}
return {"jump_to": "__end__"}
# Create agent with guardrails middleware
agent = create_agent(
model="openai:gpt-4o-mini",
middleware=[after_model_hook],
system_prompt="Keep your responses to one sentence please!"
).compile()
# Test with potentially unsafe input
result = agent.invoke(
{"messages": [HumanMessage("Tell me something about pineapples")]},
)
for msg in result["messages"]:
print(msg.pretty_print())
"""
================================ Human Message =================================
Tell me something about pineapples
None
================================== Ai Message ==================================
Pineapples are tropical fruits known for their sweet, tangy flavor and distinctive spiky exterior.
None
================================ Human Message =================================
Please regenerate your response, and don't talk about pineapples. You can talk about apples instead.
None
================================== Ai Message ==================================
Apples are popular fruits that come in various varieties, known for their crisp texture and sweetness, and are often used in cooking and baking.
None
"""
```
</details>
Mostly adding a descriptive frontmatter to workflow files. Also address
some formatting and outdated artifacts
No functional changes outside of
[d5457c3](d5457c39ee),
[90708a0](90708a0d99),
and
[338c82d](338c82d21e)
The file-based and title-based labeler workflows were conflicting,
causing the bot to add and remove identical labels in the same
operation. Hopefully this fixes
- Removes Codespell from deps, docs, and `Makefile`s
- Python version requirements in all `pyproject.toml` files now use the
`~=` (compatible release) specifier
- All dependency groups and main dependencies now use explicit lower and
upper bounds, reducing potential for breaking changes