Thank you for contributing to LangChain!
- [x] **PR title**: "community:add Yi LLM", "docs:add Yi Documentation"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds support for the Yi model to LangChain.
- **Dependencies:**
[langchain_core,requests,contextlib,typing,logging,json,langchain_community]
- **Twitter handle:** 01.AI
- [x] **Add tests and docs**: I've added the corresponding documentation
to the relevant paths
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
**Description:** Expanded the chat model functionality to support tools
in the 'baichuan.py' file. Updated module imports and added tool object
handling in message conversions. Additional changes include the
implementation of tool binding and related unit tests. The alterations
offer enhanced model capabilities by enabling interaction with tool-like
objects.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- [x] **PR title**:
community: Add OCI Generative AI tool and structured output support
- [x] **PR message**:
- **Description:** adding tool calling and structured output support for
chat models offered by OCI Generative AI services. This is an update to
our last PR 22880 with changes in
/langchain_community/chat_models/oci_generative_ai.py
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** NA
- [x] **Add tests and docs**:
1. we have updated our unit tests
2. we have updated our documentation under
/docs/docs/integrations/chat/oci_generative_ai.ipynb
- [x] **Lint and test**: `make format`, `make lint` and `make test` we
run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Fixes for Eden AI Custom tools and ChatEdenAI:
- add missing import in __init__ of chat_models
- add `args_schema` to custom tools. otherwise '__arg1' would sometimes
be passed to the `run` method
- fix IndexError when no human msg is added in ChatEdenAI
This PR is under WIP and adds the following functionalities:
- [X] Supports tool calling across the langchain ecosystem. (However
streaming is not supported)
- [X] Update documentation
- **Description:** `QianfanChatEndpoint` When using tool result to
answer questions, the content of the tool is required to be in Dict
format. Of course, this can require users to return Dict format when
calling the tool, but in order to be consistent with other Chat Models,
I think such modifications are necessary.
- **Description**: Mask API key for ChatOpenAi based chat_models
(openai, azureopenai, anyscale, everlyai).
Made changes to all chat_models that are based on ChatOpenAI since all
of them assumes that openai_api_key is str rather than SecretStr.
- **Issue:**: #12165
- **Dependencies:** N/A
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** N/A
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description: ImagePromptTemplate for Multimodal llms like llava when
using Ollama
Twitter handle: https://x.com/a7ulr
Details:
When using llava models / any ollama multimodal llms and passing images
in the prompt as urls, langchain breaks with this error.
```python
image_url_components = image_url.split(",")
^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'split'
```
From the looks of it, there was bug where the condition did check for a
`url` field in the variable but missed to actually assign it.
This PR fixes ImagePromptTemplate for Multimodal llms like llava when
using Ollama specifically.
@hwchase17
It's a follow-up to https://github.com/langchain-ai/langchain/pull/23765
Now the tools can be bound by calling `bind_tools`
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
prompt = "Which city is hotter today and which is bigger: LA or NY?"
# tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
tools = [GetWeather, GetPopulation]
llm = ChatLiteLLM(model="claude-3-sonnet-20240229").bind_tools(tools)
ai_msg = llm.invoke(prompt)
print(ai_msg.tool_calls)
```
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
- **Description:** Fix some issues in MiniMaxChat
- Fix `minimax_api_host` not in `values` error
- Remove `minimax_group_id` from reading environment variables, the
`minimax_group_id` no longer use in MiniMaxChat
- Invoke callback prior to yielding token, the issus #16913
When `model_kwargs={"tools": tools}` are passed to `ChatLiteLLM`, they
are executed, but the response is not recognized correctly
Let's add `tool_calls` to the `additional_kwargs`
Thank you for contributing to LangChain!
## ChatAnthropic
I used the following example to verify the output of llm with tools:
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_anthropic import ChatAnthropic
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm = ChatAnthropic(model="claude-3-sonnet-20240229")
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
print(ai_msg.tool_calls)
```
I get the following response:
```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01UfDA89knrhw3vFV9X47neT'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01NrYVRYae7m7z7tBgyPb3Gd'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01EPFEpDgzL6vV2dTpD9SVP5'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01B5J6tPJXgwwfhQX9BHP2dt'}]
```
## LiteLLM
Based on https://litellm.vercel.app/docs/completion/function_call
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
import litellm
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
response = litellm.completion(model="claude-3-sonnet-20240229", messages=[{'role': 'user', 'content': prompt}], tools=tools)
print(response.choices[0].message.tool_calls)
```
```python
[ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetWeather'), id='toolu_01HeDWV5vP7BDFfytH5FJsja', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetWeather'), id='toolu_01EiLesUSEr3YK1DaE2jxsQv', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetPopulation'), id='toolu_01Xz26zvkBDRxEUEWm9pX6xa', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetPopulation'), id='toolu_01SDqKnsLjvUXuBsgAZdEEpp', type='function')]
```
## ChatLiteLLM
When I try the following
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
llm = ChatLiteLLM(model="claude-3-sonnet-20240229", model_kwargs={"tools": tools})
ai_msg = llm.invoke(prompt)
print(ai_msg)
print(ai_msg.tool_calls)
```
```python
content="Okay, let's find out the current weather and populations for Los Angeles and New York City:" response_metadata={'token_usage': Usage(prompt_tokens=329, completion_tokens=193, total_tokens=522), 'model': 'claude-3-sonnet-20240229', 'finish_reason': 'tool_calls'} id='run-748b7a84-84f4-497e-bba1-320bd4823937-0'
[]
```
---
When I apply the changes of this PR, the output is
```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_017D2tGjiaiakB1HadsEFZ4e'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01WrDpJfVqLkPejWzonPCbLW'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_016UKyYrVAV9Pz99iZGgGU7V'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01Sgv1imExFX1oiR1Cw88zKy'}]
```
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
updated request_timeout default alias value per related docstring.
Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085)
Thank you for contributing to LangChain!
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** The name of ToolMessage is default to None, which
makes tool message send to LLM likes
```json
{"role": "tool",
"tool_call_id": "",
"content": "{\"time\": \"12:12\"}",
"name": null}
```
But the name seems essential for some LLMs like TongYi Qwen. so we need to set the name use agent_action's tool value.
- **Issue:** N/A
- **Dependencies:** N/A
This PR fixes an issue with not able to use unlimited/infinity tokens
from the respective provider for the LiteLLM provider.
This is an issue when working in an agent environment that the token
usage can drastically increase beyond the initial value set causing
unexpected behavior.
- [x] PR title:
community: Add OCI Generative AI new model support
- [x] PR message:
- Description: adding support for new models offered by OCI Generative
AI services. This is a moderate update of our initial integration PR
16548 and includes a new integration for our chat models under
/langchain_community/chat_models/oci_generative_ai.py
- Issue: NA
- Dependencies: No new Dependencies, just latest version of our OCI sdk
- Twitter handle: NA
- [x] Add tests and docs:
1. we have updated our unit tests
2. we have updated our documentation including a new ipynb for our new
chat integration
- [x] Lint and test:
`make format`, `make lint`, and `make test` run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
**Description:** This PR adds a chat model integration for [Snowflake
Cortex](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions),
which gives an instant access to industry-leading large language models
(LLMs) trained by researchers at companies like Mistral, Reka, Meta, and
Google, including [Snowflake
Arctic](https://www.snowflake.com/en/data-cloud/arctic/), an open
enterprise-grade model developed by Snowflake.
**Dependencies:** Snowflake's
[snowpark](https://pypi.org/project/snowflake-snowpark-python/) library
is required for using this integration.
**Twitter handle:** [@gethouseware](https://twitter.com/gethouseware)
- [x] **Add tests and docs**:
1. integration tests:
`libs/community/tests/integration_tests/chat_models/test_snowflake.py`
2. unit tests:
`libs/community/tests/unit_tests/chat_models/test_snowflake.py`
3. example notebook: `docs/docs/integrations/chat/snowflake.ipynb`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
This PR moves the validation of the decorator to a better place to avoid
creating bugs while deprecating code.
Prevent issues like this from arising:
https://github.com/langchain-ai/langchain/issues/22510
we should replace with a linter at some point that just does static
analysis
- **PR title**: [community] add chat model llamacpp
- **PR message**:
- **Description:** This PR introduces a new chat model integration with
llamacpp_python, designed to work similarly to the existing ChatOpenAI
model.
+ Work well with instructed chat, chain and function/tool calling.
+ Work with LangGraph (persistent memory, tool calling), will update
soon
- **Dependencies:** This change requires the llamacpp_python library to
be installed.
@baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This PR adds the feature add Prem Template feature in ChatPremAI.
Additionally it fixes a minor bug for API auth error when API passed
through arguments.