Thank you for contributing to LangChain!
[x] PR title: langchain_ollama: support custom headers for Ollama
partner APIs
Where "package" is whichever of langchain, core, etc. is being modified.
Use "docs: ..." for purely docs changes, "infra: ..." for CI changes.
Example: "core: add foobar LLM"
[x] PR message:
**Description: This PR adds support for passing custom HTTP headers to
Ollama models when used as a LangChain integration. This is especially
useful for enterprise users or partners who need to send authentication
tokens, API keys, or custom tracking headers when querying secured
Ollama servers.
Issue: N/A (new enhancement)
**Dependencies: No external dependencies introduced.
Twitter handle: @arunkumar_offl
[x] Add tests and docs: If you're adding a new integration, please
include
1.Added a unit test in test_chat_models.py to validate headers are
passed correctly.
2. Added an example notebook:
docs/docs/integrations/llms/ollama_custom_headers.ipynb showing how to
use custom headers.
[x] Lint and test: Ran make format, make lint, and make test to ensure
the code is clean and passing all checks.
Additional guidelines:
Make sure optional dependencies are imported within a function.
Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
Most PRs should not touch more than one package.
Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
This MR is only for the docs. Added integration with Nebius AI Studio to
docs. The integration package is available at
[https://github.com/nebius/langchain-nebius](https://github.com/nebius/langchain-nebius).
---------
Co-authored-by: Akim Tsvigun <aktsvigun@nebius.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, core, etc. is being
modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI
changes.
- Example: "core: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:** Remove the outdated Gemini models and replace those
with the latest models.
- **Issue:** Earlier the code was not running, now the code runs.
- **Dependencies:** No
- **Twitter handle:** [soumendrak_](https://x.com/soumendrak_)
## Description
Updating Exa integration documentation to showcase the latest features
and best practices.
## Changes
- Added examples for `ExaSearchResults` tool with advanced search
options
- Added examples for `ExaFindSimilarResults` tool
- Updated agent example to use LangGraph
- Demonstrated text content options, summaries, and highlights
- Included examples of search type control and live crawling
## Additional Context
I'm from the Exa team updating our integration documentation to reflect
current capabilities and best practices.
Remove proxy imports to langchain_experimental.
Previously, these imports would work if a user manually installed
langchain_experimental. However, we want to drop support even for that
as langchain_experimental is generally not recommended to be run in
production.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:**
Fixed a small grammatical error in the `retrievers.mdx` documentation.
Replaced "we can be built retrievers on top of search APIs..." with
"we can build retrievers on top of search APIs..." for clarity and
correctness.
**Issue:**
N/A
**Dependencies:**
None
**Twitter handle:**
@hassan_zameel
OpenAI changed their API to require the `partial_images` parameter when
using image generation + streaming.
As described in https://github.com/langchain-ai/langchain/pull/31424, we
are ignoring partial images. Here, we accept the `partial_images`
parameter (as required by OpenAI), but emit a warning and continue to
ignore partial images.
**Description:**
`langchain_huggingface` has a very large installation size of around 600
MB (on a Mac with Python 3.11). This is due to its dependency on
`sentence-transformers`, which in turn depends on `torch`, which is 320
MB all by itself. Similarly, the depedency on `transformers` adds
another set of heavy dependencies. With those dependencies removed, the
installation of `langchain_huggingface` only takes up ~26 MB. This is
only 5 % of the full installation!
These libraries are not necessary to use `langchain_huggingface`'s API
wrapper classes, only for local inferences/embeddings. All import
statements for those two libraries already have import guards in place
(try/catch with a helpful "please install x" message).
This PR therefore moves those two libraries to an optional dependency
group `full`. So a `pip install langchain_huggingface` will only install
the lightweight version, and a `pip install
"langchain_huggingface[full]"` will install all dependencies.
I know this may break existing code, because `sentence-transformers` and
`transformers` are now no longer installed by default. Given that users
will see helpful error messages when that happens, and the major impact
of this small change, I hope that you will still consider this PR.
**Dependencies:** No new dependencies, but new optional grouping.
- **Description:**
- In _infer_arg_descriptions, the annotations dictionary contains string
representations of types instead of actual typing objects. This causes
_is_annotated_type to fail, preventing the correct description from
being generated.
- This is a simple fix using the get_type_hints method, which resolves
the annotations properly and is supported across all Python versions.
- **Issue:** #31051
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
https://github.com/langchain-ai/langchain/pull/31286 included an update
to the return type for `BaseChatModel.(a)stream`, from
`Iterator[BaseMessageChunk]` to `Iterator[BaseMessage]`.
This change is correct, because when streaming is disabled, the stream
methods return an iterator of `BaseMessage`, and the inheritance is such
that an `BaseMessage` is not a `BaseMessageChunk` (but the reverse is
true).
However, LangChain includes a pattern throughout its docs of [summing
BaseMessageChunks](https://python.langchain.com/docs/how_to/streaming/#llms-and-chat-models)
to accumulate a chat model stream. This pattern is implemented in tests
for most integration packages and appears in application code. So
https://github.com/langchain-ai/langchain/pull/31286 introduces mypy
errors throughout the ecosystem (or maybe more accurately, it reveals
that this pattern does not account for use of the `.stream` method when
streaming is disabled).
Here we revert just the change to the stream return type to unblock
things. A fix for this should address docs + integration packages (or if
we elect to just force people to update code, be explicit about that).