Looking at tokens / page of our docs, we see a few outliers:
<img width="761" alt="image"
src="https://github.com/langchain-ai/langchain/assets/122662504/677aa2d6-0a29-45e4-882a-db2bbf46d02b">
It is due to non-rendering images in one case, and output spamming.
Clean these, along with other cases of excessing output spamming in
docs.
All get sucked into chat-langchain for retrieval.
Thank you for contributing to LangChain!
bilibili-api-python use https://github.com/Nemo2011/bilibili-api repo.
Change to the correct address.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Description:** Update module imports for Fireworks documentation
**Issue:** Module imports not present or in incorrect location
**Dependencies:** None
**Description:** Update import paths and move to lcel for llama.cpp
examples
**Issue:** Update import paths to reflect package refactoring and move
chains to LCEL in examples
**Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Moving FireworksEmbeddings documentation to the
location docs/integration/text_embedding/ from langchain_fireworks/docs/
**Issue:** FireworksEmbeddings documentation was not in the correct
location
**Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
Currently, `CacheBackedEmbeddings` computes vectors for *all* uncached
documents before updating the store. This pull request updates the
embedding computation loop to compute embeddings in batches, updating
the store after each batch.
I noticed this when I tried `CacheBackedEmbeddings` on our 30k document
set and the cache directory hadn't appeared on disk after 30 minutes.
The motivation is to minimize compute/data loss when problems occur:
* If there is a transient embedding failure (e.g. a network outage at
the embedding endpoint triggers an exception), at least the completed
vectors are written to the store instead of being discarded.
* If there is an issue with the store (e.g. no write permissions), the
condition is detected early without computing (and discarding!) all the
vectors.
**Issue:**
Implements enhancement #18026.
**Testing:**
I was unable to run unit tests; details in [this
post](https://github.com/langchain-ai/langchain/discussions/15019#discussioncomment-8576684).
---------
Signed-off-by: chrispy <chrispy@synopsys.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
The `retryFailed` option will retry all failed links, once at a time
with the goal of not triggering bot protection
`microsoft.com` is now hard coded into the whitelist
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **PR message**:
- **Description:** Update the slack toolkit doc to use an agent that
support multiple inputs. Using ReAct agent will cause a ValidationError
when invoking the slack tools. This is because the agent return a string
like `'{"channel": "C05LDF54S21", "message": "Hello, world!"}'` but the
ReAct agent does not support multiple inputs.
- **Issue:** This is related to this
[Discussion#18083](https://github.com/langchain-ai/langchain/discussions/18083)
- **Dependencies:** No dependencies required
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description**:
this PR enable VectorStore autoconfiguration for Infinispan: if
metadatas are only of basic types, protobuf
config will be automatically generated for the user.
**Description**
This PR adds some missing details from the "Split by tokens" page in the
documentation. Specifically:
- The `.from_tiktoken_encoder()` class methods for both the
`CharacterTextSplitter` and `RecursiveCharacterTextSplitter` default to
the old `gpt-2` encoding. I've added a comment to suggest specifying
`model_name` or `encoding`
- The docs didn't mention that the `from_tiktoken_encoder()` class
method passes additional kwargs down to the constructor of the splitter.
I only discovered this by reading the source code
- Added an example of using the `.from_tiktoken_encoder()` class method
with `RecursiveCharacterTextSplitter` which is the recommended approach
for most scenarios above `CharacterTextSplitter`
- Added a warning that `TokenTextSplitter` can split characters which
have multiple tokens (e.g. 猫 has 3 cl100k_base tokens) between multiple
chunks which creates malformed Unicode strings and should not be used in
these situations.
Side note: I think the default argument of `gpt2` for
`.from_tiktoken_encoder()` should be updated?
**Twitter handle** anthonypjshaw
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Fixes the import paths for the `FlashrankRerank`
example notebook.
**Issue:** #19139
**Dependencies:** None
**Twitter handle:** n/a
---------
Co-authored-by: Simon Stone <simon.stone@dartmouth.edu>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "Updating format of pip install in two files of
docs/cookbook"
- pip install is not reflecting properly in some of the files in
cookbook
- Example:
[docs/expression_language/cookbook/sql_db](https://python.langchain.com/docs/expression_language/cookbook/sql_db)
- [x] **PR message**: Updating format of pip install in two files of
docs/cookbook
- **Description:** a description of the change
- **Issue:** #19197
- Note - let's do squash merge for the PR
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [x] **PR title**: "community: deprecate DocugamiLoader"
- [x] **PR message**: Deprecate the langchain_community and use the
docugami_langchain DocugamiLoader
---------
Co-authored-by: Kenzie Mihardja <kenzie28@cs.washington.edu>
I think that cell type for pip command may be 'code'.
Please check, thank you :)
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Line `from langchain_openai import ChatOpenAI` is put twice in Get
Started / Serving with LangServe section.
Imports on lines 559 and 566 are identical
Co-authored-by: Vitalii <vitalii@localhost>
**Description:** Update stales link in Together AI documentation
**Issue:** Some links pointed to legacy webpages on the Together AI
website
**Dependencies:** None
**Lint and test**: `make format`, `make lint` were run
- [ ] **PR title**: "docs: correction in
"https://github.com/langchain-ai/langchain/blob/master/docs/docs/get_started/quickstart.mdx",
line 289".
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**:
- Corrected the spelling mistake
- #18981
Fixed Grammar in Considerations of Model I/O Concepts documentation page
- Update concepts.mdx
Page Link:
https://python.langchain.com/docs/modules/model_io/concepts#considerations
- **Description:** Fixed Grammar in Considerations of Model I/O
Documentation Page
- **Issue:** "to work well with the model are you using" # "to work well
with the model you are using"
- **Dependencies:** None
- **Twitter handle:** @Anubhav_Madhav
(https://twitter.com/Anubhav_Madhav)
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
## Description
This PR addresses a documentation issue in the
[Indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
page. Specifically, it corrects the execution results of the Jupyter
notebook under the
[Source](https://python.langchain.com/docs/modules/data_connection/indexing#source)
section, which were broken as detailed below.
## Problem
The execution results following the statement, `This should delete the
old versions of documents associated with doggy.txt source and replace
them with the new versions.`, appear to be incorrect, as described
below.
### Current Behavior
- For some reason, the `index` function fails to add the new content of
`doggy.txt`. Although it deletes the document objects associated with
the `doggy.txt` source, it does not add the objects in
`changed_doggy_docs`. Consequently, the execution result displays
`num_added: 0`.
- This unexpected behavior also impacts the results of
`vectorstore.similarity_search("dog", k=30)`, showing only the contents
of `kitty.txt`. It appears as though the contents of `doggy.txt` have
been completely removed from the index:
```
Document(page_content='tty kitty', metadata={'source': 'kitty.txt'}),
Document(page_content='tty kitty ki', metadata={'source': 'kitty.txt'}),
Document(page_content='kitty kit', metadata={'source': 'kitty.txt'})]
```
### Expected Behavior
- The `index` function should successfully add the objects in
`changed_doggy_docs` after removing the old content of `doggy.txt`. The
anticipated execution result is `num_added: 2`.
- Subsequently, the modified content of `doggy.txt` should appear in the
results of `vectorstore.similarity_search("dog", k=30)` as follows:
```
[Document(page_content='woof woof', metadata={'source': 'doggy.txt'}),
Document(page_content='woof woof woof', metadata={'source': 'doggy.txt'}),
Document(page_content='tty kitty', metadata={'source': 'kitty.txt'}),
Document(page_content='tty kitty ki', metadata={'source': 'kitty.txt'}),
Document(page_content='kitty kit', metadata={'source': 'kitty.txt'})]
```
## Fix
I reran `docs/docs/modules/data_connection/indexing.ipynb` and have
included the diff in this PR.
Docs fix: replace column name search with source.
The Xata integration expects metadata column named "source".
The docs suggest the name "search", which if used, yields the following
error:
```
File "/usr/local/lib/python3.11/site-packages/langchain_community/vectorstores/xata.py", line 95, in _add_vectors
raise Exception(f"Error adding vectors to Xata: {r.status_code} {r}")
Exception: Error adding vectors to Xata: 400 {'errors': [{'status': 400, 'message': 'invalid record: column [source]: column not found'}]}
```