The old `before_model_jump_to` classvar approach was quite clunky, this
is nicer imo and easier to document. Also moving from `jump_to` to
`can_jump_to` which is more idiomatic.
Before:
```py
class MyMiddleware(AgentMiddleware):
before_model_jump_to: ClassVar[list[JumpTo]] = ["end"]
def before_model(state, runtime) -> dict[str, Any]:
return {"jump_to": "end"}
```
After
```py
class MyMiddleware(AgentMiddleware):
@hook_config(can_jump_to=["end"])
def before_model(state, runtime) -> dict[str, Any]:
return {"jump_to": "end"}
```
This makes branching **much** more simple internally and helps greatly
w/ type safety for users. It just allows for one signature on hooks
instead of multiple.
Opened after https://github.com/langchain-ai/langchain/pull/33164
ballooned more than expected, w/ branching for:
* sync vs async
* runtime vs no runtime (this is self imposed)
**This also removes support for nodes w/o `runtime` in the signature.**
We can always go back and add support for nodes w/o `runtime`.
I think @christian-bromann's idea to re-export `runtime` from
langchain's agents might make sense due to the abundance of imports
here.
Check out the value of the change based on this diff:
https://github.com/langchain-ai/langchain/pull/33176
The async embed function does not properly handle HTTP errors.
For instance with large batches, Mistral AI returns `Too many inputs in
request, split into more batches.` in a 400 error.
This leads to a KeyError in `response.json()["data"]` l.288
This PR fixes the issue by:
- calling `response.raise_for_status()` before returning
- adding a retry similarly to what is done in the synchronous
counterpart `embed_documents`
I also added an integration test, but willing to move it to unit tests
if more relevant.
- **Description:** Changing the key from `response` to
`structured_response` for middleware agent to keep it sync with agent
without middleware. This a breaking change.
- **Issue:** #33154
Porting the [planning
middleware](39c0138d0f/src/deepagents/middleware.py (L21))
over from deepagents.
Also adding the ability to configure:
* System prompt
* Tool description
```py
from langchain.agents.middleware.planning import PlanningMiddleware
from langchain.agents import create_agent
agent = create_agent("openai:gpt-4o", middleware=[PlanningMiddleware()])
result = await agent.invoke({"messages": [HumanMessage("Help me refactor my codebase")]})
print(result["todos"]) # Array of todo items with status tracking
```
Multiple improvements to HITL flow:
* On a `response` type resume, we should still append the tool call to
the last AIMessage (otherwise we have a ToolResult without a
corresponding ToolCall)
* When all interrupts have `response` types (so there's no pending tool
calls), we should jump back to the first node (instead of end) as we
enforced in the previous `post_model_hook_router`
* Added comments to `model_to_tools` router so clarify all of the
potential exit conditions
Additionally:
* Lockfile update to use latest LG alpha release
* Added test for `jump_to` behaving ephemerally, this was fixed in LG
but surfaced as a bug w/ `jump_to`.
* Bump version to v1.0.0a10 to prep for alpha release
---------
Co-authored-by: Sydney Runkle <sydneymarierunkle@gmail.com>
Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
Remove redundant/outdated `@pytest.mark.requires("jinja2")` decorator
Pytest marks (like `@pytest.mark.requires(...)`) applied directly to
fixtures have no effect and are deprecated.