mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-06 09:10:27 +00:00
Compare commits
1 Commits
bagatur/pa
...
brace/form
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
be8b3433aa |
@@ -12,7 +12,7 @@
|
||||
|
||||
// The optional 'workspaceFolder' property is the path VS Code should open by default when
|
||||
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
|
||||
"workspaceFolder": "/workspaces/langchain",
|
||||
"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
|
||||
|
||||
// Prevent the container from shutting down
|
||||
"overrideCommand": true
|
||||
|
||||
@@ -6,7 +6,7 @@ services:
|
||||
context: ..
|
||||
volumes:
|
||||
# Update this to wherever you want VS Code to mount the folder of your project
|
||||
- ..:/workspaces/langchain:cached
|
||||
- ..:/workspaces:cached
|
||||
networks:
|
||||
- langchain-network
|
||||
# environment:
|
||||
|
||||
17
.github/scripts/check_diff.py
vendored
17
.github/scripts/check_diff.py
vendored
@@ -6,8 +6,8 @@ from typing import Dict
|
||||
LANGCHAIN_DIRS = [
|
||||
"libs/core",
|
||||
"libs/text-splitters",
|
||||
"libs/langchain",
|
||||
"libs/community",
|
||||
"libs/langchain",
|
||||
"libs/experimental",
|
||||
]
|
||||
|
||||
@@ -19,7 +19,6 @@ if __name__ == "__main__":
|
||||
"test": set(),
|
||||
"extended-test": set(),
|
||||
}
|
||||
docs_edited = False
|
||||
|
||||
if len(files) == 300:
|
||||
# max diff length is 300 files - there are likely files missing
|
||||
@@ -48,17 +47,6 @@ if __name__ == "__main__":
|
||||
found = True
|
||||
if found:
|
||||
dirs_to_run["extended-test"].add(dir_)
|
||||
elif file.startswith("libs/standard-tests"):
|
||||
# TODO: update to include all packages that rely on standard-tests (all partner packages)
|
||||
# note: won't run on external repo partners
|
||||
dirs_to_run["lint"].add("libs/standard-tests")
|
||||
dirs_to_run["test"].add("libs/partners/mistralai")
|
||||
dirs_to_run["test"].add("libs/partners/openai")
|
||||
dirs_to_run["test"].add("libs/partners/anthropic")
|
||||
dirs_to_run["test"].add("libs/partners/ai21")
|
||||
dirs_to_run["test"].add("libs/partners/fireworks")
|
||||
dirs_to_run["test"].add("libs/partners/groq")
|
||||
|
||||
elif file.startswith("libs/cli"):
|
||||
# todo: add cli makefile
|
||||
pass
|
||||
@@ -77,8 +65,6 @@ if __name__ == "__main__":
|
||||
"an update for this new library!"
|
||||
)
|
||||
elif any(file.startswith(p) for p in ["docs/", "templates/", "cookbook/"]):
|
||||
if file.startswith("docs/"):
|
||||
docs_edited = True
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
outputs = {
|
||||
@@ -87,7 +73,6 @@ if __name__ == "__main__":
|
||||
),
|
||||
"dirs-to-test": list(dirs_to_run["test"] | dirs_to_run["extended-test"]),
|
||||
"dirs-to-extended-test": list(dirs_to_run["extended-test"]),
|
||||
"docs-edited": "true" if docs_edited else "",
|
||||
}
|
||||
for key, value in outputs.items():
|
||||
json_output = json.dumps(value)
|
||||
|
||||
12
.github/scripts/get_min_versions.py
vendored
12
.github/scripts/get_min_versions.py
vendored
@@ -13,16 +13,13 @@ MIN_VERSION_LIBS = [
|
||||
|
||||
|
||||
def get_min_version(version: str) -> str:
|
||||
# base regex for x.x.x with cases for rc/post/etc
|
||||
# valid strings: https://peps.python.org/pep-0440/#public-version-identifiers
|
||||
vstring = r"\d+(?:\.\d+){0,2}(?:(?:a|b|rc|\.post|\.dev)\d+)?"
|
||||
# case ^x.x.x
|
||||
_match = re.match(f"^\\^({vstring})$", version)
|
||||
_match = re.match(r"^\^(\d+(?:\.\d+){0,2})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
# case >=x.x.x,<y.y.y
|
||||
_match = re.match(f"^>=({vstring}),<({vstring})$", version)
|
||||
_match = re.match(r"^>=(\d+(?:\.\d+){0,2}),<(\d+(?:\.\d+){0,2})$", version)
|
||||
if _match:
|
||||
_min = _match.group(1)
|
||||
_max = _match.group(2)
|
||||
@@ -30,7 +27,7 @@ def get_min_version(version: str) -> str:
|
||||
return _min
|
||||
|
||||
# case x.x.x
|
||||
_match = re.match(f"^({vstring})$", version)
|
||||
_match = re.match(r"^(\d+(?:\.\d+){0,2})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
@@ -55,9 +52,6 @@ def get_min_version_from_toml(toml_path: str):
|
||||
# Get the version string
|
||||
version_string = dependencies[lib]
|
||||
|
||||
if isinstance(version_string, dict):
|
||||
version_string = version_string["version"]
|
||||
|
||||
# Use parse_version to get the minimum supported version from version_string
|
||||
min_version = get_min_version(version_string)
|
||||
|
||||
|
||||
2
.github/workflows/_integration_test.yml
vendored
2
.github/workflows/_integration_test.yml
vendored
@@ -58,7 +58,6 @@ jobs:
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
@@ -78,7 +77,6 @@ jobs:
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
run: |
|
||||
make integration_tests
|
||||
|
||||
|
||||
27
.github/workflows/_release.yml
vendored
27
.github/workflows/_release.yml
vendored
@@ -13,11 +13,6 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
default: 'libs/langchain'
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
@@ -25,7 +20,7 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
|
||||
if: github.ref == 'refs/heads/master'
|
||||
environment: Scheduled testing
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
@@ -80,7 +75,6 @@ jobs:
|
||||
./.github/workflows/_test_release.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}
|
||||
secrets: inherit
|
||||
|
||||
pre-release-checks:
|
||||
@@ -118,7 +112,7 @@ jobs:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
# Here we use:
|
||||
# - The default regular PyPI index as the *primary* index, meaning
|
||||
# - The default regular PyPI index as the *primary* index, meaning
|
||||
# that it takes priority (https://pypi.org/simple)
|
||||
# - The test PyPI index as an extra index, so that any dependencies that
|
||||
# are not found on test PyPI can be resolved and installed anyway.
|
||||
@@ -177,7 +171,7 @@ jobs:
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
poetry run pip install --force-reinstall $MIN_VERSIONS
|
||||
poetry run pip install $MIN_VERSIONS
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
@@ -221,7 +215,7 @@ jobs:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
@@ -297,13 +291,14 @@ jobs:
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Create Tag
|
||||
|
||||
- name: Create Release
|
||||
uses: ncipollo/release-action@v1
|
||||
if: ${{ inputs.working-directory == 'libs/langchain' }}
|
||||
with:
|
||||
artifacts: "dist/*"
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
generateReleaseNotes: false
|
||||
tag: ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}
|
||||
body: "# Release ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}\n\nPackage-specific release note generation coming soon."
|
||||
commit: ${{ github.sha }}
|
||||
draft: false
|
||||
generateReleaseNotes: true
|
||||
tag: v${{ needs.build.outputs.version }}
|
||||
commit: master
|
||||
|
||||
50
.github/workflows/_test_doc_imports.yml
vendored
50
.github/workflows/_test_doc_imports.yml
vendored
@@ -1,50 +0,0 @@
|
||||
name: test_doc_imports
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.11"
|
||||
name: "check doc imports #${{ matrix.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Install langchain editable
|
||||
run: |
|
||||
poetry run pip install -e libs/core libs/langchain libs/community libs/experimental
|
||||
|
||||
- name: Check doc imports
|
||||
shell: bash
|
||||
run: |
|
||||
poetry run python docs/scripts/check_imports.py
|
||||
|
||||
- name: Ensure the test did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
7
.github/workflows/_test_release.yml
vendored
7
.github/workflows/_test_release.yml
vendored
@@ -7,11 +7,6 @@ on:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
@@ -19,7 +14,7 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
|
||||
if: github.ref == 'refs/heads/master'
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
outputs:
|
||||
|
||||
4
.github/workflows/check-broken-links.yml
vendored
4
.github/workflows/check-broken-links.yml
vendored
@@ -22,3 +22,7 @@ jobs:
|
||||
- name: Check broken links
|
||||
run: yarn check-broken-links
|
||||
working-directory: ./docs
|
||||
- name: Check broken links for .mdx files
|
||||
uses: gaurav-nelson/github-action-markdown-link-check@v1
|
||||
with:
|
||||
file-extension: '.mdx'
|
||||
|
||||
9
.github/workflows/check_diffs.yml
vendored
9
.github/workflows/check_diffs.yml
vendored
@@ -36,7 +36,6 @@ jobs:
|
||||
dirs-to-lint: ${{ steps.set-matrix.outputs.dirs-to-lint }}
|
||||
dirs-to-test: ${{ steps.set-matrix.outputs.dirs-to-test }}
|
||||
dirs-to-extended-test: ${{ steps.set-matrix.outputs.dirs-to-extended-test }}
|
||||
docs-edited: ${{ steps.set-matrix.outputs.docs-edited }}
|
||||
lint:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
@@ -61,12 +60,6 @@ jobs:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
test-doc-imports:
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' || needs.build.outputs.docs-edited }}
|
||||
uses: ./.github/workflows/_test_doc_imports.yml
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
@@ -141,7 +134,7 @@ jobs:
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
ci_success:
|
||||
name: "CI Success"
|
||||
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests, test-doc-imports]
|
||||
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests]
|
||||
if: |
|
||||
always()
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
4
.github/workflows/codespell.yml
vendored
4
.github/workflows/codespell.yml
vendored
@@ -3,9 +3,9 @@ name: CI / cd . / make spell_check
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master, v0.1]
|
||||
branches: [master]
|
||||
pull_request:
|
||||
branches: [master, v0.1]
|
||||
branches: [master]
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
43
.github/workflows/scheduled_test.yml
vendored
43
.github/workflows/scheduled_test.yml
vendored
@@ -10,22 +10,19 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: libs/langchain
|
||||
runs-on: ubuntu-latest
|
||||
environment: Scheduled testing
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
working-directory:
|
||||
- "libs/partners/openai"
|
||||
- "libs/partners/anthropic"
|
||||
- "libs/partners/ai21"
|
||||
- "libs/partners/fireworks"
|
||||
- "libs/partners/groq"
|
||||
- "libs/partners/mistralai"
|
||||
- "libs/partners/together"
|
||||
name: Python ${{ matrix.python-version }} - ${{ matrix.working-directory }}
|
||||
name: Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
@@ -34,7 +31,7 @@ jobs:
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: libs/langchain
|
||||
cache-key: scheduled
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
@@ -43,15 +40,26 @@ jobs:
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Configure AWS Credentials
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ vars.AWS_REGION }}
|
||||
|
||||
- name: Install dependencies
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
working-directory: libs/langchain
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with poetry..."
|
||||
poetry install --with=test_integration,test
|
||||
|
||||
- name: Run integration tests
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
- name: Install deps outside pyproject
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
|
||||
shell: bash
|
||||
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
|
||||
- name: Run tests
|
||||
shell: bash
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
@@ -62,16 +70,11 @@ jobs:
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
run: |
|
||||
make integration_test
|
||||
make scheduled_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
58
Makefile
58
Makefile
@@ -1,51 +1,44 @@
|
||||
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
|
||||
.PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck
|
||||
|
||||
## help: Show this help info.
|
||||
help: Makefile
|
||||
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
|
||||
@sed -n 's/^##//p' $< | awk -F':' '{printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' | sort | sed -e 's/^/ /'
|
||||
|
||||
## all: Default target, shows help.
|
||||
# Default target executed when no arguments are given to make.
|
||||
all: help
|
||||
|
||||
## clean: Clean documentation and API documentation artifacts.
|
||||
clean: docs_clean api_docs_clean
|
||||
|
||||
######################
|
||||
# DOCUMENTATION
|
||||
######################
|
||||
|
||||
## docs_build: Build the documentation.
|
||||
clean: docs_clean api_docs_clean
|
||||
|
||||
|
||||
docs_build:
|
||||
cd docs && make build
|
||||
docs/.local_build.sh
|
||||
|
||||
## docs_clean: Clean the documentation build artifacts.
|
||||
docs_clean:
|
||||
cd docs && make clean
|
||||
@if [ -d _dist ]; then \
|
||||
rm -r _dist; \
|
||||
echo "Directory _dist has been cleaned."; \
|
||||
else \
|
||||
echo "Nothing to clean."; \
|
||||
fi
|
||||
|
||||
## docs_linkcheck: Run linkchecker on the documentation.
|
||||
docs_linkcheck:
|
||||
poetry run linkchecker _dist/docs/ --ignore-url node_modules
|
||||
|
||||
## api_docs_build: Build the API Reference documentation.
|
||||
api_docs_build:
|
||||
poetry run python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && poetry run make html
|
||||
|
||||
## api_docs_clean: Clean the API Reference documentation build artifacts.
|
||||
api_docs_clean:
|
||||
find ./docs/api_reference -name '*_api_reference.rst' -delete
|
||||
cd docs/api_reference && poetry run make clean
|
||||
|
||||
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
|
||||
api_docs_linkcheck:
|
||||
poetry run linkchecker docs/api_reference/_build/html/index.html
|
||||
|
||||
## spell_check: Run codespell on the project.
|
||||
spell_check:
|
||||
poetry run codespell --toml pyproject.toml
|
||||
|
||||
## spell_fix: Run codespell on the project and fix the errors.
|
||||
spell_fix:
|
||||
poetry run codespell --toml pyproject.toml -w
|
||||
|
||||
@@ -53,14 +46,31 @@ spell_fix:
|
||||
# LINTING AND FORMATTING
|
||||
######################
|
||||
|
||||
## lint: Run linting on the project.
|
||||
lint lint_package lint_tests:
|
||||
poetry run ruff check docs templates cookbook
|
||||
poetry run ruff docs templates cookbook
|
||||
poetry run ruff format docs templates cookbook --diff
|
||||
poetry run ruff check --select I docs templates cookbook
|
||||
poetry run ruff --select I docs templates cookbook
|
||||
git grep 'from langchain import' docs/docs templates cookbook | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
|
||||
## format: Format the project files.
|
||||
format format_diff:
|
||||
poetry run ruff format docs templates cookbook
|
||||
poetry run ruff check --select I --fix docs templates cookbook
|
||||
poetry run ruff --select I --fix docs templates cookbook
|
||||
|
||||
|
||||
######################
|
||||
# HELP
|
||||
######################
|
||||
|
||||
help:
|
||||
@echo '===================='
|
||||
@echo '-- DOCUMENTATION --'
|
||||
@echo 'clean - run docs_clean and api_docs_clean'
|
||||
@echo 'docs_build - build the documentation'
|
||||
@echo 'docs_clean - clean the documentation build artifacts'
|
||||
@echo 'docs_linkcheck - run linkchecker on the documentation'
|
||||
@echo 'api_docs_build - build the API Reference documentation'
|
||||
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
|
||||
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
|
||||
@echo 'spell_check - run codespell on the project'
|
||||
@echo 'spell_fix - run codespell on the project and fix the errors'
|
||||
@echo '-- TEST and LINT tasks are within libs/*/ per-package --'
|
||||
|
||||
75
README.md
75
README.md
@@ -4,7 +4,7 @@
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
|
||||
[](https://pepy.tech/project/langchain-core)
|
||||
[](https://pepy.tech/project/langchain)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://twitter.com/langchainai)
|
||||
[](https://discord.gg/6adMQxSpJS)
|
||||
@@ -34,40 +34,34 @@ conda install langchain -c conda-forge
|
||||
|
||||
## 🤔 What is LangChain?
|
||||
|
||||
**LangChain** is a framework for developing applications powered by large language models (LLMs).
|
||||
**LangChain** is a framework for developing applications powered by language models. It enables applications that:
|
||||
- **Are context-aware**: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
|
||||
- **Reason**: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)
|
||||
|
||||
For these applications, LangChain simplifies the entire application lifecycle:
|
||||
This framework consists of several parts.
|
||||
- **LangChain Libraries**: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
|
||||
- **[LangChain Templates](templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
|
||||
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
|
||||
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
- **[LangGraph](https://python.langchain.com/docs/langgraph)**: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.
|
||||
|
||||
- **Open-source libraries**: Build your applications using LangChain's [modular building blocks](https://python.langchain.com/docs/expression_language/) and [components](https://python.langchain.com/docs/modules/). Integrate with hundreds of [third-party providers](https://python.langchain.com/docs/integrations/platforms/).
|
||||
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://python.langchain.com/docs/langsmith/) so that you can constantly optimize and deploy with confidence.
|
||||
- **Deployment**: Turn any chain into a REST API with [LangServe](https://python.langchain.com/docs/langserve).
|
||||
|
||||
### Open-source libraries
|
||||
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
|
||||
- **`langchain-community`**: Third party integrations.
|
||||
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
|
||||
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
- **[`LangGraph`](https://python.langchain.com/docs/langgraph)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
|
||||
|
||||
### Productionization:
|
||||
- **[LangSmith](https://python.langchain.com/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||
### Deployment:
|
||||
- **[LangServe](https://python.langchain.com/docs/langserve)**: A library for deploying LangChain chains as REST APIs.
|
||||
The LangChain libraries themselves are made up of several different packages.
|
||||
- **[`langchain-core`](libs/core)**: Base abstractions and LangChain Expression Language.
|
||||
- **[`langchain-community`](libs/community)**: Third party integrations.
|
||||
- **[`langchain`](libs/langchain)**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
|
||||

|
||||
|
||||
## 🧱 What can you build with LangChain?
|
||||
|
||||
**❓ Question answering with RAG**
|
||||
**❓ Retrieval augmented generation**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/)
|
||||
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
|
||||
|
||||
**🧱 Extracting structured output**
|
||||
**💬 Analyzing structured data**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/extraction/)
|
||||
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
|
||||
- [Documentation](https://python.langchain.com/docs/use_cases/qa_structured/sql)
|
||||
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain/tree/master/templates/sql-llama2)
|
||||
|
||||
**🤖 Chatbots**
|
||||
|
||||
@@ -78,51 +72,34 @@ And much more! Head to the [Use cases](https://python.langchain.com/docs/use_cas
|
||||
|
||||
## 🚀 How does LangChain help?
|
||||
The main value props of the LangChain libraries are:
|
||||
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
1. **Components**: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
|
||||
|
||||
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
|
||||
LCEL is the foundation of many of LangChain's components, and is a declarative way to compose chains. LCEL was designed from day 1 to support putting prototypes in production, with no code changes, from the simplest “prompt + LLM” chain to the most complex chains.
|
||||
|
||||
- **[Overview](https://python.langchain.com/docs/expression_language/)**: LCEL and its benefits
|
||||
- **[Interface](https://python.langchain.com/docs/expression_language/interface)**: The standard interface for LCEL objects
|
||||
- **[Primitives](https://python.langchain.com/docs/expression_language/primitives)**: More on the primitives LCEL includes
|
||||
|
||||
## Components
|
||||
|
||||
Components fall into the following **modules**:
|
||||
|
||||
**📃 Model I/O:**
|
||||
|
||||
This includes [prompt management](https://python.langchain.com/docs/modules/model_io/prompts/), [prompt optimization](https://python.langchain.com/docs/modules/model_io/prompts/example_selectors/), a generic interface for [chat models](https://python.langchain.com/docs/modules/model_io/chat/) and [LLMs](https://python.langchain.com/docs/modules/model_io/llms/), and common utilities for working with [model outputs](https://python.langchain.com/docs/modules/model_io/output_parsers/).
|
||||
This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.
|
||||
|
||||
**📚 Retrieval:**
|
||||
|
||||
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/modules/data_connection/document_loaders/) from a variety of sources, [preparing it](https://python.langchain.com/docs/modules/data_connection/document_loaders/), [then retrieving it](https://python.langchain.com/docs/modules/data_connection/retrievers/) for use in the generation step.
|
||||
Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.
|
||||
|
||||
**🤖 Agents:**
|
||||
|
||||
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete done. LangChain provides a [standard interface for agents](https://python.langchain.com/docs/modules/agents/), a [selection of agents](https://python.langchain.com/docs/modules/agents/agent_types/) to choose from, and examples of end-to-end agents.
|
||||
Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
Please see [here](https://python.langchain.com) for full documentation, which includes:
|
||||
|
||||
- [Getting started](https://python.langchain.com/docs/get_started/introduction): installation, setting up the environment, simple examples
|
||||
- [Use case](https://python.langchain.com/docs/use_cases/) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/)
|
||||
- Overviews of the [interfaces](https://python.langchain.com/docs/expression_language/), [components](https://python.langchain.com/docs/modules/), and [integrations](https://python.langchain.com/docs/integrations/providers)
|
||||
|
||||
You can also check out the full [API Reference docs](https://api.python.langchain.com).
|
||||
|
||||
## 🌐 Ecosystem
|
||||
|
||||
- [🦜🛠️ LangSmith](https://python.langchain.com/docs/langsmith/): Tracing and evaluating your language model applications and intelligent agents to help you move from prototype to production.
|
||||
- [🦜🕸️ LangGraph](https://python.langchain.com/docs/langgraph): Creating stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain primitives.
|
||||
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploying LangChain runnables and chains as REST APIs.
|
||||
- [LangChain Templates](https://python.langchain.com/docs/templates/): Example applications hosted with LangServe.
|
||||
- Overview of the [interfaces](https://python.langchain.com/docs/expression_language/), [modules](https://python.langchain.com/docs/modules/), and [integrations](https://python.langchain.com/docs/integrations/providers)
|
||||
- [Use case](https://python.langchain.com/docs/use_cases/qa_structured/sql) walkthroughs and best practice [guides](https://python.langchain.com/docs/guides/adapters/openai)
|
||||
- [LangSmith](https://python.langchain.com/docs/langsmith/), [LangServe](https://python.langchain.com/docs/langserve), and [LangChain Template](https://python.langchain.com/docs/templates/) overviews
|
||||
- [Reference](https://api.python.langchain.com): full API docs
|
||||
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
@@ -38,9 +38,9 @@
|
||||
"\n",
|
||||
"To run locally, we use Ollama.ai. \n",
|
||||
"\n",
|
||||
"See [here](/docs/integrations/chat/ollama) for details on installation and setup.\n",
|
||||
"See [here](https://python.langchain.com/docs/integrations/chat/ollama) for details on installation and setup.\n",
|
||||
"\n",
|
||||
"Also, see [here](/docs/guides/development/local_llms) for our full guide on local LLMs.\n",
|
||||
"Also, see [here](https://python.langchain.com/docs/guides/local_llms) for our full guide on local LLMs.\n",
|
||||
" \n",
|
||||
"To use an external API, which is not private, we can use Replicate."
|
||||
]
|
||||
|
||||
@@ -464,8 +464,8 @@
|
||||
" Check if the base64 data is an image by looking at the start of the data\n",
|
||||
" \"\"\"\n",
|
||||
" image_signatures = {\n",
|
||||
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
|
||||
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
|
||||
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
|
||||
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
|
||||
" }\n",
|
||||
@@ -604,7 +604,7 @@
|
||||
"source": [
|
||||
"# Check retrieval\n",
|
||||
"query = \"Give me company names that are interesting investments based on EV / NTM and NTM rev growth. Consider EV / NTM multiples vs historical?\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query, limit=6)\n",
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=6)\n",
|
||||
"\n",
|
||||
"# We get 4 docs\n",
|
||||
"len(docs)"
|
||||
@@ -630,7 +630,7 @@
|
||||
"source": [
|
||||
"# Check retrieval\n",
|
||||
"query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query, limit=6)\n",
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=6)\n",
|
||||
"\n",
|
||||
"# We get 4 docs\n",
|
||||
"len(docs)"
|
||||
|
||||
@@ -185,7 +185,7 @@
|
||||
" )\n",
|
||||
" # Text summary chain\n",
|
||||
" model = VertexAI(\n",
|
||||
" temperature=0, model_name=\"gemini-pro\", max_tokens=1024\n",
|
||||
" temperature=0, model_name=\"gemini-pro\", max_output_tokens=1024\n",
|
||||
" ).with_fallbacks([empty_response])\n",
|
||||
" summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()\n",
|
||||
"\n",
|
||||
@@ -254,9 +254,9 @@
|
||||
"\n",
|
||||
"def image_summarize(img_base64, prompt):\n",
|
||||
" \"\"\"Make image summary\"\"\"\n",
|
||||
" model = ChatVertexAI(model=\"gemini-pro-vision\", max_tokens=1024)\n",
|
||||
" model = ChatVertexAI(model_name=\"gemini-pro-vision\", max_output_tokens=1024)\n",
|
||||
"\n",
|
||||
" msg = model.invoke(\n",
|
||||
" msg = model(\n",
|
||||
" [\n",
|
||||
" HumanMessage(\n",
|
||||
" content=[\n",
|
||||
@@ -462,8 +462,8 @@
|
||||
" Check if the base64 data is an image by looking at the start of the data\n",
|
||||
" \"\"\"\n",
|
||||
" image_signatures = {\n",
|
||||
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
|
||||
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
|
||||
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
|
||||
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
|
||||
" }\n",
|
||||
@@ -553,7 +553,9 @@
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" # Multi-modal LLM\n",
|
||||
" model = ChatVertexAI(temperature=0, model_name=\"gemini-pro-vision\", max_tokens=1024)\n",
|
||||
" model = ChatVertexAI(\n",
|
||||
" temperature=0, model_name=\"gemini-pro-vision\", max_output_tokens=1024\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # RAG pipeline\n",
|
||||
" chain = (\n",
|
||||
@@ -602,7 +604,7 @@
|
||||
],
|
||||
"source": [
|
||||
"query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query, limit=1)\n",
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=1)\n",
|
||||
"\n",
|
||||
"# We get 2 docs\n",
|
||||
"len(docs)"
|
||||
|
||||
@@ -535,9 +535,9 @@
|
||||
" print(f\"--Generated {len(all_clusters)} clusters--\")\n",
|
||||
"\n",
|
||||
" # Summarization\n",
|
||||
" template = \"\"\"Here is a sub-set of LangChain Expression Language doc. \n",
|
||||
" template = \"\"\"Here is a sub-set of LangChain Expression Langauge doc. \n",
|
||||
" \n",
|
||||
" LangChain Expression Language provides a way to compose chain in LangChain.\n",
|
||||
" LangChain Expression Langauge provides a way to compose chain in LangChain.\n",
|
||||
" \n",
|
||||
" Give a detailed summary of the documentation provided.\n",
|
||||
" \n",
|
||||
|
||||
@@ -47,7 +47,6 @@ Notebook | Description
|
||||
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
|
||||
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
|
||||
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
|
||||
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check.
|
||||
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
|
||||
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
|
||||
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
|
||||
@@ -57,4 +56,3 @@ Notebook | Description
|
||||
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
|
||||
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
|
||||
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
@@ -75,7 +75,7 @@
|
||||
"\n",
|
||||
"Apply to the [`LLaMA2`](https://arxiv.org/pdf/2307.09288.pdf) paper. \n",
|
||||
"\n",
|
||||
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/core/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
|
||||
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/bricks/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
|
||||
"\n",
|
||||
"This layout model makes it possible to extract elements, such as tables, from pdfs. \n",
|
||||
"\n",
|
||||
|
||||
@@ -562,7 +562,9 @@
|
||||
],
|
||||
"source": [
|
||||
"# We can retrieve this table\n",
|
||||
"retriever.invoke(\"What are results for LLaMA across across domains / subjects?\")[1]"
|
||||
"retriever.get_relevant_documents(\n",
|
||||
" \"What are results for LLaMA across across domains / subjects?\"\n",
|
||||
")[1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -612,7 +614,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"Images / figures with playful and creative examples\")[1]"
|
||||
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
|
||||
" 1\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -191,15 +191,15 @@
|
||||
"source": [
|
||||
"## Multi-vector retriever\n",
|
||||
"\n",
|
||||
"Use [multi-vector-retriever](/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
|
||||
"Use [multi-vector-retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector#summary).\n",
|
||||
"\n",
|
||||
"Summaries are used to retrieve raw tables and / or raw chunks of text.\n",
|
||||
"\n",
|
||||
"### Text and Table summaries\n",
|
||||
"\n",
|
||||
"Here, we use Ollama to run LLaMA2 locally. \n",
|
||||
"Here, we use ollama.ai to run LLaMA2 locally. \n",
|
||||
"\n",
|
||||
"See details on installation [here](/docs/guides/development/local_llms)."
|
||||
"See details on installation [here](https://python.langchain.com/docs/guides/local_llms)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -501,7 +501,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"Images / figures with playful and creative examples\")[0]"
|
||||
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
|
||||
" 0\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -342,7 +342,7 @@
|
||||
"# Testing on retrieval\n",
|
||||
"query = \"What percentage of CPI is dedicated to Housing, and how does it compare to the combined percentage of Medical Care, Apparel, and Other Goods and Services?\"\n",
|
||||
"suffix_for_images = \" Include any pie charts, graphs, or tables.\"\n",
|
||||
"docs = retriever_multi_vector_img.invoke(query + suffix_for_images)"
|
||||
"docs = retriever_multi_vector_img.get_relevant_documents(query + suffix_for_images)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -532,8 +532,8 @@
|
||||
"def is_image_data(b64data):\n",
|
||||
" \"\"\"Check if the base64 data is an image by looking at the start of the data.\"\"\"\n",
|
||||
" image_signatures = {\n",
|
||||
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
|
||||
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
|
||||
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
|
||||
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
|
||||
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
|
||||
" }\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -59,7 +59,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=1.0)"
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=1.0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -90,7 +90,7 @@
|
||||
" ) -> AIMessage:\n",
|
||||
" messages = self.update_messages(input_message)\n",
|
||||
"\n",
|
||||
" output_message = self.model.invoke(messages)\n",
|
||||
" output_message = self.model(messages)\n",
|
||||
" self.update_messages(output_message)\n",
|
||||
"\n",
|
||||
" return output_message"
|
||||
|
||||
@@ -933,7 +933,7 @@
|
||||
"**Answer**: The LangChain class includes various types of retrievers such as:\n",
|
||||
"\n",
|
||||
"- ArxivRetriever\n",
|
||||
"- AzureAISearchRetriever\n",
|
||||
"- AzureCognitiveSearchRetriever\n",
|
||||
"- BM25Retriever\n",
|
||||
"- ChaindeskRetriever\n",
|
||||
"- ChatGPTPluginRetriever\n",
|
||||
@@ -993,7 +993,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureAISearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
|
||||
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureCognitiveSearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
@@ -1117,7 +1117,7 @@
|
||||
"The LangChain class includes various types of retrievers such as:\n",
|
||||
"\n",
|
||||
"- ArxivRetriever\n",
|
||||
"- AzureAISearchRetriever\n",
|
||||
"- AzureCognitiveSearchRetriever\n",
|
||||
"- BM25Retriever\n",
|
||||
"- ChaindeskRetriever\n",
|
||||
"- ChatGPTPluginRetriever\n",
|
||||
|
||||
@@ -1,557 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup Environment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Python Modules"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the following Python modules:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"pip install ipykernel python-dotenv cassio pandas langchain_openai langchain langchain-community langchainhub langchain_experimental openai-multi-tool-use-parallel-patch\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load the `.env` File"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Connection is via `cassio` using `auto=True` parameter, and the notebook uses OpenAI. You should create a `.env` file accordingly.\n",
|
||||
"\n",
|
||||
"For Casssandra, set:\n",
|
||||
"```bash\n",
|
||||
"CASSANDRA_CONTACT_POINTS\n",
|
||||
"CASSANDRA_USERNAME\n",
|
||||
"CASSANDRA_PASSWORD\n",
|
||||
"CASSANDRA_KEYSPACE\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For Astra, set:\n",
|
||||
"```bash\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN\n",
|
||||
"ASTRA_DB_DATABASE_ID\n",
|
||||
"ASTRA_DB_KEYSPACE\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For example:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"# Connection to Astra:\n",
|
||||
"ASTRA_DB_DATABASE_ID=a1b2c3d4-...\n",
|
||||
"ASTRA_DB_APPLICATION_TOKEN=AstraCS:...\n",
|
||||
"ASTRA_DB_KEYSPACE=notebooks\n",
|
||||
"\n",
|
||||
"# Also set \n",
|
||||
"OPENAI_API_KEY=sk-....\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"(You may also modify the below code to directly connect with `cassio`.)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Connect to Cassandra"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import cassio\n",
|
||||
"\n",
|
||||
"cassio.init(auto=True)\n",
|
||||
"session = cassio.config.resolve_session()\n",
|
||||
"if not session:\n",
|
||||
" raise Exception(\n",
|
||||
" \"Check environment configuration or manually configure cassio connection parameters\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"keyspace = os.environ.get(\n",
|
||||
" \"ASTRA_DB_KEYSPACE\", os.environ.get(\"CASSANDRA_KEYSPACE\", None)\n",
|
||||
")\n",
|
||||
"if not keyspace:\n",
|
||||
" raise ValueError(\"a KEYSPACE environment variable must be set\")\n",
|
||||
"\n",
|
||||
"session.set_keyspace(keyspace)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup Database"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This needs to be done one time only!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The dataset used is from Kaggle, the [Environmental Sensor Telemetry Data](https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k?select=iot_telemetry_data.csv). The next cell will download and unzip the data into a Pandas dataframe. The following cell is instructions to download manually. \n",
|
||||
"\n",
|
||||
"The net result of this section is you should have a Pandas dataframe variable `df`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download Automatically"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from io import BytesIO\n",
|
||||
"from zipfile import ZipFile\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"datasetURL = \"https://storage.googleapis.com/kaggle-data-sets/788816/1355729/bundle/archive.zip?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20240404%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240404T115828Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=2849f003b100eb9dcda8dd8535990f51244292f67e4f5fad36f14aa67f2d4297672d8fe6ff5a39f03a29cda051e33e95d36daab5892b8874dcd5a60228df0361fa26bae491dd4371f02dd20306b583a44ba85a4474376188b1f84765147d3b4f05c57345e5de883c2c29653cce1f3755cd8e645c5e952f4fb1c8a735b22f0c811f97f7bce8d0235d0d3731ca8ab4629ff381f3bae9e35fc1b181c1e69a9c7913a5e42d9d52d53e5f716467205af9c8a3cc6746fc5352e8fbc47cd7d18543626bd67996d18c2045c1e475fc136df83df352fa747f1a3bb73e6ba3985840792ec1de407c15836640ec96db111b173bf16115037d53fdfbfd8ac44145d7f9a546aa\"\n",
|
||||
"\n",
|
||||
"response = requests.get(datasetURL)\n",
|
||||
"if response.status_code == 200:\n",
|
||||
" zip_file = ZipFile(BytesIO(response.content))\n",
|
||||
" csv_file_name = zip_file.namelist()[0]\n",
|
||||
"else:\n",
|
||||
" print(\"Failed to download the file\")\n",
|
||||
"\n",
|
||||
"with zip_file.open(csv_file_name) as csv_file:\n",
|
||||
" df = pd.read_csv(csv_file)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download Manually"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can download the `.zip` file and unpack the `.csv` contained within. Comment in the next line, and adjust the path to this `.csv` file appropriately."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# df = pd.read_csv(\"/path/to/iot_telemetry_data.csv\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Data into Cassandra"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This section assumes the existence of a dataframe `df`, the following cell validates its structure. The Download section above creates this object."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"assert df is not None, \"Dataframe 'df' must be set\"\n",
|
||||
"expected_columns = [\n",
|
||||
" \"ts\",\n",
|
||||
" \"device\",\n",
|
||||
" \"co\",\n",
|
||||
" \"humidity\",\n",
|
||||
" \"light\",\n",
|
||||
" \"lpg\",\n",
|
||||
" \"motion\",\n",
|
||||
" \"smoke\",\n",
|
||||
" \"temp\",\n",
|
||||
"]\n",
|
||||
"assert all(\n",
|
||||
" [column in df.columns for column in expected_columns]\n",
|
||||
"), \"DataFrame does not have the expected columns\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Create and load tables:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import UTC, datetime\n",
|
||||
"\n",
|
||||
"from cassandra.query import BatchStatement\n",
|
||||
"\n",
|
||||
"# Create sensors table\n",
|
||||
"table_query = \"\"\"\n",
|
||||
"CREATE TABLE IF NOT EXISTS iot_sensors (\n",
|
||||
" device text,\n",
|
||||
" conditions text,\n",
|
||||
" room text,\n",
|
||||
" PRIMARY KEY (device)\n",
|
||||
")\n",
|
||||
"WITH COMMENT = 'Environmental IoT room sensor metadata.';\n",
|
||||
"\"\"\"\n",
|
||||
"session.execute(table_query)\n",
|
||||
"\n",
|
||||
"pstmt = session.prepare(\n",
|
||||
" \"\"\"\n",
|
||||
"INSERT INTO iot_sensors (device, conditions, room)\n",
|
||||
"VALUES (?, ?, ?)\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"devices = [\n",
|
||||
" (\"00:0f:00:70:91:0a\", \"stable conditions, cooler and more humid\", \"room 1\"),\n",
|
||||
" (\"1c:bf:ce:15:ec:4d\", \"highly variable temperature and humidity\", \"room 2\"),\n",
|
||||
" (\"b8:27:eb:bf:9d:51\", \"stable conditions, warmer and dryer\", \"room 3\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"for device, conditions, room in devices:\n",
|
||||
" session.execute(pstmt, (device, conditions, room))\n",
|
||||
"\n",
|
||||
"print(\"Sensors inserted successfully.\")\n",
|
||||
"\n",
|
||||
"# Create data table\n",
|
||||
"table_query = \"\"\"\n",
|
||||
"CREATE TABLE IF NOT EXISTS iot_data (\n",
|
||||
" day text,\n",
|
||||
" device text,\n",
|
||||
" ts timestamp,\n",
|
||||
" co double,\n",
|
||||
" humidity double,\n",
|
||||
" light boolean,\n",
|
||||
" lpg double,\n",
|
||||
" motion boolean,\n",
|
||||
" smoke double,\n",
|
||||
" temp double,\n",
|
||||
" PRIMARY KEY ((day, device), ts)\n",
|
||||
")\n",
|
||||
"WITH COMMENT = 'Data from environmental IoT room sensors. Columns include device identifier, timestamp (ts) of the data collection, carbon monoxide level (co), relative humidity, light presence, LPG concentration, motion detection, smoke concentration, and temperature (temp). Data is partitioned by day and device.';\n",
|
||||
"\"\"\"\n",
|
||||
"session.execute(table_query)\n",
|
||||
"\n",
|
||||
"pstmt = session.prepare(\n",
|
||||
" \"\"\"\n",
|
||||
"INSERT INTO iot_data (day, device, ts, co, humidity, light, lpg, motion, smoke, temp)\n",
|
||||
"VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def insert_data_batch(name, group):\n",
|
||||
" batch = BatchStatement()\n",
|
||||
" day, device = name\n",
|
||||
" print(f\"Inserting batch for day: {day}, device: {device}\")\n",
|
||||
"\n",
|
||||
" for _, row in group.iterrows():\n",
|
||||
" timestamp = datetime.fromtimestamp(row[\"ts\"], UTC)\n",
|
||||
" batch.add(\n",
|
||||
" pstmt,\n",
|
||||
" (\n",
|
||||
" day,\n",
|
||||
" row[\"device\"],\n",
|
||||
" timestamp,\n",
|
||||
" row[\"co\"],\n",
|
||||
" row[\"humidity\"],\n",
|
||||
" row[\"light\"],\n",
|
||||
" row[\"lpg\"],\n",
|
||||
" row[\"motion\"],\n",
|
||||
" row[\"smoke\"],\n",
|
||||
" row[\"temp\"],\n",
|
||||
" ),\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" session.execute(batch)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Convert columns to appropriate types\n",
|
||||
"df[\"light\"] = df[\"light\"] == \"true\"\n",
|
||||
"df[\"motion\"] = df[\"motion\"] == \"true\"\n",
|
||||
"df[\"ts\"] = df[\"ts\"].astype(float)\n",
|
||||
"df[\"day\"] = df[\"ts\"].apply(\n",
|
||||
" lambda x: datetime.fromtimestamp(x, UTC).strftime(\"%Y-%m-%d\")\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"grouped_df = df.groupby([\"day\", \"device\"])\n",
|
||||
"\n",
|
||||
"for name, group in grouped_df:\n",
|
||||
" insert_data_batch(name, group)\n",
|
||||
"\n",
|
||||
"print(\"Data load complete\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(session.keyspace)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load the Tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Python `import` statements for the demo:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
|
||||
"from langchain_community.agent_toolkits.cassandra_database.toolkit import (\n",
|
||||
" CassandraDatabaseToolkit,\n",
|
||||
")\n",
|
||||
"from langchain_community.tools.cassandra_database.prompt import QUERY_PATH_PROMPT\n",
|
||||
"from langchain_community.tools.cassandra_database.tool import (\n",
|
||||
" GetSchemaCassandraDatabaseTool,\n",
|
||||
" GetTableDataCassandraDatabaseTool,\n",
|
||||
" QueryCassandraDatabaseTool,\n",
|
||||
")\n",
|
||||
"from langchain_community.utilities.cassandra_database import CassandraDatabase\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The `CassandraDatabase` object is loaded from `cassio`, though it does accept a `Session`-type parameter as an alternative."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a CassandraDatabase instance\n",
|
||||
"db = CassandraDatabase(include_tables=[\"iot_sensors\", \"iot_data\"])\n",
|
||||
"\n",
|
||||
"# Create the Cassandra Database tools\n",
|
||||
"query_tool = QueryCassandraDatabaseTool(db=db)\n",
|
||||
"schema_tool = GetSchemaCassandraDatabaseTool(db=db)\n",
|
||||
"select_data_tool = GetTableDataCassandraDatabaseTool(db=db)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The tools can be invoked directly:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Test the tools\n",
|
||||
"print(\"Executing a CQL query:\")\n",
|
||||
"query = \"SELECT * FROM iot_sensors LIMIT 5;\"\n",
|
||||
"result = query_tool.run({\"query\": query})\n",
|
||||
"print(result)\n",
|
||||
"\n",
|
||||
"print(\"\\nGetting the schema for a keyspace:\")\n",
|
||||
"schema = schema_tool.run({\"keyspace\": keyspace})\n",
|
||||
"print(schema)\n",
|
||||
"\n",
|
||||
"print(\"\\nGetting data from a table:\")\n",
|
||||
"table = \"iot_data\"\n",
|
||||
"predicate = \"day = '2020-07-14' and device = 'b8:27:eb:bf:9d:51'\"\n",
|
||||
"data = select_data_tool.run(\n",
|
||||
" {\"keyspace\": keyspace, \"table\": table, \"predicate\": predicate, \"limit\": 5}\n",
|
||||
")\n",
|
||||
"print(data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Agent Configuration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import Tool\n",
|
||||
"from langchain_experimental.utilities import PythonREPL\n",
|
||||
"\n",
|
||||
"python_repl = PythonREPL()\n",
|
||||
"\n",
|
||||
"repl_tool = Tool(\n",
|
||||
" name=\"python_repl\",\n",
|
||||
" description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n",
|
||||
" func=python_repl.run,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(temperature=0, model=\"gpt-4-1106-preview\")\n",
|
||||
"toolkit = CassandraDatabaseToolkit(db=db)\n",
|
||||
"\n",
|
||||
"# context = toolkit.get_context()\n",
|
||||
"# tools = toolkit.get_tools()\n",
|
||||
"tools = [schema_tool, select_data_tool, repl_tool]\n",
|
||||
"\n",
|
||||
"input = (\n",
|
||||
" QUERY_PATH_PROMPT\n",
|
||||
" + f\"\"\"\n",
|
||||
"\n",
|
||||
"Here is your task: In the {keyspace} keyspace, find the total number of times the temperature of each device has exceeded 23 degrees on July 14, 2020.\n",
|
||||
" Create a summary report including the name of the room. Use Pandas if helpful.\n",
|
||||
"\"\"\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n",
|
||||
"\n",
|
||||
"# messages = [\n",
|
||||
"# HumanMessagePromptTemplate.from_template(input),\n",
|
||||
"# AIMessage(content=QUERY_PATH_PROMPT),\n",
|
||||
"# MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
|
||||
"# ]\n",
|
||||
"\n",
|
||||
"# prompt = ChatPromptTemplate.from_messages(messages)\n",
|
||||
"# print(prompt)\n",
|
||||
"\n",
|
||||
"# Choose the LLM that will drive the agent\n",
|
||||
"# Only certain models support this\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n",
|
||||
"\n",
|
||||
"# Construct the OpenAI Tools agent\n",
|
||||
"agent = create_openai_tools_agent(llm, tools, prompt)\n",
|
||||
"\n",
|
||||
"print(\"Available tools:\")\n",
|
||||
"for tool in tools:\n",
|
||||
" print(\"\\t\" + tool.name + \" - \" + tool.description + \" - \" + str(tool))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
|
||||
"\n",
|
||||
"response = agent_executor.invoke({\"input\": input})\n",
|
||||
"\n",
|
||||
"print(response[\"output\"])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -169,7 +169,7 @@
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" # Get documents, which contain the Plugins to use\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" # Get the toolkits, one for each plugin\n",
|
||||
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
|
||||
" # Get the tools: a separate NLAChain for each endpoint\n",
|
||||
|
||||
@@ -193,7 +193,7 @@
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" # Get documents, which contain the Plugins to use\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" # Get the toolkits, one for each plugin\n",
|
||||
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
|
||||
" # Get the tools: a separate NLAChain for each endpoint\n",
|
||||
|
||||
@@ -142,7 +142,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_tools(query):\n",
|
||||
" docs = retriever.invoke(query)\n",
|
||||
" docs = retriever.get_relevant_documents(query)\n",
|
||||
" return [ALL_TOOLS[d.metadata[\"index\"]] for d in docs]"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -84,7 +84,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
|
||||
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -362,7 +362,7 @@
|
||||
],
|
||||
"source": [
|
||||
"llm = OpenAI()\n",
|
||||
"llm.invoke(query)"
|
||||
"llm(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -108,7 +108,7 @@
|
||||
" return obs_message\n",
|
||||
"\n",
|
||||
" def _act(self):\n",
|
||||
" act_message = self.model.invoke(self.message_history)\n",
|
||||
" act_message = self.model(self.message_history)\n",
|
||||
" self.message_history.append(act_message)\n",
|
||||
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
|
||||
" return action\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -45,7 +45,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
|
||||
"llm_symbolic_math.run(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -65,7 +65,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\n",
|
||||
"llm_symbolic_math.run(\n",
|
||||
" \"What is the integral of exp(x)*sin(x) + exp(x)*cos(x) with respect to x?\"\n",
|
||||
")"
|
||||
]
|
||||
@@ -94,7 +94,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke('Solve the differential equation y\" - y = e^t')"
|
||||
"llm_symbolic_math.run('Solve the differential equation y\" - y = e^t')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,7 +114,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\"What are the solutions to this equation y^3 + 1/3y?\")"
|
||||
"llm_symbolic_math.run(\"What are the solutions to this equation y^3 + 1/3y?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -134,7 +134,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm_symbolic_math.invoke(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
|
||||
"llm_symbolic_math.run(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -1,818 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "70b333e6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"[](https://www.mongodb.com/developer/products/atlas/advanced-rag-langchain-mongodb/)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d84a72ea",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Adding Semantic Caching and Memory to your RAG Application using MongoDB and LangChain\n",
|
||||
"\n",
|
||||
"In this notebook, we will see how to use the new MongoDBCache and MongoDBChatMessageHistory in your RAG application.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "65527202",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 1: Install required libraries\n",
|
||||
"\n",
|
||||
"- **datasets**: Python library to get access to datasets available on Hugging Face Hub\n",
|
||||
"\n",
|
||||
"- **langchain**: Python toolkit for LangChain\n",
|
||||
"\n",
|
||||
"- **langchain-mongodb**: Python package to use MongoDB as a vector store, semantic cache, chat history store etc. in LangChain\n",
|
||||
"\n",
|
||||
"- **langchain-openai**: Python package to use OpenAI models with LangChain\n",
|
||||
"\n",
|
||||
"- **pymongo**: Python toolkit for MongoDB\n",
|
||||
"\n",
|
||||
"- **pandas**: Python library for data analysis, exploration, and manipulation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cbc22fa4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -qU datasets langchain langchain-mongodb langchain-openai pymongo pandas"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "39c41e87",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 2: Setup pre-requisites\n",
|
||||
"\n",
|
||||
"* Set the MongoDB connection string. Follow the steps [here](https://www.mongodb.com/docs/manual/reference/connection-string/) to get the connection string from the Atlas UI.\n",
|
||||
"\n",
|
||||
"* Set the OpenAI API key. Steps to obtain an API key as [here](https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "b56412ae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "16a20d7a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Enter your MongoDB connection string:········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"MONGODB_URI = getpass.getpass(\"Enter your MongoDB connection string:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "978682d4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Enter your OpenAI API key:········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"OPENAI_API_KEY = getpass.getpass(\"Enter your OpenAI API key:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "606081c5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Optional-- If you want to enable Langsmith -- good for debugging\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f6b8302c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 3: Download the dataset\n",
|
||||
"\n",
|
||||
"We will be using MongoDB's [embedded_movies](https://huggingface.co/datasets/MongoDB/embedded_movies) dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "1a3433a6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from datasets import load_dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "aee5311b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Ensure you have an HF_TOKEN in your development enviornment:\n",
|
||||
"# access tokens can be created or copied from the Hugging Face platform (https://huggingface.co/docs/hub/en/security-tokens)\n",
|
||||
"\n",
|
||||
"# Load MongoDB's embedded_movies dataset from Hugging Face\n",
|
||||
"# https://huggingface.co/datasets/MongoDB/airbnb_embeddings\n",
|
||||
"\n",
|
||||
"data = load_dataset(\"MongoDB/embedded_movies\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "1d630a26",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.DataFrame(data[\"train\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a1f94f43",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 4: Data analysis\n",
|
||||
"\n",
|
||||
"Make sure length of the dataset is what we expect, drop Nones etc."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "b276df71",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>fullplot</th>\n",
|
||||
" <th>type</th>\n",
|
||||
" <th>plot_embedding</th>\n",
|
||||
" <th>num_mflix_comments</th>\n",
|
||||
" <th>runtime</th>\n",
|
||||
" <th>writers</th>\n",
|
||||
" <th>imdb</th>\n",
|
||||
" <th>countries</th>\n",
|
||||
" <th>rated</th>\n",
|
||||
" <th>plot</th>\n",
|
||||
" <th>title</th>\n",
|
||||
" <th>languages</th>\n",
|
||||
" <th>metacritic</th>\n",
|
||||
" <th>directors</th>\n",
|
||||
" <th>awards</th>\n",
|
||||
" <th>genres</th>\n",
|
||||
" <th>poster</th>\n",
|
||||
" <th>cast</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Young Pauline is left a lot of money when her ...</td>\n",
|
||||
" <td>movie</td>\n",
|
||||
" <td>[0.00072939653, -0.026834568, 0.013515796, -0....</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>199.0</td>\n",
|
||||
" <td>[Charles W. Goddard (screenplay), Basil Dickey...</td>\n",
|
||||
" <td>{'id': 4465, 'rating': 7.6, 'votes': 744}</td>\n",
|
||||
" <td>[USA]</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Young Pauline is left a lot of money when her ...</td>\n",
|
||||
" <td>The Perils of Pauline</td>\n",
|
||||
" <td>[English]</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>[Louis J. Gasnier, Donald MacKenzie]</td>\n",
|
||||
" <td>{'nominations': 0, 'text': '1 win.', 'wins': 1}</td>\n",
|
||||
" <td>[Action]</td>\n",
|
||||
" <td>https://m.media-amazon.com/images/M/MV5BMzgxOD...</td>\n",
|
||||
" <td>[Pearl White, Crane Wilbur, Paul Panzer, Edwar...</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" fullplot type \\\n",
|
||||
"0 Young Pauline is left a lot of money when her ... movie \n",
|
||||
"\n",
|
||||
" plot_embedding num_mflix_comments \\\n",
|
||||
"0 [0.00072939653, -0.026834568, 0.013515796, -0.... 0 \n",
|
||||
"\n",
|
||||
" runtime writers \\\n",
|
||||
"0 199.0 [Charles W. Goddard (screenplay), Basil Dickey... \n",
|
||||
"\n",
|
||||
" imdb countries rated \\\n",
|
||||
"0 {'id': 4465, 'rating': 7.6, 'votes': 744} [USA] None \n",
|
||||
"\n",
|
||||
" plot title \\\n",
|
||||
"0 Young Pauline is left a lot of money when her ... The Perils of Pauline \n",
|
||||
"\n",
|
||||
" languages metacritic directors \\\n",
|
||||
"0 [English] NaN [Louis J. Gasnier, Donald MacKenzie] \n",
|
||||
"\n",
|
||||
" awards genres \\\n",
|
||||
"0 {'nominations': 0, 'text': '1 win.', 'wins': 1} [Action] \n",
|
||||
"\n",
|
||||
" poster \\\n",
|
||||
"0 https://m.media-amazon.com/images/M/MV5BMzgxOD... \n",
|
||||
"\n",
|
||||
" cast \n",
|
||||
"0 [Pearl White, Crane Wilbur, Paul Panzer, Edwar... "
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Previewing the contents of the data\n",
|
||||
"df.head(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "22ab375d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Only keep records where the fullplot field is not null\n",
|
||||
"df = df[df[\"fullplot\"].notna()]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "fceed99a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Renaming the embedding field to \"embedding\" -- required by LangChain\n",
|
||||
"df.rename(columns={\"plot_embedding\": \"embedding\"}, inplace=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "aedec13a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 5: Create a simple RAG chain using MongoDB as the vector store"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "11d292f3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_mongodb import MongoDBAtlasVectorSearch\n",
|
||||
"from pymongo import MongoClient\n",
|
||||
"\n",
|
||||
"# Initialize MongoDB python client\n",
|
||||
"client = MongoClient(MONGODB_URI, appname=\"devrel.content.python\")\n",
|
||||
"\n",
|
||||
"DB_NAME = \"langchain_chatbot\"\n",
|
||||
"COLLECTION_NAME = \"data\"\n",
|
||||
"ATLAS_VECTOR_SEARCH_INDEX_NAME = \"vector_index\"\n",
|
||||
"collection = client[DB_NAME][COLLECTION_NAME]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "d8292d53",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"DeleteResult({'n': 1000, 'electionId': ObjectId('7fffffff00000000000000f6'), 'opTime': {'ts': Timestamp(1710523288, 1033), 't': 246}, 'ok': 1.0, '$clusterTime': {'clusterTime': Timestamp(1710523288, 1042), 'signature': {'hash': b\"i\\xa8\\xe9'\\x1ed\\xf2u\\xf3L\\xff\\xb1\\xf5\\xbfA\\x90\\xabJ\\x12\\x83\", 'keyId': 7299545392000008318}}, 'operationTime': Timestamp(1710523288, 1033)}, acknowledged=True)"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Delete any existing records in the collection\n",
|
||||
"collection.delete_many({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "36c68914",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Data ingestion into MongoDB completed\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Data Ingestion\n",
|
||||
"records = df.to_dict(\"records\")\n",
|
||||
"collection.insert_many(records)\n",
|
||||
"\n",
|
||||
"print(\"Data ingestion into MongoDB completed\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "cbfca0b8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"# Using the text-embedding-ada-002 since that's what was used to create embeddings in the movies dataset\n",
|
||||
"embeddings = OpenAIEmbeddings(\n",
|
||||
" openai_api_key=OPENAI_API_KEY, model=\"text-embedding-ada-002\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "798e176c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Vector Store Creation\n",
|
||||
"vector_store = MongoDBAtlasVectorSearch.from_connection_string(\n",
|
||||
" connection_string=MONGODB_URI,\n",
|
||||
" namespace=DB_NAME + \".\" + COLLECTION_NAME,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
|
||||
" text_key=\"fullplot\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"id": "c71cd087",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Using the MongoDB vector store as a retriever in a RAG chain\n",
|
||||
"retriever = vector_store.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": 5})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "b6588cd3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"# Generate context using the retriever, and pass the user question through\n",
|
||||
"retrieve = {\n",
|
||||
" \"context\": retriever | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs])),\n",
|
||||
" \"question\": RunnablePassthrough(),\n",
|
||||
"}\n",
|
||||
"template = \"\"\"Answer the question based only on the following context: \\\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"# Defining the chat prompt\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"# Defining the model to be used for chat completion\n",
|
||||
"model = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)\n",
|
||||
"# Parse output as a string\n",
|
||||
"parse_output = StrOutputParser()\n",
|
||||
"\n",
|
||||
"# Naive RAG chain\n",
|
||||
"naive_rag_chain = retrieve | prompt | model | parse_output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "aaae21f5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Once a Thief'"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "75f929ef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 6: Create a RAG chain with chat history"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"id": "94e7bd4a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
|
||||
"from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "5bb30860",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_session_history(session_id: str) -> MongoDBChatMessageHistory:\n",
|
||||
" return MongoDBChatMessageHistory(\n",
|
||||
" MONGODB_URI, session_id, database_name=DB_NAME, collection_name=\"history\"\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"id": "f51d0f35",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Given a follow-up question and history, create a standalone question\n",
|
||||
"standalone_system_prompt = \"\"\"\n",
|
||||
"Given a chat history and a follow-up question, rephrase the follow-up question to be a standalone question. \\\n",
|
||||
"Do NOT answer the question, just reformulate it if needed, otherwise return it as is. \\\n",
|
||||
"Only return the final standalone question. \\\n",
|
||||
"\"\"\"\n",
|
||||
"standalone_question_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", standalone_system_prompt),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"question_chain = standalone_question_prompt | model | parse_output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"id": "f3ef3354",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Generate context by passing output of the question_chain i.e. the standalone question to the retriever\n",
|
||||
"retriever_chain = RunnablePassthrough.assign(\n",
|
||||
" context=question_chain\n",
|
||||
" | retriever\n",
|
||||
" | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs]))\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"id": "5afb7345",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a prompt that includes the context, history and the follow-up question\n",
|
||||
"rag_system_prompt = \"\"\"Answer the question based only on the following context: \\\n",
|
||||
"{context}\n",
|
||||
"\"\"\"\n",
|
||||
"rag_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", rag_system_prompt),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{question}\"),\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"id": "f95f47d0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# RAG chain\n",
|
||||
"rag_chain = retriever_chain | rag_prompt | model | parse_output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"id": "9618d395",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The best movie to watch when feeling down could be \"Last Action Hero.\" It\\'s a fun and action-packed film that blends reality and fantasy, offering an escape from the real world and providing an entertaining distraction.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# RAG chain with history\n",
|
||||
"with_message_history = RunnableWithMessageHistory(\n",
|
||||
" rag_chain,\n",
|
||||
" get_session_history,\n",
|
||||
" input_messages_key=\"question\",\n",
|
||||
" history_messages_key=\"history\",\n",
|
||||
")\n",
|
||||
"with_message_history.invoke(\n",
|
||||
" {\"question\": \"What is the best movie to watch when sad?\"},\n",
|
||||
" {\"configurable\": {\"session_id\": \"1\"}},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"id": "6e3080d1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'I apologize for the confusion. Another movie that might lift your spirits when you\\'re feeling sad is \"Smilla\\'s Sense of Snow.\" It\\'s a mystery thriller that could engage your mind and distract you from your sadness with its intriguing plot and suspenseful storyline.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with_message_history.invoke(\n",
|
||||
" {\n",
|
||||
" \"question\": \"Hmmm..I don't want to watch that one. Can you suggest something else?\"\n",
|
||||
" },\n",
|
||||
" {\"configurable\": {\"session_id\": \"1\"}},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"id": "daea2953",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'For a lighter movie option, you might enjoy \"Cousins.\" It\\'s a comedy film set in Barcelona with action and humor, offering a fun and entertaining escape from reality. The storyline is engaging and filled with comedic moments that could help lift your spirits.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 59,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with_message_history.invoke(\n",
|
||||
" {\"question\": \"How about something more light?\"},\n",
|
||||
" {\"configurable\": {\"session_id\": \"1\"}},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0de23a88",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Step 7: Get faster responses using Semantic Cache\n",
|
||||
"\n",
|
||||
"**NOTE:** Semantic cache only caches the input to the LLM. When using it in retrieval chains, remember that documents retrieved can change between runs resulting in cache misses for semantically similar queries."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 61,
|
||||
"id": "5d6b6741",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.globals import set_llm_cache\n",
|
||||
"from langchain_mongodb.cache import MongoDBAtlasSemanticCache\n",
|
||||
"\n",
|
||||
"set_llm_cache(\n",
|
||||
" MongoDBAtlasSemanticCache(\n",
|
||||
" connection_string=MONGODB_URI,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" collection_name=\"semantic_cache\",\n",
|
||||
" database_name=DB_NAME,\n",
|
||||
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
|
||||
" wait_until_ready=True, # Optional, waits until the cache is ready to be used\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"id": "9825bc7b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 87.8 ms, sys: 670 µs, total: 88.5 ms\n",
|
||||
"Wall time: 1.24 s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Once a Thief'"
|
||||
]
|
||||
},
|
||||
"execution_count": 62,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"id": "a5e518cf",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 43.5 ms, sys: 4.16 ms, total: 47.7 ms\n",
|
||||
"Wall time: 255 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Once a Thief'"
|
||||
]
|
||||
},
|
||||
"execution_count": 63,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"id": "3d3d3ad3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 115 ms, sys: 171 µs, total: 115 ms\n",
|
||||
"Wall time: 1.38 s\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'I would recommend watching \"Last Action Hero\" when sad, as it is a fun and action-packed film that can help lift your spirits.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 64,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"naive_rag_chain.invoke(\"Which movie do I watch when sad?\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "conda_pytorch_p310",
|
||||
"language": "python",
|
||||
"name": "conda_pytorch_p310"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -435,7 +435,7 @@
|
||||
" display(HTML(image_html))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"docs = retriever.invoke(\"Woman with children\", k=10)\n",
|
||||
"docs = retriever.get_relevant_documents(\"Woman with children\", k=10)\n",
|
||||
"for doc in docs:\n",
|
||||
" if is_base64(doc.page_content):\n",
|
||||
" plt_img_base64(doc.page_content)\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -74,7 +74,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
|
||||
@@ -79,7 +79,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
@@ -234,7 +234,7 @@
|
||||
" termination_clause=self.termination_clause if self.stop else \"\",\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" self.response = self.model.invoke(\n",
|
||||
" self.response = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=response_prompt),\n",
|
||||
@@ -263,7 +263,7 @@
|
||||
" speaker_names=speaker_names,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" choice_string = self.model.invoke(\n",
|
||||
" choice_string = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=choice_prompt),\n",
|
||||
@@ -299,7 +299,7 @@
|
||||
" ),\n",
|
||||
" next_speaker=self.next_speaker,\n",
|
||||
" )\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=next_prompt),\n",
|
||||
|
||||
@@ -71,7 +71,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
@@ -164,7 +164,7 @@
|
||||
" message_history=\"\\n\".join(self.message_history),\n",
|
||||
" recent_message=self.message_history[-1],\n",
|
||||
" )\n",
|
||||
" bid_string = self.model.invoke([SystemMessage(content=prompt)]).content\n",
|
||||
" bid_string = self.model([SystemMessage(content=prompt)]).content\n",
|
||||
" return bid_string"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -1,872 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Oracle AI Vector Search with Document Processing\n",
|
||||
"Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads that allows you to query data based on semantics, rather than keywords.\n",
|
||||
"One of the biggest benefit of Oracle AI Vector Search is that semantic search on unstructured data can be combined with relational search on business data in one single system. This is not only powerful but also significantly more effective because you don't need to add a specialized vector database, eliminating the pain of data fragmentation between multiple systems.\n",
|
||||
"\n",
|
||||
"In addition, because Oracle has been building database technologies for so long, your vectors can benefit from all of Oracle Database's most powerful features, like the following:\n",
|
||||
"\n",
|
||||
" * Partitioning Support\n",
|
||||
" * Real Application Clusters scalability\n",
|
||||
" * Exadata smart scans\n",
|
||||
" * Shard processing across geographically distributed databases\n",
|
||||
" * Transactions\n",
|
||||
" * Parallel SQL\n",
|
||||
" * Disaster recovery\n",
|
||||
" * Security\n",
|
||||
" * Oracle Machine Learning\n",
|
||||
" * Oracle Graph Database\n",
|
||||
" * Oracle Spatial and Graph\n",
|
||||
" * Oracle Blockchain\n",
|
||||
" * JSON\n",
|
||||
"\n",
|
||||
"This guide demonstrates how Oracle AI Vector Search can be used with Langchain to serve an end-to-end RAG pipeline. This guide goes through examples of:\n",
|
||||
"\n",
|
||||
" * Loading the documents from various sources using OracleDocLoader\n",
|
||||
" * Summarizing them within/outside the database using OracleSummary\n",
|
||||
" * Generating embeddings for them within/outside the database using OracleEmbeddings\n",
|
||||
" * Chunking them according to different requirements using Advanced Oracle Capabilities from OracleTextSplitter\n",
|
||||
" * Storing and Indexing them in a Vector Store and querying them for queries in OracleVS"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Prerequisites\n",
|
||||
"\n",
|
||||
"Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# pip install oracledb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create Demo User\n",
|
||||
"First, create a demo user with all the required privileges. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Connection successful!\n",
|
||||
"User setup done!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"import oracledb\n",
|
||||
"\n",
|
||||
"# please update with your username, password, hostname and service_name\n",
|
||||
"# please make sure this user has sufficient privileges to perform all below\n",
|
||||
"username = \"\"\n",
|
||||
"password = \"\"\n",
|
||||
"dsn = \"\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
|
||||
" print(\"Connection successful!\")\n",
|
||||
"\n",
|
||||
" cursor = conn.cursor()\n",
|
||||
" cursor.execute(\n",
|
||||
" \"\"\"\n",
|
||||
" begin\n",
|
||||
" -- drop user\n",
|
||||
" begin\n",
|
||||
" execute immediate 'drop user testuser cascade';\n",
|
||||
" exception\n",
|
||||
" when others then\n",
|
||||
" dbms_output.put_line('Error setting up user.');\n",
|
||||
" end;\n",
|
||||
" execute immediate 'create user testuser identified by testuser';\n",
|
||||
" execute immediate 'grant connect, unlimited tablespace, create credential, create procedure, create any index to testuser';\n",
|
||||
" execute immediate 'create or replace directory DEMO_PY_DIR as ''/scratch/hroy/view_storage/hroy_devstorage/demo/orachain''';\n",
|
||||
" execute immediate 'grant read, write on directory DEMO_PY_DIR to public';\n",
|
||||
" execute immediate 'grant create mining model to testuser';\n",
|
||||
"\n",
|
||||
" -- network access\n",
|
||||
" begin\n",
|
||||
" DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(\n",
|
||||
" host => '*',\n",
|
||||
" ace => xs$ace_type(privilege_list => xs$name_list('connect'),\n",
|
||||
" principal_name => 'testuser',\n",
|
||||
" principal_type => xs_acl.ptype_db));\n",
|
||||
" end;\n",
|
||||
" end;\n",
|
||||
" \"\"\"\n",
|
||||
" )\n",
|
||||
" print(\"User setup done!\")\n",
|
||||
" cursor.close()\n",
|
||||
" conn.close()\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"User setup failed!\")\n",
|
||||
" cursor.close()\n",
|
||||
" conn.close()\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Process Documents using Oracle AI\n",
|
||||
"Let's think about a scenario that the users have some documents in Oracle Database or in a file system. They want to use the data for Oracle AI Vector Search using Langchain.\n",
|
||||
"\n",
|
||||
"For that, the users need to do some document preprocessing. The first step would be to read the documents, generate their summary(if needed) and then chunk/split them if needed. After that, they need to generate the embeddings for those chunks and store into Oracle AI Vector Store. Finally, the users will perform some semantic queries on those data. \n",
|
||||
"\n",
|
||||
"Oracle AI Vector Search Langchain library provides a range of document processing functionalities including document loading, splitting, generating summary and embeddings.\n",
|
||||
"\n",
|
||||
"In the following sections, we will go through how to use Oracle AI Langchain APIs to achieve each of these functionalities individually. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Connect to Demo User\n",
|
||||
"The following sample code will show how to connect to Oracle Database. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Connection successful!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"import oracledb\n",
|
||||
"\n",
|
||||
"# please update with your username, password, hostname and service_name\n",
|
||||
"username = \"\"\n",
|
||||
"password = \"\"\n",
|
||||
"dsn = \"\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
|
||||
" print(\"Connection successful!\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"Connection failed!\")\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Populate a Demo Table\n",
|
||||
"Create a demo table and insert some sample documents."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Table created and populated.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" cursor = conn.cursor()\n",
|
||||
"\n",
|
||||
" drop_table_sql = \"\"\"drop table demo_tab\"\"\"\n",
|
||||
" cursor.execute(drop_table_sql)\n",
|
||||
"\n",
|
||||
" create_table_sql = \"\"\"create table demo_tab (id number, data clob)\"\"\"\n",
|
||||
" cursor.execute(create_table_sql)\n",
|
||||
"\n",
|
||||
" insert_row_sql = \"\"\"insert into demo_tab values (:1, :2)\"\"\"\n",
|
||||
" rows_to_insert = [\n",
|
||||
" (\n",
|
||||
" 1,\n",
|
||||
" \"If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\",\n",
|
||||
" ),\n",
|
||||
" (\n",
|
||||
" 2,\n",
|
||||
" \"A tablespace can be online (accessible) or offline (not accessible) whenever the database is open.\\nA tablespace is usually online so that its data is available to users. The SYSTEM tablespace and temporary tablespaces cannot be taken offline.\",\n",
|
||||
" ),\n",
|
||||
" (\n",
|
||||
" 3,\n",
|
||||
" \"The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table.\\nSometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\",\n",
|
||||
" ),\n",
|
||||
" ]\n",
|
||||
" cursor.executemany(insert_row_sql, rows_to_insert)\n",
|
||||
"\n",
|
||||
" conn.commit()\n",
|
||||
"\n",
|
||||
" print(\"Table created and populated.\")\n",
|
||||
" cursor.close()\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"Table creation failed.\")\n",
|
||||
" cursor.close()\n",
|
||||
" conn.close()\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Now that we have a demo user and a demo table with some data, we just need to do one more setup. For embedding and summary, we have a few provider options that the users can choose from such as database, 3rd party providers like ocigenai, huggingface, openai, etc. If the users choose to use 3rd party provider, they need to create a credential with corresponding authentication information. On the other hand, if the users choose to use 'database' as provider, they need to load an onnx model to Oracle Database for embeddings; however, for summary, they don't need to do anything."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load ONNX Model\n",
|
||||
"\n",
|
||||
"To generate embeddings, Oracle provides a few provider options for users to choose from. The users can choose 'database' provider or some 3rd party providers like OCIGENAI, HuggingFace, etc.\n",
|
||||
"\n",
|
||||
"***Note*** If the users choose database option, they need to load an ONNX model to Oracle Database. The users do not need to load an ONNX model to Oracle Database if they choose to use 3rd party provider to generate embeddings.\n",
|
||||
"\n",
|
||||
"One of the core benefits of using an ONNX model is that the users do not need to transfer their data to 3rd party to generate embeddings. And also, since it does not involve any network or REST API calls, it may provide better performance.\n",
|
||||
"\n",
|
||||
"Here is the sample code to load an ONNX model to Oracle Database:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"ONNX model loaded.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"\n",
|
||||
"# please update with your related information\n",
|
||||
"# make sure that you have onnx file in the system\n",
|
||||
"onnx_dir = \"DEMO_PY_DIR\"\n",
|
||||
"onnx_file = \"tinybert.onnx\"\n",
|
||||
"model_name = \"demo_model\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
|
||||
" print(\"ONNX model loaded.\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"ONNX model loading failed!\")\n",
|
||||
" sys.exit(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create Credential\n",
|
||||
"\n",
|
||||
"On the other hand, if the users choose to use 3rd party provider to generate embeddings and summary, they need to create credential to access 3rd party provider's end points.\n",
|
||||
"\n",
|
||||
"***Note:*** The users do not need to create any credential if they choose to use 'database' provider to generate embeddings and summary. Should the users choose to 3rd party provider, they need to create credential for the 3rd party provider they want to use. \n",
|
||||
"\n",
|
||||
"Here is a sample example:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" cursor = conn.cursor()\n",
|
||||
" cursor.execute(\n",
|
||||
" \"\"\"\n",
|
||||
" declare\n",
|
||||
" jo json_object_t;\n",
|
||||
" begin\n",
|
||||
" -- HuggingFace\n",
|
||||
" dbms_vector_chain.drop_credential(credential_name => 'HF_CRED');\n",
|
||||
" jo := json_object_t();\n",
|
||||
" jo.put('access_token', '<access_token>');\n",
|
||||
" dbms_vector_chain.create_credential(\n",
|
||||
" credential_name => 'HF_CRED',\n",
|
||||
" params => json(jo.to_string));\n",
|
||||
"\n",
|
||||
" -- OCIGENAI\n",
|
||||
" dbms_vector_chain.drop_credential(credential_name => 'OCI_CRED');\n",
|
||||
" jo := json_object_t();\n",
|
||||
" jo.put('user_ocid','<user_ocid>');\n",
|
||||
" jo.put('tenancy_ocid','<tenancy_ocid>');\n",
|
||||
" jo.put('compartment_ocid','<compartment_ocid>');\n",
|
||||
" jo.put('private_key','<private_key>');\n",
|
||||
" jo.put('fingerprint','<fingerprint>');\n",
|
||||
" dbms_vector_chain.create_credential(\n",
|
||||
" credential_name => 'OCI_CRED',\n",
|
||||
" params => json(jo.to_string));\n",
|
||||
" end;\n",
|
||||
" \"\"\"\n",
|
||||
" )\n",
|
||||
" cursor.close()\n",
|
||||
" print(\"Credentials created.\")\n",
|
||||
"except Exception as ex:\n",
|
||||
" cursor.close()\n",
|
||||
" raise"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Documents\n",
|
||||
"The users can load the documents from Oracle Database or a file system or both. They just need to set the loader parameters accordingly. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters.\n",
|
||||
"\n",
|
||||
"The main benefit of using OracleDocLoader is that it can handle 150+ different file formats. You don't need to use different types of loader for different file formats. Here is the list formats that we support: [Oracle Text Supported Document Formats](https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/oracle-text-supported-document-formats.html)\n",
|
||||
"\n",
|
||||
"The following sample code will show how to do that:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of docs loaded: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleDocLoader\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# loading from Oracle Database table\n",
|
||||
"# make sure you have the table with this specification\n",
|
||||
"loader_params = {}\n",
|
||||
"loader_params = {\n",
|
||||
" \"owner\": \"testuser\",\n",
|
||||
" \"tablename\": \"demo_tab\",\n",
|
||||
" \"colname\": \"data\",\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"\"\"\" load the docs \"\"\"\n",
|
||||
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of docs loaded: {len(docs)}\")\n",
|
||||
"# print(f\"Document-0: {docs[0].page_content}\") # content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generate Summary\n",
|
||||
"Now that the user loaded the documents, they may want to generate a summary for each document. The Oracle AI Vector Search Langchain library provides an API to do that. There are a few summary generation provider options including Database, OCIGENAI, HuggingFace and so on. The users can choose their preferred provider to generate a summary. Like before, they just need to set the summary parameters accordingly. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"***Note:*** The users may need to set proxy if they want to use some 3rd party summary generation providers other than Oracle's in-house and default provider: 'database'. If you don't have proxy, please remove the proxy parameter when you instantiate the OracleSummary."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# proxy to be used when we instantiate summary and embedder object\n",
|
||||
"proxy = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The following sample code will show how to generate summary:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of Summaries: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# using 'database' provider\n",
|
||||
"summary_params = {\n",
|
||||
" \"provider\": \"database\",\n",
|
||||
" \"glevel\": \"S\",\n",
|
||||
" \"numParagraphs\": 1,\n",
|
||||
" \"language\": \"english\",\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"# get the summary instance\n",
|
||||
"# Remove proxy if not required\n",
|
||||
"summ = OracleSummary(conn=conn, params=summary_params, proxy=proxy)\n",
|
||||
"\n",
|
||||
"list_summary = []\n",
|
||||
"for doc in docs:\n",
|
||||
" summary = summ.get_summary(doc.page_content)\n",
|
||||
" list_summary.append(summary)\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of Summaries: {len(list_summary)}\")\n",
|
||||
"# print(f\"Summary-0: {list_summary[0]}\") #content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Split Documents\n",
|
||||
"The documents can be in different sizes: small, medium, large, or very large. The users like to split/chunk their documents into smaller pieces to generate embeddings. There are lots of different splitting customizations the users can do. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters.\n",
|
||||
"\n",
|
||||
"The following sample code will show how to do that:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of Chunks: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders.oracleai import OracleTextSplitter\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# split by default parameters\n",
|
||||
"splitter_params = {\"normalize\": \"all\"}\n",
|
||||
"\n",
|
||||
"\"\"\" get the splitter instance \"\"\"\n",
|
||||
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
|
||||
"\n",
|
||||
"list_chunks = []\n",
|
||||
"for doc in docs:\n",
|
||||
" chunks = splitter.split_text(doc.page_content)\n",
|
||||
" list_chunks.extend(chunks)\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of Chunks: {len(list_chunks)}\")\n",
|
||||
"# print(f\"Chunk-0: {list_chunks[0]}\") # content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generate Embeddings\n",
|
||||
"Now that the documents are chunked as per requirements, the users may want to generate embeddings for these chunks. Oracle AI Vector Search provides a number of ways to generate embeddings. The users can load an ONNX embedding model to Oracle Database and use it to generate embeddings or use some 3rd party API's end points to generate embeddings. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"***Note:*** The users may need to set proxy if they want to use some 3rd party embedding generation providers other than 'database' provider (aka using ONNX model)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# proxy to be used when we instantiate summary and embedder object\n",
|
||||
"proxy = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The following sample code will show how to generate embeddings:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of embeddings: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# using ONNX model loaded to Oracle Database\n",
|
||||
"embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
|
||||
"\n",
|
||||
"# get the embedding instance\n",
|
||||
"# Remove proxy if not required\n",
|
||||
"embedder = OracleEmbeddings(conn=conn, params=embedder_params, proxy=proxy)\n",
|
||||
"\n",
|
||||
"embeddings = []\n",
|
||||
"for doc in docs:\n",
|
||||
" chunks = splitter.split_text(doc.page_content)\n",
|
||||
" for chunk in chunks:\n",
|
||||
" embed = embedder.embed_query(chunk)\n",
|
||||
" embeddings.append(embed)\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of embeddings: {len(embeddings)}\")\n",
|
||||
"# print(f\"Embedding-0: {embeddings[0]}\") # content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Oracle AI Vector Store\n",
|
||||
"Now that you know how to use Oracle AI Langchain library APIs individually to process the documents, let us show how to integrate with Oracle AI Vector Store to facilitate the semantic searches."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"First, let's import all the dependencies."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"import oracledb\n",
|
||||
"from langchain_community.document_loaders.oracleai import (\n",
|
||||
" OracleDocLoader,\n",
|
||||
" OracleTextSplitter,\n",
|
||||
")\n",
|
||||
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
|
||||
"from langchain_community.utilities.oracleai import OracleSummary\n",
|
||||
"from langchain_community.vectorstores import oraclevs\n",
|
||||
"from langchain_community.vectorstores.oraclevs import OracleVS\n",
|
||||
"from langchain_community.vectorstores.utils import DistanceStrategy\n",
|
||||
"from langchain_core.documents import Document"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Next, let's combine all document processing stages together. Here is the sample code below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Connection successful!\n",
|
||||
"ONNX model loaded.\n",
|
||||
"Number of total chunks with metadata: 3\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"\"\"\"\n",
|
||||
"In this sample example, we will use 'database' provider for both summary and embeddings.\n",
|
||||
"So, we don't need to do the followings:\n",
|
||||
" - set proxy for 3rd party providers\n",
|
||||
" - create credential for 3rd party providers\n",
|
||||
"\n",
|
||||
"If you choose to use 3rd party provider, \n",
|
||||
"please follow the necessary steps for proxy and credential.\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"# oracle connection\n",
|
||||
"# please update with your username, password, hostname, and service_name\n",
|
||||
"username = \"\"\n",
|
||||
"password = \"\"\n",
|
||||
"dsn = \"\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
|
||||
" print(\"Connection successful!\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"Connection failed!\")\n",
|
||||
" sys.exit(1)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# load onnx model\n",
|
||||
"# please update with your related information\n",
|
||||
"onnx_dir = \"DEMO_PY_DIR\"\n",
|
||||
"onnx_file = \"tinybert.onnx\"\n",
|
||||
"model_name = \"demo_model\"\n",
|
||||
"try:\n",
|
||||
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
|
||||
" print(\"ONNX model loaded.\")\n",
|
||||
"except Exception as e:\n",
|
||||
" print(\"ONNX model loading failed!\")\n",
|
||||
" sys.exit(1)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# params\n",
|
||||
"# please update necessary fields with related information\n",
|
||||
"loader_params = {\n",
|
||||
" \"owner\": \"testuser\",\n",
|
||||
" \"tablename\": \"demo_tab\",\n",
|
||||
" \"colname\": \"data\",\n",
|
||||
"}\n",
|
||||
"summary_params = {\n",
|
||||
" \"provider\": \"database\",\n",
|
||||
" \"glevel\": \"S\",\n",
|
||||
" \"numParagraphs\": 1,\n",
|
||||
" \"language\": \"english\",\n",
|
||||
"}\n",
|
||||
"splitter_params = {\"normalize\": \"all\"}\n",
|
||||
"embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
|
||||
"\n",
|
||||
"# instantiate loader, summary, splitter, and embedder\n",
|
||||
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
|
||||
"summary = OracleSummary(conn=conn, params=summary_params)\n",
|
||||
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
|
||||
"embedder = OracleEmbeddings(conn=conn, params=embedder_params)\n",
|
||||
"\n",
|
||||
"# process the documents\n",
|
||||
"chunks_with_mdata = []\n",
|
||||
"for id, doc in enumerate(docs, start=1):\n",
|
||||
" summ = summary.get_summary(doc.page_content)\n",
|
||||
" chunks = splitter.split_text(doc.page_content)\n",
|
||||
" for ic, chunk in enumerate(chunks, start=1):\n",
|
||||
" chunk_metadata = doc.metadata.copy()\n",
|
||||
" chunk_metadata[\"id\"] = chunk_metadata[\"_oid\"] + \"$\" + str(id) + \"$\" + str(ic)\n",
|
||||
" chunk_metadata[\"document_id\"] = str(id)\n",
|
||||
" chunk_metadata[\"document_summary\"] = str(summ[0])\n",
|
||||
" chunks_with_mdata.append(\n",
|
||||
" Document(page_content=str(chunk), metadata=chunk_metadata)\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Number of total chunks with metadata: {len(chunks_with_mdata)}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"At this point, we have processed the documents and generated chunks with metadata. Next, we will create Oracle AI Vector Store with those chunks.\n",
|
||||
"\n",
|
||||
"Here is the sample code how to do that:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Vector Store Table: oravs\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# create Oracle AI Vector Store\n",
|
||||
"vectorstore = OracleVS.from_documents(\n",
|
||||
" chunks_with_mdata,\n",
|
||||
" embedder,\n",
|
||||
" client=conn,\n",
|
||||
" table_name=\"oravs\",\n",
|
||||
" distance_strategy=DistanceStrategy.DOT_PRODUCT,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\"\"\" verify \"\"\"\n",
|
||||
"print(f\"Vector Store Table: {vectorstore.table_name}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The above example creates a vector store with DOT_PRODUCT distance strategy. \n",
|
||||
"\n",
|
||||
"However, the users can create Oracle AI Vector Store provides different distance strategies. Please see the [comprehensive guide](/docs/integrations/vectorstores/oracle) for more information."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now that we have embeddings stored in vector stores, let's create an index on them to get better semantic search performance during query time.\n",
|
||||
"\n",
|
||||
"***Note*** If you are getting some insufficient memory error, please increase ***vector_memory_size*** in your database.\n",
|
||||
"\n",
|
||||
"Here is the sample code to create an index:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"oraclevs.create_index(\n",
|
||||
" conn, vectorstore, params={\"idx_name\": \"hnsw_oravs\", \"idx_type\": \"HNSW\"}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"Index created.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The above example creates a default HNSW index on the embeddings stored in 'oravs' table. The users can set different parameters as per their requirements. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters.\n",
|
||||
"\n",
|
||||
"Also, there are different types of vector indices that the users can create. Please see the [comprehensive guide](/docs/integrations/vectorstores/oracle) for more information.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Perform Semantic Search\n",
|
||||
"All set!\n",
|
||||
"\n",
|
||||
"We have processed the documents, stored them to vector store, and then created index to get better query performance. Now let's do some semantic searches.\n",
|
||||
"\n",
|
||||
"Here is the sample code for this:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'})]\n",
|
||||
"[]\n",
|
||||
"[(Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'}), 0.055675752460956573)]\n",
|
||||
"[]\n",
|
||||
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n",
|
||||
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query = \"What is Oracle AI Vector Store?\"\n",
|
||||
"filter = {\"document_id\": [\"1\"]}\n",
|
||||
"\n",
|
||||
"# Similarity search without a filter\n",
|
||||
"print(vectorstore.similarity_search(query, 1))\n",
|
||||
"\n",
|
||||
"# Similarity search with a filter\n",
|
||||
"print(vectorstore.similarity_search(query, 1, filter=filter))\n",
|
||||
"\n",
|
||||
"# Similarity search with relevance score\n",
|
||||
"print(vectorstore.similarity_search_with_score(query, 1))\n",
|
||||
"\n",
|
||||
"# Similarity search with relevance score with filter\n",
|
||||
"print(vectorstore.similarity_search_with_score(query, 1, filter=filter))\n",
|
||||
"\n",
|
||||
"# Max marginal relevance search\n",
|
||||
"print(vectorstore.max_marginal_relevance_search(query, 1, fetch_k=20, lambda_mult=0.5))\n",
|
||||
"\n",
|
||||
"# Max marginal relevance search with filter\n",
|
||||
"print(\n",
|
||||
" vectorstore.max_marginal_relevance_search(\n",
|
||||
" query, 1, fetch_k=20, lambda_mult=0.5, filter=filter\n",
|
||||
" )\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -129,7 +129,7 @@
|
||||
" return obs_message\n",
|
||||
"\n",
|
||||
" def _act(self):\n",
|
||||
" act_message = self.model.invoke(self.message_history)\n",
|
||||
" act_message = self.model(self.message_history)\n",
|
||||
" self.message_history.append(act_message)\n",
|
||||
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
|
||||
" return action\n",
|
||||
|
||||
@@ -84,7 +84,7 @@
|
||||
"from langchain.retrievers import KayAiRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
|
||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
||||
"retriever = KayAiRetriever.create(\n",
|
||||
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
|
||||
")\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,80 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RAG using Upstage Layout Analysis and Groundedness Check\n",
|
||||
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Layout Analysis and Groundedness Check."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables.base import RunnableSerializable\n",
|
||||
"from langchain_upstage import (\n",
|
||||
" ChatUpstage,\n",
|
||||
" UpstageEmbeddings,\n",
|
||||
" UpstageGroundednessCheck,\n",
|
||||
" UpstageLayoutAnalysisLoader,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = ChatUpstage()\n",
|
||||
"\n",
|
||||
"files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n",
|
||||
"\n",
|
||||
"loader = UpstageLayoutAnalysisLoader(file_path=files, split=\"element\")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"vectorstore = DocArrayInMemorySearch.from_documents(docs, embedding=UpstageEmbeddings())\n",
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"output_parser = StrOutputParser()\n",
|
||||
"\n",
|
||||
"retrieved_docs = retriever.get_relevant_documents(\"How many parameters in SOLAR model?\")\n",
|
||||
"\n",
|
||||
"groundedness_check = UpstageGroundednessCheck()\n",
|
||||
"groundedness = \"\"\n",
|
||||
"while groundedness != \"grounded\":\n",
|
||||
" chain: RunnableSerializable = RunnablePassthrough() | prompt | model | output_parser\n",
|
||||
"\n",
|
||||
" result = chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"question\": \"How many parameters in SOLAR model?\",\n",
|
||||
" }\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" groundedness = groundedness_check.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"answer\": result,\n",
|
||||
" }\n",
|
||||
" )"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -274,7 +274,7 @@
|
||||
"db = SQLDatabase.from_uri(\n",
|
||||
" CONNECTION_STRING\n",
|
||||
") # We reconnect to db so the new columns are loaded as well.\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
|
||||
"\n",
|
||||
"sql_query_chain = (\n",
|
||||
" RunnablePassthrough.assign(schema=get_schema)\n",
|
||||
|
||||
@@ -1,32 +1,28 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# SalesGPT - Context-Aware AI Sales Assistant With Knowledge Base and Ability Generate Stripe Payment Links\n",
|
||||
"# SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base\n",
|
||||
"\n",
|
||||
"This notebook demonstrates an implementation of a **Context-Aware** AI Sales agent with a Product Knowledge Base which can actually close sales. \n",
|
||||
"This notebook demonstrates an implementation of a **Context-Aware** AI Sales agent with a Product Knowledge Base. \n",
|
||||
"\n",
|
||||
"This notebook was originally published at [filipmichalsky/SalesGPT](https://github.com/filip-michalsky/SalesGPT) by [@FilipMichalsky](https://twitter.com/FilipMichalsky).\n",
|
||||
"\n",
|
||||
"SalesGPT is context-aware, which means it can understand what section of a sales conversation it is in and act accordingly.\n",
|
||||
" \n",
|
||||
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activites, such as outbound sales calls. \n",
|
||||
"As such, this agent can have a natural sales conversation with a prospect and behaves based on the conversation stage. Hence, this notebook demonstrates how we can use AI to automate sales development representatives activities, such as outbound sales calls. \n",
|
||||
"\n",
|
||||
"Additionally, the AI Sales agent has access to tools, which allow it to interact with other systems.\n",
|
||||
"\n",
|
||||
"Here, we show how the AI Sales Agent can use a **Product Knowledge Base** to speak about a particular's company offerings,\n",
|
||||
"hence increasing relevance and reducing hallucinations.\n",
|
||||
"\n",
|
||||
"Furthermore, we show how our AI Sales Agent can **generate sales** by integration with the AI Agent Highway called [Mindware](https://www.mindware.co/). In practice, this allows the agent to autonomously generate a payment link for your customers **to pay for your products via Stripe**.\n",
|
||||
"\n",
|
||||
"We leverage the [`langchain`](https://github.com/hwchase17/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
|
||||
"We leverage the [`langchain`](https://github.com/langchain-ai/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -42,10 +38,9 @@
|
||||
"import os\n",
|
||||
"import re\n",
|
||||
"\n",
|
||||
"# make sure you have .env file saved locally with your API keys\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"load_dotenv()\n",
|
||||
"# import your OpenAI key\n",
|
||||
"OPENAI_API_KEY = \"sk-xx\"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY\n",
|
||||
"\n",
|
||||
"from typing import Any, Callable, Dict, List, Union\n",
|
||||
"\n",
|
||||
@@ -54,18 +49,27 @@
|
||||
"from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS\n",
|
||||
"from langchain.chains import LLMChain, RetrievalQA\n",
|
||||
"from langchain.chains.base import Chain\n",
|
||||
"from langchain.llms import BaseLLM\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.prompts.base import StringPromptTemplate\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain_community.llms import BaseLLM\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain_text_splitters import CharacterTextSplitter\n",
|
||||
"from pydantic import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# install additional dependencies\n",
|
||||
"# ! pip install chromadb openai tiktoken"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -73,21 +77,19 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"1. Seed the SalesGPT agent\n",
|
||||
"2. Run Sales Agent to decide what to do:\n",
|
||||
"\n",
|
||||
" a) Use a tool, such as look up Product Information in a Knowledge Base or Generate a Payment Link\n",
|
||||
" a) Use a tool, such as look up Product Information in a Knowledge Base\n",
|
||||
" \n",
|
||||
" b) Output a response to a user \n",
|
||||
"3. Run Sales Stage Recognition Agent to recognize which stage is the sales agent at and adjust their behaviour accordingly."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -96,17 +98,15 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Architecture diagram\n",
|
||||
"\n",
|
||||
"<img src=\"https://demo-bucket-45.s3.amazonaws.com/new_flow2.png\" width=\"800\" height=\"440\">\n"
|
||||
"<img src=\"https://singularity-assets-public.s3.amazonaws.com/new_flow.png\" width=\"800\" height=\"440\"/>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -131,7 +131,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -149,7 +149,7 @@
|
||||
" {conversation_history}\n",
|
||||
" ===\n",
|
||||
"\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
|
||||
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
|
||||
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
|
||||
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
|
||||
@@ -171,7 +171,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -223,7 +223,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -240,17 +240,13 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# test the intermediate chains\n",
|
||||
"verbose = True\n",
|
||||
"llm = ChatOpenAI(\n",
|
||||
" model=\"gpt-4-turbo-preview\",\n",
|
||||
" temperature=0.9,\n",
|
||||
" openai_api_key=os.getenv(\"OPENAI_API_KEY\"),\n",
|
||||
")\n",
|
||||
"llm = ChatOpenAI(temperature=0.9)\n",
|
||||
"\n",
|
||||
"stage_analyzer_chain = StageAnalyzerChain.from_llm(llm, verbose=verbose)\n",
|
||||
"\n",
|
||||
@@ -261,7 +257,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -280,7 +276,7 @@
|
||||
" \n",
|
||||
" ===\n",
|
||||
"\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting ony from the following options:\n",
|
||||
" Now determine what should be the next immediate conversation stage for the agent in the sales conversation by selecting only from the following options:\n",
|
||||
" 1. Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\n",
|
||||
" 2. Qualification: Qualify the prospect by confirming if they are the right person to talk to regarding your product/service. Ensure that they have the authority to make purchasing decisions.\n",
|
||||
" 3. Value proposition: Briefly explain how your product/service can benefit the prospect. Focus on the unique selling points and value proposition of your product/service that sets it apart from competitors.\n",
|
||||
@@ -300,21 +296,21 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'conversation_history': '', 'text': '1'}"
|
||||
"'1'"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"stage_analyzer_chain.invoke({\"conversation_history\": \"\"})"
|
||||
"stage_analyzer_chain.run(conversation_history=\"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -356,44 +352,32 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'salesperson_name': 'Ted Lasso',\n",
|
||||
" 'salesperson_role': 'Business Development Representative',\n",
|
||||
" 'company_name': 'Sleep Haven',\n",
|
||||
" 'company_business': 'Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.',\n",
|
||||
" 'company_values': \"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
|
||||
" 'conversation_purpose': 'find out whether they are looking to achieve better sleep via buying a premier mattress.',\n",
|
||||
" 'conversation_history': 'Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>',\n",
|
||||
" 'conversation_type': 'call',\n",
|
||||
" 'conversation_stage': 'Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional. Your greeting should be welcoming. Always clarify in your greeting the reason why you are contacting the prospect.',\n",
|
||||
" 'text': \"I'm doing well, thank you for asking. The reason I'm calling is to discuss how Sleep Haven can help enhance your sleep quality with our premium mattresses. Are you currently looking for ways to achieve a better night's sleep? <END_OF_TURN>\"}"
|
||||
"\"I'm doing great, thank you for asking! As a Business Development Representative at Sleep Haven, I wanted to reach out to see if you are looking to achieve a better night's sleep. We provide premium mattresses that offer the most comfortable and supportive sleeping experience possible. Are you interested in exploring our sleep solutions? <END_OF_TURN>\""
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_conversation_utterance_chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"salesperson_name\": \"Ted Lasso\",\n",
|
||||
" \"salesperson_role\": \"Business Development Representative\",\n",
|
||||
" \"company_name\": \"Sleep Haven\",\n",
|
||||
" \"company_business\": \"Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.\",\n",
|
||||
" \"company_values\": \"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
|
||||
" \"conversation_purpose\": \"find out whether they are looking to achieve better sleep via buying a premier mattress.\",\n",
|
||||
" \"conversation_history\": \"Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>\",\n",
|
||||
" \"conversation_type\": \"call\",\n",
|
||||
" \"conversation_stage\": conversation_stages.get(\n",
|
||||
" \"1\",\n",
|
||||
" \"Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\",\n",
|
||||
" ),\n",
|
||||
" }\n",
|
||||
"sales_conversation_utterance_chain.run(\n",
|
||||
" salesperson_name=\"Ted Lasso\",\n",
|
||||
" salesperson_role=\"Business Development Representative\",\n",
|
||||
" company_name=\"Sleep Haven\",\n",
|
||||
" company_business=\"Sleep Haven is a premium mattress company that provides customers with the most comfortable and supportive sleeping experience possible. We offer a range of high-quality mattresses, pillows, and bedding accessories that are designed to meet the unique needs of our customers.\",\n",
|
||||
" company_values=\"Our mission at Sleep Haven is to help people achieve a better night's sleep by providing them with the best possible sleep solutions. We believe that quality sleep is essential to overall health and well-being, and we are committed to helping our customers achieve optimal sleep by offering exceptional products and customer service.\",\n",
|
||||
" conversation_purpose=\"find out whether they are looking to achieve better sleep via buying a premier mattress.\",\n",
|
||||
" conversation_history=\"Hello, this is Ted Lasso from Sleep Haven. How are you doing today? <END_OF_TURN>\\nUser: I am well, howe are you?<END_OF_TURN>\",\n",
|
||||
" conversation_type=\"call\",\n",
|
||||
" conversation_stage=conversation_stages.get(\n",
|
||||
" \"1\",\n",
|
||||
" \"Introduction: Start the conversation by introducing yourself and your company. Be polite and respectful while keeping the tone of the conversation professional.\",\n",
|
||||
" ),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -401,7 +385,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -412,7 +395,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -446,7 +429,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -462,7 +445,7 @@
|
||||
" text_splitter = CharacterTextSplitter(chunk_size=10, chunk_overlap=0)\n",
|
||||
" texts = text_splitter.split_text(product_catalog)\n",
|
||||
"\n",
|
||||
" llm = ChatOpenAI(temperature=0)\n",
|
||||
" llm = OpenAI(temperature=0)\n",
|
||||
" embeddings = OpenAIEmbeddings()\n",
|
||||
" docsearch = Chroma.from_texts(\n",
|
||||
" texts, embeddings, collection_name=\"product-knowledge-base\"\n",
|
||||
@@ -471,12 +454,29 @@
|
||||
" knowledge_base = RetrievalQA.from_chain_type(\n",
|
||||
" llm=llm, chain_type=\"stuff\", retriever=docsearch.as_retriever()\n",
|
||||
" )\n",
|
||||
" return knowledge_base"
|
||||
" return knowledge_base\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_tools(product_catalog):\n",
|
||||
" # query to get_tools can be used to be embedded and relevant tools found\n",
|
||||
" # see here: https://langchain-langchain.vercel.app/docs/use_cases/agents/custom_agent_with_plugin_retrieval#tool-retriever\n",
|
||||
"\n",
|
||||
" # we only use one tool for now, but this is highly extensible!\n",
|
||||
" knowledge_base = setup_knowledge_base(product_catalog)\n",
|
||||
" tools = [\n",
|
||||
" Tool(\n",
|
||||
" name=\"ProductSearch\",\n",
|
||||
" func=knowledge_base.run,\n",
|
||||
" description=\"useful for when you need to answer questions about product information\",\n",
|
||||
" )\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
" return tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -485,18 +485,16 @@
|
||||
"text": [
|
||||
"Created a chunk of size 940, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 844, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n",
|
||||
"/Users/filipmichalsky/Odyssey/sales_bot/SalesGPT/env/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `run` was deprecated in LangChain 0.1.0 and will be removed in 0.2.0. Use invoke instead.\n",
|
||||
" warn_deprecated(\n"
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The Sleep Haven products available are:\\n\\n1. Luxury Cloud-Comfort Memory Foam Mattress\\n2. Classic Harmony Spring Mattress\\n3. EcoGreen Hybrid Latex Mattress\\n4. Plush Serenity Bamboo Mattress\\n\\nEach product has its unique features and price point.'"
|
||||
"' We have four products available: the Classic Harmony Spring Mattress, the Plush Serenity Bamboo Mattress, the Luxury Cloud-Comfort Memory Foam Mattress, and the EcoGreen Hybrid Latex Mattress. Each product is available in different sizes, with the Classic Harmony Spring Mattress available in Queen and King sizes, the Plush Serenity Bamboo Mattress available in King size, the Luxury Cloud-Comfort Memory Foam Mattress available in Twin, Queen, and King sizes, and the EcoGreen Hybrid Latex Mattress available in Twin and Full sizes.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -510,199 +508,12 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Payment gateway"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In order to set up your AI agent to use a payment gateway to generate payment links for your users you need two things:\n",
|
||||
"\n",
|
||||
"1. Sign up for a Stripe account and obtain a STRIPE API KEY\n",
|
||||
"2. Create products you would like to sell in the Stripe UI. Then follow out example of `example_product_price_id_mapping.json`\n",
|
||||
"to feed the product name to price_id mapping which allows you to generate the payment links."
|
||||
"### Set up the SalesGPT Controller with the Sales Agent and Stage Analyzer and a Knowledge Base"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"from litellm import completion\n",
|
||||
"\n",
|
||||
"# set GPT model env variable\n",
|
||||
"os.environ[\"GPT_MODEL\"] = \"gpt-4-turbo-preview\"\n",
|
||||
"\n",
|
||||
"product_price_id_mapping = {\n",
|
||||
" \"ai-consulting-services\": \"price_1Ow8ofB795AYY8p1goWGZi6m\",\n",
|
||||
" \"Luxury Cloud-Comfort Memory Foam Mattress\": \"price_1Owv99B795AYY8p1mjtbKyxP\",\n",
|
||||
" \"Classic Harmony Spring Mattress\": \"price_1Owv9qB795AYY8p1tPcxCM6T\",\n",
|
||||
" \"EcoGreen Hybrid Latex Mattress\": \"price_1OwvLDB795AYY8p1YBAMBcbi\",\n",
|
||||
" \"Plush Serenity Bamboo Mattress\": \"price_1OwvMQB795AYY8p1hJN2uS3S\",\n",
|
||||
"}\n",
|
||||
"with open(\"example_product_price_id_mapping.json\", \"w\") as f:\n",
|
||||
" json.dump(product_price_id_mapping, f)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_product_id_from_query(query, product_price_id_mapping_path):\n",
|
||||
" # Load product_price_id_mapping from a JSON file\n",
|
||||
" with open(product_price_id_mapping_path, \"r\") as f:\n",
|
||||
" product_price_id_mapping = json.load(f)\n",
|
||||
"\n",
|
||||
" # Serialize the product_price_id_mapping to a JSON string for inclusion in the prompt\n",
|
||||
" product_price_id_mapping_json_str = json.dumps(product_price_id_mapping)\n",
|
||||
"\n",
|
||||
" # Dynamically create the enum list from product_price_id_mapping keys\n",
|
||||
" enum_list = list(product_price_id_mapping.values()) + [\n",
|
||||
" \"No relevant product id found\"\n",
|
||||
" ]\n",
|
||||
" enum_list_str = json.dumps(enum_list)\n",
|
||||
"\n",
|
||||
" prompt = f\"\"\"\n",
|
||||
" You are an expert data scientist and you are working on a project to recommend products to customers based on their needs.\n",
|
||||
" Given the following query:\n",
|
||||
" {query}\n",
|
||||
" and the following product price id mapping:\n",
|
||||
" {product_price_id_mapping_json_str}\n",
|
||||
" return the price id that is most relevant to the query.\n",
|
||||
" ONLY return the price id, no other text. If no relevant price id is found, return 'No relevant price id found'.\n",
|
||||
" Your output will follow this schema:\n",
|
||||
" {{\n",
|
||||
" \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n",
|
||||
" \"title\": \"Price ID Response\",\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {{\n",
|
||||
" \"price_id\": {{\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"enum\": {enum_list_str}\n",
|
||||
" }}\n",
|
||||
" }},\n",
|
||||
" \"required\": [\"price_id\"]\n",
|
||||
" }}\n",
|
||||
" Return a valid directly parsable json, dont return in it within a code snippet or add any kind of explanation!!\n",
|
||||
" \"\"\"\n",
|
||||
" prompt += \"{\"\n",
|
||||
" response = completion(\n",
|
||||
" model=os.getenv(\"GPT_MODEL\", \"gpt-3.5-turbo-1106\"),\n",
|
||||
" messages=[{\"content\": prompt, \"role\": \"user\"}],\n",
|
||||
" max_tokens=1000,\n",
|
||||
" temperature=0,\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" product_id = response.choices[0].message.content.strip()\n",
|
||||
" return product_id"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def generate_stripe_payment_link(query: str) -> str:\n",
|
||||
" \"\"\"Generate a stripe payment link for a customer based on a single query string.\"\"\"\n",
|
||||
"\n",
|
||||
" # example testing payment gateway url\n",
|
||||
" PAYMENT_GATEWAY_URL = os.getenv(\n",
|
||||
" \"PAYMENT_GATEWAY_URL\", \"https://agent-payments-gateway.vercel.app/payment\"\n",
|
||||
" )\n",
|
||||
" PRODUCT_PRICE_MAPPING = \"example_product_price_id_mapping.json\"\n",
|
||||
"\n",
|
||||
" # use LLM to get the price_id from query\n",
|
||||
" price_id = get_product_id_from_query(query, PRODUCT_PRICE_MAPPING)\n",
|
||||
" price_id = json.loads(price_id)\n",
|
||||
" payload = json.dumps(\n",
|
||||
" {\"prompt\": query, **price_id, \"stripe_key\": os.getenv(\"STRIPE_API_KEY\")}\n",
|
||||
" )\n",
|
||||
" headers = {\n",
|
||||
" \"Content-Type\": \"application/json\",\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" response = requests.request(\n",
|
||||
" \"POST\", PAYMENT_GATEWAY_URL, headers=headers, data=payload\n",
|
||||
" )\n",
|
||||
" return response.text"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'{\"response\":\"https://buy.stripe.com/test_6oEbLS8JB1F9bv229d\"}'"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"generate_stripe_payment_link(\n",
|
||||
" query=\"Please generate a payment link for John Doe to buy two mattresses - the Classic Harmony Spring Mattress\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup agent tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_tools(product_catalog):\n",
|
||||
" # query to get_tools can be used to be embedded and relevant tools found\n",
|
||||
" # see here: https://langchain-langchain.vercel.app/docs/use_cases/agents/custom_agent_with_plugin_retrieval#tool-retriever\n",
|
||||
"\n",
|
||||
" # we only use one tool for now, but this is highly extensible!\n",
|
||||
" knowledge_base = setup_knowledge_base(product_catalog)\n",
|
||||
" tools = [\n",
|
||||
" Tool(\n",
|
||||
" name=\"ProductSearch\",\n",
|
||||
" func=knowledge_base.run,\n",
|
||||
" description=\"useful for when you need to answer questions about product information or services offered, availability and their costs.\",\n",
|
||||
" ),\n",
|
||||
" Tool(\n",
|
||||
" name=\"GeneratePaymentLink\",\n",
|
||||
" func=generate_stripe_payment_link,\n",
|
||||
" description=\"useful to close a transaction with a customer. You need to include product name and quantity and customer name in the query input.\",\n",
|
||||
" ),\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
" return tools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Set up the SalesGPT Controller with the Sales Agent and Stage Analyzer\n",
|
||||
"\n",
|
||||
"#### The Agent has access to a Knowledge Base and can autonomously sell your products via Stripe"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -752,11 +563,19 @@
|
||||
" print(\"TEXT\")\n",
|
||||
" print(text)\n",
|
||||
" print(\"-------\")\n",
|
||||
" if f\"{self.ai_prefix}:\" in text:\n",
|
||||
" return AgentFinish(\n",
|
||||
" {\"output\": text.split(f\"{self.ai_prefix}:\")[-1].strip()}, text\n",
|
||||
" )\n",
|
||||
" regex = r\"Action: (.*?)[\\n]*Action Input: (.*)\"\n",
|
||||
" match = re.search(regex, text)\n",
|
||||
" if not match:\n",
|
||||
" ## TODO - this is not entirely reliable, sometimes results in an error.\n",
|
||||
" return AgentFinish(\n",
|
||||
" {\"output\": text.split(f\"{self.ai_prefix}:\")[-1].strip()}, text\n",
|
||||
" {\n",
|
||||
" \"output\": \"I apologize, I was unable to find the answer to your question. Is there anything else I can help with?\"\n",
|
||||
" },\n",
|
||||
" text,\n",
|
||||
" )\n",
|
||||
" # raise OutputParserException(f\"Could not parse LLM output: `{text}`\")\n",
|
||||
" action = match.group(1)\n",
|
||||
@@ -770,7 +589,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -828,18 +647,18 @@
|
||||
"Previous conversation history:\n",
|
||||
"{conversation_history}\n",
|
||||
"\n",
|
||||
"Thought:\n",
|
||||
"{salesperson_name}:\n",
|
||||
"{agent_scratchpad}\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class SalesGPT(Chain):\n",
|
||||
"class SalesGPT(Chain, BaseModel):\n",
|
||||
" \"\"\"Controller model for the Sales Agent.\"\"\"\n",
|
||||
"\n",
|
||||
" conversation_history: List[str] = []\n",
|
||||
@@ -985,9 +804,7 @@
|
||||
"\n",
|
||||
" # WARNING: this output parser is NOT reliable yet\n",
|
||||
" ## It makes assumptions about output from LLM which can break and throw an error\n",
|
||||
" output_parser = SalesConvoOutputParser(\n",
|
||||
" ai_prefix=kwargs[\"salesperson_name\"], verbose=verbose\n",
|
||||
" )\n",
|
||||
" output_parser = SalesConvoOutputParser(ai_prefix=kwargs[\"salesperson_name\"])\n",
|
||||
"\n",
|
||||
" sales_agent_with_tools = LLMSingleActionAgent(\n",
|
||||
" llm_chain=llm_chain,\n",
|
||||
@@ -1011,7 +828,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -1019,7 +835,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -1028,7 +843,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -1065,7 +880,6 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
@@ -1074,7 +888,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1083,9 +897,7 @@
|
||||
"text": [
|
||||
"Created a chunk of size 940, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 844, which is longer than the specified 10\n",
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n",
|
||||
"/Users/filipmichalsky/Odyssey/sales_bot/SalesGPT/env/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The class `langchain.agents.agent.LLMSingleActionAgent` was deprecated in langchain 0.1.0 and will be removed in 0.2.0. Use Use new agent constructor methods like create_react_agent, create_json_agent, create_structured_chat_agent, etc. instead.\n",
|
||||
" warn_deprecated(\n"
|
||||
"Created a chunk of size 837, which is longer than the specified 10\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1095,7 +907,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -1105,7 +917,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1122,14 +934,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Good day! This is Ted Lasso from Sleep Haven. How are you doing today?\n"
|
||||
"Ted Lasso: Hello, this is Ted Lasso from Sleep Haven. How are you doing today?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1139,18 +951,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"I am well, how are you? I would like to learn more about your services.\"\n",
|
||||
" \"I am well, how are you? I would like to learn more about your mattresses.\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1167,14 +979,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: I'm doing great, thank you for asking! I'm glad to hear you're interested. Sleep Haven is a premium mattress company, and we're all about offering the best sleep solutions, including top-notch mattresses, pillows, and bedding accessories. Our mission is to help you achieve a better night's sleep. May I know if you're looking to enhance your sleep experience with a new mattress or bedding accessories? \n"
|
||||
"Ted Lasso: I'm glad to hear that you're doing well! As for our mattresses, at Sleep Haven, we provide customers with the most comfortable and supportive sleeping experience possible. Our high-quality mattresses are designed to meet the unique needs of our customers. Can I ask what specifically you'd like to learn more about? \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1184,18 +996,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Yes, I would like to improve my sleep. Can you tell me more about your products?\"\n",
|
||||
")"
|
||||
"sales_agent.human_step(\"Yes, what materials are you mattresses made from?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1212,14 +1022,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Absolutely, I'd be happy to share more about our products. At Sleep Haven, we offer a variety of high-quality mattresses designed to cater to different sleeping preferences and needs. Whether you're looking for memory foam's comfort, the support of hybrid mattresses, or the breathability of natural latex, we have options for everyone. Our pillows and bedding accessories are similarly curated to enhance your sleep quality. Every product is built with the aim of helping you achieve the restful night's sleep you deserve. What specific features are you looking for in a mattress? \n"
|
||||
"Ted Lasso: Our mattresses are made from a variety of materials, depending on the model. We have the EcoGreen Hybrid Latex Mattress, which is made from 100% natural latex harvested from eco-friendly plantations. The Plush Serenity Bamboo Mattress features a layer of plush, adaptive foam and a base of high-resilience support foam, with a bamboo-infused top layer. The Luxury Cloud-Comfort Memory Foam Mattress has an innovative, temperature-sensitive memory foam layer and a high-density foam base with cooling gel-infused particles. Finally, the Classic Harmony Spring Mattress has a robust inner spring construction and layers of plush padding, with a quilted top layer and a natural cotton cover. Is there anything specific you'd like to know about these materials?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1229,16 +1039,61 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\"What mattresses do you have and how much do they cost?\")"
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Yes, I am looking for a queen sized mattress. Do you have any mattresses in queen size?\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Conversation Stage: Needs analysis: Ask open-ended questions to uncover the prospect's needs and pain points. Listen carefully to their responses and take notes.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.determine_conversation_stage()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Yes, we do have queen-sized mattresses available. We offer the Luxury Cloud-Comfort Memory Foam Mattress and the Classic Harmony Spring Mattress in queen size. Both mattresses provide exceptional comfort and support. Is there anything specific you would like to know about these options?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.step()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\"Yea, compare and contrast those two options, please.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1255,14 +1110,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: We offer two primary types of mattresses at Sleep Haven. The first is our Luxury Cloud-Comfort Memory Foam Mattress, which is priced at $999 and comes in Twin, Queen, and King sizes. The second is our Classic Harmony Spring Mattress, priced at $1,299, available in Queen and King sizes. Both are designed to provide exceptional comfort and support for a better night's sleep. Which type of mattress would you be interested in learning more about? \n"
|
||||
"Ted Lasso: The Luxury Cloud-Comfort Memory Foam Mattress is priced at $999 and is available in Twin, Queen, and King sizes. It features an innovative, temperature-sensitive memory foam layer and a high-density foam base. On the other hand, the Classic Harmony Spring Mattress is priced at $1,299 and is available in Queen and King sizes. It features a robust inner spring construction and layers of plush padding. Both mattresses provide exceptional comfort and support, but the Classic Harmony Spring Mattress may be a better option if you prefer the traditional feel of an inner spring mattress. Do you have any other questions about these options?\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -1272,66 +1127,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Okay.I would like to order two Memory Foam mattresses in Twin size please.\"\n",
|
||||
" \"Great, thanks, that's it. I will talk to my wife and call back if she is onboard. Have a good day!\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Conversation Stage: Close: Ask for the sale by proposing a next step. This could be a demo, a trial or a meeting with decision-makers. Ensure to summarize what has been discussed and reiterate the benefits.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.determine_conversation_stage()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ted Lasso: Fantastic choice! You're on your way to a better night's sleep with our Luxury Cloud-Comfort Memory Foam Mattresses. I've generated a payment link for two Twin size mattresses for you. Here is the link to complete your purchase: https://buy.stripe.com/test_6oEg28e3V97BdDabJn. Is there anything else I can assist you with today? \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sales_agent.step()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sales_agent.human_step(\n",
|
||||
" \"Great, thanks! I will discuss with my wife and will buy it if she is onboard. Have a good day!\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -1350,9 +1153,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
|
||||
@@ -355,15 +355,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"attribute_info[-2][\"description\"] += (\n",
|
||||
" f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
|
||||
")\n",
|
||||
"attribute_info[3][\"description\"] += (\n",
|
||||
" f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
|
||||
")\n",
|
||||
"attribute_info[-3][\"description\"] += (\n",
|
||||
" f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\"\n",
|
||||
")"
|
||||
"attribute_info[-2][\n",
|
||||
" \"description\"\n",
|
||||
"] += f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
|
||||
"attribute_info[3][\n",
|
||||
" \"description\"\n",
|
||||
"] += f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
|
||||
"attribute_info[-3][\n",
|
||||
" \"description\"\n",
|
||||
"] += f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\""
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -688,9 +688,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"attribute_info[-3][\"description\"] += (\n",
|
||||
" \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
|
||||
")\n",
|
||||
"attribute_info[-3][\n",
|
||||
" \"description\"\n",
|
||||
"] += \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
|
||||
"chain = load_query_constructor_runnable(\n",
|
||||
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
|
||||
" doc_contents,\n",
|
||||
@@ -1227,7 +1227,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"results = retriever.invoke(\n",
|
||||
"results = retriever.get_relevant_documents(\n",
|
||||
" \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
|
||||
")\n",
|
||||
"for res in results:\n",
|
||||
|
||||
@@ -22,8 +22,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent, create_react_agent\n",
|
||||
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
@@ -85,7 +84,19 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prompt = hub.pull(\"hwchase17/react\")"
|
||||
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
|
||||
"suffix = \"\"\"Begin!\"\n",
|
||||
"\n",
|
||||
"{chat_history}\n",
|
||||
"Question: {input}\n",
|
||||
"{agent_scratchpad}\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = ZeroShotAgent.create_prompt(\n",
|
||||
" tools,\n",
|
||||
" prefix=prefix,\n",
|
||||
" suffix=suffix,\n",
|
||||
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,14 +114,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = OpenAI()\n",
|
||||
"agent = create_react_agent(model, tools, prompt)\n",
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
|
||||
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
|
||||
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
|
||||
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
|
||||
" agent=agent, tools=tools, verbose=True, memory=memory\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"execution_count": 6,
|
||||
"id": "ca4bc1fb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -120,15 +133,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"ChatGPT\"\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
|
||||
"Action Input: \"ChatGPT\"\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -140,40 +153,10 @@
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"ename": "KeyboardInterrupt",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
|
||||
"\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)",
|
||||
"Cell \u001B[0;32mIn[36], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43magent_executor\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43minvoke\u001B[49m\u001B[43m(\u001B[49m\u001B[43m{\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43minput\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mWhat is ChatGPT?\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m}\u001B[49m\u001B[43m)\u001B[49m\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:163\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 162\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_error(e)\n\u001B[0;32m--> 163\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 164\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_end(outputs)\n\u001B[1;32m 166\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m include_run_info:\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:153\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 150\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 151\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_validate_inputs(inputs)\n\u001B[1;32m 152\u001B[0m outputs \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 153\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_call\u001B[49m\u001B[43m(\u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 155\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_call(inputs)\n\u001B[1;32m 156\u001B[0m )\n\u001B[1;32m 158\u001B[0m final_outputs: Dict[\u001B[38;5;28mstr\u001B[39m, Any] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mprep_outputs(\n\u001B[1;32m 159\u001B[0m inputs, outputs, return_only_outputs\n\u001B[1;32m 160\u001B[0m )\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1432\u001B[0m, in \u001B[0;36mAgentExecutor._call\u001B[0;34m(self, inputs, run_manager)\u001B[0m\n\u001B[1;32m 1430\u001B[0m \u001B[38;5;66;03m# We now enter the agent loop (until it returns something).\u001B[39;00m\n\u001B[1;32m 1431\u001B[0m \u001B[38;5;28;01mwhile\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_should_continue(iterations, time_elapsed):\n\u001B[0;32m-> 1432\u001B[0m next_step_output \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_take_next_step\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1433\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1434\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1435\u001B[0m \u001B[43m \u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1436\u001B[0m \u001B[43m \u001B[49m\u001B[43mintermediate_steps\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1437\u001B[0m \u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1438\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1439\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(next_step_output, AgentFinish):\n\u001B[1;32m 1440\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_return(\n\u001B[1;32m 1441\u001B[0m next_step_output, intermediate_steps, run_manager\u001B[38;5;241m=\u001B[39mrun_manager\n\u001B[1;32m 1442\u001B[0m )\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36mAgentExecutor._take_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36m<listcomp>\u001B[0;34m(.0)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1223\u001B[0m, in \u001B[0;36mAgentExecutor._iter_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1221\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m agent_action\n\u001B[1;32m 1222\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m agent_action \u001B[38;5;129;01min\u001B[39;00m actions:\n\u001B[0;32m-> 1223\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_perform_agent_action\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1224\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\n\u001B[1;32m 1225\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1245\u001B[0m, in \u001B[0;36mAgentExecutor._perform_agent_action\u001B[0;34m(self, name_to_tool_map, color_mapping, agent_action, run_manager)\u001B[0m\n\u001B[1;32m 1243\u001B[0m tool_run_kwargs[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mllm_prefix\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1244\u001B[0m \u001B[38;5;66;03m# We then call the tool on the tool input to get an observation\u001B[39;00m\n\u001B[0;32m-> 1245\u001B[0m observation \u001B[38;5;241m=\u001B[39m \u001B[43mtool\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrun\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1246\u001B[0m \u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mtool_input\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1247\u001B[0m \u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1248\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcolor\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1249\u001B[0m \u001B[43m \u001B[49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mget_child\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mif\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01melse\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mNone\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1250\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_run_kwargs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1251\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1252\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1253\u001B[0m tool_run_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39magent\u001B[38;5;241m.\u001B[39mtool_run_logging_kwargs()\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:422\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 420\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m (\u001B[38;5;167;01mException\u001B[39;00m, \u001B[38;5;167;01mKeyboardInterrupt\u001B[39;00m) \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 421\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_error(e)\n\u001B[0;32m--> 422\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 423\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 424\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_end(observation, color\u001B[38;5;241m=\u001B[39mcolor, name\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mname, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs)\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:381\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 378\u001B[0m parsed_input \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_parse_input(tool_input)\n\u001B[1;32m 379\u001B[0m tool_args, tool_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_to_args_and_kwargs(parsed_input)\n\u001B[1;32m 380\u001B[0m observation \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 381\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_run\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_args\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_kwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 382\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 383\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_run(\u001B[38;5;241m*\u001B[39mtool_args, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mtool_kwargs)\n\u001B[1;32m 384\u001B[0m )\n\u001B[1;32m 385\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m ValidationError \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 386\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhandle_validation_error:\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:588\u001B[0m, in \u001B[0;36mTool._run\u001B[0;34m(self, run_manager, *args, **kwargs)\u001B[0m\n\u001B[1;32m 579\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc:\n\u001B[1;32m 580\u001B[0m new_argument_supported \u001B[38;5;241m=\u001B[39m signature(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc)\u001B[38;5;241m.\u001B[39mparameters\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcallbacks\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 581\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m (\n\u001B[1;32m 582\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc(\n\u001B[1;32m 583\u001B[0m \u001B[38;5;241m*\u001B[39margs,\n\u001B[1;32m 584\u001B[0m callbacks\u001B[38;5;241m=\u001B[39mrun_manager\u001B[38;5;241m.\u001B[39mget_child() \u001B[38;5;28;01mif\u001B[39;00m run_manager \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 585\u001B[0m \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs,\n\u001B[1;32m 586\u001B[0m )\n\u001B[1;32m 587\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_argument_supported\n\u001B[0;32m--> 588\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 589\u001B[0m )\n\u001B[1;32m 590\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mNotImplementedError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mTool does not support sync\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:94\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper.run\u001B[0;34m(self, query)\u001B[0m\n\u001B[1;32m 92\u001B[0m \u001B[38;5;250m\u001B[39m\u001B[38;5;124;03m\"\"\"Run query through GoogleSearch and parse result.\"\"\"\u001B[39;00m\n\u001B[1;32m 93\u001B[0m snippets \u001B[38;5;241m=\u001B[39m []\n\u001B[0;32m---> 94\u001B[0m results \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_google_search_results\u001B[49m\u001B[43m(\u001B[49m\u001B[43mquery\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mnum\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mk\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 95\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mlen\u001B[39m(results) \u001B[38;5;241m==\u001B[39m \u001B[38;5;241m0\u001B[39m:\n\u001B[1;32m 96\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mNo good Google Search Result was found\u001B[39m\u001B[38;5;124m\"\u001B[39m\n",
|
||||
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:62\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper._google_search_results\u001B[0;34m(self, search_term, **kwargs)\u001B[0m\n\u001B[1;32m 60\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msiterestrict:\n\u001B[1;32m 61\u001B[0m cse \u001B[38;5;241m=\u001B[39m cse\u001B[38;5;241m.\u001B[39msiterestrict()\n\u001B[0;32m---> 62\u001B[0m res \u001B[38;5;241m=\u001B[39m \u001B[43mcse\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mlist\u001B[49m\u001B[43m(\u001B[49m\u001B[43mq\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43msearch_term\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcx\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mgoogle_cse_id\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mexecute\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 63\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m res\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mitems\u001B[39m\u001B[38;5;124m\"\u001B[39m, [])\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/_helpers.py:130\u001B[0m, in \u001B[0;36mpositional.<locals>.positional_decorator.<locals>.positional_wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 128\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m positional_parameters_enforcement \u001B[38;5;241m==\u001B[39m POSITIONAL_WARNING:\n\u001B[1;32m 129\u001B[0m logger\u001B[38;5;241m.\u001B[39mwarning(message)\n\u001B[0;32m--> 130\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mwrapped\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:923\u001B[0m, in \u001B[0;36mHttpRequest.execute\u001B[0;34m(self, http, num_retries)\u001B[0m\n\u001B[1;32m 920\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mheaders[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcontent-length\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mstr\u001B[39m(\u001B[38;5;28mlen\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mbody))\n\u001B[1;32m 922\u001B[0m \u001B[38;5;66;03m# Handle retries for server-side errors.\u001B[39;00m\n\u001B[0;32m--> 923\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43m_retry_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 924\u001B[0m \u001B[43m \u001B[49m\u001B[43mhttp\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 925\u001B[0m \u001B[43m \u001B[49m\u001B[43mnum_retries\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 926\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mrequest\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 927\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_sleep\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 928\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_rand\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 929\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43muri\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 930\u001B[0m \u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmethod\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 931\u001B[0m \u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 932\u001B[0m \u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 933\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 935\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m callback \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mresponse_callbacks:\n\u001B[1;32m 936\u001B[0m callback(resp)\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:191\u001B[0m, in \u001B[0;36m_retry_request\u001B[0;34m(http, num_retries, req_type, sleep, rand, uri, method, *args, **kwargs)\u001B[0m\n\u001B[1;32m 189\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 190\u001B[0m exception \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[0;32m--> 191\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43mhttp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrequest\u001B[49m\u001B[43m(\u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 192\u001B[0m \u001B[38;5;66;03m# Retry on SSL errors and socket timeout errors.\u001B[39;00m\n\u001B[1;32m 193\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m _ssl_SSLError \u001B[38;5;28;01mas\u001B[39;00m ssl_error:\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1724\u001B[0m, in \u001B[0;36mHttp.request\u001B[0;34m(self, uri, method, body, headers, redirections, connection_type)\u001B[0m\n\u001B[1;32m 1722\u001B[0m content \u001B[38;5;241m=\u001B[39m \u001B[38;5;124mb\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1723\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m-> 1724\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1725\u001B[0m \u001B[43m \u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mauthority\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mredirections\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcachekey\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1726\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1727\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 1728\u001B[0m is_timeout \u001B[38;5;241m=\u001B[39m \u001B[38;5;28misinstance\u001B[39m(e, socket\u001B[38;5;241m.\u001B[39mtimeout)\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1444\u001B[0m, in \u001B[0;36mHttp._request\u001B[0;34m(self, conn, host, absolute_uri, request_uri, method, body, headers, redirections, cachekey)\u001B[0m\n\u001B[1;32m 1441\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1442\u001B[0m auth\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, headers, body)\n\u001B[0;32m-> 1444\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_conn_request\u001B[49m\u001B[43m(\u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1446\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1447\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth\u001B[38;5;241m.\u001B[39mresponse(response, body):\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1366\u001B[0m, in \u001B[0;36mHttp._conn_request\u001B[0;34m(self, conn, request_uri, method, body, headers)\u001B[0m\n\u001B[1;32m 1364\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 1365\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m conn\u001B[38;5;241m.\u001B[39msock \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[0;32m-> 1366\u001B[0m \u001B[43mconn\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1367\u001B[0m conn\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, body, headers)\n\u001B[1;32m 1368\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m socket\u001B[38;5;241m.\u001B[39mtimeout:\n",
|
||||
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1156\u001B[0m, in \u001B[0;36mHTTPSConnectionWithTimeout.connect\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 1154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m has_timeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout):\n\u001B[1;32m 1155\u001B[0m sock\u001B[38;5;241m.\u001B[39msettimeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout)\n\u001B[0;32m-> 1156\u001B[0m \u001B[43msock\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mhost\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mport\u001B[49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1158\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msock \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_context\u001B[38;5;241m.\u001B[39mwrap_socket(sock, server_hostname\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhost)\n\u001B[1;32m 1160\u001B[0m \u001B[38;5;66;03m# Python 3.3 compatibility: emulate the check_hostname behavior\u001B[39;00m\n",
|
||||
"\u001B[0;31mKeyboardInterrupt\u001B[0m: "
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
|
||||
"agent_chain.run(input=\"What is ChatGPT?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -196,15 +179,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: Who developed ChatGPT\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
|
||||
"Action Input: Who developed ChatGPT\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -219,7 +202,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
|
||||
"agent_chain.run(input=\"Who developed it?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -234,14 +217,14 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"Action: Summary\n",
|
||||
"Action Input: My daughter 5 years old\u001B[0m\n",
|
||||
"Action Input: My daughter 5 years old\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
|
||||
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
||||
"Prompt after formatting:\n",
|
||||
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\n",
|
||||
"Human: What is ChatGPT?\n",
|
||||
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
|
||||
@@ -249,16 +232,16 @@
|
||||
"AI: ChatGPT was developed by OpenAI.\n",
|
||||
"\n",
|
||||
"Write a summary of the conversation for My daughter 5 years old:\n",
|
||||
"\u001B[0m\n",
|
||||
"\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||
"\n",
|
||||
"Observation: \u001B[33;1m\u001B[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001B[0m\n",
|
||||
"Observation: \u001b[33;1m\u001b[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -273,8 +256,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke(\n",
|
||||
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
|
||||
"agent_chain.run(\n",
|
||||
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -306,17 +289,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(agent_executor.memory.buffer)"
|
||||
"print(agent_chain.memory.buffer)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "84ca95c30e262e00",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cc3d0aa4",
|
||||
@@ -365,9 +340,25 @@
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"prompt = hub.pull(\"hwchase17/react\")\n",
|
||||
"agent = create_react_agent(model, tools, prompt)\n",
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
|
||||
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
|
||||
"suffix = \"\"\"Begin!\"\n",
|
||||
"\n",
|
||||
"{chat_history}\n",
|
||||
"Question: {input}\n",
|
||||
"{agent_scratchpad}\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = ZeroShotAgent.create_prompt(\n",
|
||||
" tools,\n",
|
||||
" prefix=prefix,\n",
|
||||
" suffix=suffix,\n",
|
||||
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
|
||||
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
|
||||
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
|
||||
" agent=agent, tools=tools, verbose=True, memory=memory\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -382,15 +373,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: \"ChatGPT\"\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
|
||||
"Action Input: \"ChatGPT\"\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -405,7 +396,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
|
||||
"agent_chain.run(input=\"What is ChatGPT?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -420,15 +411,15 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
|
||||
"Action: Search\n",
|
||||
"Action Input: Who developed ChatGPT\u001B[0m\n",
|
||||
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
|
||||
"Action Input: Who developed ChatGPT\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
||||
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -443,7 +434,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
|
||||
"agent_chain.run(input=\"Who developed it?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -458,14 +449,14 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
|
||||
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
|
||||
"Action: Summary\n",
|
||||
"Action Input: My daughter 5 years old\u001B[0m\n",
|
||||
"Action Input: My daughter 5 years old\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
|
||||
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
||||
"Prompt after formatting:\n",
|
||||
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
|
||||
"\n",
|
||||
"Human: What is ChatGPT?\n",
|
||||
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
|
||||
@@ -473,16 +464,16 @@
|
||||
"AI: ChatGPT was developed by OpenAI.\n",
|
||||
"\n",
|
||||
"Write a summary of the conversation for My daughter 5 years old:\n",
|
||||
"\u001B[0m\n",
|
||||
"\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n",
|
||||
"\n",
|
||||
"Observation: \u001B[33;1m\u001B[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001B[0m\n",
|
||||
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001B[0m\n",
|
||||
"Observation: \u001b[33;1m\u001b[1;3m\n",
|
||||
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
||||
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001B[1m> Finished chain.\u001B[0m\n"
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -497,8 +488,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke(\n",
|
||||
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
|
||||
"agent_chain.run(\n",
|
||||
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -533,7 +524,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(agent_executor.memory.buffer)"
|
||||
"print(agent_chain.memory.buffer)"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -647,7 +647,7 @@ Sometimes you may not have the luxury of using OpenAI or other service-hosted la
|
||||
import logging
|
||||
import torch
|
||||
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
||||
from langchain_huggingface import HuggingFacePipeline
|
||||
from langchain_community.llms import HuggingFacePipeline
|
||||
|
||||
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
|
||||
model_id = "google/flan-ul2"
|
||||
@@ -992,7 +992,7 @@ Now that you have some examples (with manually corrected output SQL), you can do
|
||||
```python
|
||||
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
||||
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
|
||||
from langchain_huggingface import HuggingFaceEmbeddings
|
||||
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
|
||||
from langchain_community.vectorstores import Chroma
|
||||
|
||||
|
||||
@@ -1,199 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "c48812ed-35bd-4fbe-9a2c-6c7335e5645e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_anthropic import ChatAnthropic\n",
|
||||
"from langchain_core.runnables import ConfigurableField\n",
|
||||
"from langchain_core.tools import tool\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def multiply(x: float, y: float) -> float:\n",
|
||||
" \"\"\"Multiply 'x' times 'y'.\"\"\"\n",
|
||||
" return x * y\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def exponentiate(x: float, y: float) -> float:\n",
|
||||
" \"\"\"Raise 'x' to the 'y'.\"\"\"\n",
|
||||
" return x**y\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"@tool\n",
|
||||
"def add(x: float, y: float) -> float:\n",
|
||||
" \"\"\"Add 'x' and 'y'.\"\"\"\n",
|
||||
" return x + y\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tools = [multiply, exponentiate, add]\n",
|
||||
"\n",
|
||||
"gpt35 = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0).bind_tools(tools)\n",
|
||||
"claude3 = ChatAnthropic(model=\"claude-3-sonnet-20240229\").bind_tools(tools)\n",
|
||||
"llm_with_tools = gpt35.configurable_alternatives(\n",
|
||||
" ConfigurableField(id=\"llm\"), default_key=\"gpt35\", claude3=claude3\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9c186263-1b98-4cb2-b6d1-71f65eb0d811",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# LangGraph"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "28fc2c60-7dbc-428a-8983-1a6a15ea30d2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import operator\n",
|
||||
"from typing import Annotated, Sequence, TypedDict\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"from langgraph.graph import END, StateGraph\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class AgentState(TypedDict):\n",
|
||||
" messages: Annotated[Sequence[BaseMessage], operator.add]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def should_continue(state):\n",
|
||||
" return \"continue\" if state[\"messages\"][-1].tool_calls else \"end\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def call_model(state, config):\n",
|
||||
" return {\"messages\": [llm_with_tools.invoke(state[\"messages\"], config=config)]}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def _invoke_tool(tool_call):\n",
|
||||
" tool = {tool.name: tool for tool in tools}[tool_call[\"name\"]]\n",
|
||||
" return ToolMessage(tool.invoke(tool_call[\"args\"]), tool_call_id=tool_call[\"id\"])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tool_executor = RunnableLambda(_invoke_tool)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def call_tools(state):\n",
|
||||
" last_message = state[\"messages\"][-1]\n",
|
||||
" return {\"messages\": tool_executor.batch(last_message.tool_calls)}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"workflow = StateGraph(AgentState)\n",
|
||||
"workflow.add_node(\"agent\", call_model)\n",
|
||||
"workflow.add_node(\"action\", call_tools)\n",
|
||||
"workflow.set_entry_point(\"agent\")\n",
|
||||
"workflow.add_conditional_edges(\n",
|
||||
" \"agent\",\n",
|
||||
" should_continue,\n",
|
||||
" {\n",
|
||||
" \"continue\": \"action\",\n",
|
||||
" \"end\": END,\n",
|
||||
" },\n",
|
||||
")\n",
|
||||
"workflow.add_edge(\"action\", \"agent\")\n",
|
||||
"graph = workflow.compile()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3710e724-2595-4625-ba3a-effb81e66e4a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
|
||||
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc', 'function': {'arguments': '{\"x\": 8, \"y\": 2.743}', 'name': 'exponentiate'}, 'type': 'function'}, {'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp', 'function': {'arguments': '{\"x\": 17.24, \"y\": -918.1241}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 58, 'prompt_tokens': 168, 'total_tokens': 226}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-528302fc-7acf-4c11-82c4-119ccf40c573-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8, 'y': 2.743}, 'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc'}, {'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp'}]),\n",
|
||||
" ToolMessage(content='300.03770462067547', tool_call_id='call_6yMU2WsS4Bqgi1WxFHxtfJRc'),\n",
|
||||
" ToolMessage(content='-900.8841', tool_call_id='call_GAL3dQiKFF9XEV0RrRLPTvVp'),\n",
|
||||
" AIMessage(content='The result of \\\\(3 + 5^{2.743}\\\\) is approximately 300.04, and the result of \\\\(17.24 - 918.1241\\\\) is approximately -900.88.', response_metadata={'token_usage': {'completion_tokens': 44, 'prompt_tokens': 251, 'total_tokens': 295}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'stop', 'logprobs': None}, id='run-d1161669-ed09-4b18-94bd-6d8530df5aa8-0')]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"graph.invoke(\n",
|
||||
" {\n",
|
||||
" \"messages\": [\n",
|
||||
" HumanMessage(\n",
|
||||
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
|
||||
" )\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "073c074e-d722-42e0-85ec-c62c079207e4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
|
||||
" AIMessage(content=[{'text': \"Okay, let's break this down into two parts:\", 'type': 'text'}, {'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC', 'input': {'x': 3, 'y': 5}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_01AkLGH8sxMHaH15yewmjwkF', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 450, 'output_tokens': 81}}, id='run-f35bfae8-8ded-4f8a-831b-0940d6ad16b6-0', tool_calls=[{'name': 'add', 'args': {'x': 3, 'y': 5}, 'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC'}]),\n",
|
||||
" ToolMessage(content='8.0', tool_call_id='toolu_01DEhqcXkXTtzJAiZ7uMBeDC'),\n",
|
||||
" AIMessage(content=[{'id': 'toolu_013DyMLrvnrto33peAKMGMr1', 'input': {'x': 8.0, 'y': 2.743}, 'name': 'exponentiate', 'type': 'tool_use'}], response_metadata={'id': 'msg_015Fmp8aztwYcce2JDAFfce3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 545, 'output_tokens': 75}}, id='run-48aaeeeb-a1e5-48fd-a57a-6c3da2907b47-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8.0, 'y': 2.743}, 'id': 'toolu_013DyMLrvnrto33peAKMGMr1'}]),\n",
|
||||
" ToolMessage(content='300.03770462067547', tool_call_id='toolu_013DyMLrvnrto33peAKMGMr1'),\n",
|
||||
" AIMessage(content=[{'text': 'So 3 plus 5 raised to the 2.743 power is 300.04.\\n\\nFor the second part:', 'type': 'text'}, {'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46', 'input': {'x': 17.24, 'y': -918.1241}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_015TkhfRBENPib2RWAxkieH6', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 638, 'output_tokens': 105}}, id='run-45fb62e3-d102-4159-881d-241c5dbadeed-0', tool_calls=[{'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46'}]),\n",
|
||||
" ToolMessage(content='-900.8841', tool_call_id='toolu_01UTmMrGTmLpPrPCF1rShN46'),\n",
|
||||
" AIMessage(content='Therefore, 17.24 - 918.1241 = -900.8841', response_metadata={'id': 'msg_01LgKnRuUcSyADCpxv9tPoYD', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 759, 'output_tokens': 24}}, id='run-1008254e-ccd1-497c-8312-9550dd77bd08-0')]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"graph.invoke(\n",
|
||||
" {\n",
|
||||
" \"messages\": [\n",
|
||||
" HumanMessage(\n",
|
||||
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
|
||||
" )\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" config={\"configurable\": {\"llm\": \"claude3\"}},\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -3811,7 +3811,7 @@
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
|
||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
|
||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -84,7 +84,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
@@ -424,7 +424,7 @@
|
||||
" DialogueAgentWithTools(\n",
|
||||
" name=name,\n",
|
||||
" system_message=SystemMessage(content=system_message),\n",
|
||||
" model=ChatOpenAI(model=\"gpt-4\", temperature=0.2),\n",
|
||||
" model=ChatOpenAI(model_name=\"gpt-4\", temperature=0.2),\n",
|
||||
" tool_names=tools,\n",
|
||||
" top_k_results=2,\n",
|
||||
" )\n",
|
||||
|
||||
@@ -70,7 +70,7 @@
|
||||
" Applies the chatmodel to the message history\n",
|
||||
" and returns the message string\n",
|
||||
" \"\"\"\n",
|
||||
" message = self.model.invoke(\n",
|
||||
" message = self.model(\n",
|
||||
" [\n",
|
||||
" self.system_message,\n",
|
||||
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
|
||||
|
||||
@@ -1,174 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Video Captioning\n",
|
||||
"This notebook shows how to use VideoCaptioningChain, which is implemented using Langchain's ImageCaptionLoader and AssemblyAI to produce .srt files.\n",
|
||||
"\n",
|
||||
"This system autogenerates both subtitles and closed captions from a video URL."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Installing Dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !pip install ffmpeg-python\n",
|
||||
"# !pip install assemblyai\n",
|
||||
"# !pip install opencv-python\n",
|
||||
"# !pip install torch\n",
|
||||
"# !pip install pillow\n",
|
||||
"# !pip install transformers\n",
|
||||
"# !pip install langchain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-11-30T03:39:14.078232Z",
|
||||
"start_time": "2023-11-30T03:39:12.534410Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"from langchain.chains.video_captioning import VideoCaptioningChain\n",
|
||||
"from langchain.chat_models.openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setting up API Keys"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2023-11-30T03:39:17.423806Z",
|
||||
"start_time": "2023-11-30T03:39:17.417945Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"OPENAI_API_KEY = getpass.getpass(\"OpenAI API Key:\")\n",
|
||||
"\n",
|
||||
"ASSEMBLYAI_API_KEY = getpass.getpass(\"AssemblyAI API Key:\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Required parameters:**\n",
|
||||
"\n",
|
||||
"* llm: The language model this chain will use to get suggestions on how to refine the closed-captions\n",
|
||||
"* assemblyai_key: The API key for AssemblyAI, used to generate the subtitles\n",
|
||||
"\n",
|
||||
"**Optional Parameters:**\n",
|
||||
"\n",
|
||||
"* verbose (Default: True): Sets verbose mode for downstream chain calls\n",
|
||||
"* use_logging (Default: True): Log the chain's processes in run manager\n",
|
||||
"* frame_skip (Default: None): Choose how many video frames to skip during processing. Increasing it results in faster execution, but less accurate results. If None, frame skip is calculated manually based on the framerate Set this to 0 to sample all frames\n",
|
||||
"* image_delta_threshold (Default: 3000000): Set the sensitivity for what the image processor considers a change in scenery in the video, used to delimit closed captions. Higher = less sensitive\n",
|
||||
"* closed_caption_char_limit (Default: 20): Sets the character limit on closed captions\n",
|
||||
"* closed_caption_similarity_threshold (Default: 80): Sets the percentage value to how similar two closed caption models should be in order to be clustered into one longer closed caption\n",
|
||||
"* use_unclustered_video_models (Default: False): If true, closed captions that could not be clustered will be included. May result in spontaneous behaviour from closed captions such as very short lasting captions or fast-changing captions. Enabling this is experimental and not recommended"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Example run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# https://ia804703.us.archive.org/27/items/uh-oh-here-we-go-again/Uh-Oh%2C%20Here%20we%20go%20again.mp4\n",
|
||||
"# https://ia601200.us.archive.org/9/items/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb.mp4\n",
|
||||
"\n",
|
||||
"chain = VideoCaptioningChain(\n",
|
||||
" llm=ChatOpenAI(model=\"gpt-4\", max_tokens=4000, openai_api_key=OPENAI_API_KEY),\n",
|
||||
" assemblyai_key=ASSEMBLYAI_API_KEY,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"srt_content = chain.run(\n",
|
||||
" video_file_path=\"https://ia601200.us.archive.org/9/items/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb/f58703d4-61e6-4f8f-8c08-b42c7e16f7cb.mp4\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(srt_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Writing output to .srt file"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open(\"output.srt\", \"w\") as file:\n",
|
||||
" file.write(srt_content)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "myenv",
|
||||
"language": "python",
|
||||
"name": "myenv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -601,7 +601,7 @@
|
||||
"source": [
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)"
|
||||
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -4,14 +4,14 @@
|
||||
# ATTENTION: When adding a service below use a non-standard port
|
||||
# increment by one from the preceding port.
|
||||
# For credentials always use `langchain` and `langchain` for the
|
||||
# username and password.
|
||||
# username and password.
|
||||
version: "3"
|
||||
name: langchain-tests
|
||||
|
||||
services:
|
||||
redis:
|
||||
image: redis/redis-stack-server:latest
|
||||
# We use non standard ports since
|
||||
# We use non standard ports since
|
||||
# these instances are used for testing
|
||||
# and users may already have existing
|
||||
# redis instances set up locally
|
||||
@@ -73,11 +73,6 @@ services:
|
||||
retries: 60
|
||||
volumes:
|
||||
- postgres_data_pgvector:/var/lib/postgresql/data
|
||||
vdms:
|
||||
image: intellabs/vdms:latest
|
||||
container_name: vdms_container
|
||||
ports:
|
||||
- "6025:55555"
|
||||
|
||||
volumes:
|
||||
postgres_data:
|
||||
|
||||
53
docs/.eslintrc.js
Normal file
53
docs/.eslintrc.js
Normal file
@@ -0,0 +1,53 @@
|
||||
/**
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*
|
||||
* @format
|
||||
*/
|
||||
|
||||
const OFF = 0;
|
||||
const WARNING = 1;
|
||||
const ERROR = 2;
|
||||
|
||||
module.exports = {
|
||||
root: true,
|
||||
env: {
|
||||
browser: true,
|
||||
commonjs: true,
|
||||
jest: true,
|
||||
node: true,
|
||||
},
|
||||
parser: "@babel/eslint-parser",
|
||||
parserOptions: {
|
||||
allowImportExportEverywhere: true,
|
||||
},
|
||||
extends: ["airbnb", "prettier"],
|
||||
plugins: ["react-hooks", "header"],
|
||||
ignorePatterns: [
|
||||
"build",
|
||||
"docs/api",
|
||||
"node_modules",
|
||||
"docs/_static",
|
||||
"static",
|
||||
],
|
||||
rules: {
|
||||
// Ignore certain webpack alias because it can't be resolved
|
||||
"import/no-unresolved": [
|
||||
ERROR,
|
||||
{ ignore: ["^@theme", "^@docusaurus", "^@generated"] },
|
||||
],
|
||||
"import/extensions": OFF,
|
||||
"react/jsx-filename-extension": OFF,
|
||||
"react-hooks/rules-of-hooks": ERROR,
|
||||
"react/prop-types": OFF, // PropTypes aren't used much these days.
|
||||
"react/function-component-definition": [
|
||||
WARNING,
|
||||
{
|
||||
namedComponents: "function-declaration",
|
||||
unnamedComponents: "arrow-function",
|
||||
},
|
||||
],
|
||||
},
|
||||
};
|
||||
2
docs/.gitignore
vendored
2
docs/.gitignore
vendored
@@ -1,3 +1,3 @@
|
||||
/.quarto/
|
||||
src/supabase.d.ts
|
||||
build
|
||||
.eslintcache
|
||||
24
docs/.local_build.sh
Executable file
24
docs/.local_build.sh
Executable file
@@ -0,0 +1,24 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -o errexit
|
||||
set -o nounset
|
||||
set -o pipefail
|
||||
set -o xtrace
|
||||
|
||||
SCRIPT_DIR="$(cd "$(dirname "$0")"; pwd)"
|
||||
cd "${SCRIPT_DIR}"
|
||||
|
||||
mkdir -p ../_dist
|
||||
rsync -ruv --exclude node_modules --exclude api_reference --exclude .venv --exclude .docusaurus . ../_dist
|
||||
cd ../_dist
|
||||
poetry run python scripts/model_feat_table.py
|
||||
cp ../cookbook/README.md src/pages/cookbook.mdx
|
||||
mkdir -p docs/templates
|
||||
cp ../templates/docs/INDEX.md docs/templates/index.md
|
||||
poetry run python scripts/copy_templates.py
|
||||
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
|
||||
wget -q https://raw.githubusercontent.com/langchain-ai/langgraph/main/README.md -O docs/langgraph.md
|
||||
|
||||
yarn
|
||||
|
||||
poetry run quarto preview docs
|
||||
7
docs/.prettierignore
Normal file
7
docs/.prettierignore
Normal file
@@ -0,0 +1,7 @@
|
||||
node_modules
|
||||
build
|
||||
.docusaurus
|
||||
docs/api
|
||||
docs/_static
|
||||
static
|
||||
quarto-1.3.450
|
||||
@@ -1,85 +0,0 @@
|
||||
# we build the docs in these stages:
|
||||
# 1. install vercel and python dependencies
|
||||
# 2. copy files from "source dir" to "intermediate dir"
|
||||
# 2. generate files like model feat table, etc in "intermediate dir"
|
||||
# 3. copy files to their right spots (e.g. langserve readme) in "intermediate dir"
|
||||
# 4. build the docs from "intermediate dir" to "output dir"
|
||||
|
||||
SOURCE_DIR = docs/
|
||||
INTERMEDIATE_DIR = build/intermediate/docs
|
||||
|
||||
OUTPUT_NEW_DIR = build/output-new
|
||||
OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
|
||||
|
||||
PYTHON = .venv/bin/python
|
||||
|
||||
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm|ai21" | tr '\n' ' ')
|
||||
|
||||
PORT ?= 3001
|
||||
|
||||
clean:
|
||||
rm -rf build
|
||||
|
||||
install-vercel-deps:
|
||||
yum -y update
|
||||
yum install gcc bzip2-devel libffi-devel zlib-devel wget tar gzip rsync -y
|
||||
|
||||
install-py-deps:
|
||||
python3 -m venv .venv
|
||||
$(PYTHON) -m pip install --upgrade pip
|
||||
$(PYTHON) -m pip install --upgrade uv
|
||||
$(PYTHON) -m uv pip install -r vercel_requirements.txt
|
||||
$(PYTHON) -m uv pip install --editable $(PARTNER_DEPS_LIST)
|
||||
|
||||
generate-files:
|
||||
mkdir -p $(INTERMEDIATE_DIR)
|
||||
cp -r $(SOURCE_DIR)/* $(INTERMEDIATE_DIR)
|
||||
mkdir -p $(INTERMEDIATE_DIR)/templates
|
||||
cp ../templates/docs/INDEX.md $(INTERMEDIATE_DIR)/templates/index.md
|
||||
cp ../cookbook/README.md $(INTERMEDIATE_DIR)/cookbook.mdx
|
||||
|
||||
$(PYTHON) scripts/model_feat_table.py $(INTERMEDIATE_DIR)
|
||||
|
||||
$(PYTHON) scripts/copy_templates.py $(INTERMEDIATE_DIR)
|
||||
|
||||
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O $(INTERMEDIATE_DIR)/langserve.md
|
||||
$(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langserve.md https://github.com/langchain-ai/langserve/tree/main/
|
||||
|
||||
wget -q https://raw.githubusercontent.com/langchain-ai/langgraph/main/README.md -O $(INTERMEDIATE_DIR)/langgraph.md
|
||||
$(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langgraph.md https://github.com/langchain-ai/langgraph/tree/main/
|
||||
|
||||
copy-infra:
|
||||
mkdir -p $(OUTPUT_NEW_DIR)
|
||||
cp -r src $(OUTPUT_NEW_DIR)
|
||||
cp vercel.json $(OUTPUT_NEW_DIR)
|
||||
cp babel.config.js $(OUTPUT_NEW_DIR)
|
||||
cp -r data $(OUTPUT_NEW_DIR)
|
||||
cp docusaurus.config.js $(OUTPUT_NEW_DIR)
|
||||
cp package.json $(OUTPUT_NEW_DIR)
|
||||
cp sidebars.js $(OUTPUT_NEW_DIR)
|
||||
cp -r static $(OUTPUT_NEW_DIR)
|
||||
cp yarn.lock $(OUTPUT_NEW_DIR)
|
||||
|
||||
render:
|
||||
$(PYTHON) scripts/notebook_convert.py $(INTERMEDIATE_DIR) $(OUTPUT_NEW_DOCS_DIR)
|
||||
|
||||
md-sync:
|
||||
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
|
||||
|
||||
generate-references:
|
||||
$(PYTHON) scripts/generate_api_reference_links.py --docs_dir $(OUTPUT_NEW_DOCS_DIR)
|
||||
|
||||
build: install-py-deps generate-files copy-infra render md-sync generate-references
|
||||
|
||||
vercel-build: install-vercel-deps build
|
||||
rm -rf docs
|
||||
mv $(OUTPUT_NEW_DOCS_DIR) docs
|
||||
rm -rf build
|
||||
yarn run docusaurus build
|
||||
mv build v0.2
|
||||
mkdir build
|
||||
mv v0.2 build
|
||||
mv build/v0.2/404.html build
|
||||
|
||||
start:
|
||||
cd $(OUTPUT_NEW_DIR) && yarn && yarn start --port=$(PORT)
|
||||
@@ -12,8 +12,7 @@ pre {
|
||||
}
|
||||
}
|
||||
|
||||
#my-component-root *,
|
||||
#headlessui-portal-root * {
|
||||
#my-component-root *, #headlessui-portal-root * {
|
||||
z-index: 10000;
|
||||
}
|
||||
|
||||
|
||||
@@ -359,14 +359,9 @@ def main(dirs: Optional[list] = None) -> None:
|
||||
dirs = [
|
||||
dir_
|
||||
for dir_ in os.listdir(ROOT_DIR / "libs")
|
||||
if dir_ not in ("cli", "partners", "standard-tests")
|
||||
]
|
||||
dirs += [
|
||||
dir_
|
||||
for dir_ in os.listdir(ROOT_DIR / "libs" / "partners")
|
||||
if os.path.isdir(dir_)
|
||||
and "pyproject.toml" in os.listdir(ROOT_DIR / "libs" / "partners" / dir_)
|
||||
if dir_ not in ("cli", "partners")
|
||||
]
|
||||
dirs += os.listdir(ROOT_DIR / "libs" / "partners")
|
||||
for dir_ in dirs:
|
||||
# Skip any hidden directories
|
||||
# Some of these could be present by mistake in the code base
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1398,20 +1398,3 @@ table.sk-sponsor-table td {
|
||||
.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
|
||||
.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
|
||||
.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */
|
||||
|
||||
/** Custom styles overriding certain values */
|
||||
|
||||
div.sk-sidebar-toc-wrapper {
|
||||
width: unset;
|
||||
overflow-x: auto;
|
||||
}
|
||||
|
||||
div.sk-sidebar-toc-wrapper > [aria-label="rellinks"] {
|
||||
position: sticky;
|
||||
left: 0;
|
||||
}
|
||||
|
||||
.navbar-nav .dropdown-menu {
|
||||
max-height: 80vh;
|
||||
overflow-y: auto;
|
||||
}
|
||||
|
||||
76
docs/code-block-loader.js
Normal file
76
docs/code-block-loader.js
Normal file
@@ -0,0 +1,76 @@
|
||||
/* eslint-disable prefer-template */
|
||||
/* eslint-disable no-param-reassign */
|
||||
// eslint-disable-next-line import/no-extraneous-dependencies
|
||||
const babel = require("@babel/core");
|
||||
const path = require("path");
|
||||
const fs = require("fs");
|
||||
|
||||
/**
|
||||
*
|
||||
* @param {string|Buffer} content Content of the resource file
|
||||
* @param {object} [map] SourceMap data consumable by https://github.com/mozilla/source-map
|
||||
* @param {any} [meta] Meta data, could be anything
|
||||
*/
|
||||
async function webpackLoader(content, map, meta) {
|
||||
const cb = this.async();
|
||||
|
||||
if (!this.resourcePath.endsWith(".ts")) {
|
||||
cb(null, JSON.stringify({ content, imports: [] }), map, meta);
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
const result = await babel.parseAsync(content, {
|
||||
sourceType: "module",
|
||||
filename: this.resourcePath,
|
||||
});
|
||||
|
||||
const imports = [];
|
||||
|
||||
result.program.body.forEach((node) => {
|
||||
if (node.type === "ImportDeclaration") {
|
||||
const source = node.source.value;
|
||||
|
||||
if (!source.startsWith("langchain")) {
|
||||
return;
|
||||
}
|
||||
|
||||
node.specifiers.forEach((specifier) => {
|
||||
if (specifier.type === "ImportSpecifier") {
|
||||
const local = specifier.local.name;
|
||||
const imported = specifier.imported.name;
|
||||
imports.push({ local, imported, source });
|
||||
} else {
|
||||
throw new Error("Unsupported import type");
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
imports.forEach((imp) => {
|
||||
const { imported, source } = imp;
|
||||
const moduleName = source.split("/").slice(1).join("_");
|
||||
const docsPath = path.resolve(__dirname, "docs", "api", moduleName);
|
||||
const available = fs.readdirSync(docsPath, { withFileTypes: true });
|
||||
const found = available.find(
|
||||
(dirent) =>
|
||||
dirent.isDirectory() &&
|
||||
fs.existsSync(path.resolve(docsPath, dirent.name, imported + ".md"))
|
||||
);
|
||||
if (found) {
|
||||
imp.docs =
|
||||
"/" + path.join("docs", "api", moduleName, found.name, imported);
|
||||
} else {
|
||||
throw new Error(
|
||||
`Could not find docs for ${source}.${imported} in docs/api/`
|
||||
);
|
||||
}
|
||||
});
|
||||
|
||||
cb(null, JSON.stringify({ content, imports }), map, meta);
|
||||
} catch (err) {
|
||||
cb(err);
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = webpackLoader;
|
||||
2036
docs/data/people.yml
2036
docs/data/people.yml
File diff suppressed because it is too large
Load Diff
25
docs/docs/_templates/integration.mdx
vendored
25
docs/docs/_templates/integration.mdx
vendored
@@ -1,31 +1,30 @@
|
||||
[comment: Please, a reference example here "docs/integrations/arxiv.md"]::
|
||||
[comment: Use this template to create a new .md file in "docs/integrations/"]::
|
||||
[comment: Please, a reference example here "docs/integrations/arxiv.md"]: :
|
||||
[comment: Use this template to create a new .md file in "docs/integrations/"]: :
|
||||
|
||||
# Title_REPLACE_ME
|
||||
|
||||
[comment: Only one Tile/H1 is allowed!]::
|
||||
[comment: Only one Tile/H1 is allowed!]: :
|
||||
|
||||
>
|
||||
[comment: Description: After reading this description, a reader should decide if this integration is good enough to try/follow reading OR]::
|
||||
[comment: go to read the next integration doc. ]::
|
||||
[comment: Description should include a link to the source for follow reading.]::
|
||||
> [comment: Description: After reading this description, a reader should decide if this integration is good enough to try/follow reading OR]: :
|
||||
> [comment: go to read the next integration doc. ]: :
|
||||
> [comment: Description should include a link to the source for follow reading.]: :
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
[comment: Installation and Setup: All necessary additional package installations and setups for Tokens, etc]::
|
||||
[comment: Installation and Setup: All necessary additional package installations and setups for Tokens, etc]: :
|
||||
|
||||
```bash
|
||||
pip install package_name_REPLACE_ME
|
||||
```
|
||||
|
||||
[comment: OR this text:]::
|
||||
[comment: OR this text:]: :
|
||||
|
||||
There isn't any special setup for it.
|
||||
|
||||
[comment: The next H2/## sections with names of the integration modules, like "LLM", "Text Embedding Models", etc]::
|
||||
[comment: see "Modules" in the "index.html" page]::
|
||||
[comment: Each H2 section should include a link to an example(s) and a Python code with the import of the integration class]::
|
||||
[comment: Below are several example sections. Remove all unnecessary sections. Add all necessary sections not provided here.]::
|
||||
[comment: The next H2/## sections with names of the integration modules, like "LLM", "Text Embedding Models", etc]: :
|
||||
[comment: see "Modules" in the "index.html" page]: :
|
||||
[comment: Each H2 section should include a link to an example(s) and a Python code with the import of the integration class]: :
|
||||
[comment: Below are several example sections. Remove all unnecessary sections. Add all necessary sections not provided here.]: :
|
||||
|
||||
## LLM
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -6,29 +6,28 @@
|
||||
- [LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
|
||||
- [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
|
||||
|
||||
|
||||
## Tutorials
|
||||
|
||||
### [LangChain v 0.1 by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae0gBSJ9T0w7cu7iJZbH3T31)
|
||||
### [Build with Langchain - Advanced by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae06tclDATrMYY0idsTdLg9v)
|
||||
### [LangGraph by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae16n2TWUkKq5PgJ0w6Pkwtg)
|
||||
## Tutorials
|
||||
|
||||
### [by Greg Kamradt](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5)
|
||||
### [by Sam Witteveen](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ)
|
||||
### [by James Briggs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F)
|
||||
### [by Prompt Engineering](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr)
|
||||
### [by Mayo Oshin](https://www.youtube.com/@chatwithdata/search?query=langchain)
|
||||
### [by 1 little Coder](https://www.youtube.com/playlist?list=PLpdmBGJ6ELUK-v0MK-t4wZmVEbxM5xk6L)
|
||||
|
||||
### [by Sam Witteveen](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ)
|
||||
|
||||
### [by James Briggs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F)
|
||||
|
||||
### [by Prompt Engineering](https://www.youtube.com/playlist?list=PLVEEucA9MYhOu89CX8H3MBZqayTbcCTMr)
|
||||
|
||||
### [by Mayo Oshin](https://www.youtube.com/@chatwithdata/search?query=langchain)
|
||||
|
||||
### [by 1 little Coder](https://www.youtube.com/playlist?list=PLpdmBGJ6ELUK-v0MK-t4wZmVEbxM5xk6L)
|
||||
|
||||
## Courses
|
||||
|
||||
### Featured courses on Deeplearning.AI
|
||||
|
||||
- [LangChain for LLM Application Development](https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/)
|
||||
- [LangChain Chat with Your Data](https://www.deeplearning.ai/short-courses/langchain-chat-with-your-data/)
|
||||
- [Functions, Tools and Agents with LangChain](https://www.deeplearning.ai/short-courses/functions-tools-agents-langchain/)
|
||||
- [Build LLM Apps with LangChain.js](https://www.deeplearning.ai/short-courses/build-llm-apps-with-langchain-js/)
|
||||
- [LangChain for LLM Application Development](https://learn.deeplearning.ai/langchain)
|
||||
- [LangChain Chat with Your Data](https://learn.deeplearning.ai/langchain-chat-with-your-data)
|
||||
- [Functions, Tools and Agents with LangChain](https://learn.deeplearning.ai/functions-tools-agents-langchain)
|
||||
- [Build LLM Apps with LangChain.js](https://learn.deeplearning.ai/courses/build-llm-apps-with-langchain-js)
|
||||
|
||||
### Online courses
|
||||
|
||||
@@ -39,7 +38,6 @@
|
||||
- [Udacity](https://www.udacity.com/catalog/all/any-price/any-school/any-skill/any-difficulty/any-duration/any-type/relevance/page-1?searchValue=langchain)
|
||||
- [LinkedIn Learning](https://www.linkedin.com/search/results/learning/?keywords=langchain)
|
||||
- [edX](https://www.edx.org/search?q=langchain)
|
||||
- [freeCodeCamp](https://www.youtube.com/@freecodecamp/search?query=langchain)
|
||||
|
||||
## Short Tutorials
|
||||
|
||||
@@ -48,8 +46,6 @@
|
||||
- [by Rabbitmetrics](https://youtu.be/aywZrzNaKjs)
|
||||
- [by Ivan Reznikov](https://medium.com/@ivanreznikov/langchain-101-course-updated-668f7b41d6cb)
|
||||
|
||||
## [Documentation: Use cases](/docs/how_to#use-cases)
|
||||
|
||||
---------------------
|
||||
|
||||
## [Documentation: Use cases](/docs/use_cases)
|
||||
|
||||
---
|
||||
|
||||
@@ -5,18 +5,19 @@
|
||||
### [Official LangChain YouTube channel](https://www.youtube.com/@LangChain)
|
||||
|
||||
### Introduction to LangChain with Harrison Chase, creator of LangChain
|
||||
|
||||
- [Building the Future with LLMs, `LangChain`, & `Pinecone`](https://youtu.be/nMniwlGyX-c) by [Pinecone](https://www.youtube.com/@pinecone-io)
|
||||
- [LangChain and Weaviate with Harrison Chase and Bob van Luijt - Weaviate Podcast #36](https://youtu.be/lhby7Ql7hbk) by [Weaviate • Vector Database](https://www.youtube.com/@Weaviate)
|
||||
- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@The_Full_Stack)
|
||||
- [LangChain Demo + Q&A with Harrison Chase](https://youtu.be/zaYTXQFR0_s?t=788) by [Full Stack Deep Learning](https://www.youtube.com/@FullStackDeepLearning)
|
||||
- [LangChain Agents: Build Personal Assistants For Your Data (Q&A with Harrison Chase and Mayo Oshin)](https://youtu.be/gVkF8cwfBLI) by [Chat with data](https://www.youtube.com/@chatwithdata)
|
||||
|
||||
## Videos (sorted by views)
|
||||
|
||||
- [Using `ChatGPT` with YOUR OWN Data. This is magical. (LangChain OpenAI API)](https://youtu.be/9AXP7tCI9PI) by [TechLead](https://www.youtube.com/@TechLead)
|
||||
- [First look - `ChatGPT` + `WolframAlpha` (`GPT-3.5` and Wolfram|Alpha via LangChain by James Weaver)](https://youtu.be/wYGbY811oMo) by [Dr Alan D. Thompson](https://www.youtube.com/@DrAlanDThompson)
|
||||
- [First look - `ChatGPT` + `WolframAlpha` (`GPT-3.5` and Wolfram|Alpha via LangChain by James Weaver)](https://youtu.be/wYGbY811oMo) by [Dr Alan D. Thompson](https://www.youtube.com/@DrAlanDThompson)
|
||||
- [LangChain explained - The hottest new Python framework](https://youtu.be/RoR4XJw8wIc) by [AssemblyAI](https://www.youtube.com/@AssemblyAI)
|
||||
- [Chatbot with INFINITE MEMORY using `OpenAI` & `Pinecone` - `GPT-3`, `Embeddings`, `ADA`, `Vector DB`, `Semantic`](https://youtu.be/2xNzB7xq8nk) by [David Shapiro ~ AI](https://www.youtube.com/@DaveShap)
|
||||
- [LangChain for LLMs is... basically just an Ansible playbook](https://youtu.be/X51N9C-OhlE) by [David Shapiro ~ AI](https://www.youtube.com/@DaveShap)
|
||||
- [Chatbot with INFINITE MEMORY using `OpenAI` & `Pinecone` - `GPT-3`, `Embeddings`, `ADA`, `Vector DB`, `Semantic`](https://youtu.be/2xNzB7xq8nk) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
|
||||
- [LangChain for LLMs is... basically just an Ansible playbook](https://youtu.be/X51N9C-OhlE) by [David Shapiro ~ AI](https://www.youtube.com/@DavidShapiroAutomator)
|
||||
- [Build your own LLM Apps with LangChain & `GPT-Index`](https://youtu.be/-75p09zFUJY) by [1littlecoder](https://www.youtube.com/@1littlecoder)
|
||||
- [`BabyAGI` - New System of Autonomous AI Agents with LangChain](https://youtu.be/lg3kJvf1kXo) by [1littlecoder](https://www.youtube.com/@1littlecoder)
|
||||
- [Run `BabyAGI` with Langchain Agents (with Python Code)](https://youtu.be/WosPGHPObx8) by [1littlecoder](https://www.youtube.com/@1littlecoder)
|
||||
@@ -37,15 +38,15 @@
|
||||
- [Building AI LLM Apps with LangChain (and more?) - LIVE STREAM](https://www.youtube.com/live/M-2Cj_2fzWI?feature=share) by [Nicholas Renotte](https://www.youtube.com/@NicholasRenotte)
|
||||
- [`ChatGPT` with any `YouTube` video using langchain and `chromadb`](https://youtu.be/TQZfB2bzVwU) by [echohive](https://www.youtube.com/@echohive)
|
||||
- [How to Talk to a `PDF` using LangChain and `ChatGPT`](https://youtu.be/v2i1YDtrIwk) by [Automata Learning Lab](https://www.youtube.com/@automatalearninglab)
|
||||
- [Langchain Document Loaders Part 1: Unstructured Files](https://youtu.be/O5C0wfsen98) by [Merk](https://www.youtube.com/@heymichaeldaigler)
|
||||
- [LangChain - Prompt Templates (what all the best prompt engineers use)](https://youtu.be/1aRu8b0XNOQ) by [Nick Daigler](https://www.youtube.com/@nickdaigler)
|
||||
- [Langchain Document Loaders Part 1: Unstructured Files](https://youtu.be/O5C0wfsen98) by [Merk](https://www.youtube.com/@merksworld)
|
||||
- [LangChain - Prompt Templates (what all the best prompt engineers use)](https://youtu.be/1aRu8b0XNOQ) by [Nick Daigler](https://www.youtube.com/@nick_daigs)
|
||||
- [LangChain. Crear aplicaciones Python impulsadas por GPT](https://youtu.be/DkW_rDndts8) by [Jesús Conde](https://www.youtube.com/@0utKast)
|
||||
- [Easiest Way to Use GPT In Your Products | LangChain Basics Tutorial](https://youtu.be/fLy0VenZyGc) by [Rachel Woods](https://www.youtube.com/@therachelwoods)
|
||||
- [`BabyAGI` + `GPT-4` Langchain Agent with Internet Access](https://youtu.be/wx1z_hs5P6E) by [tylerwhatsgood](https://www.youtube.com/@tylerwhatsgood)
|
||||
- [Learning LLM Agents. How does it actually work? LangChain, AutoGPT & OpenAI](https://youtu.be/mb_YAABSplk) by [Arnoldas Kemeklis](https://www.youtube.com/@processusAI)
|
||||
- [Get Started with LangChain in `Node.js`](https://youtu.be/Wxx1KUWJFv4) by [Developers Digest](https://www.youtube.com/@DevelopersDigest)
|
||||
- [LangChain + `OpenAI` tutorial: Building a Q&A system w/ own text data](https://youtu.be/DYOU_Z0hAwo) by [Samuel Chan](https://www.youtube.com/@SamuelChan)
|
||||
- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@heymichaeldaigler)
|
||||
- [Langchain + `Zapier` Agent](https://youtu.be/yribLAb-pxA) by [Merk](https://www.youtube.com/@merksworld)
|
||||
- [Connecting the Internet with `ChatGPT` (LLMs) using Langchain And Answers Your Questions](https://youtu.be/9Y0TBC63yZg) by [Kamalraj M M](https://www.youtube.com/@insightbuilder)
|
||||
- [Build More Powerful LLM Applications for Business’s with LangChain (Beginners Guide)](https://youtu.be/sp3-WLKEcBg) by[ No Code Blackbox](https://www.youtube.com/@nocodeblackbox)
|
||||
- [LangFlow LLM Agent Demo for 🦜🔗LangChain](https://youtu.be/zJxDHaWt-6o) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
|
||||
@@ -82,7 +83,7 @@
|
||||
- [Build a LangChain-based Semantic PDF Search App with No-Code Tools Bubble and Flowise](https://youtu.be/s33v5cIeqA4) by [Menlo Park Lab](https://www.youtube.com/@menloparklab)
|
||||
- [LangChain Memory Tutorial | Building a ChatGPT Clone in Python](https://youtu.be/Cwq91cj2Pnc) by [Alejandro AO - Software & Ai](https://www.youtube.com/@alejandro_ao)
|
||||
- [ChatGPT For Your DATA | Chat with Multiple Documents Using LangChain](https://youtu.be/TeDgIDqQmzs) by [Data Science Basics](https://www.youtube.com/@datasciencebasics)
|
||||
- [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@heymichaeldaigler)
|
||||
- [`Llama Index`: Chat with Documentation using URL Loader](https://youtu.be/XJRoDEctAwA) by [Merk](https://www.youtube.com/@merksworld)
|
||||
- [Using OpenAI, LangChain, and `Gradio` to Build Custom GenAI Applications](https://youtu.be/1MsmqMg3yUc) by [David Hundley](https://www.youtube.com/@dkhundley)
|
||||
- [LangChain, Chroma DB, OpenAI Beginner Guide | ChatGPT with your PDF](https://youtu.be/FuqdVNB_8c0)
|
||||
- [Build AI chatbot with custom knowledge base using OpenAI API and GPT Index](https://youtu.be/vDZAZuaXf48) by [Irina Nik](https://www.youtube.com/@irina_nik)
|
||||
@@ -93,7 +94,7 @@
|
||||
- [Build a Custom Chatbot with OpenAI: `GPT-Index` & LangChain | Step-by-Step Tutorial](https://youtu.be/FIDv6nc4CgU) by [Fabrikod](https://www.youtube.com/@fabrikod)
|
||||
- [`Flowise` is an open-source no-code UI visual tool to build 🦜🔗LangChain applications](https://youtu.be/CovAPtQPU0k) by [Cobus Greyling](https://www.youtube.com/@CobusGreylingZA)
|
||||
- [LangChain & GPT 4 For Data Analysis: The `Pandas` Dataframe Agent](https://youtu.be/rFQ5Kmkd4jc) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
|
||||
- [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw) by [Girlfriend GPT](https://www.youtube.com/@girlfriendGPT)
|
||||
- [`GirlfriendGPT` - AI girlfriend with LangChain](https://youtu.be/LiN3D1QZGQw) by [Toolfinder AI](https://www.youtube.com/@toolfinderai)
|
||||
- [How to build with Langchain 10x easier | ⛓️ LangFlow & `Flowise`](https://youtu.be/Ya1oGL7ZTvU) by [AI Jason](https://www.youtube.com/@AIJasonZ)
|
||||
- [Getting Started With LangChain In 20 Minutes- Build Celebrity Search Application](https://youtu.be/_FpT1cwcSLg) by [Krish Naik](https://www.youtube.com/@krishnaik06)
|
||||
- ⛓ [Vector Embeddings Tutorial – Code Your Own AI Assistant with `GPT-4 API` + LangChain + NLP](https://youtu.be/yfHHvmaMkcA?si=5uJhxoh2tvdnOXok) by [FreeCodeCamp.org](https://www.youtube.com/@freecodecamp)
|
||||
@@ -108,8 +109,8 @@
|
||||
- ⛓ [How to Run `LLaMA` Locally on CPU or GPU | Python & Langchain & CTransformers Guide](https://youtu.be/SvjWDX2NqiM?si=DxFml8XeGhiLTzLV) by [Code With Prince](https://www.youtube.com/@CodeWithPrince)
|
||||
- ⛓ [PyData Heidelberg #11 - TimeSeries Forecasting & LLM Langchain](https://www.youtube.com/live/Glbwb5Hxu18?si=PIEY8Raq_C9PCHuW) by [PyData](https://www.youtube.com/@PyDataTV)
|
||||
- ⛓ [Prompt Engineering in Web Development | Using LangChain and Templates with OpenAI](https://youtu.be/pK6WzlTOlYw?si=fkcDQsBG2h-DM8uQ) by [Akamai Developer
|
||||
](https://www.youtube.com/@AkamaiDeveloper)
|
||||
- ⛓ [Retrieval-Augmented Generation (RAG) using LangChain and `Pinecone` - The RAG Special Episode](https://youtu.be/J_tCD_J6w3s?si=60Mnr5VD9UED9bGG) by [Generative AI and Data Science On AWS](https://www.youtube.com/@GenerativeAIOnAWS)
|
||||
](https://www.youtube.com/@AkamaiDeveloper)
|
||||
- ⛓ [Retrieval-Augmented Generation (RAG) using LangChain and `Pinecone` - The RAG Special Episode](https://youtu.be/J_tCD_J6w3s?si=60Mnr5VD9UED9bGG) by [Generative AI and Data Science On AWS](https://www.youtube.com/@GenerativeAIDataScienceOnAWS)
|
||||
- ⛓ [`LLAMA2 70b-chat` Multiple Documents Chatbot with Langchain & Streamlit |All OPEN SOURCE|Replicate API](https://youtu.be/vhghB81vViM?si=dszzJnArMeac7lyc) by [DataInsightEdge](https://www.youtube.com/@DataInsightEdge01)
|
||||
- ⛓ [Chatting with 44K Fashion Products: LangChain Opportunities and Pitfalls](https://youtu.be/Zudgske0F_s?si=8HSshHoEhh0PemJA) by [Rabbitmetrics](https://www.youtube.com/@rabbitmetrics)
|
||||
- ⛓ [Structured Data Extraction from `ChatGPT` with LangChain](https://youtu.be/q1lYg8JISpQ?si=0HctzOHYZvq62sve) by [MG](https://www.youtube.com/@MG_cafe)
|
||||
@@ -123,8 +124,8 @@
|
||||
- ⛓ [Build Chat PDF app in Python with LangChain, OpenAI, Streamlit | Full project | Learn Coding](https://www.youtube.com/watch?v=WYzFzZg4YZI) by [Jutsupoint](https://www.youtube.com/@JutsuPoint)
|
||||
- ⛓ [Build Eminem Bot App with LangChain, Streamlit, OpenAI | Full Python Project | Tutorial | AI ChatBot](https://www.youtube.com/watch?v=a2shHB4MRZ4) by [Jutsupoint](https://www.youtube.com/@JutsuPoint)
|
||||
|
||||
|
||||
### [Prompt Engineering and LangChain](https://www.youtube.com/watch?v=muXbPpG_ys4&list=PLEJK-H61Xlwzm5FYLDdKt_6yibO33zoMW) by [Venelin Valkov](https://www.youtube.com/@venelin_valkov)
|
||||
|
||||
- [Getting Started with LangChain: Load Custom Data, Run OpenAI Models, Embeddings and `ChatGPT`](https://www.youtube.com/watch?v=muXbPpG_ys4)
|
||||
- [Loaders, Indexes & Vectorstores in LangChain: Question Answering on `PDF` files with `ChatGPT`](https://www.youtube.com/watch?v=FQnvfR8Dmr0)
|
||||
- [LangChain Models: `ChatGPT`, `Flan Alpaca`, `OpenAI Embeddings`, Prompt Templates & Streaming](https://www.youtube.com/watch?v=zy6LiK5F5-s)
|
||||
@@ -132,6 +133,6 @@
|
||||
- [Analyze Custom CSV Data with `GPT-4` using Langchain](https://www.youtube.com/watch?v=Ew3sGdX8at4)
|
||||
- [Build ChatGPT Chatbots with LangChain Memory: Understanding and Implementing Memory in Conversations](https://youtu.be/CyuUlf54wTs)
|
||||
|
||||
---
|
||||
|
||||
---------------------
|
||||
⛓ icon marks a new addition [last update 2024-02-04]
|
||||
|
||||
@@ -1,10 +1,27 @@
|
||||
# langchain-core
|
||||
|
||||
## 0.1.x
|
||||
## 0.1.7 (Jan 5, 2024)
|
||||
|
||||
#### Deleted
|
||||
|
||||
No deletions.
|
||||
|
||||
#### Deprecated
|
||||
|
||||
- `BaseChatModel` methods `__call__`, `call_as_llm`, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.invoke` instead.
|
||||
- `BaseChatModel` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.ainvoke` instead.
|
||||
- `BaseLLM` methods `__call__, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseLLM.invoke` instead.
|
||||
- `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
|
||||
- `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
|
||||
|
||||
#### Fixed
|
||||
|
||||
- Restrict recursive URL scraping: [#15559](https://github.com/langchain-ai/langchain/pull/15559)
|
||||
|
||||
#### Added
|
||||
|
||||
No additions.
|
||||
|
||||
#### Beta
|
||||
|
||||
- Marked `langchain_core.load.load` and `langchain_core.load.loads` as beta.
|
||||
- Marked `langchain_core.beta.runnables.context.ContextGet` and `langchain_core.beta.runnables.context.ContextSet` as beta.
|
||||
36
docs/docs/changelog/langchain.mdx
Normal file
36
docs/docs/changelog/langchain.mdx
Normal file
@@ -0,0 +1,36 @@
|
||||
# langchain
|
||||
|
||||
## 0.1.0 (Jan 5, 2024)
|
||||
|
||||
#### Deleted
|
||||
|
||||
No deletions.
|
||||
|
||||
#### Deprecated
|
||||
|
||||
Deprecated classes and methods will be removed in 0.2.0
|
||||
|
||||
| Deprecated | Alternative | Reason |
|
||||
| ------------------------------- | --------------------------------- | ---------------------------------------------- |
|
||||
| ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
|
||||
| create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
|
||||
| created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
|
||||
| NatBotChain | | Not used |
|
||||
| create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
|
||||
| create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
|
||||
| load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
|
||||
| VectorDBQA | RetrievalQA | More general to all retrievers |
|
||||
| Sequential Chain | LCEL | Obviated by LCEL |
|
||||
| SimpleSequentialChain | LCEL | Obviated by LCEL |
|
||||
| TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
|
||||
| create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
|
||||
| ChatAgent | create_react_agent | Use LCEL builder over a class |
|
||||
| ConversationalAgent | create_react_agent | Use LCEL builder over a class |
|
||||
| ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
|
||||
| initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
|
||||
| ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
|
||||
| OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
|
||||
| OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
|
||||
| SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
|
||||
| StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
|
||||
| XMLAgent | create_xml_agent | Use LCEL builder over a class |
|
||||
@@ -1,93 +0,0 @@
|
||||
# langchain
|
||||
|
||||
## 0.2.0
|
||||
|
||||
### Deleted
|
||||
|
||||
As of release 0.2.0, `langchain` is required to be integration-agnostic. This means that code in `langchain` should not by default instantiate any specific chat models, llms, embedding models, vectorstores etc; instead, the user will be required to specify those explicitly.
|
||||
|
||||
The following functions and classes require an explicit LLM to be passed as an argument:
|
||||
|
||||
- `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit`
|
||||
- `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit`
|
||||
- `langchain.chains.openai_functions.get_openapi_chain`
|
||||
- `langchain.chains.router.MultiRetrievalQAChain.from_retrievers`
|
||||
- `langchain.indexes.VectorStoreIndexWrapper.query`
|
||||
- `langchain.indexes.VectorStoreIndexWrapper.query_with_sources`
|
||||
- `langchain.indexes.VectorStoreIndexWrapper.aquery_with_sources`
|
||||
- `langchain.chains.flare.FlareChain`
|
||||
|
||||
The following classes now require passing an explicit Embedding model as an argument:
|
||||
|
||||
- `langchain.indexes.VectostoreIndexCreator`
|
||||
|
||||
The following code has been removed:
|
||||
|
||||
- `langchain.natbot.NatBotChain.from_default` removed in favor of the `from_llm` class method.
|
||||
|
||||
### Deprecated
|
||||
|
||||
We have two main types of deprecations:
|
||||
|
||||
1. Code that was moved from `langchain` into another package (e.g, `langchain-community`)
|
||||
|
||||
If you try to import it from `langchain`, the import will keep on working, but will raise a deprecation warning. The warning will provide a replacement import statement.
|
||||
|
||||
```python
|
||||
python -c "from langchain.document_loaders.markdown import UnstructuredMarkdownLoader"
|
||||
|
||||
```
|
||||
|
||||
```python
|
||||
LangChainDeprecationWarning: Importing UnstructuredMarkdownLoader from langchain.document_loaders is deprecated. Please replace deprecated imports:
|
||||
|
||||
>> from langchain.document_loaders import UnstructuredMarkdownLoader
|
||||
|
||||
with new imports of:
|
||||
|
||||
>> from langchain_community.document_loaders import UnstructuredMarkdownLoader
|
||||
```
|
||||
|
||||
We will continue supporting the imports in `langchain` until release 0.4 as long as the relevant package where the code lives is installed. (e.g., as long as `langchain_community` is installed.)
|
||||
|
||||
However, we advise for users to not rely on these imports and instead migrate to the new imports. To help with this process, we’re releasing a migration script via the LangChain CLI. See further instructions in migration guide.
|
||||
|
||||
1. Code that has better alternatives available and will eventually be removed, so there’s only a single way to do things. (e.g., `predict_messages` method in ChatModels has been deprecated in favor of `invoke`).
|
||||
|
||||
Many of these were marked for removal in 0.2. We have bumped the removal to 0.3.
|
||||
|
||||
|
||||
## 0.1.0 (Jan 5, 2024)
|
||||
|
||||
### Deleted
|
||||
|
||||
No deletions.
|
||||
|
||||
### Deprecated
|
||||
|
||||
Deprecated classes and methods will be removed in 0.2.0
|
||||
|
||||
| Deprecated | Alternative | Reason |
|
||||
|---------------------------------|-----------------------------------|------------------------------------------------|
|
||||
| ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
|
||||
| create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
|
||||
| created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
|
||||
| NatBotChain | | Not used |
|
||||
| create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
|
||||
| create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
|
||||
| load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
|
||||
| VectorDBQA | RetrievalQA | More general to all retrievers |
|
||||
| Sequential Chain | LCEL | Obviated by LCEL |
|
||||
| SimpleSequentialChain | LCEL | Obviated by LCEL |
|
||||
| TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
|
||||
| create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
|
||||
| ChatAgent | create_react_agent | Use LCEL builder over a class |
|
||||
| ConversationalAgent | create_react_agent | Use LCEL builder over a class |
|
||||
| ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
|
||||
| initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
|
||||
| ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
|
||||
| OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
|
||||
| OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
|
||||
| SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
|
||||
| StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
|
||||
| XMLAgent | create_xml_agent | Use LCEL builder over a class |
|
||||
@@ -1,552 +0,0 @@
|
||||
# Conceptual guide
|
||||
|
||||
import ThemedImage from '@theme/ThemedImage';
|
||||
import useBaseUrl from '@docusaurus/useBaseUrl';
|
||||
|
||||
This section contains introductions to key parts of LangChain.
|
||||
|
||||
## Architecture
|
||||
|
||||
LangChain as a framework consists of a number of packages.
|
||||
|
||||
### `langchain-core`
|
||||
This package contains base abstractions of different components and ways to compose them together.
|
||||
The interfaces for core components like LLMs, vectorstores, retrievers and more are defined here.
|
||||
No third party integrations are defined here.
|
||||
The dependencies are kept purposefully very lightweight.
|
||||
|
||||
### Partner packages
|
||||
|
||||
While the long tail of integrations are in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
|
||||
This was done in order to improve support for these important integrations.
|
||||
|
||||
### `langchain`
|
||||
|
||||
The main `langchain` package contains chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
These are NOT third party integrations.
|
||||
All chains, agents, and retrieval strategies here are NOT specific to any one integration, but rather generic across all integrations.
|
||||
|
||||
### `langchain-community`
|
||||
|
||||
This package contains third party integrations that are maintained by the LangChain community.
|
||||
Key partner packages are separated out (see below).
|
||||
This contains all integrations for various components (LLMs, vectorstores, retrievers).
|
||||
All dependencies in this package are optional to keep the package as lightweight as possible.
|
||||
|
||||
### [`langgraph`](/docs/langgraph)
|
||||
|
||||
`langgraph` is an extension of `langchain` aimed at
|
||||
building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
|
||||
|
||||
LangGraph exposes high level interfaces for creating common types of agents, as well as a low-level API for constructing more contr
|
||||
|
||||
### [`langserve`](/docs/langserve)
|
||||
|
||||
A package to deploy LangChain chains as REST APIs. Makes it easy to get a production ready API up and running.
|
||||
|
||||
### [LangSmith](/docs/langsmith)
|
||||
|
||||
A developer platform that lets you debug, test, evaluate, and monitor LLM applications.
|
||||
|
||||
<ThemedImage
|
||||
alt="Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers."
|
||||
sources={{
|
||||
light: useBaseUrl('/svg/langchain_stack.svg'),
|
||||
dark: useBaseUrl('/svg/langchain_stack_dark.svg'),
|
||||
}}
|
||||
title="LangChain Framework Overview"
|
||||
/>
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
|
||||
LangChain Expression Language, or LCEL, is a declarative way to chain LangChain components.
|
||||
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (we’ve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
|
||||
|
||||
**First-class streaming support**
|
||||
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
|
||||
|
||||
**Async support**
|
||||
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langsmith) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
|
||||
|
||||
**Optimized parallel execution**
|
||||
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
|
||||
|
||||
**Retries and fallbacks**
|
||||
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. We’re currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
|
||||
|
||||
**Access intermediate results**
|
||||
For more complex chains it’s often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and it’s available on every [LangServe](/docs/langserve) server.
|
||||
|
||||
**Input and output schemas**
|
||||
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
|
||||
|
||||
[**Seamless LangSmith tracing**](/docs/langsmith)
|
||||
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
|
||||
With LCEL, **all** steps are automatically logged to [LangSmith](/docs/langsmith/) for maximum observability and debuggability.
|
||||
|
||||
[**Seamless LangServe deployment**](/docs/langserve)
|
||||
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).
|
||||
|
||||
### Runnable interface
|
||||
|
||||
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
|
||||
|
||||
This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way.
|
||||
The standard interface includes:
|
||||
|
||||
- [`stream`](#stream): stream back chunks of the response
|
||||
- [`invoke`](#invoke): call the chain on an input
|
||||
- [`batch`](#batch): call the chain on a list of inputs
|
||||
|
||||
These also have corresponding async methods that should be used with [asyncio](https://docs.python.org/3/library/asyncio.html) `await` syntax for concurrency:
|
||||
|
||||
- `astream`: stream back chunks of the response async
|
||||
- `ainvoke`: call the chain on an input async
|
||||
- `abatch`: call the chain on a list of inputs async
|
||||
- `astream_log`: stream back intermediate steps as they happen, in addition to the final response
|
||||
- `astream_events`: **beta** stream events as they happen in the chain (introduced in `langchain-core` 0.1.14)
|
||||
|
||||
The **input type** and **output type** varies by component:
|
||||
|
||||
| Component | Input Type | Output Type |
|
||||
| --- | --- | --- |
|
||||
| Prompt | Dictionary | PromptValue |
|
||||
| ChatModel | Single string, list of chat messages or a PromptValue | ChatMessage |
|
||||
| LLM | Single string, list of chat messages or a PromptValue | String |
|
||||
| OutputParser | The output of an LLM or ChatModel | Depends on the parser |
|
||||
| Retriever | Single string | List of Documents |
|
||||
| Tool | Single string or dictionary, depending on the tool | Depends on the tool |
|
||||
|
||||
|
||||
All runnables expose input and output **schemas** to inspect the inputs and outputs:
|
||||
- `input_schema`: an input Pydantic model auto-generated from the structure of the Runnable
|
||||
- `output_schema`: an output Pydantic model auto-generated from the structure of the Runnable
|
||||
|
||||
## Components
|
||||
|
||||
LangChain provides standard, extendable interfaces and external integrations for various components useful for building with LLMs.
|
||||
Some components LangChain implements, some components we rely on third-party integrations for, and others are a mix.
|
||||
|
||||
### Chat models
|
||||
Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text).
|
||||
These are traditionally newer models (older models are generally `LLMs`, see above).
|
||||
Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages.
|
||||
|
||||
Although the underlying models are messages in, message out, the LangChain wrappers also allow these models to take a string as input.
|
||||
This makes them interchangeable with LLMs (and simpler to use).
|
||||
When a string is passed in as input, it will be converted to a HumanMessage under the hood before being passed to the underlying model.
|
||||
|
||||
LangChain does not provide any ChatModels, rather we rely on third party integrations.
|
||||
|
||||
We have some standardized parameters when constructing ChatModels:
|
||||
- `model`: the name of the model
|
||||
|
||||
ChatModels also accept other parameters that are specific to that integration.
|
||||
|
||||
### LLMs
|
||||
Language models that takes a string as input and returns a string.
|
||||
These are traditionally older models (newer models generally are `ChatModels`, see below).
|
||||
|
||||
Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input.
|
||||
This makes them interchangeable with ChatModels.
|
||||
When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model.
|
||||
|
||||
LangChain does not provide any LLMs, rather we rely on third party integrations.
|
||||
|
||||
### Messages
|
||||
|
||||
Some language models take a list of messages as input and return a message.
|
||||
There are a few different types of messages.
|
||||
All messages have a `role`, `content`, and `response_metadata` property.
|
||||
|
||||
The `role` describes WHO is saying the message.
|
||||
LangChain has different message classes for different roles.
|
||||
|
||||
The `content` property describes the content of the message.
|
||||
This can be a few different things:
|
||||
|
||||
- A string (most models deal this type of content)
|
||||
- A List of dictionaries (this is used for multi-modal input, where the dictionary contains information about that input type and that input location)
|
||||
|
||||
#### HumanMessage
|
||||
|
||||
This represents a message from the user.
|
||||
|
||||
#### AIMessage
|
||||
|
||||
This represents a message from the model. In addition to the `content` property, these messages also have:
|
||||
|
||||
**`response_metadata`**
|
||||
|
||||
The `response_metadata` property contains additional metadata about the response. The data here is often specific to each model provider.
|
||||
This is where information like log-probs and token usage may be stored.
|
||||
|
||||
**`tool_calls`**
|
||||
|
||||
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
|
||||
They can be accessed from there with the `.tool_calls` property.
|
||||
|
||||
This property returns a list of dictionaries. Each dictionary has the following keys:
|
||||
|
||||
- `name`: The name of the tool that should be called.
|
||||
- `args`: The arguments to that tool.
|
||||
- `id`: The id of that tool call.
|
||||
|
||||
#### SystemMessage
|
||||
|
||||
This represents a system message, which tells the model how to behave. Not every model provider supports this.
|
||||
|
||||
#### FunctionMessage
|
||||
|
||||
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
|
||||
|
||||
#### ToolMessage
|
||||
|
||||
This represents the result of a tool call. This is distinct from a FunctionMessage in order to match OpenAI's `function` and `tool` message types. In addition to `role` and `content`, this message has a `tool_call_id` parameter which conveys the id of the call to the tool that was called to produce this result.
|
||||
|
||||
|
||||
### Prompt templates
|
||||
Prompt templates help to translate user input and parameters into instructions for a language model.
|
||||
This can be used to guide a model's response, helping it understand the context and generate relevant and coherent language-based output.
|
||||
|
||||
Prompt Templates take as input a dictionary, where each key represents a variable in the prompt template to fill in.
|
||||
|
||||
Prompt Templates output a PromptValue. This PromptValue can be passed to an LLM or a ChatModel, and can also be cast to a string or a list of messages.
|
||||
The reason this PromptValue exists is to make it easy to switch between strings and messages.
|
||||
|
||||
There are a few different types of prompt templates
|
||||
|
||||
#### String PromptTemplates
|
||||
|
||||
These prompt templates are used to format a single string, and generally are used for simpler inputs.
|
||||
For example, a common way to construct and use a PromptTemplate is as follows:
|
||||
|
||||
```python
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
|
||||
|
||||
prompt_template.invoke({"topic": "cats"})
|
||||
```
|
||||
|
||||
#### ChatPromptTemplates
|
||||
|
||||
These prompt templates are used to format a list of messages. These "templates" consist of a list of templates themselves.
|
||||
For example, a common way to construct and use a ChatPromptTemplate is as follows:
|
||||
|
||||
```python
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
|
||||
prompt_template = ChatPromptTemplate.from_messages([
|
||||
("system", "You are a helpful assistant"),
|
||||
("user", "Tell me a joke about {topic}"
|
||||
])
|
||||
|
||||
prompt_template.invoke({"topic": "cats"})
|
||||
```
|
||||
|
||||
In the above example, this ChatPromptTemplate will construct two messages when called.
|
||||
The first is a system message, that has no variables to format.
|
||||
The second is a HumanMessage, and will be formatted by the `topic` variable the user passes in.
|
||||
|
||||
#### MessagesPlaceholder
|
||||
|
||||
This prompt template is responsible for adding a list of messages in a particular place.
|
||||
In the above ChatPromptTemplate, we saw how we could format two messages, each one a string.
|
||||
But what if we wanted the user to pass in a list of messages that we would slot into a particular spot?
|
||||
This is how you use MessagesPlaceholder.
|
||||
|
||||
```python
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.messages import HumanMessage
|
||||
|
||||
prompt_template = ChatPromptTemplate.from_messages([
|
||||
("system", "You are a helpful assistant"),
|
||||
MessagesPlaceholder("msgs")
|
||||
])
|
||||
|
||||
prompt_template.invoke({"msgs": [HumanMessage(content="hi!")]})
|
||||
```
|
||||
|
||||
This will produce a list of two messages, the first one being a system message, and the second one being the HumanMessage we passed in.
|
||||
If we had passed in 5 messages, then it would have produced 6 messages in total (the system message plus the 5 passed in).
|
||||
This is useful for letting a list of messages be slotted into a particular spot.
|
||||
|
||||
An alternative way to accomplish the same thing without using the `MessagesPlaceholder` class explicitly is:
|
||||
|
||||
```python
|
||||
prompt_template = ChatPromptTemplate.from_messages([
|
||||
("system", "You are a helpful assistant"),
|
||||
("placeholder", "{msgs}") # <-- This is the changed part
|
||||
])
|
||||
```
|
||||
|
||||
### Example selectors
|
||||
One common prompting technique for achieving better performance is to include examples as part of the prompt.
|
||||
This gives the language model concrete examples of how it should behave.
|
||||
Sometimes these examples are hardcoded into the prompt, but for more advanced situations it may be nice to dynamically select them.
|
||||
Example Selectors are classes responsible for selecting and then formatting examples into prompts.
|
||||
|
||||
|
||||
### Output parsers
|
||||
|
||||
:::note
|
||||
|
||||
The information here refers to parsers that take a text output from a model try to parse it into a more structured representation.
|
||||
More and more models are supporting function (or tool) calling, which handles this automatically.
|
||||
It is recommended to use function/tool calling rather than output parsing.
|
||||
See documentation for that [here](/docs/concepts/#function-tool-calling).
|
||||
|
||||
:::
|
||||
|
||||
Responsible for taking the output of a model and transforming it to a more suitable format for downstream tasks.
|
||||
Useful when you are using LLMs to generate structured data, or to normalize output from chat models and LLMs.
|
||||
|
||||
LangChain has lots of different types of output parsers. This is a list of output parsers LangChain supports. The table below has various pieces of information:
|
||||
|
||||
**Name**: The name of the output parser
|
||||
|
||||
**Supports Streaming**: Whether the output parser supports streaming.
|
||||
|
||||
**Has Format Instructions**: Whether the output parser has format instructions. This is generally available except when (a) the desired schema is not specified in the prompt but rather in other parameters (like OpenAI function calling), or (b) when the OutputParser wraps another OutputParser.
|
||||
|
||||
**Calls LLM**: Whether this output parser itself calls an LLM. This is usually only done by output parsers that attempt to correct misformatted output.
|
||||
|
||||
**Input Type**: Expected input type. Most output parsers work on both strings and messages, but some (like OpenAI Functions) need a message with specific kwargs.
|
||||
|
||||
**Output Type**: The output type of the object returned by the parser.
|
||||
|
||||
**Description**: Our commentary on this output parser and when to use it.
|
||||
|
||||
| Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description |
|
||||
|-----------------|--------------------|-------------------------------|-----------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [JSON](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
|
||||
| [XML](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
|
||||
| [CSV](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
|
||||
| [OutputFixing](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |
|
||||
| [RetryWithError](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. |
|
||||
| [Pydantic](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. |
|
||||
| [YAML](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. |
|
||||
| [PandasDataFrame](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser.html#langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser) | | ✅ | | `str` \| `Message` | `dict` | Useful for doing operations with pandas DataFrames. |
|
||||
| [Enum](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. |
|
||||
| [Datetime](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. |
|
||||
| [Structured](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. |
|
||||
|
||||
### Chat history
|
||||
Most LLM applications have a conversational interface.
|
||||
An essential component of a conversation is being able to refer to information introduced earlier in the conversation.
|
||||
At bare minimum, a conversational system should be able to access some window of past messages directly.
|
||||
|
||||
The concept of `ChatHistory` refers to a class in LangChain which can be used to wrap an arbitrary chain.
|
||||
This `ChatHistory` will keep track of inputs and outputs of the underlying chain, and append them as messages to a message database
|
||||
Future interactions will then load those messages and pass them into the chain as part of the input.
|
||||
|
||||
### Documents
|
||||
|
||||
A Document object in LangChain contains information about some data. It has two attributes:
|
||||
|
||||
- `page_content: str`: The content of this document. Currently is only a string.
|
||||
- `metadata: dict`: Arbitrary metadata associated with this document. Can track the document id, file name, etc.
|
||||
|
||||
### Document loaders
|
||||
|
||||
These classes load Document objects. LangChain has hundreds of integrations with various data sources to load data from: Slack, Notion, Google Drive, etc.
|
||||
|
||||
Each DocumentLoader has its own specific parameters, but they can all be invoked in the same way with the `.load` method.
|
||||
An example use case is as follows:
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders.csv_loader import CSVLoader
|
||||
|
||||
loader = CSVLoader(
|
||||
... # <-- Integration specific parameters here
|
||||
)
|
||||
data = loader.load()
|
||||
```
|
||||
|
||||
### Text splitters
|
||||
|
||||
Once you've loaded documents, you'll often want to transform them to better suit your application. The simplest example is you may want to split a long document into smaller chunks that can fit into your model's context window. LangChain has a number of built-in document transformers that make it easy to split, combine, filter, and otherwise manipulate documents.
|
||||
|
||||
When you want to deal with long pieces of text, it is necessary to split up that text into chunks. As simple as this sounds, there is a lot of potential complexity here. Ideally, you want to keep the semantically related pieces of text together. What "semantically related" means could depend on the type of text. This notebook showcases several ways to do that.
|
||||
|
||||
At a high level, text splitters work as following:
|
||||
|
||||
1. Split the text up into small, semantically meaningful chunks (often sentences).
|
||||
2. Start combining these small chunks into a larger chunk until you reach a certain size (as measured by some function).
|
||||
3. Once you reach that size, make that chunk its own piece of text and then start creating a new chunk of text with some overlap (to keep context between chunks).
|
||||
|
||||
That means there are two different axes along which you can customize your text splitter:
|
||||
|
||||
1. How the text is split
|
||||
2. How the chunk size is measured
|
||||
|
||||
### Embedding models
|
||||
The Embeddings class is a class designed for interfacing with text embedding models. There are lots of embedding model providers (OpenAI, Cohere, Hugging Face, etc) - this class is designed to provide a standard interface for all of them.
|
||||
|
||||
Embeddings create a vector representation of a piece of text. This is useful because it means we can think about text in the vector space, and do things like semantic search where we look for pieces of text that are most similar in the vector space.
|
||||
|
||||
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former takes as input multiple texts, while the latter takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
|
||||
|
||||
### Vector stores
|
||||
One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors,
|
||||
and then at query time to embed the unstructured query and retrieve the embedding vectors that are 'most similar' to the embedded query.
|
||||
A vector store takes care of storing embedded data and performing vector search for you.
|
||||
|
||||
Vector stores can be converted to the retriever interface by doing:
|
||||
|
||||
```python
|
||||
vectorstore = MyVectorStore()
|
||||
retriever = vectorstore.as_retriever()
|
||||
```
|
||||
|
||||
### Retrievers
|
||||
A retriever is an interface that returns documents given an unstructured query.
|
||||
It is more general than a vector store.
|
||||
A retriever does not need to be able to store documents, only to return (or retrieve) them.
|
||||
Retrievers can be created from vectorstores, but are also broad enough to include [Wikipedia search](/docs/integrations/retrievers/wikipedia/) and [Amazon Kendra](/docs/integrations/retrievers/amazon_kendra_retriever/).
|
||||
|
||||
Retrievers accept a string query as input and return a list of Document's as output.
|
||||
|
||||
### Tools
|
||||
Tools are interfaces that an agent, chain, or LLM can use to interact with the world.
|
||||
They combine a few things:
|
||||
|
||||
1. The name of the tool
|
||||
2. A description of what the tool is
|
||||
3. JSON schema of what the inputs to the tool are
|
||||
4. The function to call
|
||||
5. Whether the result of a tool should be returned directly to the user
|
||||
|
||||
It is useful to have all this information because this information can be used to build action-taking systems! The name, description, and JSON schema can be used to prompt the LLM so it knows how to specify what action to take, and then the function to call is equivalent to taking that action.
|
||||
|
||||
The simpler the input to a tool is, the easier it is for an LLM to be able to use it.
|
||||
Many agents will only work with tools that have a single string input.
|
||||
|
||||
Importantly, the name, description, and JSON schema (if used) are all used in the prompt. Therefore, it is really important that they are clear and describe exactly how the tool should be used. You may need to change the default name, description, or JSON schema if the LLM is not understanding how to use the tool.
|
||||
|
||||
|
||||
### Toolkits
|
||||
|
||||
Toolkits are collections of tools that are designed to be used together for specific tasks. They have convenient loading methods.
|
||||
|
||||
All Toolkits expose a `get_tools` method which returns a list of tools.
|
||||
You can therefore do:
|
||||
|
||||
```python
|
||||
# Initialize a toolkit
|
||||
toolkit = ExampleTookit(...)
|
||||
|
||||
# Get list of tools
|
||||
tools = toolkit.get_tools()
|
||||
```
|
||||
|
||||
### Agents
|
||||
|
||||
By themselves, language models can't take actions - they just output text.
|
||||
A big use case for LangChain is creating **agents**.
|
||||
Agents are systems that use an LLM as a reasoning enginer to determine which actions to take and what the inputs to those actions should be.
|
||||
The results of those actions can then be fed back into the agent and it determine whether more actions are needed, or whether it is okay to finish.
|
||||
|
||||
[LangGraph](https://github.com/langchain-ai/langgraph) is an extension of LangChain specifically aimed at creating highly controllable and customizable agents.
|
||||
Please check out that documentation for a more in depth overview of agent concepts.
|
||||
|
||||
There is a legacy agent concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
|
||||
AgentExecutor was essentially a runtime for agents.
|
||||
It was a great place to get started, however, it was not flexible enough as you started to have more customized agents.
|
||||
In order to solve that we built LangGraph to be this flexible, highly-controllable runtime.
|
||||
|
||||
If you are still using AgentExecutor, do not fear: we still have a guide on [how to use AgentExecutor](/docs/how_to/agent_executor).
|
||||
It is recommended, however, that you start to transition to LangGraph.
|
||||
In order to assist in this we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent)
|
||||
|
||||
## Techniques
|
||||
|
||||
### Function/tool calling
|
||||
|
||||
:::info
|
||||
We use the term tool calling interchangeably with function calling. Although
|
||||
function calling is sometimes meant to refer to invocations of a single function,
|
||||
we treat all models as though they can return multiple tool or function calls in
|
||||
each message.
|
||||
:::
|
||||
|
||||
Tool calling allows a model to respond to a given prompt by generating output that
|
||||
matches a user-defined schema. While the name implies that the model is performing
|
||||
some action, this is actually not the case! The model is coming up with the
|
||||
arguments to a tool, and actually running the tool (or not) is up to the user -
|
||||
for example, if you want to [extract output matching some schema](/docs/tutorials/extraction)
|
||||
from unstructured text, you could give the model an "extraction" tool that takes
|
||||
parameters matching the desired schema, then treat the generated output as your final
|
||||
result.
|
||||
|
||||
A tool call includes a name, arguments dict, and an optional identifier. The
|
||||
arguments dict is structured `{argument_name: argument_value}`.
|
||||
|
||||
Many LLM providers, including [Anthropic](https://www.anthropic.com/),
|
||||
[Cohere](https://cohere.com/), [Google](https://cloud.google.com/vertex-ai),
|
||||
[Mistral](https://mistral.ai/), [OpenAI](https://openai.com/), and others,
|
||||
support variants of a tool calling feature. These features typically allow requests
|
||||
to the LLM to include available tools and their schemas, and for responses to include
|
||||
calls to these tools. For instance, given a search engine tool, an LLM might handle a
|
||||
query by first issuing a call to the search engine. The system calling the LLM can
|
||||
receive the tool call, execute it, and return the output to the LLM to inform its
|
||||
response. LangChain includes a suite of [built-in tools](/docs/integrations/tools/)
|
||||
and supports several methods for defining your own [custom tools](/docs/how_to/custom_tools).
|
||||
|
||||
There are two main use cases for function/tool calling:
|
||||
|
||||
- [How to return structured data from an LLM](/docs/how_to/structured_output/)
|
||||
- [How to use a model to call tools](/docs/how_to/tool_calling/)
|
||||
|
||||
|
||||
### Retrieval
|
||||
|
||||
LangChain provides several advanced retrieval types. A full list is below, along with the following information:
|
||||
|
||||
**Name**: Name of the retrieval algorithm.
|
||||
|
||||
**Index Type**: Which index type (if any) this relies on.
|
||||
|
||||
**Uses an LLM**: Whether this retrieval method uses an LLM.
|
||||
|
||||
**When to Use**: Our commentary on when you should considering using this retrieval method.
|
||||
|
||||
**Description**: Description of what this retrieval algorithm is doing.
|
||||
|
||||
| Name | Index Type | Uses an LLM | When to Use | Description |
|
||||
|---------------------------|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Vectorstore](/docs/how_to/vectorstore_retriever/) | Vectorstore | No | If you are just getting started and looking for something quick and easy. | This is the simplest method and the one that is easiest to get started with. It involves creating embeddings for each piece of text. |
|
||||
| [ParentDocument](/docs/how_to/parent_document_retriever/) | Vectorstore + Document Store | No | If your pages have lots of smaller pieces of distinct information that are best indexed by themselves, but best retrieved all together. | This involves indexing multiple chunks for each document. Then you find the chunks that are most similar in embedding space, but you retrieve the whole parent document and return that (rather than individual chunks). |
|
||||
| [Multi Vector](/docs/how_to/multi_vector/) | Vectorstore + Document Store | Sometimes during indexing | If you are able to extract information from documents that you think is more relevant to index than the text itself. | This involves creating multiple vectors for each document. Each vector could be created in a myriad of ways - examples include summaries of the text and hypothetical questions. |
|
||||
| [Self Query](/docs/how_to/self_query/) | Vectorstore | Yes | If users are asking questions that are better answered by fetching documents based on metadata rather than similarity with the text. | This uses an LLM to transform user input into two things: (1) a string to look up semantically, (2) a metadata filer to go along with it. This is useful because oftentimes questions are about the METADATA of documents (not the content itself). |
|
||||
| [Contextual Compression](/docs/how_to/contextual_compression/) | Any | Sometimes | If you are finding that your retrieved documents contain too much irrelevant information and are distracting the LLM. | This puts a post-processing step on top of another retriever and extracts only the most relevant information from retrieved documents. This can be done with embeddings or an LLM. |
|
||||
| [Time-Weighted Vectorstore](/docs/how_to/time_weighted_vectorstore/) | Vectorstore | No | If you have timestamps associated with your documents, and you want to retrieve the most recent ones | This fetches documents based on a combination of semantic similarity (as in normal vector retrieval) and recency (looking at timestamps of indexed documents) |
|
||||
| [Multi-Query Retriever](/docs/how_to/MultiQueryRetriever/) | Any | Yes | If users are asking questions that are complex and require multiple pieces of distinct information to respond | This uses an LLM to generate multiple queries from the original one. This is useful when the original query needs pieces of information about multiple topics to be properly answered. By generating multiple queries, we can then fetch documents for each of them. |
|
||||
| [Ensemble](/docs/how_to/ensemble_retriever/) | Any | No | If you have multiple retrieval methods and want to try combining them. | This fetches documents from multiple retrievers and then combines them. |
|
||||
|
||||
|
||||
### Text splitting
|
||||
|
||||
LangChain offers many different types of `text splitters`.
|
||||
These all live in the `langchain-text-splitters` package.
|
||||
|
||||
Table columns:
|
||||
|
||||
- **Name**: Name of the text splitter
|
||||
- **Classes**: Classes that implement this text splitter
|
||||
- **Splits On**: How this text splitter splits text
|
||||
- **Adds Metadata**: Whether or not this text splitter adds metadata about where each chunk came from.
|
||||
- **Description**: Description of the splitter, including recommendation on when to use it.
|
||||
|
||||
|
||||
| Name | Classes | Splits On | Adds Metadata | Description |
|
||||
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| Recursive | [RecursiveCharacterTextSplitter](/docs/how_to/recursive_text_splitter/), [RecursiveJsonSplitter](/docs/how_to/recursive_json_splitter/) | A list of user defined characters | | Recursively splits text. This splitting is trying to keep related pieces of text next to each other. This is the `recommended way` to start splitting text. |
|
||||
| HTML | [HTMLHeaderTextSplitter](/docs/how_to/HTML_header_metadata_splitter/), [HTMLSectionSplitter](/docs/how_to/HTML_section_aware_splitter/) | HTML specific characters | ✅ | Splits text based on HTML-specific characters. Notably, this adds in relevant information about where that chunk came from (based on the HTML) |
|
||||
| Markdown | [MarkdownHeaderTextSplitter](/docs/how_to/markdown_header_metadata_splitter/), | Markdown specific characters | ✅ | Splits text based on Markdown-specific characters. Notably, this adds in relevant information about where that chunk came from (based on the Markdown) |
|
||||
| Code | [many languages](/docs/how_to/code_splitter/) | Code (Python, JS) specific characters | | Splits text based on characters specific to coding languages. 15 different languages are available to choose from. |
|
||||
| Token | [many classes](/docs/how_to/split_by_token/) | Tokens | | Splits text on tokens. There exist a few different ways to measure tokens. |
|
||||
| Character | [CharacterTextSplitter](/docs/how_to/character_text_splitter/) | A user defined character | | Splits text based on a user defined character. One of the simpler methods. |
|
||||
| Semantic Chunker (Experimental) | [SemanticChunker](/docs/how_to/semantic-chunker/) | Sentences | | First splits on sentences. Then combines ones next to each other if they are semantically similar enough. Taken from [Greg Kamradt](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb) |
|
||||
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |
|
||||
@@ -1,6 +1,7 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
---
|
||||
|
||||
# Contribute Code
|
||||
|
||||
To contribute to this project, please follow the ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
|
||||
@@ -13,6 +14,7 @@ Pull requests cannot land without passing the formatting, linting, and testing c
|
||||
[Formatting and Linting](#formatting-and-linting) for how to run these checks locally.
|
||||
|
||||
It's essential that we maintain great documentation and testing. If you:
|
||||
|
||||
- Fix a bug
|
||||
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
|
||||
- Make an improvement
|
||||
@@ -34,7 +36,7 @@ For a [development container](https://containers.dev/), see the [.devcontainer f
|
||||
|
||||
This project utilizes [Poetry](https://python-poetry.org/) v1.7.1+ as a dependency manager.
|
||||
|
||||
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
|
||||
❗Note: _Before installing Poetry_, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
|
||||
|
||||
Install Poetry: **[documentation on how to install it](https://python-poetry.org/docs/#installation)**.
|
||||
|
||||
@@ -44,6 +46,7 @@ tell Poetry to use the virtualenv python environment (`poetry config virtualenvs
|
||||
### Different packages
|
||||
|
||||
This repository contains multiple packages:
|
||||
|
||||
- `langchain-core`: Base interfaces for key abstractions as well as logic for combining them in chains (LangChain Expression Language).
|
||||
- `langchain-community`: Third-party integrations of various components.
|
||||
- `langchain`: Chains, agents, and retrieval logic that makes up the cognitive architecture of your applications.
|
||||
@@ -98,7 +101,7 @@ To run unit tests in Docker:
|
||||
make docker_tests
|
||||
```
|
||||
|
||||
There are also [integration tests and code-coverage](/docs/contributing/testing/) available.
|
||||
There are also [integration tests and code-coverage](./testing) available.
|
||||
|
||||
### Only develop langchain_core or langchain_experimental
|
||||
|
||||
@@ -219,16 +222,20 @@ any side effects (no warnings, no errors, no exceptions).
|
||||
To introduce the dependency to the pyproject.toml file correctly, please do the following:
|
||||
|
||||
1. Add the dependency to the main group as an optional dependency
|
||||
```bash
|
||||
poetry add --optional [package_name]
|
||||
```
|
||||
|
||||
```bash
|
||||
poetry add --optional [package_name]
|
||||
```
|
||||
|
||||
2. Open pyproject.toml and add the dependency to the `extended_testing` extra
|
||||
3. Relock the poetry file to update the extra.
|
||||
```bash
|
||||
poetry lock --no-update
|
||||
```
|
||||
|
||||
```bash
|
||||
poetry lock --no-update
|
||||
```
|
||||
|
||||
4. Add a unit test that the very least attempts to import the new code. Ideally, the unit
|
||||
test makes use of lightweight fixtures to test the logic of the code.
|
||||
test makes use of lightweight fixtures to test the logic of the code.
|
||||
5. Please use the `@pytest.mark.requires(package_name)` decorator for any tests that require the dependency.
|
||||
|
||||
## Adding a Jupyter Notebook
|
||||
|
||||
@@ -1,16 +1,20 @@
|
||||
# Technical logistics
|
||||
---
|
||||
sidebar_position: 3
|
||||
---
|
||||
|
||||
# Contribute Documentation
|
||||
|
||||
LangChain documentation consists of two components:
|
||||
|
||||
1. Main Documentation: Hosted at [python.langchain.com](https://python.langchain.com/),
|
||||
this comprehensive resource serves as the primary user-facing documentation.
|
||||
It covers a wide array of topics, including tutorials, use cases, integrations,
|
||||
and more, offering extensive guidance on building with LangChain.
|
||||
The content for this documentation lives in the `/docs` directory of the monorepo.
|
||||
this comprehensive resource serves as the primary user-facing documentation.
|
||||
It covers a wide array of topics, including tutorials, use cases, integrations,
|
||||
and more, offering extensive guidance on building with LangChain.
|
||||
The content for this documentation lives in the `/docs` directory of the monorepo.
|
||||
2. In-code Documentation: This is documentation of the codebase itself, which is also
|
||||
used to generate the externally facing [API Reference](https://api.python.langchain.com/en/latest/langchain_api_reference.html).
|
||||
The content for the API reference is autogenerated by scanning the docstrings in the codebase. For this reason we ask that
|
||||
developers document their code well.
|
||||
used to generate the externally facing [API Reference](https://api.python.langchain.com/en/latest/langchain_api_reference.html).
|
||||
The content for the API reference is autogenerated by scanning the docstrings in the codebase. For this reason we ask that
|
||||
developers document their code well.
|
||||
|
||||
The main documentation is built using [Quarto](https://quarto.org) and [Docusaurus 2](https://docusaurus.io/).
|
||||
|
||||
@@ -56,7 +60,7 @@ From the **monorepo root**, run the following command to install the dependencie
|
||||
|
||||
```bash
|
||||
poetry install --with lint,docs --no-root
|
||||
````
|
||||
```
|
||||
|
||||
### Building
|
||||
|
||||
@@ -168,4 +172,4 @@ make lint
|
||||
After pushing documentation changes to the repository, you can preview and verify that the changes are
|
||||
what you wanted by clicking the `View deployment` or `Visit Preview` buttons on the pull request `Conversation` page.
|
||||
This will take you to a preview of the documentation changes.
|
||||
This preview is created by [Vercel](https://vercel.com/docs/getting-started-with-vercel).
|
||||
This preview is created by [Vercel](https://vercel.com/docs/getting-started-with-vercel).
|
||||
@@ -1,2 +0,0 @@
|
||||
label: 'Documentation'
|
||||
position: 3
|
||||
@@ -1,138 +0,0 @@
|
||||
---
|
||||
sidebar_label: "Style guide"
|
||||
---
|
||||
|
||||
# LangChain Documentation Style Guide
|
||||
|
||||
## Introduction
|
||||
|
||||
As LangChain continues to grow, the surface area of documentation required to cover it continues to grow too.
|
||||
This page provides guidelines for anyone writing documentation for LangChain, as well as some of our philosophies around
|
||||
organization and structure.
|
||||
|
||||
## Philosophy
|
||||
|
||||
LangChain's documentation aspires to follow the [Diataxis framework](https://diataxis.fr).
|
||||
Under this framework, all documentation falls under one of four categories:
|
||||
|
||||
- **Tutorials**: Lessons that take the reader by the hand through a series of conceptual steps to complete a project.
|
||||
- An example of this is our [LCEL streaming guide](/docs/how_to/streaming).
|
||||
- Our guides on [custom components](/docs/how_to/custom_chat_model) is another one.
|
||||
- **How-to guides**: Guides that take the reader through the steps required to solve a real-world problem.
|
||||
- The clearest examples of this are our [Use case](/docs/how_to#use-cases) quickstart pages.
|
||||
- **Reference**: Technical descriptions of the machinery and how to operate it.
|
||||
- Our [Runnable interface](/docs/concepts#interface) page is an example of this.
|
||||
- The [API reference pages](https://api.python.langchain.com/) are another.
|
||||
- **Explanation**: Explanations that clarify and illuminate a particular topic.
|
||||
- The [LCEL primitives pages](/docs/how_to/sequence) are an example of this.
|
||||
|
||||
Each category serves a distinct purpose and requires a specific approach to writing and structuring the content.
|
||||
|
||||
## Taxonomy
|
||||
|
||||
Keeping the above in mind, we have sorted LangChain's docs into categories. It is helpful to think in these terms
|
||||
when contributing new documentation:
|
||||
|
||||
### Getting started
|
||||
|
||||
The [getting started section](/docs/introduction) includes a high-level introduction to LangChain, a quickstart that
|
||||
tours LangChain's various features, and logistical instructions around installation and project setup.
|
||||
|
||||
It contains elements of **How-to guides** and **Explanations**.
|
||||
|
||||
### Use cases
|
||||
|
||||
[Use cases](/docs/how_to#use-cases) are guides that are meant to show how to use LangChain to accomplish a specific task (RAG, information extraction, etc.).
|
||||
The quickstarts should be good entrypoints for first-time LangChain developers who prefer to learn by getting something practical prototyped,
|
||||
then taking the pieces apart retrospectively. These should mirror what LangChain is good at.
|
||||
|
||||
The quickstart pages here should fit the **How-to guide** category, with the other pages intended to be **Explanations** of more
|
||||
in-depth concepts and strategies that accompany the main happy paths.
|
||||
|
||||
:::note
|
||||
The below sections are listed roughly in order of increasing level of abstraction.
|
||||
:::
|
||||
|
||||
### Expression Language
|
||||
|
||||
[LangChain Expression Language (LCEL)](/docs/concepts#langchain-expression-language) is the fundamental way that most LangChain components fit together, and this section is designed to teach
|
||||
developers how to use it to build with LangChain's primitives effectively.
|
||||
|
||||
This section should contains **Tutorials** that teach how to stream and use LCEL primitives for more abstract tasks, **Explanations** of specific behaviors,
|
||||
and some **References** for how to use different methods in the Runnable interface.
|
||||
|
||||
### Components
|
||||
|
||||
The [components section](/docs/concepts) covers concepts one level of abstraction higher than LCEL.
|
||||
Abstract base classes like `BaseChatModel` and `BaseRetriever` should be covered here, as well as core implementations of these base classes,
|
||||
such as `ChatPromptTemplate` and `RecursiveCharacterTextSplitter`. Customization guides belong here too.
|
||||
|
||||
This section should contain mostly conceptual **Tutorials**, **References**, and **Explanations** of the components they cover.
|
||||
|
||||
:::note
|
||||
As a general rule of thumb, everything covered in the `Expression Language` and `Components` sections (with the exception of the `Composition` section of components) should
|
||||
cover only components that exist in `langchain_core`.
|
||||
:::
|
||||
|
||||
### Integrations
|
||||
|
||||
The [integrations](/docs/integrations/platforms/) are specific implementations of components. These often involve third-party APIs and services.
|
||||
If this is the case, as a general rule, these are maintained by the third-party partner.
|
||||
|
||||
This section should contain mostly **Explanations** and **References**, though the actual content here is more flexible than other sections and more at the
|
||||
discretion of the third-party provider.
|
||||
|
||||
:::note
|
||||
Concepts covered in `Integrations` should generally exist in `langchain_community` or specific partner packages.
|
||||
:::
|
||||
|
||||
### Guides and Ecosystem
|
||||
|
||||
The [Guides](/docs/tutorials) and [Ecosystem](/docs/langsmith/) sections should contain guides that address higher-level problems than the sections above.
|
||||
This includes, but is not limited to, considerations around productionization and development workflows.
|
||||
|
||||
These should contain mostly **How-to guides**, **Explanations**, and **Tutorials**.
|
||||
|
||||
### API references
|
||||
|
||||
LangChain's API references. Should act as **References** (as the name implies) with some **Explanation**-focused content as well.
|
||||
|
||||
## Sample developer journey
|
||||
|
||||
We have set up our docs to assist a new developer to LangChain. Let's walk through the intended path:
|
||||
|
||||
- The developer lands on https://python.langchain.com, and reads through the introduction and the diagram.
|
||||
- If they are just curious, they may be drawn to the [Quickstart](/docs/tutorials/llm_chain) to get a high-level tour of what LangChain contains.
|
||||
- If they have a specific task in mind that they want to accomplish, they will be drawn to the Use-Case section. The use-case should provide a good, concrete hook that shows the value LangChain can provide them and be a good entrypoint to the framework.
|
||||
- They can then move to learn more about the fundamentals of LangChain through the Expression Language sections.
|
||||
- Next, they can learn about LangChain's various components and integrations.
|
||||
- Finally, they can get additional knowledge through the Guides.
|
||||
|
||||
This is only an ideal of course - sections will inevitably reference lower or higher-level concepts that are documented in other sections.
|
||||
|
||||
## Guidelines
|
||||
|
||||
Here are some other guidelines you should think about when writing and organizing documentation.
|
||||
|
||||
### Linking to other sections
|
||||
|
||||
Because sections of the docs do not exist in a vacuum, it is important to link to other sections as often as possible
|
||||
to allow a developer to learn more about an unfamiliar topic inline.
|
||||
|
||||
This includes linking to the API references as well as conceptual sections!
|
||||
|
||||
### Conciseness
|
||||
|
||||
In general, take a less-is-more approach. If a section with a good explanation of a concept already exists, you should link to it rather than
|
||||
re-explain it, unless the concept you are documenting presents some new wrinkle.
|
||||
|
||||
Be concise, including in code samples.
|
||||
|
||||
### General style
|
||||
|
||||
- Use active voice and present tense whenever possible.
|
||||
- Use examples and code snippets to illustrate concepts and usage.
|
||||
- Use appropriate header levels (`#`, `##`, `###`, etc.) to organize the content hierarchically.
|
||||
- Use bullet points and numbered lists to break down information into easily digestible chunks.
|
||||
- Use tables (especially for **Reference** sections) and diagrams often to present information visually.
|
||||
- Include the table of contents for longer documentation pages to help readers navigate the content, but hide it for shorter pages.
|
||||
@@ -2,6 +2,7 @@
|
||||
sidebar_position: 6
|
||||
sidebar_label: FAQ
|
||||
---
|
||||
|
||||
# Frequently Asked Questions
|
||||
|
||||
## Pull Requests (PRs)
|
||||
@@ -13,7 +14,7 @@ necessary before merging it. Oftentimes, it is more efficient for the
|
||||
maintainers to make these changes themselves before merging, rather than asking you
|
||||
to do so in code review.
|
||||
|
||||
By default, most pull requests will have a
|
||||
By default, most pull requests will have a
|
||||
`✅ Maintainers are allowed to edit this pull request.`
|
||||
badge in the right-hand sidebar.
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
---
|
||||
sidebar_position: 0
|
||||
---
|
||||
|
||||
# Welcome Contributors
|
||||
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
@@ -12,7 +13,7 @@ As an open-source project in a rapidly developing field, we are extremely open t
|
||||
|
||||
There are many ways to contribute to LangChain. Here are some common ways people contribute:
|
||||
|
||||
- [**Documentation**](/docs/contributing/documentation/style_guide): Help improve our docs, including this one!
|
||||
- [**Documentation**](./documentation.mdx): Help improve our docs, including this one!
|
||||
- [**Code**](./code.mdx): Help us write code, fix bugs, or improve our infrastructure.
|
||||
- [**Integrations**](integrations.mdx): Help us integrate with your favorite vendors and tools.
|
||||
- [**Discussions**](https://github.com/langchain-ai/langchain/discussions): Help answer usage questions and discuss issues with users.
|
||||
@@ -51,4 +52,4 @@ we do not want these to get in the way of getting good code into the codebase.
|
||||
# 🌟 Recognition
|
||||
|
||||
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
|
||||
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.
|
||||
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
---
|
||||
sidebar_position: 5
|
||||
---
|
||||
|
||||
# Contribute Integrations
|
||||
|
||||
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](/docs/contributing/code/).
|
||||
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](./code).
|
||||
|
||||
There are a few different places you can contribute integrations for LangChain:
|
||||
|
||||
@@ -18,7 +19,7 @@ In the following sections, we'll walk through how to contribute to each of these
|
||||
|
||||
The `langchain-community` package is in `libs/community` and contains most integrations.
|
||||
|
||||
It can be installed with `pip install langchain-community`, and exported members can be imported with code like
|
||||
It can be installed with `pip install langchain-community`, and exported members can be imported with code like
|
||||
|
||||
```python
|
||||
from langchain_community.chat_models import ChatParrotLink
|
||||
@@ -26,7 +27,7 @@ from langchain_community.llms import ParrotLinkLLM
|
||||
from langchain_community.vectorstores import ParrotLinkVectorStore
|
||||
```
|
||||
|
||||
The `community` package relies on manually-installed dependent packages, so you will see errors
|
||||
The `community` package relies on manually-installed dependent packages, so you will see errors
|
||||
if you try to import a package that is not installed. In our fake example, if you tried to import `ParrotLinkLLM` without installing `parrot-link-sdk`, you will see an `ImportError` telling you to install it when trying to use it.
|
||||
|
||||
Let's say we wanted to implement a chat model for Parrot Link AI. We would create a new file in `libs/community/langchain_community/chat_models/parrot_link.py` with the following code:
|
||||
@@ -61,11 +62,11 @@ And add documentation to:
|
||||
|
||||
Partner packages can be hosted in the `LangChain` monorepo or in an external repo.
|
||||
|
||||
Partner package in the `LangChain` repo is placed in `libs/partners/{partner}`
|
||||
Partner package in the `LangChain` repo is placed in `libs/partners/{partner}`
|
||||
and the package source code is in `libs/partners/{partner}/langchain_{partner}`.
|
||||
|
||||
A package is
|
||||
installed by users with `pip install langchain-{partner}`, and the package members
|
||||
A package is
|
||||
installed by users with `pip install langchain-{partner}`, and the package members
|
||||
can be imported with code like:
|
||||
|
||||
```python
|
||||
@@ -133,7 +134,7 @@ By default, this will include stubs for a Chat Model, an LLM, and/or a Vector St
|
||||
|
||||
Some basic tests are presented in the `tests/` directory. You should add more tests to cover your package's functionality.
|
||||
|
||||
For information on running and implementing tests, see the [Testing guide](/docs/contributing/testing/).
|
||||
For information on running and implementing tests, see the [Testing guide](./testing).
|
||||
|
||||
### Write documentation
|
||||
|
||||
@@ -142,11 +143,11 @@ to the relevant `docs/docs/integrations` directory in the monorepo root.
|
||||
|
||||
### (If Necessary) Deprecate community integration
|
||||
|
||||
Note: this is only necessary if you're migrating an existing community integration into
|
||||
a partner package. If the component you're integrating is net-new to LangChain (i.e.
|
||||
Note: this is only necessary if you're migrating an existing community integration into
|
||||
a partner package. If the component you're integrating is net-new to LangChain (i.e.
|
||||
not already in the `community` package), you can skip this step.
|
||||
|
||||
Let's pretend we migrated our `ChatParrotLink` chat model from the community package to
|
||||
Let's pretend we migrated our `ChatParrotLink` chat model from the community package to
|
||||
the partner package. We would need to deprecate the old model in the community package.
|
||||
|
||||
We would do that by adding a `@deprecated` decorator to the old model as follows, in
|
||||
@@ -165,15 +166,15 @@ After our change, it would look like this:
|
||||
from langchain_core._api.deprecation import deprecated
|
||||
|
||||
@deprecated(
|
||||
since="0.0.<next community version>",
|
||||
removal="0.2.0",
|
||||
since="0.0.<next community version>",
|
||||
removal="0.2.0",
|
||||
alternative_import="langchain_parrot_link.ChatParrotLink"
|
||||
)
|
||||
class ChatParrotLink(BaseChatModel):
|
||||
...
|
||||
```
|
||||
|
||||
You should do this for *each* component that you're migrating to the partner package.
|
||||
You should do this for _each_ component that you're migrating to the partner package.
|
||||
|
||||
### Additional steps
|
||||
|
||||
@@ -190,9 +191,12 @@ Maintainer steps (Contributors should **not** do these):
|
||||
|
||||
## Partner package in external repo
|
||||
|
||||
Partner packages in external repos must be coordinated between the LangChain team and
|
||||
the partner organization to ensure that they are maintained and updated.
|
||||
If you are creating a partner package in an external repo, you should follow the same steps as above,
|
||||
but you will need to set up your own CI/CD and package management.
|
||||
|
||||
If you're interested in creating a partner package in an external repo, please start
|
||||
with one in the LangChain repo, and then reach out to the LangChain team to discuss
|
||||
how to move it to an external repo.
|
||||
Name your package as `langchain-{partner}-{integration}`.
|
||||
|
||||
Still, you have to create the `libs/partners/{partner}-{integration}` folder in the `LangChain` monorepo
|
||||
and add a `README.md` file with a link to the external repo.
|
||||
See this [example](https://github.com/langchain-ai/langchain/tree/master/libs/partners/google-genai).
|
||||
This allows keeping track of all the partner packages in the `LangChain` documentation.
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
---
|
||||
sidebar_position: 0.5
|
||||
---
|
||||
|
||||
# Repository Structure
|
||||
|
||||
If you plan on contributing to LangChain code or documentation, it can be useful
|
||||
@@ -31,8 +32,8 @@ Here's the structure visualized as a tree:
|
||||
|
||||
The root directory also contains the following files:
|
||||
|
||||
* `pyproject.toml`: Dependencies for building docs and linting docs, cookbook.
|
||||
* `Makefile`: A file that contains shortcuts for building, linting and docs and cookbook.
|
||||
- `pyproject.toml`: Dependencies for building docs and linting docs, cookbook.
|
||||
- `Makefile`: A file that contains shortcuts for building, linting and docs and cookbook.
|
||||
|
||||
There are other files in the root directory level, but their presence should be self-explanatory. Feel free to browse around!
|
||||
|
||||
@@ -41,7 +42,7 @@ There are other files in the root directory level, but their presence should be
|
||||
The `/docs` directory contains the content for the documentation that is shown
|
||||
at https://python.langchain.com/ and the associated API Reference https://api.python.langchain.com/en/latest/langchain_api_reference.html.
|
||||
|
||||
See the [documentation](/docs/contributing/documentation/style_guide) guidelines to learn how to contribute to the documentation.
|
||||
See the [documentation](./documentation) guidelines to learn how to contribute to the documentation.
|
||||
|
||||
## Code
|
||||
|
||||
|
||||
@@ -46,11 +46,11 @@ If you add support for a new external API, please add a new integration test.
|
||||
|
||||
**Warning:** Almost no tests should be integration tests.
|
||||
|
||||
Tests that require making network connections make it difficult for other
|
||||
developers to test the code.
|
||||
Tests that require making network connections make it difficult for other
|
||||
developers to test the code.
|
||||
|
||||
Instead favor relying on `responses` library and/or mock.patch to mock
|
||||
requests using small fixtures.
|
||||
Instead favor relying on `responses` library and/or mock.patch to mock
|
||||
requests using small fixtures.
|
||||
|
||||
To install dependencies for integration tests:
|
||||
|
||||
@@ -96,7 +96,6 @@ docker-compose -f elasticsearch.yml up
|
||||
For environments that requires more involving preparation, look for `*.sh`. For instance,
|
||||
`opensearch.sh` builds a required docker image and then launch opensearch.
|
||||
|
||||
|
||||
### Prepare environment variables for local testing:
|
||||
|
||||
- copy `tests/integration_tests/.env.example` to `tests/integration_tests/.env`
|
||||
|
||||
205
docs/docs/expression_language/cookbook/agent.ipynb
Normal file
205
docs/docs/expression_language/cookbook/agent.ipynb
Normal file
@@ -0,0 +1,205 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e89f490d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Agents\n",
|
||||
"\n",
|
||||
"You can pass a Runnable into an agent. Make sure you have `langchainhub` installed: `pip install langchainhub`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "af4381de",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain import hub\n",
|
||||
"from langchain.agents import AgentExecutor, tool\n",
|
||||
"from langchain.agents.output_parsers import XMLAgentOutputParser\n",
|
||||
"from langchain_community.chat_models import ChatAnthropic"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "24cc8134",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = ChatAnthropic(model=\"claude-2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "67c0b0e4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"@tool\n",
|
||||
"def search(query: str) -> str:\n",
|
||||
" \"\"\"Search things about current events.\"\"\"\n",
|
||||
" return \"32 degrees\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "7203b101",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tool_list = [search]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "b68e756d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get the prompt to use - you can modify this!\n",
|
||||
"prompt = hub.pull(\"hwchase17/xml-agent-convo\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "61ab3e9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Logic for going from intermediate steps to a string to pass into model\n",
|
||||
"# This is pretty tied to the prompt\n",
|
||||
"def convert_intermediate_steps(intermediate_steps):\n",
|
||||
" log = \"\"\n",
|
||||
" for action, observation in intermediate_steps:\n",
|
||||
" log += (\n",
|
||||
" f\"<tool>{action.tool}</tool><tool_input>{action.tool_input}\"\n",
|
||||
" f\"</tool_input><observation>{observation}</observation>\"\n",
|
||||
" )\n",
|
||||
" return log\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Logic for converting tools to string to go in prompt\n",
|
||||
"def convert_tools(tools):\n",
|
||||
" return \"\\n\".join([f\"{tool.name}: {tool.description}\" for tool in tools])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "260f5988",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Building an agent from a runnable usually involves a few things:\n",
|
||||
"\n",
|
||||
"1. Data processing for the intermediate steps. These need to be represented in a way that the language model can recognize them. This should be pretty tightly coupled to the instructions in the prompt\n",
|
||||
"\n",
|
||||
"2. The prompt itself\n",
|
||||
"\n",
|
||||
"3. The model, complete with stop tokens if needed\n",
|
||||
"\n",
|
||||
"4. The output parser - should be in sync with how the prompt specifies things to be formatted."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "e92f1d6f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent = (\n",
|
||||
" {\n",
|
||||
" \"input\": lambda x: x[\"input\"],\n",
|
||||
" \"agent_scratchpad\": lambda x: convert_intermediate_steps(\n",
|
||||
" x[\"intermediate_steps\"]\n",
|
||||
" ),\n",
|
||||
" }\n",
|
||||
" | prompt.partial(tools=convert_tools(tool_list))\n",
|
||||
" | model.bind(stop=[\"</tool_input>\", \"</final_answer>\"])\n",
|
||||
" | XMLAgentOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "6ce6ec7a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agent_executor = AgentExecutor(agent=agent, tools=tool_list, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "fb5cb2e3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3m <tool>search</tool><tool_input>weather in New York\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m <tool>search</tool>\n",
|
||||
"<tool_input>weather in New York\u001b[0m\u001b[36;1m\u001b[1;3m32 degrees\u001b[0m\u001b[32;1m\u001b[1;3m <final_answer>The weather in New York is 32 degrees\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': 'whats the weather in New york?',\n",
|
||||
" 'output': 'The weather in New York is 32 degrees'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent_executor.invoke({\"input\": \"whats the weather in New york?\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bce86dd8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
129
docs/docs/expression_language/cookbook/code_writing.ipynb
Normal file
129
docs/docs/expression_language/cookbook/code_writing.ipynb
Normal file
@@ -0,0 +1,129 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f09fd305",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Code writing\n",
|
||||
"\n",
|
||||
"Example of how to use LCEL to write Python code."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0653c7c7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-core langchain-experimental langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "bd7c259a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import (\n",
|
||||
" ChatPromptTemplate,\n",
|
||||
")\n",
|
||||
"from langchain_experimental.utilities import PythonREPL\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "73795d2d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Write some python code to solve the user's problem. \n",
|
||||
"\n",
|
||||
"Return only python code in Markdown format, e.g.:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"....\n",
|
||||
"```\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", template), (\"human\", \"{input}\")])\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "42859e8a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def _sanitize_output(text: str):\n",
|
||||
" _, after = text.split(\"```python\")\n",
|
||||
" return after.split(\"```\")[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "5ded1a86",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = prompt | model | StrOutputParser() | _sanitize_output | PythonREPL().run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "208c2b75",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Python REPL can execute arbitrary code. Use with caution.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'4\\n'"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"input\": \"whats 2 plus 2\"})"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
163
docs/docs/expression_language/cookbook/embedding_router.ipynb
Normal file
163
docs/docs/expression_language/cookbook/embedding_router.ipynb
Normal file
@@ -0,0 +1,163 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cf4fb76d-c534-485b-8b51-a0714ee3b82e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Routing by semantic similarity\n",
|
||||
"\n",
|
||||
"With LCEL you can easily add [custom routing logic](/docs/expression_language/how_to/routing#using-a-custom-function) to your chain to dynamically determine the chain logic based on user input. All you need to do is define a function that given an input returns a `Runnable`.\n",
|
||||
"\n",
|
||||
"One especially useful technique is to use embeddings to route a query to the most relevant prompt. Here's a very simple example."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b793a0aa",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-core langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "eef9020a-5f7c-4291-98eb-fa73f17d4b92",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.utils.math import cosine_similarity\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
|
||||
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",
|
||||
"When you don't know the answer to a question you admit that you don't know.\n",
|
||||
"\n",
|
||||
"Here is a question:\n",
|
||||
"{query}\"\"\"\n",
|
||||
"\n",
|
||||
"math_template = \"\"\"You are a very good mathematician. You are great at answering math questions. \\\n",
|
||||
"You are so good because you are able to break down hard problems into their component parts, \\\n",
|
||||
"answer the component parts, and then put them together to answer the broader question.\n",
|
||||
"\n",
|
||||
"Here is a question:\n",
|
||||
"{query}\"\"\"\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()\n",
|
||||
"prompt_templates = [physics_template, math_template]\n",
|
||||
"prompt_embeddings = embeddings.embed_documents(prompt_templates)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def prompt_router(input):\n",
|
||||
" query_embedding = embeddings.embed_query(input[\"query\"])\n",
|
||||
" similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]\n",
|
||||
" most_similar = prompt_templates[similarity.argmax()]\n",
|
||||
" print(\"Using MATH\" if most_similar == math_template else \"Using PHYSICS\")\n",
|
||||
" return PromptTemplate.from_template(most_similar)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = (\n",
|
||||
" {\"query\": RunnablePassthrough()}\n",
|
||||
" | RunnableLambda(prompt_router)\n",
|
||||
" | ChatOpenAI()\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "4d22b0f3-24f2-4a47-9440-065b57ebcdbd",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Using PHYSICS\n",
|
||||
"A black hole is a region in space where gravity is extremely strong, so strong that nothing, not even light, can escape its gravitational pull. It is formed when a massive star collapses under its own gravity during a supernova explosion. The collapse causes an incredibly dense mass to be concentrated in a small volume, creating a gravitational field that is so intense that it warps space and time. Black holes have a boundary called the event horizon, which marks the point of no return for anything that gets too close. Beyond the event horizon, the gravitational pull is so strong that even light cannot escape, hence the name \"black hole.\" While we have a good understanding of black holes, there is still much to learn, especially about what happens inside them.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(chain.invoke(\"What's a black hole\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "f261910d-1de1-4a01-8c8a-308db02b81de",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Using MATH\n",
|
||||
"Thank you for your kind words! I will do my best to break down the concept of a path integral for you.\n",
|
||||
"\n",
|
||||
"In mathematics and physics, a path integral is a mathematical tool used to calculate the probability amplitude or wave function of a particle or system of particles. It was introduced by Richard Feynman and is an integral over all possible paths that a particle can take to go from an initial state to a final state.\n",
|
||||
"\n",
|
||||
"To understand the concept better, let's consider an example. Suppose we have a particle moving from point A to point B in space. Classically, we would describe this particle's motion using a definite trajectory, but in quantum mechanics, particles can simultaneously take multiple paths from A to B.\n",
|
||||
"\n",
|
||||
"The path integral formalism considers all possible paths that the particle could take and assigns a probability amplitude to each path. These probability amplitudes are then added up, taking into account the interference effects between different paths.\n",
|
||||
"\n",
|
||||
"To calculate a path integral, we need to define an action, which is a mathematical function that describes the behavior of the system. The action is usually expressed in terms of the particle's position, velocity, and time.\n",
|
||||
"\n",
|
||||
"Once we have the action, we can write down the path integral as an integral over all possible paths. Each path is weighted by a factor determined by the action and the principle of least action, which states that a particle takes a path that minimizes the action.\n",
|
||||
"\n",
|
||||
"Mathematically, the path integral is expressed as:\n",
|
||||
"\n",
|
||||
"∫ e^(iS/ħ) D[x(t)]\n",
|
||||
"\n",
|
||||
"Here, S is the action, ħ is the reduced Planck's constant, and D[x(t)] represents the integration over all possible paths x(t) of the particle.\n",
|
||||
"\n",
|
||||
"By evaluating this integral, we can obtain the probability amplitude for the particle to go from the initial state to the final state. The absolute square of this amplitude gives us the probability of finding the particle in a particular state.\n",
|
||||
"\n",
|
||||
"Path integrals have proven to be a powerful tool in various areas of physics, including quantum mechanics, quantum field theory, and statistical mechanics. They allow us to study complex systems and calculate probabilities that are difficult to obtain using other methods.\n",
|
||||
"\n",
|
||||
"I hope this explanation helps you understand the concept of a path integral. If you have any further questions, feel free to ask!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(chain.invoke(\"What's a path integral\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f0c1732a-01ca-4d10-977c-29ed7480972b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
11
docs/docs/expression_language/cookbook/index.mdx
Normal file
11
docs/docs/expression_language/cookbook/index.mdx
Normal file
@@ -0,0 +1,11 @@
|
||||
---
|
||||
sidebar_position: 3
|
||||
---
|
||||
|
||||
# Cookbook
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
Example code for accomplishing common tasks with the LangChain Expression Language (LCEL). These examples show how to compose different Runnable (the core LCEL interface) components to achieve various tasks. If you're just getting acquainted with LCEL, the [Prompt + LLM](/docs/expression_language/cookbook/prompt_llm_parser) page is a good place to start.
|
||||
|
||||
<DocCardList />
|
||||
194
docs/docs/expression_language/cookbook/memory.ipynb
Normal file
194
docs/docs/expression_language/cookbook/memory.ipynb
Normal file
@@ -0,0 +1,194 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5062941a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Adding memory\n",
|
||||
"\n",
|
||||
"This shows how to add memory to an arbitrary chain. Right now, you can use the memory classes but need to hook it up manually"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "18753dee",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "7998efd8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"system\", \"You are a helpful chatbot\"),\n",
|
||||
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
||||
" (\"human\", \"{input}\"),\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "fa0087f3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"memory = ConversationBufferMemory(return_messages=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "06b531ae",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'history': []}"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"memory.load_memory_variables({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "d9437af6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = (\n",
|
||||
" RunnablePassthrough.assign(\n",
|
||||
" history=RunnableLambda(memory.load_memory_variables) | itemgetter(\"history\")\n",
|
||||
" )\n",
|
||||
" | prompt\n",
|
||||
" | model\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "bed1e260",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, example=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"inputs = {\"input\": \"hi im bob\"}\n",
|
||||
"response = chain.invoke(inputs)\n",
|
||||
"response"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "890475b4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"memory.save_context(inputs, {\"output\": response.content})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "e8fcb77f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'history': [HumanMessage(content='hi im bob', additional_kwargs={}, example=False),\n",
|
||||
" AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, example=False)]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"memory.load_memory_variables({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "d837d5c3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Your name is Bob.', additional_kwargs={}, example=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"inputs = {\"input\": \"whats my name\"}\n",
|
||||
"response = chain.invoke(inputs)\n",
|
||||
"response"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
141
docs/docs/expression_language/cookbook/moderation.ipynb
Normal file
141
docs/docs/expression_language/cookbook/moderation.ipynb
Normal file
@@ -0,0 +1,141 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4927a727-b4c8-453c-8c83-bd87b4fcac14",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Adding moderation\n",
|
||||
"\n",
|
||||
"This shows how to add in moderation (or other safeguards) around your LLM application."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6acf3505",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "4f5f6449-940a-4f5c-97c0-39b71c3e2a68",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import OpenAIModerationChain\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "fcb8312b-7e7a-424f-a3ec-76738c9a9d21",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"moderate = OpenAIModerationChain()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "b24b9148-f6b0-4091-8ea8-d3fb281bd950",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = OpenAI()\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", \"repeat after me: {input}\")])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "1c8ed87c-9ca6-4559-bf60-d40e94a0af08",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = prompt | model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "5256b9bd-381a-42b0-bfa8-7e6d18f853cb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\n\\nYou are stupid.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"input\": \"you are stupid\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"id": "fe6e3b33-dc9a-49d5-b194-ba750c58a628",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"moderated_chain = chain | moderate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "d8ba0cbd-c739-4d23-be9f-6ae092bd5ffb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'input': '\\n\\nYou are stupid',\n",
|
||||
" 'output': \"Text was found that violates OpenAI's content policy.\"}"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"moderated_chain.invoke({\"input\": \"you are stupid\"})"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
267
docs/docs/expression_language/cookbook/multiple_chains.ipynb
Normal file
267
docs/docs/expression_language/cookbook/multiple_chains.ipynb
Normal file
@@ -0,0 +1,267 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "877102d1-02ea-4fa3-8ec7-a08e242b95b3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_position: 2\n",
|
||||
"title: Multiple chains\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0f2bf8d3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Runnables can easily be used to string together multiple Chains"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"id": "0f316b5c",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "d65d4e9e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'El país donde se encuentra la ciudad de Honolulu, donde nació Barack Obama, el 44º Presidente de los Estados Unidos, es Estados Unidos. Honolulu se encuentra en la isla de Oahu, en el estado de Hawái.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"prompt1 = ChatPromptTemplate.from_template(\"what is the city {person} is from?\")\n",
|
||||
"prompt2 = ChatPromptTemplate.from_template(\n",
|
||||
" \"what country is the city {city} in? respond in {language}\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
"\n",
|
||||
"chain1 = prompt1 | model | StrOutputParser()\n",
|
||||
"\n",
|
||||
"chain2 = (\n",
|
||||
" {\"city\": chain1, \"language\": itemgetter(\"language\")}\n",
|
||||
" | prompt2\n",
|
||||
" | model\n",
|
||||
" | StrOutputParser()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain2.invoke({\"person\": \"obama\", \"language\": \"spanish\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "878f8176",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"prompt1 = ChatPromptTemplate.from_template(\n",
|
||||
" \"generate a {attribute} color. Return the name of the color and nothing else:\"\n",
|
||||
")\n",
|
||||
"prompt2 = ChatPromptTemplate.from_template(\n",
|
||||
" \"what is a fruit of color: {color}. Return the name of the fruit and nothing else:\"\n",
|
||||
")\n",
|
||||
"prompt3 = ChatPromptTemplate.from_template(\n",
|
||||
" \"what is a country with a flag that has the color: {color}. Return the name of the country and nothing else:\"\n",
|
||||
")\n",
|
||||
"prompt4 = ChatPromptTemplate.from_template(\n",
|
||||
" \"What is the color of {fruit} and the flag of {country}?\"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model_parser = model | StrOutputParser()\n",
|
||||
"\n",
|
||||
"color_generator = (\n",
|
||||
" {\"attribute\": RunnablePassthrough()} | prompt1 | {\"color\": model_parser}\n",
|
||||
")\n",
|
||||
"color_to_fruit = prompt2 | model_parser\n",
|
||||
"color_to_country = prompt3 | model_parser\n",
|
||||
"question_generator = (\n",
|
||||
" color_generator | {\"fruit\": color_to_fruit, \"country\": color_to_country} | prompt4\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "d621a870",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"ChatPromptValue(messages=[HumanMessage(content='What is the color of strawberry and the flag of China?', additional_kwargs={}, example=False)])"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"question_generator.invoke(\"warm\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "b4a9812b-bead-4fd9-ae27-0b8be57e5dc1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='The color of an apple is typically red or green. The flag of China is predominantly red with a large yellow star in the upper left corner and four smaller yellow stars surrounding it.', additional_kwargs={}, example=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompt = question_generator.invoke(\"warm\")\n",
|
||||
"model.invoke(prompt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6d75a313-f1c8-4e94-9a17-24e0bf4a2bdc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Branching and Merging\n",
|
||||
"\n",
|
||||
"You may want the output of one component to be processed by 2 or more other components. [RunnableParallels](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableParallel.html#langchain_core.runnables.base.RunnableParallel) let you split or fork the chain so multiple components can process the input in parallel. Later, other components can join or merge the results to synthesize a final response. This type of chain creates a computation graph that looks like the following:\n",
|
||||
"\n",
|
||||
"```text\n",
|
||||
" Input\n",
|
||||
" / \\\n",
|
||||
" / \\\n",
|
||||
" Branch1 Branch2\n",
|
||||
" \\ /\n",
|
||||
" \\ /\n",
|
||||
" Combine\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "247fa0bd-4596-4063-8cb3-1d7fc119d982",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"planner = (\n",
|
||||
" ChatPromptTemplate.from_template(\"Generate an argument about: {input}\")\n",
|
||||
" | ChatOpenAI()\n",
|
||||
" | StrOutputParser()\n",
|
||||
" | {\"base_response\": RunnablePassthrough()}\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"arguments_for = (\n",
|
||||
" ChatPromptTemplate.from_template(\n",
|
||||
" \"List the pros or positive aspects of {base_response}\"\n",
|
||||
" )\n",
|
||||
" | ChatOpenAI()\n",
|
||||
" | StrOutputParser()\n",
|
||||
")\n",
|
||||
"arguments_against = (\n",
|
||||
" ChatPromptTemplate.from_template(\n",
|
||||
" \"List the cons or negative aspects of {base_response}\"\n",
|
||||
" )\n",
|
||||
" | ChatOpenAI()\n",
|
||||
" | StrOutputParser()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"final_responder = (\n",
|
||||
" ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
" (\"ai\", \"{original_response}\"),\n",
|
||||
" (\"human\", \"Pros:\\n{results_1}\\n\\nCons:\\n{results_2}\"),\n",
|
||||
" (\"system\", \"Generate a final response given the critique\"),\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
" | ChatOpenAI()\n",
|
||||
" | StrOutputParser()\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"chain = (\n",
|
||||
" planner\n",
|
||||
" | {\n",
|
||||
" \"results_1\": arguments_for,\n",
|
||||
" \"results_2\": arguments_against,\n",
|
||||
" \"original_response\": itemgetter(\"base_response\"),\n",
|
||||
" }\n",
|
||||
" | final_responder\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "2564f310-0674-4bb1-9c4e-d7848ca73511",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'While Scrum has its potential cons and challenges, many organizations have successfully embraced and implemented this project management framework to great effect. The cons mentioned above can be mitigated or overcome with proper training, support, and a commitment to continuous improvement. It is also important to note that not all cons may be applicable to every organization or project.\\n\\nFor example, while Scrum may be complex initially, with proper training and guidance, teams can quickly grasp the concepts and practices. The lack of predictability can be mitigated by implementing techniques such as velocity tracking and release planning. The limited documentation can be addressed by maintaining a balance between lightweight documentation and clear communication among team members. The dependency on team collaboration can be improved through effective communication channels and regular team-building activities.\\n\\nScrum can be scaled and adapted to larger projects by using frameworks like Scrum of Scrums or LeSS (Large Scale Scrum). Concerns about speed versus quality can be addressed by incorporating quality assurance practices, such as continuous integration and automated testing, into the Scrum process. Scope creep can be managed by having a well-defined and prioritized product backlog, and a strong product owner can be developed through training and mentorship.\\n\\nResistance to change can be overcome by providing proper education and communication to stakeholders and involving them in the decision-making process. Ultimately, the cons of Scrum can be seen as opportunities for growth and improvement, and with the right mindset and support, they can be effectively managed.\\n\\nIn conclusion, while Scrum may have its challenges and potential cons, the benefits and advantages it offers in terms of collaboration, flexibility, adaptability, transparency, and customer satisfaction make it a widely adopted and successful project management framework. With proper implementation and continuous improvement, organizations can leverage Scrum to drive innovation, efficiency, and project success.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"input\": \"scrum\"})"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv",
|
||||
"language": "python",
|
||||
"name": "poetry-venv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
436
docs/docs/expression_language/cookbook/prompt_llm_parser.ipynb
Normal file
436
docs/docs/expression_language/cookbook/prompt_llm_parser.ipynb
Normal file
@@ -0,0 +1,436 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "abf7263d-3a62-4016-b5d5-b157f92f2070",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_position: 0\n",
|
||||
"title: Prompt + LLM\n",
|
||||
"---\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9a434f2b-9405-468c-9dfd-254d456b57a6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The most common and valuable composition is taking:\n",
|
||||
"\n",
|
||||
"``PromptTemplate`` / ``ChatPromptTemplate`` -> ``LLM`` / ``ChatModel`` -> ``OutputParser``\n",
|
||||
"\n",
|
||||
"Almost any other chains you build will use this building block."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "93aa2c87",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## PromptTemplate + LLM\n",
|
||||
"\n",
|
||||
"The simplest composition is just combining a prompt and model to create a chain that takes user input, adds it to a prompt, passes it to a model, and returns the raw model output.\n",
|
||||
"\n",
|
||||
"Note, you can mix and match PromptTemplate/ChatPromptTemplates and LLMs/ChatModels as you like here."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "ef79a54b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "466b65b3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {foo}\")\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
"chain = prompt | model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "e3d0a6cd",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"Why don't bears wear shoes?\\n\\nBecause they have bear feet!\", additional_kwargs={}, example=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"foo\": \"bears\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7eb9ef50",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Often times we want to attach kwargs that'll be passed to each model call. Here are a few examples of that:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0b1d8f88",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Attaching Stop Sequences"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "562a06bf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = prompt | model.bind(stop=[\"\\n\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "43f5d04c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Why did the bear never wear shoes?', additional_kwargs={}, example=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"foo\": \"bears\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f3eaf88a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Attaching Function Call information"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "f94b71b2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"functions = [\n",
|
||||
" {\n",
|
||||
" \"name\": \"joke\",\n",
|
||||
" \"description\": \"A joke\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"setup\": {\"type\": \"string\", \"description\": \"The setup for the joke\"},\n",
|
||||
" \"punchline\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The punchline for the joke\",\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"setup\", \"punchline\"],\n",
|
||||
" },\n",
|
||||
" }\n",
|
||||
"]\n",
|
||||
"chain = prompt | model.bind(function_call={\"name\": \"joke\"}, functions=functions)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "decf7710",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'joke', 'arguments': '{\\n \"setup\": \"Why don\\'t bears wear shoes?\",\\n \"punchline\": \"Because they have bear feet!\"\\n}'}}, example=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"foo\": \"bears\"}, config={})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9098c5ed",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## PromptTemplate + LLM + OutputParser\n",
|
||||
"\n",
|
||||
"We can also add in an output parser to easily transform the raw LLM/ChatModel output into a more workable format"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "cc194c78",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"chain = prompt | model | StrOutputParser()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "77acf448",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Notice that this now returns a string - a much more workable format for downstream tasks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "e3d69a18",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"Why don't bears wear shoes?\\n\\nBecause they have bear feet!\""
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"foo\": \"bears\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c01864e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Functions Output Parser\n",
|
||||
"\n",
|
||||
"When you specify the function to return, you may just want to parse that directly"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "ad0dd88e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser\n",
|
||||
"\n",
|
||||
"chain = (\n",
|
||||
" prompt\n",
|
||||
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
|
||||
" | JsonOutputFunctionsParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "1e7aa8eb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'setup': \"Why don't bears like fast food?\",\n",
|
||||
" 'punchline': \"Because they can't catch it!\"}"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"foo\": \"bears\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "d4aa1a01",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser\n",
|
||||
"\n",
|
||||
"chain = (\n",
|
||||
" prompt\n",
|
||||
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
|
||||
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "8b6df9ba",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"Why don't bears wear shoes?\""
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"foo\": \"bears\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "023fbccb-ef7d-489e-a9ba-f98e17283d51",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Simplifying input\n",
|
||||
"\n",
|
||||
"To make invocation even simpler, we can add a `RunnableParallel` to take care of creating the prompt input dict for us:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "9601c0f0-71f9-4bd4-a672-7bd04084b018",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"map_ = RunnableParallel(foo=RunnablePassthrough())\n",
|
||||
"chain = (\n",
|
||||
" map_\n",
|
||||
" | prompt\n",
|
||||
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
|
||||
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "7ec4f154-fda5-4847-9220-41aa902fdc33",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"Why don't bears wear shoes?\""
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"bears\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "def00bfe-0f83-4805-8c8f-8a53f99fa8ea",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Since we're composing our map with another Runnable, we can even use some syntactic sugar and just use a dict:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "7bf3846a-02ee-41a3-ba1b-a708827d4f3a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = (\n",
|
||||
" {\"foo\": RunnablePassthrough()}\n",
|
||||
" | prompt\n",
|
||||
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
|
||||
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "e566d6a1-538d-4cb5-a210-a63e082e4c74",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"\"Why don't bears like fast food?\""
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"bears\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
420
docs/docs/expression_language/cookbook/prompt_size.ipynb
Normal file
420
docs/docs/expression_language/cookbook/prompt_size.ipynb
Normal file
File diff suppressed because one or more lines are too long
492
docs/docs/expression_language/cookbook/retrieval.ipynb
Normal file
492
docs/docs/expression_language/cookbook/retrieval.ipynb
Normal file
@@ -0,0 +1,492 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "abe47592-909c-4844-bf44-9e55c2fb4bfa",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_position: 1\n",
|
||||
"title: RAG\n",
|
||||
"---\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "91c5ef3d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's look at adding in a retrieval step to a prompt and LLM, which adds up to a \"retrieval-augmented generation\" chain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "7f25d9e9-d192-42e9-af50-5660a4bfb0d9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai faiss-cpu tiktoken"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "33be32af",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "bfc47ec1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = FAISS.from_texts(\n",
|
||||
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
|
||||
")\n",
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "eae31755",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = (\n",
|
||||
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
|
||||
" | prompt\n",
|
||||
" | model\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "f3040b0c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Harrison worked at Kensho.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"where did harrison work?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "e1d20c7c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\n",
|
||||
"Answer in the following language: {language}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"chain = (\n",
|
||||
" {\n",
|
||||
" \"context\": itemgetter(\"question\") | retriever,\n",
|
||||
" \"question\": itemgetter(\"question\"),\n",
|
||||
" \"language\": itemgetter(\"language\"),\n",
|
||||
" }\n",
|
||||
" | prompt\n",
|
||||
" | model\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "7ee8b2d4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Harrison ha lavorato a Kensho.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"question\": \"where did harrison work\", \"language\": \"italian\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f007669c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Conversational Retrieval Chain\n",
|
||||
"\n",
|
||||
"We can easily add in conversation history. This primarily means adding in chat_message_history"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "3f30c348",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string\n",
|
||||
"from langchain_core.prompts import format_document\n",
|
||||
"from langchain_core.runnables import RunnableParallel"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "64ab1dbf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.prompt import PromptTemplate\n",
|
||||
"\n",
|
||||
"_template = \"\"\"Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\n",
|
||||
"\n",
|
||||
"Chat History:\n",
|
||||
"{chat_history}\n",
|
||||
"Follow Up Input: {question}\n",
|
||||
"Standalone question:\"\"\"\n",
|
||||
"CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "7d628c97",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"ANSWER_PROMPT = ChatPromptTemplate.from_template(template)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "f60a5d0f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template=\"{page_content}\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def _combine_documents(\n",
|
||||
" docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator=\"\\n\\n\"\n",
|
||||
"):\n",
|
||||
" doc_strings = [format_document(doc, document_prompt) for doc in docs]\n",
|
||||
" return document_separator.join(doc_strings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "5c32cc89",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"_inputs = RunnableParallel(\n",
|
||||
" standalone_question=RunnablePassthrough.assign(\n",
|
||||
" chat_history=lambda x: get_buffer_string(x[\"chat_history\"])\n",
|
||||
" )\n",
|
||||
" | CONDENSE_QUESTION_PROMPT\n",
|
||||
" | ChatOpenAI(temperature=0)\n",
|
||||
" | StrOutputParser(),\n",
|
||||
")\n",
|
||||
"_context = {\n",
|
||||
" \"context\": itemgetter(\"standalone_question\") | retriever | _combine_documents,\n",
|
||||
" \"question\": lambda x: x[\"standalone_question\"],\n",
|
||||
"}\n",
|
||||
"conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "135c8205",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Harrison was employed at Kensho.')"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"conversational_qa_chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"question\": \"where did harrison work?\",\n",
|
||||
" \"chat_history\": [],\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "424e7e7a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Harrison worked at Kensho.')"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"conversational_qa_chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"question\": \"where did he work?\",\n",
|
||||
" \"chat_history\": [\n",
|
||||
" HumanMessage(content=\"Who wrote this notebook?\"),\n",
|
||||
" AIMessage(content=\"Harrison\"),\n",
|
||||
" ],\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c5543183",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### With Memory and returning source documents\n",
|
||||
"\n",
|
||||
"This shows how to use memory with the above. For memory, we need to manage that outside at the memory. For returning the retrieved documents, we just need to pass them through all the way."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "e31dd17c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.memory import ConversationBufferMemory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "d4bffe94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"memory = ConversationBufferMemory(\n",
|
||||
" return_messages=True, output_key=\"answer\", input_key=\"question\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "733be985",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# First we add a step to load memory\n",
|
||||
"# This adds a \"memory\" key to the input object\n",
|
||||
"loaded_memory = RunnablePassthrough.assign(\n",
|
||||
" chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter(\"history\"),\n",
|
||||
")\n",
|
||||
"# Now we calculate the standalone question\n",
|
||||
"standalone_question = {\n",
|
||||
" \"standalone_question\": {\n",
|
||||
" \"question\": lambda x: x[\"question\"],\n",
|
||||
" \"chat_history\": lambda x: get_buffer_string(x[\"chat_history\"]),\n",
|
||||
" }\n",
|
||||
" | CONDENSE_QUESTION_PROMPT\n",
|
||||
" | ChatOpenAI(temperature=0)\n",
|
||||
" | StrOutputParser(),\n",
|
||||
"}\n",
|
||||
"# Now we retrieve the documents\n",
|
||||
"retrieved_documents = {\n",
|
||||
" \"docs\": itemgetter(\"standalone_question\") | retriever,\n",
|
||||
" \"question\": lambda x: x[\"standalone_question\"],\n",
|
||||
"}\n",
|
||||
"# Now we construct the inputs for the final prompt\n",
|
||||
"final_inputs = {\n",
|
||||
" \"context\": lambda x: _combine_documents(x[\"docs\"]),\n",
|
||||
" \"question\": itemgetter(\"question\"),\n",
|
||||
"}\n",
|
||||
"# And finally, we do the part that returns the answers\n",
|
||||
"answer = {\n",
|
||||
" \"answer\": final_inputs | ANSWER_PROMPT | ChatOpenAI(),\n",
|
||||
" \"docs\": itemgetter(\"docs\"),\n",
|
||||
"}\n",
|
||||
"# And now we put it all together!\n",
|
||||
"final_chain = loaded_memory | standalone_question | retrieved_documents | answer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "806e390c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'answer': AIMessage(content='Harrison was employed at Kensho.'),\n",
|
||||
" 'docs': [Document(page_content='harrison worked at kensho')]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"inputs = {\"question\": \"where did harrison work?\"}\n",
|
||||
"result = final_chain.invoke(inputs)\n",
|
||||
"result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "977399fd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Note that the memory does not save automatically\n",
|
||||
"# This will be improved in the future\n",
|
||||
"# For now you need to save it yourself\n",
|
||||
"memory.save_context(inputs, {\"answer\": result[\"answer\"].content})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "f94f7de4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'history': [HumanMessage(content='where did harrison work?'),\n",
|
||||
" AIMessage(content='Harrison was employed at Kensho.')]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"memory.load_memory_variables({})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "88f2b7cd",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'answer': AIMessage(content='Harrison actually worked at Kensho.'),\n",
|
||||
" 'docs': [Document(page_content='harrison worked at kensho')]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"inputs = {\"question\": \"but where did he really work?\"}\n",
|
||||
"result = final_chain.invoke(inputs)\n",
|
||||
"result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "207a2782",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
225
docs/docs/expression_language/cookbook/sql_db.ipynb
Normal file
225
docs/docs/expression_language/cookbook/sql_db.ipynb
Normal file
@@ -0,0 +1,225 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "c14da114-1a4a-487d-9cff-e0e8c30ba366",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_position: 3\n",
|
||||
"title: Querying a SQL DB\n",
|
||||
"---\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "506e9636",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can replicate our SQLDatabaseChain with Runnables."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"id": "b3121aa8",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain langchain-openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "7a927516",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
|
||||
"{schema}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"SQL Query:\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "3f51f386",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities import SQLDatabase"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7c3449d6-684b-416e-ba16-90a035835a88",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We'll need the Chinook sample DB for this example. There's many places to download it from, e.g. https://database.guide/2-sample-databases-sqlite/"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "2ccca6fc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db = SQLDatabase.from_uri(\"sqlite:///./Chinook.db\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "05ba88ee",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_schema(_):\n",
|
||||
" return db.get_table_info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "a4eda902",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def run_query(query):\n",
|
||||
" return db.run(query)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "5046cb17",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
"\n",
|
||||
"sql_response = (\n",
|
||||
" RunnablePassthrough.assign(schema=get_schema)\n",
|
||||
" | prompt\n",
|
||||
" | model.bind(stop=[\"\\nSQLResult:\"])\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"id": "a5552039",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'SELECT COUNT(*) FROM Employee'"
|
||||
]
|
||||
},
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sql_response.invoke({\"question\": \"How many employees are there?\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "d6fee130",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
|
||||
"{schema}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"SQL Query: {query}\n",
|
||||
"SQL Response: {response}\"\"\"\n",
|
||||
"prompt_response = ChatPromptTemplate.from_template(template)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "923aa634",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"full_chain = (\n",
|
||||
" RunnablePassthrough.assign(query=sql_response).assign(\n",
|
||||
" schema=get_schema,\n",
|
||||
" response=lambda x: db.run(x[\"query\"]),\n",
|
||||
" )\n",
|
||||
" | prompt_response\n",
|
||||
" | model\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"id": "e94963d8",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='There are 8 employees.', additional_kwargs={}, example=False)"
|
||||
]
|
||||
},
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"full_chain.invoke({\"question\": \"How many employees are there?\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4f358d7b-a721-4db3-9f92-f06913428afc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user