Compare commits

..

155 Commits

Author SHA1 Message Date
Bagatur
09e330064a core[patch]: support handle_tool_error=(Exception, ...) tuple 2024-10-22 09:35:52 -07:00
Vadym Barda
0640cbf2f1 huggingface[patch]: hide client field in HuggingFaceEmbeddings (#27522) 2024-10-21 17:37:07 -04:00
Chun Kang Lu
380449a7a9 core: fix Image prompt template hardcoded template format (#27495)
Fixes #27411 

**Description:** Adds `template_format` to the `ImagePromptTemplate`
class and updates passing in the `template_format` parameter from
ChatPromptTemplate instead of the hardcoded "f-string".
Also updated docs and typing related to `template_format` to be more
up-to-date and specific.

**Dependencies:** None

**Add tests and docs**: Added unit tests to validate fix. Needed to
update `test_chat` snapshot due to adding new attribute
`template_format` in `ImagePromptTemplate`.

---------

Co-authored-by: Vadym Barda <vadym@langchain.dev>
2024-10-21 17:31:40 -04:00
bbaltagi-dtsl
403c0ea801 community: fix DallE hidden open_api_key (#26996)
Thank you for contributing to LangChain!

- [ X] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
  - Example: "community: add foobar LLM"


- [ X] 
    - **Issue:** issue #26941


Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-21 19:46:56 +00:00
Erick Friis
c6d088bc15 docs: giscus component strict (#27515) 2024-10-21 11:36:51 -07:00
Erick Friis
6ed92f13d0 infra: azure/mongo api docs build (#27512) 2024-10-21 08:27:46 -07:00
Radi
689e8b7e66 docs: Update chatbot.ipynb (#27422)
- [ ] **PR title**: "docs: Typo fix"

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-21 15:06:28 +00:00
venkatram-dev
2678cda83b docs:tutorials:sql_qa.ipynb: fix typo (#27405)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"

docs:docs:tutorials:sql_qa.ipynb: fix typo

- [x] **PR message**: ***Delete this entire checklist*** and replace
with
Fix typo in docs:docs:tutorials:sql_qa.ipynb


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-21 15:01:23 +00:00
Erez Zohar
8f80dd28d9 docs: typo fix athena.ipynb and glue_catalog.ipynb (#27435)
**Description:** This PR fixes typos in 
```
docs/docs/integrations/document_loaders/athena.ipynb
docs/docs/integrations/document_loaders/glue_catalog.ipynb
```
2024-10-21 15:01:13 +00:00
nodfans
cfcf783cb5 community: fix a typo in planner_prompt.py (#27489)
Description: Fix typo in planner_prompt.py.
2024-10-21 14:59:33 +00:00
Seungha Jeon
edfe35c2a8 docs: fix typo on friendli.ipynb (#27412)
This PR fixes typos in `chat/friendli.ipynb` and `llms/friendli.ipynb`
docs.
2024-10-21 14:58:49 +00:00
Connor Park
e62e390ca0 docs: update API Reference Link in /docs/how_to/vectorstore_retriever/ (#27477)
Description: updated docs
[here](https://python.langchain.com/docs/how_to/vectorstore_retriever/#:~:text=VectorStoreRetriever)
for creating VectorStoreRetrievers. The URL was missing a `.base`, and
now works as expected.

This was a fix for Issue #27196
2024-10-19 00:44:58 +00:00
Erick Friis
97a819d578 community: fix lint from new mypy (#27474) 2024-10-18 20:08:03 +00:00
Erick Friis
c397baa85f community: release 0.3.3 (#27472) 2024-10-18 12:52:15 -07:00
Erick Friis
4ceb28009a mongodb: migrate to repo (#27467) 2024-10-18 12:35:12 -07:00
Erick Friis
a562c54f7d azure-dynamic-sessions: migrate to repo (#27468) 2024-10-18 12:30:48 -07:00
Erick Friis
30660786b3 langchain: release 0.3.4 (#27458) 2024-10-18 11:59:54 -07:00
Erick Friis
b468552859 docs: langgraph error code redirects (#27465) 2024-10-18 10:39:32 -07:00
Erick Friis
82242dfbb1 docs: openai audio docs (#27459) 2024-10-18 17:06:55 +00:00
Erick Friis
2cf2cefe39 partners/openai: release 0.2.3 (#27457) 2024-10-18 08:16:01 -07:00
Erick Friis
7d65a32ee0 openai: audio modality, remove sockets from unit tests (#27436) 2024-10-18 08:02:09 -07:00
Mateusz Szewczyk
97dc578d47 docs: Update custom name for IBM (#27437)
Thank you for contributing to LangChain!

PR: Update custom name for IBM in api_reference docs

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-17 19:41:24 +00:00
Isaac Francisco
6e228c84a8 docs: update mongo table (#27434) 2024-10-17 18:29:29 +00:00
Erick Friis
2a27234a77 docs: fix error reference header (#27431) 2024-10-17 15:51:33 +00:00
Erick Friis
322ca84812 infra: add ibm api build (#27425)
test build:
https://github.com/langchain-ai/langchain/actions/runs/11386155179
2024-10-17 07:47:29 -07:00
Erick Friis
4d11211c89 infra: schedule triggers monorepo only by default (#27428)
fixes https://github.com/langchain-ai/langchain/issues/27426
2024-10-17 14:31:14 +00:00
Erick Friis
f9cc9bdcf3 core: release 0.3.12 (#27410) 2024-10-17 06:32:40 -07:00
Erick Friis
0ebddabf7d docs, core: error messaging [wip] (#27397) 2024-10-17 03:39:36 +00:00
Eugene Yurtsev
202d7f6c4a core[patch]: 0.3.11 release (#27403)
Core bump to 0.3.11
2024-10-16 15:39:37 -04:00
Erick Friis
a38e903360 docs: platforms -> providers (#27285) 2024-10-16 18:27:07 +00:00
ccurme
fdb7f951c8 monorepo: add script for updating notebook cassettes (#27399)
1. Move dependencies for running notebooks into monorepo poetry test
deps;
2. Add script to update cassettes for a single notebook;
3. Add cassettes for some how-to guides.

---

To update cassettes for a single notebook, run
`docs/scripts/update_cassettes.sh`. For example:
```
./docs/scripts/update_cassettes.sh docs/docs/how_to/binding.ipynb
```
Requires:
1. monorepo dev and test dependencies installed;
2. env vars required by notebook are set.

Note: How-to guides are not currently run in [scheduled
job](https://github.com/langchain-ai/langchain/actions/workflows/run_notebooks.yml).
Will add cassettes for more how-to guides in subsequent PRs before
adding them to scheduled job.
2024-10-16 13:46:49 -04:00
Artur Barseghyan
88d71f6986 docs: Cosmetic documentation fix. Update llm_chain.ipynb. (#27394)
ATM [LLM chain
docs](https://python.langchain.com/docs/tutorials/llm_chain/#server)
say:

```
# 3. Create parser
parser = StrOutputParser()

# 4. Create chain
chain = prompt_template | model | parser


# 4. App definition
app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple API server using LangChain's Runnable interfaces",
)

# 5. Adding chain route
add_routes(
    app,
    chain,
    path="/chain",
)
```

I corrected it to:


```
# 3. Create parser
parser = StrOutputParser()

# 4. Create chain
chain = prompt_template | model | parser

# 5. App definition
app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple API server using LangChain's Runnable interfaces",
)

# 6. Adding chain route
add_routes(
    app,
    chain,
    path="/chain",
)
```
2024-10-16 17:42:52 +00:00
Bagatur
a4392b070d core[patch]: add convert_to_openai_messages util (#27263)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-16 17:10:10 +00:00
sByteman
31e7664afd community[minor]: add proxy support to RecursiveUrlLoader (#27364)
**Description**
This PR introduces the proxies parameter to the RecursiveUrlLoader
class, allowing the user to specify proxy servers for requests. This
update enables crawling through proxy servers, providing enhanced
flexibility for network configurations.
The key changes include:
  1.Added an optional proxies parameter to the constructor (__init__).
2.Updated the documentation to explain the proxies parameter usage with
an example.
3.Modified the _get_child_links_recursive method to pass the proxies
parameter to the requests.get function.



**Sample Usage**

```python
from bs4 import BeautifulSoup as Soup
from langchain_community.document_loaders.recursive_url_loader import RecursiveUrlLoader

proxies = {
    "http": "http://localhost:1080",
    "https": "http://localhost:1080",
}
url = "https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel"
loader = RecursiveUrlLoader(
    url=url, max_depth=1, extractor=lambda x: Soup(x, "html.parser").text,proxies=proxies
)
docs = loader.load()
```

---------

Co-authored-by: root <root@thb>
2024-10-16 16:29:59 +00:00
Leonid Ganeline
3165415369 docs: integrations updates 21 (#27380)
Added missed provider pages. Added descriptions and links. Fixed
inconsistency in text formatting.

---------

Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-16 02:41:06 +00:00
Mateusz Szewczyk
591a3db4fb docs: Update IBM ChatWatsonx documentation (#27358)
Thank you for contributing to LangChain!

We would like update IBM ChatWatsonx documentation in LangChain
documentation

Changes:
- Added support for `JSON mode`
- Added support for `Image Input`
- Added support for `Logprobs`

Chat Standard tests ->
https://github.com/langchain-ai/langchain-ibm/blob/main/libs/ibm/tests/integration_tests/test_chat_models_standard.py

Integration_tests job  ->
https://github.com/langchain-ai/langchain-ibm/actions/runs/11327509188

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-16 02:27:56 +00:00
Yuki Watanabe
b8bfebd382 community: Add deprecation notice for Databricks integration in langchain-community (#27355)
We have released the
[langchain-databricks](https://github.com/langchain-ai/langchain-databricks)
package for Databricks integration. This PR deprecates the legacy
classes within `langchain-community`.

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-16 02:20:40 +00:00
xsai9101
15c1ddaf99 community: Add support for clob datatype in oracle database (#27330)
**Description**:
This PR add support of clob/blob data type for oracle document loader,
clob/blob can only be read by oracledb package when connection is open,
so reformat code to process data before connection closes.

**Dependencies**:
oracledb package same as before. pip install oracledb

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-16 02:19:20 +00:00
Leonid Ganeline
8e66822100 docs: integrations google update (#27218)
I've made several titles more compact hence a more compact menu.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-15 23:08:52 +00:00
Enes Bol
3f74dfc3d8 community[patch]: Fix vLLM integration to filter SamplingParams (#27367)
**Description:**
- This pull request addresses a bug in Langchain's VLLM integration,
where the use_beam_search parameter was erroneously passed to
SamplingParams. The SamplingParams class in vLLM does not support the
use_beam_search argument, which caused a TypeError.

- This PR introduces logic to filter out unsupported parameters,
ensuring that only valid parameters are passed to SamplingParams. As a
result, the integration now functions as expected without errors.

- The bug was reproduced by running the code sample from Langchain’s
documentation, which triggered the error due to the invalid parameter.
This fix resolves that error by implementing proper parameter filtering.

**VLLM Sampling Params Class:**
https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py

**Issue:**
I could not found an Issue that belongs to this. Fixes "TypeError:
Unexpected keyword argument 'use_beam_search'" error when using VLLM
from Langchain.

**Dependencies:**
None.

**Tests and Documentation**:
Tests:
No new functionality was added, but I tested the changes by running
multiple prompts through the VLLM integration with various parameter
configurations. All tests passed successfully without breaking
compatibility.

Docs
No documentation changes were necessary as this is a bug fix.

**Reproducing the Error:**

https://python.langchain.com/docs/integrations/llms/vllm/

The code sample from the original documentation can be used to reproduce
the error I got.

from langchain_community.llms import VLLM
llm = VLLM(
    model="mosaicml/mpt-7b",
    trust_remote_code=True,  # mandatory for hf models
    max_new_tokens=128,
    top_k=10,
    top_p=0.95,
    temperature=0.8,
)
print(llm.invoke("What is the capital of France ?"))

![image](https://github.com/user-attachments/assets/3782d6ac-1f7b-4acc-bf2c-186216149de5)


This PR resolves the issue by ensuring that only valid parameters are
passed to SamplingParams.
2024-10-15 21:57:50 +00:00
Erick Friis
edf6d0a0fb partners/couchbase: release 0.2.0 (attempt 2) (#27375) 2024-10-15 14:51:05 -07:00
Erick Friis
d2cd43601b infra: add databricks api build (#27374) 2024-10-15 20:11:23 +00:00
Jorge Piedrahita Ortiz
12fea5b868 community: sambastudio chat model integration minor fix (#27238)
**Description:** sambastudio chat model integration minor fix
 fix default params
 fix usage metadata when streaming
2024-10-15 13:24:36 -04:00
Leonid Ganeline
fead4749b9 docs: integrations updates 20 (#27210)
Added missed provider pages. Added descriptions and links.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-15 16:38:12 +00:00
ZhangShenao
f3925d71b9 community: Fix word spelling in Text2vecEmbeddings (#27183)
Fix word spelling in `Text2vecEmbeddings`
2024-10-15 09:28:48 -07:00
Erick Friis
92ae61bcc8 multiple: rely on asyncio_mode auto in tests (#27200) 2024-10-15 16:26:38 +00:00
William FH
0a3e089827 [Anthropic] Shallow Copy (#27105)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-15 15:50:48 +00:00
Matthew Peveler
c6533616b6 docs: fix community pgvector deprecation warning formatting (#27094)
**Description**: PR fixes some formatting errors in deprecation message
in the `langchain_community.vectorstores.pgvector` module, where it was
missing spaces between a few words, and one word was misspelled.
**Issue**: n/a
**Dependencies**: n/a

Signed-off-by: mpeveler@timescale.com
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-15 15:45:53 +00:00
Erick Friis
3fa5ce3e5f community: clear mypy syntax warning in openapi (#27370)
not completely clear the regex is functional
2024-10-15 15:43:53 +00:00
Ahmet Yasin Aytar
443b37403d community: refactor Arxiv search logic (#27084)
PR message:

Description:
This PR refactors the Arxiv API wrapper by extracting the Arxiv search
logic into a helper function (_fetch_results) to reduce code duplication
and improve maintainability. The helper function is used in methods like
get_summaries_as_docs, run, and lazy_load, streamlining the code and
making it easier to maintain in the future.

Issue:
This is a minor refactor, so no specific issue is being fixed.

Dependencies:
No new dependencies are introduced with this change.

Add tests and docs:
No new integrations were added, so no additional tests or docs are
necessary for this PR.
Lint and test:
I have run make format, make lint, and make test to ensure all checks
pass successfully.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-15 08:43:03 -07:00
Qiu Qin
57fbc6bdf1 community: Update OCI data science integration (#27083)
This PR updates the integration with OCI data science model deployment
service.

- Update LLM to support streaming and async calls.
- Added chat model.
- Updated tests and docs.
- Updated `libs/community/scripts/check_pydantic.sh` since the use of
`@pre_init` is removed from existing integration.
- Updated `libs/community/extended_testing_deps.txt` as this integration
requires `langchain_openai`.

---------

Co-authored-by: MING KANG <ming.kang@oracle.com>
Co-authored-by: Dmitrii Cherkasov <dmitrii.cherkasov@oracle.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-15 08:32:54 -07:00
Rafael Miller
fc14f675f1 Community: Updated Firecrawl Document Loader to v1 (#26548)
This PR updates the Firecrawl Document Loader to use the recently
released V1 API of Firecrawl.

**Key Updates:**

**Firecrawl V1 Integration:** Updated the document loader to leverage
the new Firecrawl V1 API for improved performance, reliability, and
developer experience.

**Map Functionality Added:** Introduced the map mode for more flexible
document loading options.

These updates enhance the integration and provide access to the latest
features of Firecrawl.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-10-15 13:13:28 +00:00
Max Tran
8fea07f92e community: fixed KeyError: 'client' (#27345)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
  - Example: "community: add foobar LLM"
Updated

- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
twitter: @MaxHTran

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Not needed due to small change

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Max Tran <maxtra@amazon.com>
2024-10-14 20:51:13 +00:00
Martin Triska
8dc4bec947 [community] [Bugfix] base_o365 document loader metadata needs to be JSON serializable (#26322)
In order for indexer to work, all metadata in the documents need to be
JSON serializable. Timestamps are not.

See here:

https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/indexing/api.py#L83-L89

@eyurtsev could you please review? It's a tiny PR :-)
2024-10-14 12:48:31 -04:00
YangZhaoo
de62d02102 docs: Maybe there is a missing closing bracket. (#27317)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: yangzhao <yzahha980122@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-10-14 12:46:56 -04:00
Trayan Azarov
59bbda9ba3 chroma: Deprecating versions 0.5.7 thru 0.5.12 (#27305)
**Description:** Deprecated version of Chroma >=0.5.5 <0.5.12 due to a
serious correctness issue that caused some embeddings for deployments
with multiple collections to be lost (read more on the issue in Chroma
repo)
**Issue:** chroma-core/chroma#2922 (fixed by chroma-core/chroma##2923
and released in
[0.5.13](https://github.com/chroma-core/chroma/releases/tag/0.5.13))
**Dependencies:** N/A
**Twitter handle:** `@t_azarov`
2024-10-14 11:56:05 -04:00
Erick Friis
2197958366 docs: add discussions with giscus (#27172) 2024-10-11 15:14:45 -07:00
Marcelo Nunes Alves
5647276998 community: Problem with embeddings in new versions of clickhouse. (#26041)
Starting with Clickhouse version 24.8, a different type of configuration
has been introduced in the vectorized data ingestion, and if this
configuration occurs, an error occurs when generating the table. As can
be seen below:

![Screenshot from 2024-09-04
11-48-00](https://github.com/user-attachments/assets/70840a93-1001-490c-921a-26924c51d9eb)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-11 18:54:50 +00:00
Sir Qasim
2a1029c53c Update chatbot.ipynb (#27243)
Async invocation:
remove : from at the end of line 
line 441 because there is not any structure block after it.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-10-10 18:03:10 +00:00
Eugene Yurtsev
5b9b8fe80f core[patch]: Ignore ASYNC110 to upgrade to newest ruff version (#27229)
Ignoring ASYNC110 with explanation
2024-10-09 11:25:58 -04:00
Vittorio Rigamonti
7da2efd9d3 community[minor]: VectorStore Infinispan. Adding TLS and authentication (#23522)
**Description**:
this PR enable VectorStore TLS and authentication (digest, basic) with
HTTP/2 for Infinispan server.
Based on httpx.

Added docker-compose facilities for testing
Added documentation

**Dependencies:**
requires `pip install httpx[http2]` if HTTP2 is needed

**Twitter handle:**
https://twitter.com/infinispan
2024-10-09 10:51:39 -04:00
Luke Jang
ff925d2ddc docs: fixed broken API reference link for StructuredTool.from_function (#27181)
Fix broken API reference link for StructuredTool.from_function
2024-10-09 10:05:22 -04:00
Diao Zihao
4553573acb core[patch],langchain[patch],community[patch]: Bump version dependency of tenacity to >=8.1.0,!=8.4.0,<10 (#27201)
This should fixes the compatibility issue with graprag as in

- https://github.com/langchain-ai/langchain/discussions/25595

Here are the release notes for tenacity 9
(https://github.com/jd/tenacity/releases/tag/9.0.0)

---------

Signed-off-by: Zihao Diao <hi@ericdiao.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-10-09 14:00:45 +00:00
Stefano Lottini
d05fdd97dd community: Cassandra Vector Store: extend metadata-related methods (#27078)
**Description:** this PR adds a set of methods to deal with metadata
associated to the vector store entries. These, while essential to the
Graph-related extension of the `Cassandra` vector store, are also useful
in themselves. These are (all come in their sync+async versions):

- `[a]delete_by_metadata_filter`
- `[a]replace_metadata`
- `[a]get_by_document_id`
- `[a]metadata_search`

Additionally, a `[a]similarity_search_with_embedding_id_by_vector`
method is introduced to better serve the store's internal working (esp.
related to reranking logic).

**Issue:** no issue number, but now all Document's returned bear their
`.id` consistently (as a consequence of a slight refactoring in how the
raw entries read from DB are made back into `Document` instances).

**Dependencies:** (no new deps: packaging comes through langchain-core
already; `cassio` is now required to be version 0.1.10+)


**Add tests and docs**
Added integration tests for the relevant newly-introduced methods.
(Docs will be updated in a separate PR).

**Lint and test** Lint and (updated) test all pass.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-09 06:41:34 +00:00
Erick Friis
84c05b031d community: release 0.3.2 (#27214) 2024-10-08 23:33:55 -07:00
Serena Ruan
a7c1ce2b3f [community] Add timeout control and retry for UC tool execution (#26645)
Add timeout at client side for UCFunctionToolkit and add retry logic.
Users could specify environment variable
`UC_TOOL_CLIENT_EXECUTION_TIMEOUT` to increase the timeout value for
retrying to get the execution response if the status is pending. Default
timeout value is 120s.


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

Tested in Databricks:
<img width="1200" alt="image"
src="https://github.com/user-attachments/assets/54ab5dfc-5e57-4941-b7d9-bfe3f8ad3f62">



- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Signed-off-by: serena-ruan <serena.rxy@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-09 06:31:48 +00:00
Tomaz Bratanic
481bd25d29 community: Fix database connections for neo4j (#27190)
Fixes https://github.com/langchain-ai/langchain/issues/27185

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 23:47:55 +00:00
Erick Friis
cedf4d9462 langchain: release 0.3.3 (#27213) 2024-10-08 16:39:42 -07:00
Jorge Piedrahita Ortiz
6c33124c72 docs: minor fix sambastudio chat model docs (#27212)
- **Description:**  minor fix sambastudio chat model docs

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 23:34:29 +00:00
Erick Friis
7264fb254c core: release 0.3.10 (#27209) 2024-10-08 16:21:42 -07:00
Bagatur
ce33c4fa40 openai[patch]: default temp=1 for o1 (#27206) 2024-10-08 15:45:21 -07:00
Mateusz Szewczyk
b298d0337e docs: Update IBM ChatWatsonx documentation (#27189) 2024-10-08 21:10:18 +00:00
RIdham Golakiya
73ad7f2e7a langchain_chroma[patch]: updated example for get documents with where clause (#26767)
Example updated for vectorstore ChromaDB.

If we want to apply multiple filters then ChromaDB supports filters like
this:
Reference: [ChromaDB
filters](https://cookbook.chromadb.dev/core/filters/)

Thank you.
2024-10-08 20:21:58 +00:00
Bagatur
e3e9ee8398 core[patch]: utils for adding/subtracting usage metadata (#27203) 2024-10-08 13:15:33 -07:00
ccurme
e3920f2320 community[patch]: fix structured_output in llamacpp integration (#27202)
Resolves https://github.com/langchain-ai/langchain/issues/25318.
2024-10-08 15:16:59 -04:00
Leonid Ganeline
c3cb56a9e8 docs: integrations updates 18 (#27054)
Added missed provider pages. Added descriptions and links. Fixed
inconsistency in text formatting.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 19:05:07 +00:00
Leonid Ganeline
b716d808ba docs: integrations/providers/microsoft update (#27055)
Added reference to the AzureCognitiveServicesToolkit.
Fixed titles.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 19:04:40 +00:00
Mathias Colpaert
feb4be82aa docs: in chatbot tutorial, make docs consistent with code sample (#27042)
**Docs Chatbot Tutorial**

The docs state that you can omit the language parameter, but the code
sample to demonstrate, still contains it.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 18:38:15 +00:00
Ikko Eltociear Ashimine
c10e1f70fe docs: update passio_nutrition_ai.ipynb (#27041)
initalize -> initialize


- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
  - Example: "community: add foobar LLM"

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 18:35:48 +00:00
Erick Friis
b84e00283f standard-tests: test that only one chunk sets input_tokens (#27177) 2024-10-08 11:35:32 -07:00
Ajayeswar Reddy
9b7bdf1a26 Fixed typo in llibs/community/langchain_community/storage/sql.py (#27029)
- [ ] **PR title**: docs: fix typo in SQLStore import path

- [ ] **PR message**: 
- **Description:** This PR corrects a typo in the docstrings for the
class SQLStore(BaseStore[str, bytes]). The import path in the docstring
currently reads from langchain_rag.storage import SQLStore, which should
be changed to langchain_community.storage import SQLStore. This typo is
also reflected in the official documentation.
    - **Issue:** N/A
    - **Dependencies:** None
    - **Twitter handle:** N/A

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 17:51:26 +00:00
Nihal Chaudhary
0b36ed09cf DOC:Changed /docs/integrations/tools/jira/ (#27023)
- [x] - **Description:** replaced `%pip install -qU langchain-community`
to `%pip install -qU langchain-community langchain_openai ` in doc
\langchain\docs\docs\integrations\tools\jira.ipynb
- [x] - **Issue:** the issue #27013 
- [x] Add docs

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 17:48:08 +00:00
Jacob Lee
0ec74fbc14 docs: 👥 Update LangChain people data (#27022)
👥 Update LangChain people data

---------

Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 17:09:07 +00:00
Leonid Ganeline
ea9a59bcf5 docs: integrations updates 17 (#27015)
Added missed provider pages. Added missed descriptions and links.
I fixed the Ipex-LLM titles, so the ToC is now sorted properly for these
titles.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-08 17:03:18 +00:00
Vadym Barda
8d27325dbc core[patch]: support ValidationError from pydantic v1 in tools (#27194) 2024-10-08 10:19:04 -04:00
Christophe Bornet
16f5fdb38b core: Add various ruff rules (#26836)
Adds
- ASYNC
- COM
- DJ
- EXE
- FLY
- FURB
- ICN
- INT
- LOG
- NPY
- PD
- Q
- RSE
- SLOT
- T10
- TID
- YTT

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-07 22:30:27 +00:00
Erick Friis
5c826faece core: update make format to fix all autofixable things (#27174) 2024-10-07 15:20:47 -07:00
Christophe Bornet
d31ec8810a core: Add ruff rules for error messages (EM) (#26965)
All auto-fixes

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-07 22:12:28 +00:00
Oleksii Pokotylo
37ca468d03 community: AzureSearch: fix reranking for empty lists (#27104)
**Description:** 
  Fix reranking for empty lists 

**Issue:** 
```
ValueError: not enough values to unpack (expected 3, got 0)
    documents, scores, vectors = map(list, zip(*docs))
  File langchain_community/vectorstores/azuresearch.py", line 1680, in _reorder_results_with_maximal_marginal_relevance
```

Co-authored-by: Oleksii Pokotylo <oleksii.pokotylo@pwc.com>
2024-10-07 15:27:09 -04:00
Bhadresh Savani
8454a742d7 Update README.md for Tutorial to Usecase url (#27099)
Fixed tutorial URL since earlier Tutorial URL was pointing to usecase
age which does not have any detail it should redirect to correct URL
page
2024-10-07 15:24:33 -04:00
Christophe Bornet
c4ebccfec2 core[minor]: Improve support for id in VectorStore (#26660)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-10-07 15:01:08 -04:00
Bharat Ramanathan
931ce8d026 core[patch]: Update AsyncCallbackManager to honor run_inline attribute and prevent context loss (#26885)
## Description

This PR fixes the context loss issue in `AsyncCallbackManager`,
specifically in `on_llm_start` and `on_chat_model_start` methods. It
properly honors the `run_inline` attribute of callback handlers,
preventing race conditions and ordering issues.

Key changes:
1. Separate handlers into inline and non-inline groups.
2. Execute inline handlers sequentially for each prompt.
3. Execute non-inline handlers concurrently across all prompts.
4. Preserve context for stateful handlers.
5. Maintain performance benefits for non-inline handlers.

**These changes are implemented in `AsyncCallbackManager` rather than
`ahandle_event` because the issue occurs at the prompt and message_list
levels, not within individual events.**

## Testing

- Test case implemented in #26857 now passes, verifying execution order
for inline handlers.

## Related Issues

- Fixes issue discussed in #23909 

## Dependencies

No new dependencies are required.

---

@eyurtsev: This PR implements the discussed changes to respect
`run_inline` in `AsyncCallbackManager`. Please review and advise on any
needed changes.

Twitter handle: @parambharat

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-10-07 14:59:29 -04:00
Aleksandar Petrov
c61b9daef5 docs: Grammar fix in concepts.mdx (#27149)
Missing "is" in a sentence about the Tool usage.
2024-10-07 18:55:25 +00:00
Eugene Yurtsev
8f8392137a Update MIGRATE.md (#27169)
Upgrade the content of MIGRATE.md so it's in sync
2024-10-07 14:53:40 -04:00
João Carlos Ferra de Almeida
780ce00dea core[minor]: add **kwargs to index and aindex functions for custom vector_field support (#26998)
Added `**kwargs` parameters to the `index` and `aindex` functions in
`libs/core/langchain_core/indexing/api.py`. This allows users to pass
additional arguments to the `add_documents` and `aadd_documents`
methods, enabling the specification of a custom `vector_field`. For
example, users can now use `vector_field="embedding"` when indexing
documents in `OpenSearchVectorStore`

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-10-07 14:52:50 -04:00
Jorge Piedrahita Ortiz
14de81b140 community: sambastudio chat model (#27056)
**Description:**: sambastudio chat model integration added, previously
only LLM integration
     included docs and tests

---------

Co-authored-by: luisfucros <luisfucros@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-10-07 14:31:39 -04:00
Aditya Anand
f70650f67d core[patch]: correct typo doc-string for astream_events method (#27108)
This commit addresses a typographical error in the documentation for the
async astream_events method. The word 'evens' was incorrectly used in
the introductory sentence for the reference table, which could lead to
confusion for users.\n\n### Changes Made:\n- Corrected 'Below is a table
that illustrates some evens that might be emitted by various chains.' to
'Below is a table that illustrates some events that might be emitted by
various chains.'\n\nThis enhancement improves the clarity of the
documentation and ensures accurate terminology is used throughout the
reference material.\n\nIssue Reference: #27107
2024-10-07 14:12:42 -04:00
Bagatur
38099800cc docs: fix anthropic max_tokens docstring (#27166) 2024-10-07 16:51:42 +00:00
ogawa
07dd8dd3d7 community[patch]: update gpt-4o cost (#27038)
updated OpenAI cost definition according to the following:
https://openai.com/api/pricing/
2024-10-07 09:06:30 -04:00
Averi Kitsch
7a07196df6 docs: update Google Spanner Vector Store documentation (#27124)
Thank you for contributing to LangChain!

- [X] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Update Spanner VS integration doc
    - **Issue:** None
    - **Dependencies:** None
    - **Twitter handle:** NA


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-04 23:59:10 +00:00
Bagatur
06ce5d1d5c anthropic[patch]: Release 0.2.3 (#27126) 2024-10-04 22:38:03 +00:00
Bagatur
0b8416bd2e anthropic[patch]: fix input_tokens when cached (#27125) 2024-10-04 22:35:51 +00:00
Erick Friis
64a16f2cf0 infra: add nvidia and astradb back to api build (#27115)
test build
https://github.com/langchain-ai/langchain/actions/runs/11185115845
2024-10-04 14:41:41 -07:00
Bagatur
bd5b335cb4 standard-tests[patch]: fix oai usage metadata test (#27122) 2024-10-04 20:00:48 +00:00
Bagatur
827bdf4f51 fireworks[patch]: Release 0.2.1 (#27120) 2024-10-04 18:59:15 +00:00
Bagatur
98942edcc9 openai[patch]: Release 0.2.2 (#27119) 2024-10-04 11:54:01 -07:00
Bagatur
414fe16071 anthropic[patch]: Release 0.2.2 (#27118) 2024-10-04 11:53:53 -07:00
Bagatur
11df1b2b8d core[patch]: Release 0.3.9 (#27117) 2024-10-04 18:35:33 +00:00
Scott Hurrey
558fb4d66d box: Add citation support to langchain_box.retrievers.BoxRetriever when used with Box AI (#27012)
Thank you for contributing to LangChain!

**Description:** Box AI can return responses, but it can also be
configured to return citations. This change allows the developer to
decide if they want the answer, the citations, or both. Regardless of
the combination, this is returned as a single List[Document] object.

**Dependencies:** Updated to the latest Box Python SDK, v1.5.1
**Twitter handle:** BoxPlatform


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-04 18:32:34 +00:00
Bagatur
1e768a9ec7 anthropic[patch]: correctly handle tool msg with empty list (#27109) 2024-10-04 11:30:50 -07:00
Bagatur
4935a14314 core,integrations[minor]: Dont error on fields in model_kwargs (#27110)
Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.

Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
2024-10-04 11:30:27 -07:00
Bagatur
0495b7f441 anthropic[patch]: add usage_metadata details (#27087)
fixes https://github.com/langchain-ai/langchain/pull/27087
2024-10-04 08:46:49 -07:00
Erick Friis
e8e5d67a8d openai: fix None token detail (#27091)
happens in Azure
2024-10-04 01:25:38 +00:00
Vadym Barda
2715bed70e docs[patch]: update links w/ new langgraph API ref (#26961)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-03 23:52:01 +00:00
Rashmi Pawar
47142eb6ee docs: Integrations NVIDIA llm documentation (#26934)
**Description:**

Add Notebook for NVIDIA prompt completion llm class.

cc: @sumitkbh @mattf @dglogo

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-03 23:32:45 +00:00
Erick Friis
ab4dab9a0c core: fix batch race condition in FakeListChatModel (#26924)
fixed #26273
2024-10-03 23:14:31 +00:00
Bagatur
87fc5ce688 core[patch]: exclude model cache from ser (#27086) 2024-10-03 22:00:31 +00:00
Bagatur
c09da53978 openai[patch]: add usage metadata details (#27080) 2024-10-03 14:01:03 -07:00
Bagatur
546dc44da5 core[patch]: add UsageMetadata details (#27072) 2024-10-03 20:36:17 +00:00
Sean
cc1b8b3d30 docs: Documentation update for Document Parse (#26844)
Renamed `Layout Analysis` to `Document Parser` in the doc as we have
recently renamed it!

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-03 20:36:04 +00:00
Erick Friis
7f730ce8b2 docs: remove spaces in percent pip (#27082) 2024-10-03 20:34:24 +00:00
Tibor Reiss
47a9199fa6 community[patch]: Fix missing protected_namespaces (#27076)
Fixes #26861

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-10-03 20:12:11 +00:00
Bagatur
2a54448a0a langchain[patch]: Release 0.3.2 (#27073) 2024-10-03 18:13:23 +00:00
Bharat Ramanathan
103e573f9b community[patch]: chore warn deprecate the wandb callback handler (#27062)
- **Description:**: This PR deprecates the wandb callback handler in
favor of the new
[WeaveTracer](https://weave-docs.wandb.ai/guides/integrations/langchain#using-weavetracer)
in W&B
- **Dependencies:** No dependencies, just a deprecation warning.
- **Twitter handle:** @parambharat


@baskaryan
2024-10-03 11:59:20 -04:00
Vadym Barda
907c758d67 docs[patch]: add long-term memory agent tutorial (#27057) 2024-10-02 23:02:44 -04:00
Eugene Yurtsev
635c55c039 core[patch]: Release 0.3.8 (#27046)
0.3.8 release for core
2024-10-02 16:58:38 +00:00
Eugene Yurtsev
74bf620e97 core[patch]: Support injected tool args that are arbitrary types (#27045)
This adds support for inject tool args that are arbitrary types when
used with pydantic 2.

We'll need to add similar logic on the v1 path, and potentially mirror
the config from the original model when we're doing the subset.
2024-10-02 12:50:58 -04:00
Erick Friis
e806e9de38 infra: fix api docs build checkout 2 (#27033) 2024-10-01 14:49:35 -07:00
Bagatur
099235da01 Revert "huggingface[patch]: make HuggingFaceEndpoint serializable (#2… (#27032)
…7027)"

This reverts commit b5e28d3a6d.
2024-10-01 21:26:38 +00:00
Bagatur
5f2e93ffea huggingface[patch]: xfail test (#27031) 2024-10-01 21:14:07 +00:00
Bagatur
b5e28d3a6d huggingface[patch]: make HuggingFaceEndpoint serializable (#27027) 2024-10-01 13:16:10 -07:00
ccurme
9d10151123 core[patch]: fix init of RunnableAssign (#26903)
Example in API ref currently raises ValidationError.

Resolves https://github.com/langchain-ai/langchain/issues/26862
2024-10-01 14:21:54 -04:00
Erick Friis
f7583194de docs: build new api docs (#26951) 2024-10-01 09:18:54 -07:00
Erick Friis
95a87291fd community: deprecate community ollama integrations (#26733) 2024-10-01 09:18:07 -07:00
ZhangShenao
e317d457cf Bug-Fix[Community] Fix FastEmbedEmbeddings (#26764)
#26759 

- Fix https://github.com/langchain-ai/langchain/issues/26759 
- Change `model` param from private to public, which may not be
initiated.
- Add test case
2024-09-30 21:23:08 -04:00
Erick Friis
a8e1577f85 milvus: mv to external repo (#26920) 2024-10-01 00:38:30 +00:00
Erick Friis
35f6393144 unstructured: mv to external repo (#26923) 2024-09-30 17:38:21 -07:00
Erick Friis
7ecd720120 multiple: update docs urls to latest 2 (#26837) 2024-09-30 17:37:07 -07:00
Erika Cardenas
4a32cc3c66 Update FeatureTables.js to add Weaviate (#26824)
Thank you for contributing to LangChain!


- [x] **PR message**: 
    - Add Weaviate to the vector store list.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-30 23:05:37 +00:00
William FH
6a861b0ad9 [Doc] Name variable langgraph_agent_executor (#26799) 2024-09-30 15:52:23 -07:00
Ayodele Aransiola
5346c7b27e doc: grammar fix on index.mdx (#26771)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


The PR is an adjustment on few grammar adjustments on the page.
@leomofthings is my twitter handle




If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-30 21:52:39 +00:00
Tomaz Bratanic
446144e7c6 Update neo4j vector procedures (#26775) 2024-09-30 14:45:09 -07:00
Arun Prakash
870bd42b0d docs: GremlinGraph Remove = in the URL (#26705)
- **Description:** URL is appended with = which is not working
    - **Issue:** removing the = symbol makes the URL valid
    - **Twitter handle:** @arunprakash_com

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-09-30 21:36:30 +00:00
federico-pisanu
2538963945 core[patch]: improve index/aindex api when batch_size<n_docs (#25754)
- **Description:** prevent index function to re-index entire source
document even if nothing has changed.
- **Issue:** #22135

I worked on a solution to this issue that is a compromise between being
cheap and being fast.
In the previous code, when batch_size is greater than the number of docs
from a certain source almost the entire source is deleted (all documents
from that source except for the documents in the first batch)
My solution deletes documents from vector store and record manager only
if at least one document has changed for that source.

Hope this can help!

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-30 20:57:41 +00:00
Eugene Yurtsev
7fde2791dc core[patch]: Add kwargs to Runnable (#27008)
Fixes #26685

---------

Co-authored-by: Tibor Reiss <tibor.reiss@gmail.com>
2024-09-30 16:45:29 -04:00
Christophe Bornet
2a6abd3f0a community[patch]: Add docstring for Links (#25969)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-30 20:33:50 +00:00
Ronan Amicel
19ed3165fb docs: Fix typo in list of PDF loaders (#26774)
Description: Fix typo in list of PDF loaders.

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-30 20:04:18 +00:00
Mohammad Mohtashim
e12f570ead Merge pull request #26794
* [chore]: Agent Observation should be casted to string to avoid errors

* Merge branch 'master' into fix_observation_type_streaming

* [chore]: Using Json.dumps

* [chore]: Exact same logic as  when casting agent oobservation to string
2024-09-30 15:54:51 -04:00
Bagatur
34bd718fe1 core[patch]: Release 0.3.7 (#27004) 2024-09-30 18:52:42 +00:00
Bagatur
248be02259 core[patch]: fix structured prompt template format (#27003)
template_format is an init argument on ChatPromptTemplate but not an
attribute on the object so was getting shoved into
StructuredPrompt.structured_ouptut_kwargs
2024-09-30 11:47:46 -07:00
Bagatur
0078493a80 fireworks[patch]: allow tool_choice with multiple tools (#26999)
https://docs.fireworks.ai/api-reference/post-chatcompletions
2024-09-30 11:28:43 -07:00
Bagatur
c7120d87dd groq[patch]: support tool_choice=any/required (#27000)
https://console.groq.com/docs/api-reference#chat-create
2024-09-30 11:28:35 -07:00
Christophe Bornet
db8845a62a core: Add ruff rules for pycodestyle Warning (W) (#26964)
All auto-fixes.
2024-09-30 09:31:43 -04:00
Bagatur
9404e7af9d openai[patch]: exclude http client (#26891)
httpx clients aren't serializable
2024-09-29 11:16:27 -07:00
Andrew Benton
ce2669cb56 docs: update code interpreter tool table to reflect riza file upload support (#26960)
**Description:** Update the code interpreter tools feature table to
reflect Riza file upload support (blog announcement here:
https://riza.io/blog/adding-support-for-input-files-and-http-credentials)
**Issue:** N/A
**Dependencies:** N/A
2024-09-29 12:04:07 -04:00
531 changed files with 22035 additions and 27194 deletions

View File

@@ -55,14 +55,11 @@ runs:
# Refresh the shell hashtable, to ensure correct `which` output.
hash -r
# Extract the major.minor version of python
PYTHON_MAJOR_MINOR=$(echo "$PYTHON_VERSION" | sed -E 's/^([0-9]+\.[0-9]+).*/\1/')
# `actions/cache@v3` doesn't always seem able to correctly unpack softlinks.
# Delete and recreate the softlinks pipx expects to have.
rm /opt/pipx/venvs/poetry/bin/python
cd /opt/pipx/venvs/poetry/bin
ln -s "$(which "python$PYTHON_MAJOR_MINOR")" python
ln -s "$(which "python$PYTHON_VERSION")" python
chmod +x python
cd /opt/pipx_bin/
ln -s /opt/pipx/venvs/poetry/bin/poetry poetry

View File

@@ -110,7 +110,7 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
return _get_pydantic_test_configs(dir_)
if dir_ == "libs/core":
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13.0-rc.2"]
py_versions = ["3.9", "3.10", "3.11", "3.12"]
# custom logic for specific directories
elif dir_ == "libs/partners/milvus":
# milvus poetry doesn't allow 3.12 because they
@@ -120,13 +120,13 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
elif dir_ in ["libs/community", "libs/langchain"] and job == "extended-tests":
# community extended test resolution in 3.12 is slow
# even in uv
py_versions = ["3.9", "3.11", "3.13.0-rc.2"]
py_versions = ["3.9", "3.11"]
elif dir_ == "libs/community" and job == "compile-integration-tests":
# community integration deps are slow in 3.12
py_versions = ["3.9", "3.11", "3.13.0-rc.2"]
py_versions = ["3.9", "3.11"]
else:
py_versions = ["3.9", "3.12", "3.13.0-rc.2"]
py_versions = ["3.9", "3.12"]
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]

View File

@@ -294,7 +294,6 @@ jobs:
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
UNSTRUCTURED_API_KEY: ${{ secrets.UNSTRUCTURED_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -10,6 +10,7 @@ env:
jobs:
build:
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
runs-on: ubuntu-latest
permissions: write-all
steps:
@@ -65,6 +66,31 @@ jobs:
with:
repository: langchain-ai/langchain-experimental
path: langchain-experimental
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-milvus
path: langchain-milvus
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-unstructured
path: langchain-unstructured
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-databricks
path: langchain-databricks
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-ibm
path: langchain-ibm
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-azure
path: langchain-azure
- uses: actions/checkout@v4
with:
repository: langchain-ai/langchain-mongodb
path: langchain-mongodb
- name: Set Git config
@@ -73,7 +99,7 @@ jobs:
git config --local user.email "actions@github.com"
git config --local user.name "Github Actions"
- name: Move google libs
- name: Move libs
run: |
rm -rf \
langchain/libs/partners/google-genai \
@@ -87,12 +113,18 @@ jobs:
langchain/libs/partners/ai21 \
langchain/libs/partners/together \
langchain/libs/standard-tests \
langchain/libs/experimental
langchain/libs/experimental \
langchain/libs/partners/milvus \
langchain/libs/partners/unstructured \
langchain/libs/partners/databricks \
langchain/libs/partners/ibm \
langchain/libs/partners/azure-dynamic-sessions \
langchain/libs/partners/mongodb
mv langchain-google/libs/genai langchain/libs/partners/google-genai
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-google/libs/community langchain/libs/partners/google-community
# mv langchain-datastax/libs/astradb langchain/libs/partners/astradb
# mv langchain-nvidia/libs/ai-endpoints langchain/libs/partners/nvidia-ai-endpoints
mv langchain-datastax/libs/astradb langchain/libs/partners/astradb
mv langchain-nvidia/libs/ai-endpoints langchain/libs/partners/nvidia-ai-endpoints
mv langchain-cohere/libs/cohere langchain/libs/partners/cohere
mv langchain-elastic/libs/elasticsearch langchain/libs/partners/elasticsearch
mv langchain-postgres langchain/libs/partners/postgres
@@ -101,6 +133,12 @@ jobs:
mv langchain-ai21/libs/ai21 langchain/libs/partners/ai21
mv langchain-together/libs/together langchain/libs/partners/together
mv langchain-experimental/libs/experimental langchain/libs/experimental
mv langchain-milvus/libs/milvus langchain/libs/partners/milvus
mv langchain-unstructured/libs/unstructured langchain/libs/partners/unstructured
mv langchain-databricks/libs/databricks langchain/libs/partners/databricks
mv langchain-ibm/libs/ibm langchain/libs/partners/ibm
mv langchain-azure/libs/azure-dynamic-sessions langchain/libs/partners/azure-dynamic-sessions
mv langchain-mongodb/libs/mongodb langchain/libs/partners/mongodb
- name: Rm old html
run:
@@ -119,8 +157,8 @@ jobs:
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools
# skip airbyte and ibm due to pandas dependency issue
python -m uv pip install $(ls ./libs/partners | grep -vE "airbyte|ibm" | xargs -I {} echo "./libs/partners/{}")
# skip airbyte due to pandas dependency issue
python -m uv pip install $(ls ./libs/partners | grep -vE "airbyte" | xargs -I {} echo "./libs/partners/{}")
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental
python -m uv pip install -r docs/api_reference/requirements.txt

View File

@@ -7,7 +7,7 @@ on:
jobs:
check-links:
if: github.repository_owner == 'langchain-ai'
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4

View File

@@ -3,7 +3,7 @@ name: CI
on:
push:
branches: [cc/test_13]
branches: [master]
pull_request:
# If another push to the same PR or branch happens while this workflow is still running,
@@ -27,12 +27,12 @@ jobs:
- uses: actions/setup-python@v5
with:
python-version: '3.11'
# - id: files
# uses: Ana06/get-changed-files@v2.2.0
- id: files
uses: Ana06/get-changed-files@v2.2.0
- id: set-matrix
run: |
python -m pip install packaging
python .github/scripts/check_diff.py libs/core/langchain_core/__init__.py >> $GITHUB_OUTPUT
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
outputs:
lint: ${{ steps.set-matrix.outputs.lint }}
test: ${{ steps.set-matrix.outputs.test }}

View File

@@ -14,7 +14,7 @@ on:
jobs:
langchain-people:
if: github.repository_owner == 'langchain-ai'
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
runs-on: ubuntu-latest
permissions: write-all
steps:

View File

@@ -20,7 +20,7 @@ env:
jobs:
build:
runs-on: ubuntu-latest
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
name: "Test docs"
steps:
- uses: actions/checkout@v4
@@ -35,23 +35,15 @@ jobs:
- name: Install dependencies
run: |
pip install -e libs/core
pip install -e libs/langchain
pip install -e libs/community
pip install --upgrade langchain-experimental
pip install -e libs//partners/anthropic
pip install -e libs//partners/chroma
pip install -e libs//partners/openai
pip install -e libs//partners/mistralai
pip install jupyter langgraph click pypdf vcrpy
poetry install --with dev,test
- name: Pre-download tiktoken files
run: |
python docs/scripts/download_tiktoken.py
poetry run python docs/scripts/download_tiktoken.py
- name: Prepare notebooks
run: |
python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells
poetry run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
- name: Run notebooks
env:
@@ -59,5 +51,6 @@ jobs:
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
TAVILY_API_KEY: ${{ secrets.TAVILY_API_KEY }}
WORKING_DIRECTORY: ${{ github.event.inputs.working-directory || 'all' }}
run: |
./docs/scripts/execute_notebooks.sh ${{ github.event.inputs.working-directory || 'all' }}
./docs/scripts/execute_notebooks.sh $WORKING_DIRECTORY

View File

@@ -10,7 +10,7 @@ env:
jobs:
build:
if: github.repository_owner == 'langchain-ai'
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
name: Python ${{ matrix.python-version }} - ${{ matrix.working-directory }}
runs-on: ubuntu-latest
strategy:

View File

@@ -1,70 +1,11 @@
# Migrating
## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23
Please see the following guides for migratin LangChain code:
In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`.
This migration has already started, but we are remaining backwards compatible until 7/28.
On that date, we will remove functionality from `langchain`.
Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043).
* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/)
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
* Upgrate to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
### Migrating to `langchain_experimental`
We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`.
This guide covers how to migrate.
### Installation
Previously:
`pip install -U langchain`
Now (only if you want to access things in experimental):
`pip install -U langchain langchain_experimental`
### Things in `langchain.experimental`
Previously:
`from langchain.experimental import ...`
Now:
`from langchain_experimental import ...`
### PALChain
Previously:
`from langchain.chains import PALChain`
Now:
`from langchain_experimental.pal_chain import PALChain`
### SQLDatabaseChain
Previously:
`from langchain.chains import SQLDatabaseChain`
Now:
`from langchain_experimental.sql import SQLDatabaseChain`
Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out this [`SQL question-answering tutorial`](https://python.langchain.com/v0.2/docs/tutorials/sql_qa/#convert-question-to-sql-query)
`from langchain.chains import create_sql_query_chain`
### `load_prompt` for Python files
Note: this only applies if you want to load Python files as prompts.
If you want to load json/yaml files, no change is needed.
Previously:
`from langchain.prompts import load_prompt`
Now:
`from langchain_experimental.prompts import load_prompt`
The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help automatically upgrade your code to use non deprecated imports.
This will be especially helpful if you're still on either version 0.0.x or 0.1.x of LangChain.

View File

@@ -38,7 +38,7 @@ conda install langchain -c conda-forge
For these applications, LangChain simplifies the entire application lifecycle:
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel), [components](https://python.langchain.com/docs/concepts/), and [third-party integrations](https://python.langchain.com/docs/integrations/platforms/).
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel), [components](https://python.langchain.com/docs/concepts/), and [third-party integrations](https://python.langchain.com/docs/integrations/providers/).
Use [LangGraph](https://langchain-ai.github.io/langgraph/) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
@@ -119,7 +119,7 @@ Agents allow an LLM autonomy over how a task is accomplished. Agents make decisi
Please see [here](https://python.langchain.com) for full documentation, which includes:
- [Introduction](https://python.langchain.com/docs/introduction/): Overview of the framework and the structure of the docs.
- [Tutorials](https://python.langchain.com/docs/use_cases/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
- [Tutorials](https://python.langchain.com/docs/tutorials/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
- [How-to guides](https://python.langchain.com/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
- [Conceptual guide](https://python.langchain.com/docs/concepts/): Conceptual explanations of the key parts of the framework.
- [API Reference](https://api.python.langchain.com): Thorough documentation of every class and method.

View File

@@ -18,7 +18,7 @@ for dir; do \
if find "$$dir" -maxdepth 1 -type f \( -name "pyproject.toml" -o -name "setup.py" \) | grep -q .; then \
echo "$$dir"; \
fi \
done' sh {} + | grep -vE "airbyte|ibm|couchbase|databricks" | tr '\n' ' ')
done' sh {} + | grep -vE "airbyte|ibm|databricks" | tr '\n' ' ')
PORT ?= 3001
@@ -82,9 +82,9 @@ vercel-build: install-vercel-deps build generate-references
mv $(OUTPUT_NEW_DOCS_DIR) docs
rm -rf build
mkdir static/api_reference
git clone --depth=1 https://github.com/baskaryan/langchain-api-docs-build.git
mv langchain-api-docs-build/api_reference_build/html/* static/api_reference/
rm -rf langchain-api-docs-build
git clone --depth=1 https://github.com/langchain-ai/langchain-api-docs-html.git
mv langchain-api-docs-html/api_reference_build/html/* static/api_reference/
rm -rf langchain-api-docs-html
NODE_OPTIONS="--max-old-space-size=5000" yarn run docusaurus build
start:

View File

@@ -533,6 +533,7 @@ def _build_index(dirs: List[str]) -> None:
"airbyte": "Airbyte",
"aws": "AWS",
"ai21": "AI21",
"ibm": "IBM",
}
ordered = ["core", "langchain", "text-splitters", "community", "experimental"]
main_ = [dir_ for dir_ in ordered if dir_ in dirs]

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1 @@
eNrlV09z28YVb6c3nXLpfY3JKUNAAAiRoDSaDkUptqJItCXFlpzRcJaLBQETwMK7C4qkR4e4/QK49dZpLZMdjeokY0+bpnXPPfQLKId+iH6CvgUhi4o8k8zklJEO0P5577fv/3t8Ph1QLkKW/PI8TCTlmEjYiPz5lNOnGRXyd5OYyoB5p/fbe/svMh5efBRImYrlxUWchgZLaYJDg7B4cWAtkgDLRVinES1gTrvMG333qz8802IqBO5RoS2jz59phMFbiYSNdsgyhDlFGAU0Sv0sQliIUEgM1xWkcRZRRSZGQtJYO6mga9xBeGeeKhOUaydHcBIzj0bqqJdK3VE0Cews+C8kpziGjeQZhT3ApqC3zLiCMI26OmMsKkWVo7SA9rOkMI2CerdeBmkSHBcEEg/CaNQRFHMSdDgVWSRF54mYsXhUEB6mJZfWRDM6RJNemFDE4CYOx9RDPuNIWZDTgCYiHICImJAMBFSrxFNigyk8VL5goM8EVWZTjMfAg0Zg0YQChWTAII4pR4UnlUMQ7rJMIsDjYEFEB/AFiM0khVMRsCzyUFc5oxQPGPnIUAqkmIOiECGi0Drl4HkuQzrbFnTF6nuKzuMogSLG+ihLFeKlZcEhYdLTTk6UIyHoQk49ZfsS9GiOlHWfUCKBtIiDH+2aCCc9EYcyKL3zHofszeRURgwT+MZY3ZTm+hT49xS/gT4GApyMblj0HUmlsH8MPkIQjUgGoUAqnO78BCN+33ogIrgfzAb+4z/ZlEcn04BiD4T67y8+OA2YkPmr66n9JUQghTyiCWEePJD/pTcO0wryqB9BXJ5BQia0MHt+1qc01XEEgTuZceVf4TSNQlIYdFHlw3mZwLqS5eb1mcpiHYpFIvM3bRCiubl4fwQ1KEGW4biG+dVQh/oQJhHUFF35Np+kxf0/5i9STPoAopf1LZ/MmF/N0zCRv9zGpL13DVJFQv4S87jmvJ4/51kCWUrzaev+zefKy6vnqoZlGfWvrwGLUULylz6OBP3bNWZw5kgnDDDyP5oTAm4OaX7xv06H+J1uvPqw39qUtQfe2tOsNfC2HlqfdFwvpYa9Y2ztd9b47vHmuPHIP3y03detut0wrXq9ZumWYRqWYenuI+4d7nWfGs7GQcewNx5Vm87DVnWte9BYam7Y487OJ7Vk2xpxbm9Fw6f+w/XHtt11PzsYDrea9Z2dJTl6cHdIXKdtGoMN233czPpucwWBdNkg9FaJ3ep2HtDd0T1n3F4ye6mz5taOwyr/9LFnthph0FvvM9Eye87GnHhLtqubpYQ103FN9ffqMjYiqIwyyF807PqfodSlkGr0txMwmczE81OIQ/qff0/LrvKn9tZVCP/6dB1iMn+7r6q7tYTaRCLbtB1kucuOvezU0d3t/fNW+cy+CsELJOlQLhbVUJ/1hxUEvYwLKlcz6evu1/scSqkPcblxmQNTEmRJn3pnrfdG/1sV/eBapQ+0J50OUyaoXoqZnx/ou7MGq2+uv56lms54DyfhuEiF/G2RBsfj4bFHMs8LBsex2Rg71bBLM+K/KVmghKhnQCA9FvkLx669Km8uA/EMlDd1y9RN69uhrvpIBK0GDFx8yy4v8tMlsP43Nwkk60Mfyl8W7vnX/D2nMcSvevkKxGk0Gv98P9ElUL3RqDvfXqcBO8+BWHYsvrlJUAKcWo1YnA8v6fXQyy8+hE0HV52GT2zXIth3rTqpOtitNahXX6Jmo+Hjv6vqSABHuTJlHFxNoRGGcpRfVGI8VCVntWotVWug6QrUWBJlHt3LuutM6SBWEDTliGHvy9bHeguTgOp7RTjm0/XDneb2ZuuvB/p8XOntdDZMTRMmktD3J3uUg1vyMxKxzIPayekEsHabh/kb16tafrVuYRfbrk/r+lp7b4ojEHJA8tdBdVVbdpyqtoJivOrWHNMsZqsvJrOS/93C7z0sseodIVR8TQ1iBMYwvbnZS+7SsajbGzsu6UdbVnjYfFLbsb1d09Mql21gxmFcjW5GEd1AQCAbpOoi7xK3VrmcrmbDlW7WrCpQzka0jg/iUJ6CVACbZFEEGAELiWpyME+FiUeH2rJZgSYXSawtPyunN21u7rsa8TTYcJhvBI5maCcVLWI9CPuuuISHF0OhRi6shq0Z1dHJwsLP1yJX6t+jUcS0W6b0ndumMLrHjm+dzgQnt07nzVun8ayq3zq14UfgrdNZMg+PbpvWv7kVCv+wjpqQLNXmtPx8vb2zcbSw8H/cixps

View File

@@ -0,0 +1 @@
eNrlV01v48YZbtHb9tJL7rNEgQCFSJMSJZE2jECWnazi2Nq1HK+9gSGMyKHIiORwZ4b68MKHbnvshT+hXa8UGO4mwS7aNO323EP/gHPoj+gv6DsUFcvxAi2QUyEfaA7nnWfej+f90PPZkDAe0PinV0EsCMOOgAXPns8YeZoSLn47jYjwqXvxsN05fJGy4PpXvhAJX19bw0mg0YTEONAcGq0NjTXHx2IN3pOQ5DAXPepOvvvZ7JkSEc5xn3BlHX32THEo3BULWCgnNEWYEYSRT8LES0OEOQ+4wLBdQgqjIZFifMIFiZTzErp12g/uo9b7EerR3rJ0yglTzk/hS0RdEspP/USoppSJYWXAfy4YwREsBEsJrAE+AftFyiSErtXlN0rDQmUxSXJoL41zF0mo79/XQasYR7mAwMMgnHQ5wczxu4zwNBS8+zmfH3EJd1iQFKeUBprLIRL3g5ggCjtRcEZc5FGGpCcZ8UnMgyGoiB0nBQXlW+xKtcElLipu0NCnnEj3yYMjOIMm4NmYgISgcICPCEN5RGVgEO7RVCDAY+BJRIbwBIhWnMBX7tM0dFFPBqVQDw6yiSYNSDADQ4EpPLc6YcAAJgIyX+Zy+dsPDF3GkQqFlA5QmkjEhWchIEHcV87PZSCBfAEjrvR9AXq6JEp7nxNHgGjOh/85NCGO+zwKhF9E5x0B6cz1lE4MYnhGWO4U7voEznfkeQ19CAI4ntzx6Pcipdz/EcQIARuR8AOOJJ3u/wgn/tB7oCKEH9wG8WM/2pWn5zOfYBeU+tdPfnHhUy6yV7dT/EtgIIE8IrFDXbgg+2P/LEhKyCVeCLy8hMSMSe727HJASKLiEIg7nZ/KvsJJEgZO7tA1mQ9XRSKrUpe725cyi1UoGrHI3rRBiUZr7eEEalGMDM20NP2rsQp1IohDqC2qjG02TfL9vy5vJNgZAIha1LlsOj/8almG8uzlHnbanVuQkgnZS8yimvl6+TtLY8hSks2aD+9eV2zeXFfRDEOrf30LmE9iJ3vp4ZCTP986DMGcqA4FjOz3+tSBMAcku/53t+t43V60eTRotkTtkbv1NG0O3d0j4+Ou5SZEK+9ru4fdLXYwap3Zj72Tx3sD1aiXbd2o12uGami6ZmiGaj1m7kmn91Qzd467WnnncaVhHjUrW71ju9rYKZ919z+uxXvGhLHybjh+6h1tPymXe9anx+PxbqO+v18Vk0cfjR3LbOvacKdsPWmkA6uxgUC7dBi4m0652es+IgeTB+ZZu6r3E3PLqo2CCvvkias37cDvbw8ob+p9c2dJvWrZUvVCw5puWrr8e7XgRgiVUfjZC7tS/QJKXQKpRn4zBZeJlD+/AB6Sf/5jVnSXP7R3byj83sU2cDJ7eyiru1FFbUegsl42kWGtm5V1w0Af7R1eNYtrDiUFr5EgY7GWV0N13h82EPQ0xonYTIWnWl8fMiilHvByZ5EDM8dP4wFxL5vvZP9byX4IrbQH2pNKxgnlRC3UzK6O1YN5o1Vb26/nqaZS1sdxcJanQvY2T4PR2XjkOqnr+sNRpNtnZiXokdTx3hRHoITIa0AhNeLZi0pFf1XsLIh4CcbrqqGruvHtWJV9JIRWAw7On0W359lFFbz/zV0BQQfQh7KXeXj+vrzPSAT8lTffgJi2bf/t3UILoLpt18vf3pYBPy+BGOWIf3NXoAC4KBsRvxov5NXAza5/CYuua5sWqTvEs4jtVO1K3XZdXLUNy6qVDbvi/EVWRwdwZCgTyiDUBBphICbZdSnCY1lyNitGtVIDSzegxjph6pJO2tum0ga+gaAphxS7XzY/VJvY8YnayemYzbZP9ht7reafjtVlXqntZD5UzWLK48Dzph3CICzZpRPS1IXaycgUsA4aJ9kby60YnqnbGNc8yyN1davdmeEQlBw62Wu/sqmsm2ZF2UAR3rRqpq7nM9avp/OS/93Pf+digWXvCKDiK3Igc2AcUxutPrSzo11Bjf090TiIY7dZjmh7d3TYGSqlRRuYn9BuRjgtZzcIOJANQnaRReLaRmkxXc2HK1WvGRWQnI9qXQ/UISwBrQA2TsMQMHwaOLLJwTwVxC4ZK+t6CZpcKLCy/qyY3pSl+e9m1FNgwWC+4Tico52XlJD2gfY9voCHGwMuRy4sh6251On5vXv/vx65Mf8BCUOqrJjRaAvG+hWz+f7KBfkBHa2czQ6OV87m1spZPO9kK2c2/PBdOZsFdfFk1az+YCUM/u82KlzQRFmy8rPt9v7O6b17/wHa8ni8

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1 @@
eNrlV09v28gVb4GeAhTopfcJUaDAQqRJkZIpG0Ygy95E67WVxN7EzsIQRuRQ5Irk0DNDSXTgw2b7BfgR2nWkwnCzu0jQbrdNzz30C3gP/RD9BH1DUWs5DrAF9lTIB5rDee8378/vvXl6MR0SxgMa//wyiAVh2BGw4PmLKSMnKeHid5OICJ+65w87+wdfpiy4+sAXIuFrKys4CTSakBgHmkOjlaGx4vhYrMB7EpIC5rxH3ez7X3zwXIkI57hPuLKGPn2uOBTOigUslCOaIswIwsgnYeKlIcKcB1xg2K4ghdGQSDGecUEi5ayCbmj7wV0UZSjGEUEBRz3aW1RKOWG3VB6QMKRok/buogd0hBwco3Z5JsrAGEFdnN1bhLk26F2sEfj7Wz634N7ts4/hS0RdEspP/USolpSJYWXAfy4YwREsBEsJrMHDBFIgUiYhdG1VfqM0LKMmsqSA9tK4yJKE+uF9DSyTRkgBgYdBmHU5wczxu4zwNBS8+xmfqbiEOyxISi2liWZyiMT9ICaIwk4UnBIXeZQhmUxGfBLzYAgmYsdJwUD5FrvSbMiKi8oTNPQJJzKDUnEEOkU8YwISgoICHxGGClJJbiDco6lAgMcgmogM4QkQ7TiBr9ynaeiinuRFaR4oskyTDiSYgaNAVl54nTAgIRMBmS0LueLtHUcXcaRBIaUDlCYScR5ZSEgQ95WzM5lI4H/AiCtjX4IeL4jS3mfEAUacFZz4n1MT4rjPo0D4ZXbek5D9mZ0yiEEMzwjLnTJcH4P+vtTX0IcggOPsVkR/EKkU8Y8gRwjYiIQPFSLpdPcnBPHd6IGJkH4IG+SP/eRQHp9NfYJdMOrfP/vVuU+5yF/d7DJfAQMJ1BGJHerCAfmf+qdBUkEu8ULg5QUUZ0yKsOcXA0ISFYdA3MlMK/8aJ0kYOEVAV2Q9XJbFrEpbbm9fyCpWoW/FIn/TASOa7ZWHGbTDGBmaZWv612MVOkMQh9DeVJnbfJIU+39b3EiwMwAQtWy1+WSm/GpRhvL85S52Ovs3ICUT8peYRXXr9eJ3lsZQpSSfth7ePq7cvD7O1AxDW/3mBjDPYid/6eGQk7/cUIZkZqpDASP/vT5xIM0Bya/+0+06XrcXbTwZtNqi/sjdPElbQ3fnifFR13YTolX3tJ2D7iZ7PGqfNp56R093B6qxWm3oxupq3VANTdcMzVDtp8w92u+daNb2YVerbj81m9aTlrnZO2zUmtvV0+7eR/V418gYq+6E4xPvydazarVnf3I4Hu80V/f2aiJ7dH/s2FZH14bbVftZMx3YzXUE1qXDwN1wqq1e9xF5nD2wTjs1vZ9Ym3Z9FJjs42eu3moEfn9rQHlL71vbC+bVqraqlxbWdcvW5d+rOTdC6IzCz88NvV7/I/S6BGqNfDGBmImUvzgHIpJ//XNa3nB/6Oxcc/jX51tAyvztgWzvRg11HIGqetVChr1mmWuGju7vHly2ynMOJAevkCBjsVK0Q3V2QawjuFcZJ2IjFZ5qf3PAoJd6QMzteRFMHT+NB8S9aL2X/m8l/SG30iG4n1QyTignamlmfnmoPp5d9mp76/Ws1lTK+jgOTotayN8WdTA6HY9cJ3VdfziK9MapZQY9kjrem1IFeog8BgxSI55/Was2XpU7cyZegPO6auiqbnw3VuVFEsJdAxEunuXEwfPzGoT/29sCgg7gIspfFvn5x+I+IxEQWJ58DWI1Go2/v19oDrTaaNRq392UgTgvgBjViH97W6AEODfNiF+O5/Jq4OZXv4FFt25WPcOwa45tOI2qaXmGTlzDaGC7ZlrE6P1VtkcHcGQqE8og1QRuwkBk+VUlwmPZczZMo2bWwdN1aLJOmLpkP+1tUekDX0dwK4cUu1+1PlRb2PGJul/QMZ9uHe01d9utPx+qi7xSO8lssJvGlMeB5032CYO05BdOSFMXmicjE8B63DzK39iuaXgWpIqAwR5ZVTc7+1McgpFDJ3/tmxvKmmWZyjqK8IZdt3S9mPM+n8x6/ve/TF0ssLw8Amj5ihwKHRgJ1Wa7H5Os1hmMzHZbzwYndfv+/fZe2D70n9WUyvwemGlo12OkVrAbBByoBiGvkXnlNvTKfLyaTVeqXjdMkJyNi10PzCEsAasANk7DEDB8GjjyloOBKohdMlbWAAQgBFbWnpfj28LIV7me9xRYMBhwOA5naGcVJaR9oH2Pz+HhxIDLmQvLaWsmdXx2587/b0Su3YdRXY7TS+VzMdgvndMBXzqX4QfhsvmsLV2S4Qf/0vns4HjpfG4vncezgWXp3M5ounQ+eykTPlm6SezeUjj84z4qXNBEWfDy063O3vbxnTv/BYvRO3Y=

View File

@@ -0,0 +1 @@
eNqlVmtsFNcVXnDaEJSGNK2gUisyWaEWAbOemR3vw64T1muTGD/W9hq/iLXMztzdHe/szHge+zBxG9y0/EgbaeKa0KSlSbC9yDg2yA5QwECV4lRqUx5JaOwAjRQUFzUVAlKXJKXpmdk12IE/VfbH7Nx7z/nuud/5zrnTk00iReUlcdEwL2pIYVgNBqrRk1VQp45U7ZnBBNJiEtdfFwg27tYVfmpNTNNktbiwkJF5hyQjkeEdrJQoTJKFbIzRCuFdFpAF0x+WuMx0QXqrPYFUlYki1V6Mbd5qZyXYS9RgYG8Glx+omBZDWAox8KdgvIgFNzxmX4fZFUlAppGuIsXe3Q4zCYlDgjkVlTWcNm1EGJHwr2oKYhIwiDCCimBCQwkZDqTpiolBONzmnCQJ+Ri0jGxhR3TROrOJdeu9GNtqF5mEZaAxSV7IhFTEKGwspCBVFzQ11KHmXDiksgov573sPixnhyExyosIk2AlwXchDotICmZSo6AYElU+CSEyLKtDgOabyGGaoqsaGOZ3cGCbVBTRBcsxBT5YRtIxEYGFJoGDmgKqrBSZTGNMWNI1DPAUIBZDSXgCRKUow6wak3SBw8IIY+bCA0cl4zAPIDMKHBRSr1qnlhVIqaLxKDe07Ky3Lx10Po4ZkCBJcUyXTcQ5ZiEjvBi1d3ebmQQ18QriTO7zoO3zTKVwB2I1MAXb/yM1AiNG1QSvxfLZuUtCgrk4TRJ5EZ4JxlzJ01UN/kHT34FtAANGzNzB6C2TdRb/CcgRBnIEwfKgWpDTI1+BxC+zZ0pfQUAb5E/5ylS2d2djiOEgqIu2B/tjkqoZIwtrdhQUiKCQkMhKHGxgvBbt4uV1GIciAuhyCOpURBbtxlAcIRlnBBDuYM7L2MfIssCzFqGFZj0M5+saN2O5c3nILGMcuoCoGeMBCMJXWViXgeYiYqSD9jiIfWlc1RheFKBZ4GZujUHZWj8yf0Fm2DiA4PnGZQzmnEfm20iqMVDDsIHgAkhTCcYAoyRc9Nj8eUUXoUqRkfXX3bldfvH2dk4HSTrc+xcAqxmRNQasznNwgTMkM4OzEmAYrxCDLKSZR8bUtVCIjYTCidKmuL9Sc9VzZZ26P8lVNZEbQx5ORg6q1lHVGCpTGlKVXd7mSGtzTRwn3ZSXIN1uF4mTDsJBOkjc06xwrcFwp4OuaAk5qIpmp49u8jvLwi3eIl8F1RWq3egSa8iMolBVQroz0lTeRlFhz6aWdLrK566tLdIy9Y+nWQ8dIBzJCsrT5tPjHl8JBtHpSZ4rZSl/OFSPGjJP0F2BIiIq02UeV4p3KtVtHOH38rFoeVxS/USUrpgXXhHlwYl8hC6C9hDmb2ROGwJ0Ri1m7PZ4PHug1clQaugng0CZpqs9/aBD9Oc/ZvPXxauBqtsSXt5fDpo0Jhp1aJhkERZgNYwiKBojPcU0VUzT2OM1jcP+/DaNd5Xg/kYFOmcEZFgxJ/ksG9PFOOKG/HcV+4QpdsikGT5cRzhKy5KK8HxUxnAL3pC7KPHK8rFcZeGSEmVEvsva1piwVJ/qSqc4Vue4WDKVILxdtJMPI52NjOddoGOY20BAeEI1+skip3skvzQnvCE4LIGTBE6Qh9O4eW8IcLUAodYzf12DbxGwfehOA02Kw71jDFjpODZ/XUEJ0Ku59W0Q2uv1Hr270RyQ2+t1uw4vtFHR/EhIKqEeutMgD9BPehLqcHrOHuc5Y2oVDEIczbk93jAi6QiBKJIiIpzbzTldbq87TEc49DuzG7KAY+ZSlhQNVxFcfLyWMabWJZi02WJKnUChC05aAj2VFXQOBfVwuWSeQS3B4BIWJIYb9W/A/QwbQ3jQkp+RLW+t9dVU+g+04PN1hAfk3FdRVpRUkY9EBoNIgbQYQ6wg6Rz0SgUNAlaDr9UY93BOMuIsClMIsZ4IcuNl0IXm0G6prt9stFlGgNiTrDEWc5baQcFOewmWYEo9LpogrG+nbYO5zn9y0dsPP7vEZv0KhIYaaXr9gxOfN//8o+o1Jxb1SMYS+wuzp5+cfqi1919bdoxEL1zQ2565caXvG+/Vblm2992j3Vfe+usji9f/hlm858C3G+tfPPLmzJPLx3cWXr8qf0btenT53hv/uMR/unL02n0PdPys+/39S1ecW4GePSufbqrdp1Rvi797Rvjhw89Fxvjztp++9d4740fvT/079cbl1Y86DzStnd15YnSJ7YPT53Xx+auPVW/xHCpfOrtLmey/ec/Tf3mxuOfSxOy2VR+8XNDXd6Ihu7aPLMVa4g0Vk9pkVv37xJGvG+Tl8is/Gv7+qVVTb1R980+nPu0N/XLZJ6/NpJ6/+EJN2UsbG9/fufLiZG8gYlvdSJ9ff2X64+CpS++49I/Xfuupw9ebO2xPOEaX7qhr7tn+um34auCkeHzynnN71sy0LP4PWro5+fLXjvWeOGus/mdf+4dtz93wffKdC13HZ6dn0sEMNXNs14dvJusmPxoYk/4b/Fvn7orPD6+8VnPzJlm+4uDkvXuX9U6enXr1fn7f8daOqfqnftxwUiwo0b73299vKfjVyjj13fOnq5wP9L+0KXYwYEwr5+q314/+If725oey1OuXmtecab3v5sV7HWd/sePX7Ze1I0NnyM+W2WxffFFge3p2+/VXCmy2/wE4OX83

View File

@@ -0,0 +1 @@
eNrtHctu3Na1QYEuDBRoFwW6vB20UBKIHL7mJcMoRiPZUWRZtiVLfsggOOTlDD18mZechwwBbfrYD7rptrUsFYbrJEiQpmndRVdd9AecRRf9hK676LmXpIZja2Ln0TYeMnDk4X2ce97n8pzj0TvHfRwQy3Nfe2S5IQ40PYQH8qt3jgN8N8Ik/PmRg8OuZxxe3tzavh8F1tM3u2Hok6VyWfMt3vOxq1m87jnlvljWu1pYhs++jRmYw7ZnjD795of3Sg4mROtgUlpCt+6VdA/OckN4KN3wIqQFGGmoi23fjGykEWKRUIPpRVQKPBvTZWREQuyUDhbR1O4BHEhQ2MVogDX4K0CWi4j54+zWiOCgdHAbRhzPwDYd6vghp9A1LjyJ8DcJA6w58BAGEYZnOMsHZoRRQEEIfI2OeZ6d4B+OfAbajFzGLwrq5PMSoOhqDlsQan3LHqkEa4HeVQNMIjsk6h0SbzEw0QPLT3aVmiheh7DbsVyMPJhxrH1sINMLEGVrgLvYJVYfUNR0PQIE6SfXoGgDfwyUnMCjawRTXtKNA9iDRsBmF8OK0IMNZACcYuKlUkJa24tCBPACYCvCffgJINZcH0ZJ14tsA7WphBL0YGMw4ikBvhYAoaA2hFHtB6AOQWjh+JGtY5+eITQLhyJke14PRT6FmHIWBGK5ndLBARUkaKIVYIPyPgF6O7PUa9/BeghLmXK8tGhsze0Qxwq7iXROEchWjCdlouXCT0ejMwm7LsL+LbqfR+dhgeaOnuPoyZJFxn8HZIRAG0FfLVBaUKcffAkmPss9qvkBBraB/IIvzcrbB8ddrBmA1D++8Z3DrkfC8eNpe38XNBCDHWFX9ww4YPz7zr7lLyIDmzbo5UOwUhczto8f9jD2Oc0GxT2Kd43f03zftnTG0DK1h0eJVXMUl+enH1Ir5sCDuOH4w01AorlWvjwCx+QikVfqvPDekAOnYbk2OBqOynZ85LP5P2UnfE3vARAucXrjo3jz4+waj4wfbGj65tYUSKoJ4wda4FSVD7LjQeSCleLxcevy88clk5PjZF4U+dr7U4DJyNXHD0zNJvgPU5tBmCNO9wDG+DfCkQ5itvD46b9UVTfVtnNup9daC6tXjOW7UatvrO+Ib6t1w8e8dIlf31aXg6uDtf3Grnljd6PHiTWpIYi1WlXkRF7gRV7k6ruBcWOrfZdXVq+rvLS6KzeVnZa83L7eqDRXpX310ttVd0McBYG0bg/vmjsrNyWpXb92fThcb9YuXaqEoysXhnpd2RT4/qpUv9mMevXmWQTYRX3LOKdLrbZ6BV8dvaXsb1aEjq8s16sDSw4u3jSEVsPqdlZ6HmkJHWU1g15FqnNCgmFVUOoC/e9xqhs2eMawO77fUOq/A1fng6nhnx0By8KIvHMIeoj//rfjJNT8dnN9osLfO1wBnRw/2abeXaygTT1EkiApSKwvKfKSIKALG9uPWskx21QFn6IQD8My84ZcHB/OIghwAcHhuSg0ufr72wG4UhP0cjW1gWO9G7k9bDxsnar9T6j2g2gpPRCeODz0PYK5BM3xo+vc1TjqcmsrH8SmxnlBR3OtfWYK4yfMDAb7w4GhR4bR7Q8cobGvyFYbR7r5YbIFXAg9BhDiHDK+X2vUHyczqSI+BOIFThQ4QfxkyNE4YkOoAQazn0noJ+PDCnD/4+cXhF4P4tD4ARPPX7LzAXZAf+nJEyBKo9H48+mLUkCAotL4ZHoN8DkDRJQc8vHzC1IAoig75NEw3cBZxvjpD+FBlWVFrghG1RA1s1HHstDGhiS321IFV4EJ8h+pe9QBEJWl7wUgawyR0ApH46eLjjakPuecLFbkKpB6FpysbkcG3oraKx4lgpxFEJVtTzPebZ3nWprexdwW08fx8cqNS82NtdZH17msYnGbzIXDvOsR1zLNoy0cgFzGD3XbiwxwngE+AlhXmzfGH9YNWTTltqk3RKNu4hq3vLl1rNmAZF8ff9CVz5WWFEUunUWOdq5eVQSB3bh+ehT7/E+/+4ahhRoNHha4/BK9nulwOeOaax13OwrvOm4nuHIh3NheX3UvCFf98zW5MyotpnEg3sFPLnQ8U29YoIM5hDSMpJZbayym16v4dsUJVVGGlfHFTTUBHRz4gBWAdSPbBhhdz9JplIMLleUaeFhaEhYhytmhVlq6l1zfSpnb4OTiFwOgEVTVNdt+FkZMLEyoO/tv7e7cUfrhzZv25ZFldIM7YrRcXwVgcczL3BMy14T0lvCZ97eSFnQih96VYCHEzNuLEF7NiGh2jODBYsn2OmCLbZJiDFywCIWjUQjxqtsHZ868ulKaKYMsM7OMurfnUl4VzDmNOahgzUzW7JUK5sxiTnyTL9gzgz178H/BnMKwPj9zkpxIwaCZ2pPk3QoOzeSQVVx4ZjNnSyu4M5s75+GlVLeI7hU8mh3bixeK2dw5yAtrXkxjlnkZWm+tbF5avX3mzOyC15NsvStOCLB6V5wUiEtcr30b+O5bag+PWNmnb4+4cHulUmtuXe2t4uXo7uaN+tCorK+HeLilCBu9SzWao0+z++lFI1vGAteYcQC0fKUN0xQEbJEW00KKamA/7FIomtGH9cBomEsyVaoR56loxp+m+vHw1OF0dVwbglGWj85MBNpAnRTenp21nKS4xyZOage/fHiN5iubLG3/UZyPP8nplSVehj/vNuM6wurpdYSjeHp8/83ymzOyqo/T9NrFJD0sVRvTudznygmfJ3v8ixnHviClLNOUcprbe0AresNnET0UKw3xBZhOJ/S+VTupCL2EypRMz7a9gRr56klpKrWOVNDxUyq/WyyJlagYLXRaIcvC7c4+IwqoEac2MhgM+AQhai7UTrKJu9K9BduLqVsAP7NA02zwYWEK6MIiWghwJ16z0AJmm17gWhodZ+WQYEQnrrkWLXnSbCsmyDNR08EBsI4uA82BJXKNr9Uq9JGB4kRJ4hWxLsNIuK9aBoWSbCpf9IjaBKdjY8IAAJY2rd2o2Pf0LqxMXZcoZacpCCp1mksHJRDFJUVcOKCIxtJhVNoaCUEIBvWBz8ITBIHhO1nxPEhZoCjRmrSq050KL6TPJjxXajwlySKqoVHOiIxPrmGdsJlWMijYDYuEFJSlx7wtl3XDfVZeyWO5qgyrShlAlkVF5n23E/PfoDSLgixQKgfgiVXHp/TIvJIO9NhAZTJg4E6A6T5JFk7GrIBJfpeC9UHpSBRg1Wkz6GKdkXgybFF0ZYEXavGobvmq4yzQ0rwwGWGr4pFu5FjAAMqOBt3DcusMNJ01MbaJbfVwzE+Zr08NMqZW2SBFVe9atp1dORnMrARvEbK4lJXRZDAjKAMPfA8iWwpSyY4lEKkM+yDRnsOQZsDos2NRBV1CVTYS9Rnj6eJOBBoUS0LhK+lALIkaLx0c0OCqe7SfQeAbDVDjah1sPevV46T1xOinjBJxKHUC5wGKDgqLNjSfwPgO7I5Ib3SqM+gnk3HI1FzOzPiOiV+YPuufv/7JyWlmehotw4sCAoUki1P1eDPwHEQr6F7gwSUArNlG1KtTd7cI7rGtaw58IJEbWASzfgn4THAIkyAcNhBrkBXvQg4ljJ7HKvW+rekY8TxP3byDtsHs9z0XL6FTfAd6/dp2i6u9gcqolfhn6iZALRUwYxYgyqIAFoX4kwUppWcnnD2LtiKXIbbhAT5w9rT4qg25WqmeJr/YgbPYptKTS0sSX60cfJX9PGe+/zXo55neyKLYZMnUkdlL86zmHXrfRS8qGX2hHp/MbRyV7u3F0XsPHvZeGMD30uv7NI9uARSwsxjGZ8TdPTh+L90Yry6ibxF9i+j7/4i+e8xjzTDc2THyFBuejpR7kVQVhCJYTgdL4PbtbMigIWAqFKgv4/CLntGiZ7ToGS16Roue0TnoGT2UKnXlq20aVea5aVSRK1//ptGqIn2ZplGpWj+9abSqtau6UcGi3hBN3DYlUW/XRCxKdUlQavVXomnU0JU6WMbnbxpt/3t2Feh6bUPaiEa9u9bO2h3Rvyp2l5fPi/ubvS9UBYJ3wf9h02ip9N9o0Py6c2RC/nYXl3JGMjrp38kZ3SddOTmjm/ba5Ixk1kGTM5ozfTH5onwxd6KeJKALWc+7rOOaQv48OKuh5C9W549kLX8kxy1IuaN7aS93tzIud7q9nan45E2/cyfsvBEsKnmjmM8bwULeCP7re63c+a3X80ZxpVY4rjknWM6f4zqfN5LfKN6g5j847ea0TtVKG4SL98Z5FzXt+s4b0YXrzoHrhun8lWp8nL8CVZHrK96nijfmV5vg3CVzkeN3i46Rue/v9Bz271TyVlQPPCd3RIc57F8mXhR2Bzh/b5CoeIWcfxlfTv6BefFCVbxQzVnzhCDmjeR68Q5ZtIvM2ztku8jcF9euedPqt6LcvTyybyMqrpnFNXO+CG7krtXtR0WAmn8z3rGI1bbswmUXLnsOMwPFe3LxnjxnRtxz8veenL+LyGUbqMpfDc71QpzDYqsW5pDoHH4nQeZbSouvoJh/kiM/f2adu6+JQvSr7ItvV5l/kj2zSBjMe8JALJJg895+n7+MAfsVLvm7idBfyJS7GOUWMWrOCZYEqfgHNUUZsqjUFCJ+tURcKYpx80jwS/w2cBJ6/mm/B/w/5izgpg==

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1 @@
eNrlV91u28gV7gK9CrBAb3o/YQssUIg0KVF/NoxAlp1E69hKIm9ie2EII3IoMiI5zMxQf4EvmvYF+AjddaSF4WZ3kaDdbpte96Iv4L3oQ/QJeoak1nIcoAX2qpAvaA7nnG/OzzfnHL2cDwnjHg0/uvBCQRi2BCx48nLOyPOYcPH7WUCES+2zh+3OwZcx8y5/4woR8fW1NRx5Go1IiD3NosHa0FizXCzW4D3ySQpz1qP25Ief/+qFEhDOcZ9wZR19/kKxKJwVClgoRzRGmBGEkUv8yIl9hDn3uMCwXUAKoz6RYnzCBQmU0wK6pu16t1HrkwD1aG9ZOuaE3ZC9T3yfoi3au43u0xGycIha+WFoAlYIauPJnWWYK0vexxqBo59wFExQiANy5+bZJ/AloDbx5ad+JFRTyoSwMuA/F4zgABaCxQTW4FoEsRcxkxC6VpXfKPXzcIlJlEI7cZimR0L9+L4OlkkjpIDAQ8+fdDnBzHK7jPDYF7z7jGcqNuEW86JcS2mgTA6RsO+FBFHYCbwpsZFDGZJZZMQlIfeGYCK2rBgMlG+hLc2GdNgoP0FDn3EiUycVR6CTxjMkICEoKPARYShlkyQFwj0aCwR4DKKJyBCeANEKI/jKXRr7NupJQuTmgSKbaNKBCDNwFFjKU68jBuxjwiPZMpVL395zdBlHGuRTOkBxJBEXkYWEeGFfOT2ViQTie4zYMvY56MmSKO09IxYw4jTlxP+cGh+HfR54ws2z84GEdDI7ZRC9EJ4Bljt5uB6Afkfqa+guCOBwciOiP4oU0vgHkCMEbETC9TiSdLr9E4L4fvTAREg/hA3yx35yKE9O5y7BNhj1r5/94sylXCSvr5eXr4GBBO4RCS1qwwHJH/tTLyogmzg+8PIcLmdI0rAn5wNCIhX7QNxZppV8g6PI96w0oGvyPlzkl1mVttzcPpe3WIWCFYrkbRuMaLTWHk6gDobI0Myapn8zVqEyeKEPdU2VuU1mUbr/1+WNCFsDAFHzGpvMMuXXyzKUJ6/2sNXuXIOUTEheYRZUzDfL31kcwi0lybz58OZx+ebVcSXNMLTqt9eA+SS0klcO9jn58zVlSOZEtShgJH/QZxak2SPJ5b+7Xcvp9oLNJ4NmS1Qe2VvP4+bQ3n1ifNqt2RHRivva7kF3iz0etab1p87R072BalSLdd2oViuGami6ZmiGWnvK7KNO77lm7hx2teLO01LDfNIsbfUO6+XGTnHa3f+0Eu4ZE8aKu/74ufNk+7hY7NU+OxyPdxvV/f2ymDy6N7ZqZlvXhjvF2nEjHtQaGwisi4eevWkVm73uI/J4ct+ctst6PzK3apWRV2IPjm29Wffc/vaA8qbeN3eWzCsXa6qeW1jRzZou/14vuOFDZRRucmbo5fpXUOsiuGvkdzOImYj5yzMgIvnnP+Z5a/uivXvF4V+ebQMpk3cHsrwbZdS2BCrqRRMZtXWztG4U0b29g4tmfs6B5OAlEmQs1tJyqGYNYgNBQ2WciM1YOGrt2wMGtdQBYu4sLsHccuNwQOzz5gfp/07SH3IrHYL+pJJxRDlRczOTi0P1cdbl1db2m+yuqZT1cehN07uQvEvvwWg6HtlWbNvucBTo9alZ8noktpy3uQrUEHkMGKQGPPnSLBuv850FE8/BeV01dFU3vh+rspH40GsgwukzHzV4claG8H93U0DQATSi5FWan78v7zMSAIHlyVcgZr1e/9uHhRZA1Xq9XP3+ugzEeQnEKAb8u5sCOcBZCbYvxgt51bOTy1/DoutAwMslbFTqlWKtTvSyZVrVUqlqwncTsvEXWR4twJGpjCiDVBPohJ6YJJeFAI9lzdksGeVSBTzdgCJr+bFNOnFvm0of+AaCruxTbH/dvKs2seUStZPSMZlvH+039lrNPx2qy7xS21E20c1DykPPcWYdwiAtybnl09iG4snIDLAeN46StzW7ZDim7pi9olFzSFXdanfm2Acjh1byxi1tKuumWVI2UIA3axVT19MB77ezrOb/8HFsY4Fl8/Cg5CtyGrRgFlQbrT50pgejfmsUNw8ePbsXuXeP2fE03u47baWw6AOZhnY1P2opu0HAgtsgZBtZ3Nx6sbAYr7LpStUrRgkkszmx64A5hEVgFcCGse8Dhks9S3Y5GKi80CZjZV0vQJfzBVbWX+Tj29LIV7ia9xRYMBhwOPYztNOC4tM+0L7HF/BwosflzIXltJVJnZzeuvX/G5Er92FGl+P0SvmcDvYr57THV85l+EG4aj5rK5dk+MG/cj5bOFw5n1sr53E2sKyc2xMar5zPTsyES1ZuEruzEg7/dx8VLmikLHn5+XZ7f+fk1q3/ABRjSX4=

View File

@@ -0,0 +1 @@
eNrtVs1u20YQRoA+CLHoqRAlkvpnkYNhBAnQGg4Qt0ARBIsVOSS3JneZ3aVlxdAhbq49sE/Q1oYVGEnbQ9FLG7THHvoC7r3v0VlKyo+jIkZ6CloBgqSdnZlvZr75qOPFASjNpbj2hAsDikUGf+ivjhcK7legzaOzAkwm45ObN/ZOKsUv3s+MKXXY6bCSt3XBTdbOmUijjHHRjmTR4SKRpxMZz35bZMBiDP/o/BMNyt1KQZj6R3u78XPLWcdr+20/GH2/FUVQGveGiGTMRVo/TR/wsuXEkOTMwNnSXP/AyjLnEbMYO59rKc63pRDQYK7P9wFKl+X8AB4r0CWWAV+cacNMpY9PMS788fuiAK1ZCt/ufrQG9+VpjBnqZ3sVtBy/7+xGxgm8oOf4o7AXhL2uc3Nn70kksTvCuGZWwuswnkYsysC1l5TM68dCus3JLxa31u720uBu5bmcujtNQ3X9zQcXzsYL2wpiTMZZrutToyr46dK1HXZou1mfDDzv540hdhVPuai/Xmzlxr1zENUX7ax7nYS9Xpd86BTsetAfB57ntbKuG4w3GM5wYkiNelEd8EgqsbmUW8seYinfba869DGI1GT1SW/UP/mUs/ocB+ykUqY5PLsU48ZhKTW8FKShzUOcmUIO/HntryOyYicJidcetgceaRHsPOBoKRyWXDUzoIYXQEJR5XmLTJiJMor+SF6KE0l4SsIjUqFHUeWGl0wZCiIuJRKehLa9LaIjlgOtSnpf8wdAMX+agiKhb1v0wipMphCspjlHAqN5sDbGciqogKI0sxfePbTacOvbTaznB3QyM6BJGHjjod8PvHmLcIF0FRFQZH2qLWxcGVxKA5RxivuoZgidTXKI18ilSmmEoJo+xFyvjAlyx9aVySk1JqcVXzsY3HGskIOicbXqX8xmTbZcitTuDwboNWAzqczqwO8hQA1MYXcvYZhKta9LG1ZHsgRqMXFxwJvy1ki6VBupcPde9Z7P/1lqdt8kNfjGU93JpnimwR92ML1g3E0qsRQyl1nR6VgR0eZ/Vfqvq9KpH/j/Vpbe+/WILIlHkXQZShPzB/0+DmfiDVgyicf92B/2euMk8Lv+IBj74A2DQeJ34yhhyXjsRZEX+yNvNGTxYDRmfRS1ggmeIEXtFnJcjbvkOdPRWiqJyqLxG54Y/NjGj9vN4R5qjiUjuYfKGOGa4oYjGxAVzh0RVxFuHXrsT5laSsqKbPj97pVy3ZlpA8XO0uttky6jvqm61a0Weds0Zu0Rks9k5TAFDnMyyMukyh2mNbf6ahNwUVaGHjDFrRbZXmCOtTdNpCqw9pAk7nLoFhs+N5D7L/scze2rdaUurvqnb+eok5nMkVpXL0uWdqlZvhbcNQYqWNH4YQ6acSuwM3JVRLcqJN07N9ajZnLzjSNcHpF3Y5Kr5+LlUTbPK3yOKvs3pmQxjvPexlpfu9h6lQatdTewLgKHDBuy5Pn8b285bDI=

View File

@@ -0,0 +1 @@
eNqlVn1sG+UZd+mQAE0VTAy0Tduu3oeq4jvf2Wf7nCxDjuPSNM13SJNAcM93r+2r7yv3vufYCZEgoEpogurKKv6YQCt1bAhpStVs7QodG4zQfVVDQ2ihY9PUlX0VujLgj2mse+7stA7pPxP+43zv+z5f7+/5Pc9zs7UisrBi6BsWFJ0gS5QILLAzW7PQhI0webiqIZI35Epf7+DQIdtSVrbmCTFxSzAomgpjmEgXFUYytGCRC0p5kQTh3VSRZ6aSMeTyWxsz034NYSzmEPa3UPdM+yUDfOkEFv7tymZ/gPJbhorcpY2R5Z8Zhx3NkJHqbuVMQvOujA4rDv4xsZCowSIrqhjBBkGaCaET23JtsEzM3TMMteGNlE3PdtbWvdu5tq68t1DTfl3UPAEiFhW1nMZItKR82kLYVglO78F1FRlhyVLMhpY/QdXlKKTnFB1RBpxoyhSSqaxhUS4IFsojHStFCFGUJBsCdN90mSKWjQkINjww1N0YZW3VU5wEHaps2JSOQIIYoIAnkUV5yXAxpcSMYRMK7FkAIYWK8AQTnboJuzhv2KpMZRAlroYHilaZcS9gihZcFJKMvVubFiTPIgqqLz057+0TF2224wakGkaBsk3X4iqykBFFz/lnZtxMAm8UC8ku9g2j402iRmYPkgiIguz/kRpV1HNYU0i+kZ1rJGSwHqcLoqLDUxPdkwZcO0F/0NVnqG0gIOrldYheEQl4+GuQIwroSJG8gimXTps/BYifRA9ChPQDbJA/61NDOT5TyyNRhqD+4Lu5kjcwcRbXVucRYCCCQkK6ZMjgwDmcm1LMACWjrAq8nIeK1JEHuzNfQMikRRWIW61rOc+Lpqkqkgdo0K2HhUYF024s64/n3TKmod514iz1QhCJzmBfGdqITnEMLzDs8yUaE1HRVWgLtJtbp2p65y80H5iiVAAjdKNFOdW68mKzjIGduW5R6h1cY9JlgjMnWlqUP9a8b9k6VClyasm+9e4ah1fdhRmOY2JH1xjGZV1y5rzOc3yNMiSzTEsG2HAOslUJ0qwgZ+X9dFrKpjNa23Ah2Umi/XL7hJ0syl3D3I60IJuICfUwXUPpdmtgsnMqvis7uqu7QHOxUJzlYrEoR3MMy3AMRwu7LHl0MDPB8KmRNBNK7Qon+OFkuD0zEo8kUqGpdM+OqN7NlS0r1KWWJrLDHWOhUEa4e6RU6krEenoipNx/V0kS+F6WKaZCwljCLgiJVgqis4uK3CaFkpl0Pxoob+eneiNszuTbheikErZ2jslsMq7kcx0FAyfZHJ9qCi8SEmi2EWGU5QXW/S2uckOFzkjyziEhGn0GWp0JpYYeqgJkxMazFeAh+tXpWmMwPN3bdZXCt1U6gJPOqSEbGiYXoXolQoXYEE9xQgsfauHD1F3dQwvJhpuha1Lw6JAFnTMLNEytUr4m5W29gOT55DXJfsolO2TSDR/GEY1KpoER3YjKWRihB+ojke7sOFavLNqwcqKuTHlunVMe6yenSpOyZMtyvjipsfEpPqxkkC1llxoq0DFcNxAQrWGnwoUEdrFxtEq8ebgsS3MszXInS7Q7N1QYLQCo92wMZtCNANon1gsQowBzx5nz0vHj5nMLacBX1/VVI3w8Hn/x2kKrhmLxuBA6uVYGo+ZIuJCGT6wXaBiocGENL5RW5WlFdla+Dos0F+GlcDYcF0UWyTEhk4lwfFSUZC6K2JjIh3/kdkMJ7Li5NA2L0BjB4FNI2VkJaGLJbTFtYS4SjsJNW6GnSqoto0E702G4d8CtFAxh1RDlI8ltdFKU8oge9Ojn1DpGexLdnckfjtDNPKJ7zfr3T003sK5ks9VBZEFanHlJNWwZeqWFqmBrIDHqLAlymMuGIyE+izghi2J0O3ShVWtXWFdxG21NVCH2ouQcy4fb/C08H/a3UprYJkR5lvW+kh6s1jv/qxvSX/3ODT7vt1HtP6q/zN76+399/shTB3f4bol0pUZ3B5K3HJ4/Lez72eFzuVcfe+uGSxcPJK9LkEvmX1r/+OS+Db7Hv9D1wCOzrf1fjNy3gD9++fbvmcdvLr4ZeOJi6sWZt7XzZ/fyXypf/+5LfSfu+3DLM/xNT15Q+jdP/nX8UOn9W7dNfGvf2NOVzx544vzyo7lz5le6W1OJge+jG+//jM/32kcfrJC9LwUeNN/42jfGfonln5//nO+57eWHJwpz9r2t0ZP7Z5eSby+PHxz4wHfHvzf8NLLwp8ADe/eY3730TnnLwj/77nlv4z/Gnt105/j+Lb/oTk2fvXT7f6gfLKXGNh+vfPzcm45IT9/k+/bZ5Q+7b8xu3fpo15dnDn209/U//+3Ca4vnNv1O3/TO6YnIT2qn/r4c/PVvJp69sDv8zRNb2Bd2vLK7773/vn45cOb6uTMX750988jKckvgtw+9ER+u7n83uCQ9NXsnIHn58kbfzsdeOXD/dT7f/wBEhTET

View File

@@ -0,0 +1 @@
eNrlV89u28gZb9Fb0EMvvU+IngqRJiVKomwYhSw7G8drK7G8iZ2FIYyGQ5ErksPMDCXRgQ/N7gvwEdo4cmG43l0kaLfbpuce+gLeQx+iT9BvKGktrwO0wJ4K+UBzON//7/f90avzIeUiYPFPL4NYUo6JhIPIX51z+iKlQn4xiaj0mXv2uN05eJ3y4PrXvpSJWF1ZwUlgsITGODAIi1aG1grxsVyB9ySkhZizHnOz73529VKLqBC4T4W2ij59qREGumIJB+2IpQhzijDyaZh4aYiwEIGQGK5LSOMspIpMZELSSDstoVvcfnAfRRmKcURRIFCP9RaZUkG5dnoMXyLm0lB96idStxVNDCcL/gvJKY7gIHlK4QxaEgiDTLkSYRp19Y2xcGa5zJJCtJfGRaSUqO/fV8E4ZYoikHgYhFlXUMyJ3+VUpKEU3c/ElMWlgvAgmXFpTTSlQzTuBzFFDG6i4IS6yGMcqYBy6tNYBEMwEROSgoHqLXaV2RAZF800GOgTQVUUFeMIeFAGAY4pUEgGDGJEOSoSq/KDcI+lEoE8DgFFdAhPELEdJ/BV+CwNXdRTuZmZB4w8M5QDCebgKABGFF4nHIDAZUCnx4KuePuBo4tylEEhYwOUJkriPLKQkCDua6enKpGAwYBTV8V+JvR4gZT1PqNEAmkBi/85NSGO+yIKpD/LzgcS0pnaqYIYxPCMsLqZhetj4O8ofgM9AAIcZ3ci+j1JqYh/BDlCgEYkfUCpgtP9HxHEH0YPTIT0Q9ggf/xHh/L49Nyn2AWj/vWTX5z5TMj86nalfwkIpFBHNCbMBQX5H/snQVJCLvVCwOUF1GdMi7DnFwNKEx2HANzJlCv/CidJGJAioCuqHi5n9awrW+5eX6gq1qF3xDJ/1wYjmtsrjzNoSTGyDNsxzK/GOrSLIA6hxegqt/kkKe7/uniRYDIAIfqs3eWTKfPVIg0T+ZtdTNqdWyIVEvI3mEc1++3id57GUKU0P289vqtudnmjrmJYllH/+pZgkcUkf+PhUNA/32KGZGY6YSAj/505IZDmgObX/+52idftRetPB61tWXvibrxIW0N356n1qOu4CTXKe8bOQXeD74+2TxrPvKNnuwPdqpcbplWv1yzdMkzDMizdecbdo07vhWFvHXaN8tazStN+2qps9A4b1eZW+aS796gW71oZ5+WdcPzCe7r5vFzuOZ8cjsc7zfreXlVmTz4aE8dum8Zwq+w8b6YDp7mGwLp0GLjrpNzqdZ/Q/eyhfdKumv3E3nBqo6DCP37umq1G4Pc3B0y0zL69tWBetezo5szCmmk7pvq7mmMjhM4o/fx1wy7/AVpdAqVGP59AyGQqXp0BDuk//3E+GzK/b+/cQPiXZ5uAyfz9geruVhW1iURls2wjy1m1K6tmA320e3DZmqk5UBC8RpKO5UrRDfXpfFhDMNq4oHI9lZ7ufH3AoZV6gMuteQ2cEz+NB9S9aH0Q/e8V+iG1yh8YTzodJ0xQfWZmfnmo70/nrb69+XZaajrjfRwHJ0Up5O+LMhidjEcuSV3XH44is3FiV4IeTYn3bsYCLUSpAYP0SOSvK/Xq1exmDsQLcN7ULVM3rW/HupojIYwaCHDxnA19kZ9VIfrf3CWQbABzKH9TpOfvi/ecRoBfpflGiN1oNP72YaK5oHqj7tjf3qaBOC8IscqR+OYuwVyAVbMicTmeM+iBm1//Cg7dHq3WzYqHTeI0qrWaW673ana9YfYauEGo2fiLao8EBKlcJoxDrilMwkBm+XUpwmPVc9YrVrVSA1fXoMmSMHVpJ+1tMuWEWEMwlUOG3S9bD/QWJj7VOwUe8/PNo73m7nbrT4f6IrD0djJdrs5jJuLA8yYdyiEv+QUJWepC8+R0ArL2m0f5O8etWF7FIybBZcejdX2j3TnHIRg5JPlbv7Kurdp2RVtDEV53arZpFrvWbyfTnv/dz09dLLEaHgG0fE0tZgTWMr253Y/dTpDWB2lWblqPnAdmNjraq+PDo/G+VprPgSmHcbPKGQW8gYBAOUg1RuaV6zRK8/Vqul3pZs2qAOV0Zet6YA7lCVgFYuM0DEGGzwKiphwsVEHs0rG2apZgyoUSa6svZ+ubtrAH3qx8Ghw4LDgCh1NppyUtZH3AfU/MxYPGQKidC6tta0p1fHrv3v9vRG7cf0jDkGlL5nRp2RxGG/BDZsl8vr90SX7IRkvnM8Hx0vm8vXQeT0f30rkNP/WXzmfJXJwtm9e/WQqH/7uPmpAs0Ra8/HSzvbd1fO/efwCXssYa

View File

@@ -0,0 +1 @@
eNqdVX1sE2UY7xhEE40fASVGEroqRHDX3l2v7XWjIVtXYIytbN1Xx5bmeve2PXpfu4+uHYIyvmKQmDMgGKM4V9plzvGxReZgfIhDRI1GEBiGjwTRSDTGv4yo4HtdJ1vgL/tH7573ed7n6/f8nuvKJoCssKJQ0M8KKpApWoWCondlZdCuAUXdnOGBGhOZ9Gp/oL5Hk9nxxTFVlZQSm42SWKsoAYFirbTI2xKYjY5Rqg2+SxzIuUmHRSY13r7OwgNFoaJAsZSY16yz0CIMJahQsMTYIkux2SKLHDBETQGyZX0bPOFFBnDGUVRSEcKwEaCEwaeiyoDioRChOAXAAxXwEsxc1WTDB2p1rc/GAMXAul5Px0RF1QemZ7qfomkAvQKBFhlWiOofRjtZqdjMgAhHqaAPpieAXB/0vjgAEkJxbAJkJm7pByhJ4liaMvS2tYoo9OfLQdSUBO5X9xk1IbB4QdWH/DCJskrb6hRsqWDGrARpRQ8kEUWlWIGDPUI4CuaTkXL6I1MVEkXHoRMkD5eembg8MNVGVPR91RTtD0xzScl0TN9HybyTGJx6LmuCyvJAz3pX3x8ur7wXzm7FMKvr4DTHSkqg9X05GA5PuwxUOYXQIvShd6MDk/3hgBBVY3oPhtl7ZaBIcEDApgy8pmpKVxpiAb48k81Pyvv+qkkQr5rmpisgLvpovQbhxhxmP62acRQnzBhZQuAlBGZeXl3f782HqX8gDAfrZUpQIhAK3yTsWTqmCXHA9HkfCPioATisxkgfzicCkpKoACSfld7fjNRNUASprBicmC5ElKOUwHbmwuqjOeQ7OpMdDK0xTCzRwaPuTsLOhoFGR4byVyRZNMLAhBBe0XucTtdAXjPZ+z5YK4pgKIJiI0kEDjrgWJ6F/cz953mq6GkHiqLD9xuoYhxARu8joRo9NlUvAx5CZkS+54Rwu91HH2w06cjldpP4yHQbBUzNBMN5Zfh+g7yDNGbnlf7kpD3CMvr481AIualIGAdON0aTACNwewR12DECEATjZhgyDD6G1Gdp6MeAUhJlFVEADVeSmtLHi3kqabDMY8ccdiestNTMCjSnMSCghStEowal1CzJgBMpZr93GeKl6BhAArnp07MVwZqy6kpvXwCm6RXFOAveuFxQGArRkVCY9zTGvZWqs5Ypb9e8CaaqEVsZIhkJWPEaa1V9qFyu66jsdDdFgk3VcQRz4W4Uc7mcGIJZUStmxRCySWaCgXC7lfA1h6y4r8leRjR67eXhZrejzId3hmpWOoVqLCXLeBWXbI80VrTgeJhsaE4mq8pcNTUONVW7PEmThB+1Jnw42VKmxckyWA2lxjy2UjOcTBZ22JPnBwL5gRjscJdgk+woNTO5Hnis03dhqXkF3OZ+gUuVmgNGMwF8UjwIsCrw1IgCGN8Je6AlWMZD495wqBbUpVYQnX4HGpWIctLZwdrlVS0M6nWzsWhFXFS8aJTwTWmCAycRNN8HJ0rkhhC9l/r/zOqjZmQq3RG/NPHZygqiIrCRSCYAZEgfvY/mRI2Ba10GGYh5XVlQHyIZOxaxE5DcNEFGgAsphwtz0tt/yyFtfBOyFAdnLEHrgzG7x1JCEHZLqZmnPKSTQNHcx21jxphJITpW0Dp/+8Om3K+Q078SNqFPbP5tydiFn9JddzZvrdpye3fr7RkNW+YNvjL7hu9Sb3fD1dFD3UUN8u/U6WvJxD+zTehbgzP39A4/pfX8+PPIeXbDtaXrjz/9te3IWMnV0eO/Vh/d9T0B7Mu/iWz/5E7txa5by7p3pR9aM3QGGTn/wrHg1tp5tnLx/M4euXn80p9XlrRWHH6uVp8Ta54xv8B04vWlba53bry74Hpq//nYozZ9wWdVpv4FN+ec3qGflvlxDp/Fbr98sa27Tp314u0ZJx39lOm97GPFN4++vGTWmuKSU23UlUWOW9vo2T5w7tvTr92ptaXfzJxt+WHr0Lrvmtfu6Xi84ER27/Bfrpnxlr5n3w5e7k5s/KJoR/UHnj+KgwML3Z172s6clYdaFyuHbAuHe9G9Z1DymV/+/rzqyVNS3e7oopN7Pl0lFl8IFmmv8udW3i3coG+7Ptdkunu30DT2iPBScobJ9C/lF2Dr

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1 @@
eNqFVktv20YQRi75HQtd1KYSxZeeQREocpwUsaU0UmAUQUFsyJG0Fblkdpd6xPCh6eOuv9C4dhGkrU+95eJTD/0F+TWdJUVZzqMFJIj77ezszPfNDPXyfA5CspjfeMO4AkF9hQu5fnku4HkKUv14FoGaxsHpo8Fw9CoV7O1UqUR2ajWaMEPROQtXhh9HNQlU+NPTZ3Gwenfj5nEJt70ZrEodUlLzcFVVo716szt8PLsHd9Png29ay6D+8KGC5dA1D2f9ZqlCSnijyE4splQRJomaAlkAxR9BGCfDfW0V0aUnQKahkmhrI5Lf7QWQqKk+ToM55T4E2ppxP0wD8II4oozrE0+/RRiWH4ULa8rlAgSiYxpK2NkQdOH5MVLF1Ud2WUQnIIuNk/Mp0AD5/fn1Ewmi2p3gqfVfyQoJ5dUNwbJmGw5+/uz6PsZfvcf9OGB8sv598oIlFRLAOKQKzvLt9atbtVuvezHnkCm1fj0DSKo0ZHP4o5fHVT0APlHT9Su7Yb8psNEqgfUFTZKQ+VSfrH0nY/4b8pig3vDDmVRUpfLlKd4O//x9HoGUmMsvg4dFEj994trTPQxv/XaUIhFWnQx8RWzTdonV6rh2x2mR+4ejsyEILLT1r3zC+PL9QE+thuv+T6RZYX2PUQrk5t3N8Lgolv+qldI4DsN44aWJl3GtS7vU4WkYVkqFwvmqEA6LoLStrafHJcVUCHjJ0Y5jysm+wPpi0o/xjlSEaFB0xWKxMDZR6AbRnYE224opHZfDOE+r3CHHZU4jwIfyNaflCikLmOQ25R6yPI4FZ1TjfpxyJVZ64wlnCgIyROFAknhMuhEI5EybYcmgidM0ms26XmauqpZtG67VchBRLzwWaC+bQ7WDWHpdPoEQZOYAowwVi8CDJPanaGk17bZpNZuWvbutXWi5q5ZZRfUtq+Na5RMdaCoEppxlGVKpUIQAAw3e92eaZhbvlcWHLh1Th6QgSjxfn3QNs1iPcV1vGjolJr2AamasjCcesC3NOGZ0JOVDJpV2xfyc21rND/j7em2WtYa7bLg1dFmzXMdI+CTnP9A5W6Zj6iwXjAdelOh8HMMtgFkG1K+AACYC9DnbMbcYE5nyR9ptgkUnUwFe9CzzbrWyFLcw0+E6pmE2c9RniRdFiJmFnUYyqxyZphFDAjQdbX3GD+M0yFzr3TFAKEM2g5xPx2hdAzNSGxmoQ/WnLAx3La/AHUscEwpxWO5qdAXuCBXAIonxdVO4dHexjUet4RwVnUVZ0JkzvY6YLtAOaWRIOs+I18aTFCsoV8I16gWQK9E07JMTbEPsLYHdbBrtttV2Wg3s9d1xrkfBSeWq6ftZn9KQFN2vpxjz4YOmx/YEHyu4qCRjEs9rOL19FMBIpskdxpNU5bPrS2z1L7atXul1r42HXt41ZFu+kuB0G3b7ZP9xt9/7atgbkL3BUX+EX/LZcH/Qsz4nB1Rtet2sNy4v+gcxR850r9uNtnt5cXQvhDkidaRxrAzS7xooxeXFvoEyXV70DGIY+Egj8mhvlA1wCyXJWrCRXIG2mYPEIPubhMkeJpFK/QcC0W6Qx4yMPQYZp8IHmfv+FJO3r09TcpeuSFcArZBe9zaxLXIf/5EAeRAnCR7qzvEVM1RxQuq3yaHmTMBKm5K203adar1u4kYvjiKkUN4hXxcz/8517c1Gu2F9TPt8+GcvRE8Pt1IHOayf/AtKkges

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1 @@
eNqdVntQFPcdB8HKxNqQZDo2sY/NNTEJsMfu3cLdQa6KhzyFAw5Pnr38bvd3dwt3u+s+7gFzfSCxKcmksybRpo5xgsAhIhLxhUE6dbQx0bGx1WRwEhxjoq1NGlPb2s4kob9dDoXR/tOdm9vd3+/zfX++3992JcJQlFieSx1mORmKgJbRi6R2JUS4UYGS3D0QgnKAZ/pqnK76XYrITmUFZFmQCnJzgcAaeQFygDXSfCg3TObSASDnomchCHU1fV6eiV1ctKzTEIKSBPxQMhRgzZ0Gmke2OBm9GDYgkSckTA5ALAIBuokYy2GukhysutGBAY7B1hWtMuRgBpEPQk1AkaBoiLeilRDPwKC25BdknOLxEMuxGpJDayS6S7IIQQi9+EBQgmhBhiEBhSgroqaJMFq0NZ4PJr2SY4JuwadwehY0XbefC7BOAwdCOsAPZQ+tiCIKwZN0WsMyUKJFVkjCDaVQ1sNKIueHBzA/G4YcFuRpMGdJACJSj0og6bbmnOG9bZCWdYCIki3KLJwF3Jadj0Yhs5z/Hs7Ua46wckzPqCQDGeUDGv1GzAU4rEQEHM1KNJ+DOYoMcSStcKz8PxRDTtFy2mygYVBiFUnPEgigEAMQCbXGNXmNPKwIGR1421O0F2+NJwIQMCjMX/UFeElWRxbSaB+gaYjqCTmaZ5BJda+/gxVyMAb6gsjrIUQdDuolUYfaIRRwEESpHJiVUkeBIATZWXO5bRLPDSephmuB3L09pLEJR8TkZPWAEzlRVJ5bE0N85zDSSFmNxGgUR9liuSDiLx4EyJ8BQd9/c/6GAOh2pARP9pI6MCs8Mh/DS2p/FaCdrgUqgUgH1H4ghvKpsfnrosLJbAiqCUfN3eaSm3fMmY0kabS8sUCxFONotV+n/uEFwlAWYzjNIx3q68TIXH6CkPPLAXVXnilvUISSgLoXbhrQmKJIXX2oFvDMqUSyi3udlXNFnE5Z3leM6qIeq1cQpcg8zEnLmIkwURhpLaCsBSYLVlpVP+xImqm/ZxneqEcMlHyoFGvnyp6gAwrXDpkhxz0LfkwrOIpGcx9NBhxGBV6CeNIrdbgBr5udX3h58dgsu3Be9AOO7dDNqsf0ykc6ohGGVhgmEI6ECFsHZWa9UKF9B5IiqOc0M8ghPCSpfaSFsI0kt+aSP4SCJXCSwAnyaBRH0wUG2RCLEqr/J6coks0jCOLI3QCZb4do3iYoQr8m5yNEGEJV04zfUUPZbLaJe4PmVJkRxGYxHV2IkuB8b0hTSDpyNyCpopeQhqNzaJxl1KnH0IvHCqwkBSBtIYCN8dI2CPOpPMgAkvIxlDefGNemBI20aNUUeFHGJYimHxo76lROCES1RrObyTxzPoq0EA1COqgw0KV4i3ktBqkQE0QY5AGzz1GCOwAdgLhLJ6CaKG6sLqoqdwy5kJMOnm9n4ZaLqWkeD+3zeEN2ckNFLByLkkZorGWrq0maYRqpMlO+i5MdZnddGRptAa8MIkXlEZy0mGwEaSUJC04aCSNpJPGGoLQ+wpQ7q8sbobKOoqIeqzdCUlFFCHsVX2lDcXsZIxr5end4zUaHk2OKnXTE3Rhx+SJlHn8DjAU2uNcW842VSpFobA+3yx0WtqnGj6JBA9+eW4ghcqJhKNmTLYKjFsG1BrEVkHMNUogxeg7sxoXjsBArQ6etkwvGCjGXlkyI7uiccLEytFfzHJx6GeVACbOMva2oxN/kq/OVlvirQa3Q3sQI+T7GpWzwtIGwMy9gqo14ItXGjdY6/7wkmBB5iWQe8gnKqrPwjuv/p1eHGvD5HY87hdnPigTHSxzr8w24oIgaSB2ig7zCoMkuwgFU87qiRvWAlTGTPq83n/H6gBX98DVoZs5puz0f+rRjIQGCiGNhWh0LmO2GAooyGwqxELBb81E76R8fPx+YPblOLsJ/8HxGin6lnamv4revzjx2M9stHcp+4aVfC2NZNuXlplrvePj6fXu3peb/OHzub3XLm7/+/Nv/Tvuovu1+e3faxR1vdZr5E2fOPpoeTU9N3Vp3en+L/IsrJyauv/1p7ei5aMErhuXxdWN//uLt1g8cCe/ghWxTpzfuzTq9uGnk41TfI7tPVhy03OA+fO2StK8dcz3Q07P140Od/Ucf3jbx1/Hp9e9/T+78Wt2Rdfbd1asnC7sz9++5tH6H6bgnM/Ow1MMEvlmV2XWztPtn7t6elLzNKyr7n61OMz2OvzMkN2acWzRcZ2Dqn1v5xeWpg2erxgYzL1+H8VW+P/X+9l+n31xhvzU5HfvJUxPuyU3yq+8vPvksc23lwRvS00fKSjLKfnPhg/TQqfv21l4UNp0fGMxlMlKHXjI42Oylo81dNS+4j1dmnHrwtd2P/bDq8Subd3/rP0+3HP/+dNmnzYfj13Z2jE5NTpzYdeFEyeGp9+Jb4MzpnO17Plvy2e/SLczr/zjqWPn8DJjxP7rz2q0x5S/bdl2+cXn7qv1XqOl1Pxr8agk8VbPyyXe//GqJdedPD/y+mG75TtaLN6+0UEu7K8S97qveSezqlu3U+bKq0H47d/ap5h1LeiwPLRt3N3KOPe89md14qfC5NWPyI4LQsuyZV/p7f3lrxDlsEUH31r93fPSHys21W73na1oTn9yI/3FV+XdbxFcnXBtfrHimgiaX0saHzo9f/WdJl/X+c81rox++tSLd//mX30hJmZlJS/nk4Xce2Lk4JeW/GC9YXA==

View File

@@ -0,0 +1 @@
eNptVX1sHMUVP5OiOm2RqBCRIvVje7gVpN7z7t3eee8cI/wd2zhn+85N4phYc7tzd5Pb3dnszN5XlNCYFgqISCvRBFJASny5a69OsEka0hRbRSECEUpoWiEMbUQrUIVaRNT80SqEj9nzmdhK9o+7nTdvfu/33vvN26lKFloEYaNhBhkUWkChbEGcqYoFd9mQ0J+VdUjTWC0NR2PxadtCixvSlJok0tICTOTDJjQA8ilYb8mKLUoa0Bb2bmqwBlNKYLXwbkN0t1eHhIAUJN4It323V8EslkHZwrvFQhRy2KYcTUMuiTUN55CR4lh04GJwNnGXQEvBhAWQwpGCnsAacd0NjmAtCzlEfdwYgXUESwd0wpgwekbGOuL90c0Rn883YcSi949dX00Y3mbOa2ENuhxIgVCoe/c0c6uo5TkWkECVo7gGTdPIUjlTswlHYJZFdzkyJqJ/JZhNoOXd8wCz6FiFmmtKmZQP+II8ta0Edn0NZhXZP6HYdB2WyXlrNgsCnVmTDBsyA6Nmssawwy6+4BP2VNIQqKxtlzy3l9KYUOf46lY8DxQFspjQULDKquccSxWR2cypMKkBCqssRwPWGu1UMxCaPNBQFpaXTjmzwDQ1pNSq37KTYGOmXhOeFkx443bVzZhnzTWoczLKSHT0twwXmGYMTvRJsk+YzfOEAmRoTAO8Bhifslnb/8PKDRMoGQbC1/XolJcOH1/pg4lzdAgo0dgqSGApaecosPSQdGKl3bINinToVLqGbwxX37weLuATRV/r3CpgUjAU52itES+uOgypVeAVzDCcw0JZwTiDoLP438lJJTmZ0NuHbTw0LPemhUJs2FRQvm+obwwkY1AIbgGddCCTTcX9PsPsmUxneLHVHxZEWRQkXvQJPtEn8vEiUIeknZs6EqQQFzKdZlxU5ZGYJu3qHCz05/oGwmhoa/9k3I6FRwfz23IdPX57rJd2wq0IxYrjRJQoao0LW8b1PnkT3FQoCOOgO9XGMXZ2FqntcjETHFEzvWEUMrHW110UcoEBKPQRnLZNLBcQpOObW2E0qY6soBcKh3mhzjAkSLLgPseXtaFBI0XTznQgEPy1BYnJbj98qMxKRm0yVWI6hG+8VqlPgSPRwesSXlfqZpp05uM2E7sY5KIK5fyCX+JEOSLJEX+Q6xuKz3TVw8RvKsG5uAUMkmQy7FmWfEVJ20YGqtWum4p93hU766RLn91cHuZNTCBfZ+XMbOVHl+Yf3999Yulm8dhKAQMVa2Gd+Zrqc8V8TlVsVU1nc7oQLkoBlIC2kjxZP2Ja2A3DCPE6caalVuF4fWdZd1WWq8CLAi+IZ/I8u+ZQQzpi9az91ocwcUpBVuzTNzpQnIFsXFekWjeEhZUeFtSZYN3Y12GkcDj80s2dlqECzCUs+c+s9iJwJRvRr5PTNzrUIY4IZCa/7M0j1VlsYovJcCAh+MMiDKtCQBYkMQjDYqAVggCQoSpC8fds9CGFobjNNLFFeQIV9sWhBWexWQd5d8a0B8RgIMQybeOQoWi2CmN2ohu7OZA2zrSghoH6fFcv3wWUNORjNf05le5tmzuG+rtObeVXComPmktfu4qBiYGSyXIMWqwxTlXRsK2yYWnBMsMa7djmnJTVgJhMJPyJsNgqKVDmO9kYWkb7SnYld9JWgMa4ZxXnRDrQ7o1IUsDbxumgXQ6xNtW+ifvKbq5G6lwD+v7jjZ7as0YbPr/5rHD7S//68U8WLh6R+du6/znc9LV2T/Wnay68bp/6zctz/O677jz8edvAoVDPx+ceWX/hP29c6/Xc/2Hzmh8dnFI/og9uvGfKWts++kJ1x3MXf/XR5Z0vvzr93pa9B1/YcWz2SsuTJ8eeHdgeeaI0s/jWxWlu5oHCoYlXrj3z6tmH79b3nzlw5/6rD/3lxL1je41Pxeib4x9e3PDoPnh5XYPnWgg/++cPTifWvzLPjyYaj9x34ON7GwRsPyF8e+obTd+a29E3kGkcuuPT4tWNew9t/Ftq9up3/ri2ZK7dWGj9JDn5/q6RW0e+Hvrl2/zCpR++dcq89GbX+U8u/9y/oTn1vZ7Z8sK61yJvz/678f1pNP7ZNy888+LR6fWLWPrdP4S/vzNnvLf/g7MHmgY7c///xf/2n/6T1XSYvrP9sf4fHHwq97r87m+z+StPnSs/5z+3b/CvkbnLdzSeX+x8+pb5K9XFhaet737W4PF88cUaz7EDHeuLt3g8XwL1DYCO

View File

@@ -0,0 +1 @@
eNqdVWtsHNUVtklKo5aQNK0UVeUxrBxaBc94ZnfW++q2rN+OsdfOrvEjTqzZmbs7w84rc+/sw5aDYqKYKFVgSv7wI62w116yGDvUDgkhTqENEiVIFBkjnAjaKCgEUhVaVNyKSOmd9bqxlfzq/JiZe++53/nO+c65dzifAgaUNLV8UlIRMDge4QG0hvMG2GsCiA5MKACJmpBrD0eiY6YhLW4XEdKhv6qK0yVK04HKSRSvKVUppooXOVSF/3UZFGFyMU3IXiwPDDoUACGXANDhJ3YNOngN+1IRHji6DAkBQjMRgURAxDVZ1tKSmiCwd87GIExoDzk5AWIGJ/EEzCoxTYa2uUpATU4BQkIU0QlBCcFQONSn9qn1HZ2haHO4zU9RVJ8aCT/WeWvUpzoqCYehycDmALMQAcUxVEmsoZYhsEMIBAJpRWgkSoZA6LIJCQhS2LvNETNhnKvBTAgMx9BuPKNoApDtqYSOSBflJpFpxDTbVsWzDP5CZABOwYM4xgF4AtPQsQjY0MaiKXooLwJOwBI9kxM1iKyptUmf5ngeYHSg8pqA82S9nBiQ9EpCAHGZQ6CAo1FBUVKrkARAJzlZSoGJ5V3WCU7XZYkv5rnqCaipk6XoSZTVwe3LBTs2EsuoIms2jEmEmqvas7g6VIKhWC9Fn8iQEHGSKmO1SZnDfCb04vrrqxd0jk9iELJUedbE8uap1TYatMZbOT4cWQPJGbxojXOGUs3OrJ43TBVJCrDyte23uyst3nLnohiG8ryyBhhmVd4aL8pwas1mgIwsyWsYw3qBnlrJjwzUBBKtMRfjftEAUMe1Dp6awNuQCYdzWAvw7tv5Us2PhltWRPykbGuuDutizUVNLDfjJsI8Ipy0kyUYr5/1+vFPY2t0srbkJnpHGV6JGpwK41iK+hXZ87xoqkkgFGrvKPicLTiOxqaP65QEGV2DgCyxsia7yZ3L3U42180sVxepGQlOlQaKbq25ovLpgUxa4E1BEFNphfYNsC4pBkw+Plvaohua7QYTIhVojflYeqq0spL7Ao6VJhmapJkzGRIXOpAlRcL5LL5LRw60cm6apk/fboC0JMCHU56li8+51RYGULBotu9bMKzP5zt7Z6MVKBc28bFr2WBFwWo2jFOBp283KEGM0nAys2JNSoK1WIEH/XEP72TcHsbt8nm8gPG6PC6v00PTsZgvDtxu12u4+SUeo9hi6pqBSAh4fL6irLVYqXAZu8+CuL5c1TjSACGpvGwKIGLG6jQ7BhggdAPIGidM1zaQtRwvAjJSrD8rX9fTFmptri1EMMlaTUtK4NcXy9f19/Px/pgSbDe11nZvg0hnI+06L2UaWxs7uXgE0O4urgbtSKYSUSel6vX9YpJkPE4fzXgZmiUZiqYYiiGjA5zQyj7RFIrBbJRO1uhRRvB2RGR2b01LtjnduMMntXY390fNiG9nS6YnHap3mp0NqAZ0S1JkoBcyLJI8UbqrV2n0NoGmbJbu5eoSOBoOicGqAIFrU8L5DZY6hMQdQtr94fMzK/0RIIRiDoLU2tMwQDThqymsytkAEbGTCfCXU0AEXzHBNk0Fi0dxDsyUJAS9A0l3h5Bs8EnVuiY31g3QadcOQDdCTTR1zZuVAOpt84BwXOhYlYRqn4+kS3mopllvsQpvUf8/Wb3aTa5ueDKsL9/BeVWDqhSPT0SAgRvIKvCyZgr4YDfABNZ8Z6jHmvUKLiYe42IACDGWB16yBh+ZK2j/Ox5y9q2Q52RcYynemhFdQYefZV2OAKFwQW81bqfiTb1/wq5JNfFW+fEHD28oKz7r5I431flHN899+0jD4Lbjfzt9/ND4fcPrX9zSHtp1qLBfnHvgUsuHgQ//3r29YHz24L8D59a/fOXh/d/8bmTp6tyxpavMXZvP/Mi3YaHpcSUx8dKFi57+rvRH6Vn/k0tXr2z9/Av05tbOb/Y98nAo9Nam6I2cP/JB6u6e5z6ef+cF4Z6p5upd5/90vaLtu6PjW1qfXbg/PD/zn6ODXX9m2+Jfdyw++/i1+nuXflD2xpWvDt6vHNrkGMn888DstbnJjk9HHiq7/Pb6uqYvTyaknseO5BwXxJGTf9l3bvfHfXuG3rl8efB708RT2ypmTu6+dP2lTacG48r0t8PHovf8OHqk92dP/+SrM3W/nVY2U9wDrMc4/MbG4S++v77x/KMLT86fOPDL3+97L7y0t/tfew7+QtbeffrLe8s3Lhwb+8MzN8qnZxfOLXqP/kbecOV5P3Pi9Q1/vdQu3Ax7RuEHqbPcxdGNBz9b/KTtvnC6Zs+vKn7YAs9v/fzT75xqPVR58h8/Hdm8o3D3hTHnkbbR4M2vtx0e+rlyPUG9f63iRvi9j9TtShIdm/+jNLI9/X4/1uTmzXVlWx46CxbvKiv7LxN30us=

File diff suppressed because it is too large Load Diff

View File

@@ -611,7 +611,7 @@ Read more about [defining tools that return artifacts here](/docs/how_to/tool_ar
When designing tools to be used by a model, it is important to keep in mind that:
- Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This is another form of prompt engineering.
- Simple, narrowly scoped tools are easier for models to use than complex tools.
#### Related
@@ -713,7 +713,7 @@ Callback handlers can either be `sync` or `async`:
* Sync callback handlers implement the [BaseCallbackHandler](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface.
* Async callback handlers implement the [AsyncCallbackHandler](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html)) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered.
#### Passing callbacks

View File

@@ -3,8 +3,8 @@ sidebar_position: 0
---
# Welcome Contributors
Hi there! Thank you for even being interested in contributing to LangChain.
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
Hi there! Thank you for your interest in contributing to LangChain.
As an open-source project in a fast developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
## 🗺️ Guidelines

View File

@@ -21,7 +21,7 @@
"\n",
"## Dependencies\n",
"\n",
"**Note**: this guide requires `langchain-core` >= 0.2.13. We will also use [OpenAI](/docs/integrations/platforms/openai/) for embeddings, but any LangChain embeddings should suffice. We will use a simple [LangGraph](https://langchain-ai.github.io/langgraph/) agent for demonstration purposes."
"**Note**: this guide requires `langchain-core` >= 0.2.13. We will also use [OpenAI](/docs/integrations/providers/openai/) for embeddings, but any LangChain embeddings should suffice. We will use a simple [LangGraph](https://langchain-ai.github.io/langgraph/) agent for demonstration purposes."
]
},
{

View File

@@ -22,7 +22,7 @@
"2. LangChain [Runnables](/docs/concepts#runnable-interface);\n",
"3. By sub-classing from [BaseTool](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.structured.StructuredTool.html#langchain_core.tools.structured.StructuredTool.from_function) class method.\n",
"\n",
"In this guide we provide an overview of these methods.\n",
"\n",

View File

@@ -50,7 +50,7 @@ pip install langchain-core
### Integration packages
Certain integrations like OpenAI and Anthropic have their own packages.
Any integrations that require their own package will be documented as such in the [Integration docs](/docs/integrations/platforms/).
Any integrations that require their own package will be documented as such in the [Integration docs](/docs/integrations/providers/).
You can see a list of all integration packages in the [API reference](https://api.python.langchain.com) under the "Partner libs" dropdown.
To install one of these run:

View File

@@ -34,6 +34,12 @@
"LangChain agents (the [AgentExecutor](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n",
"In this notebook we will show how those parameters map to the LangGraph react agent executor using the [create_react_agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) prebuilt helper method.\n",
"\n",
"\n",
":::note\n",
"In LangGraph, the graph replaces LangChain's agent executor. It manages the agent's cycles and tracks the scratchpad as messages within its state. The LangChain \"agent\" corresponds to the state_modifier and LLM you've provided.\n",
":::\n",
"\n",
"\n",
"#### Prerequisites\n",
"\n",
"This how-to guide uses OpenAI as the LLM. Install the dependencies to run."
@@ -183,10 +189,10 @@
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"app = create_react_agent(model, tools)\n",
"langgraph_agent_executor = create_react_agent(model, tools)\n",
"\n",
"\n",
"messages = app.invoke({\"messages\": [(\"human\", query)]})\n",
"messages = langgraph_agent_executor.invoke({\"messages\": [(\"human\", query)]})\n",
"{\n",
" \"input\": query,\n",
" \"output\": messages[\"messages\"][-1].content,\n",
@@ -216,7 +222,9 @@
"\n",
"new_query = \"Pardon?\"\n",
"\n",
"messages = app.invoke({\"messages\": message_history + [(\"human\", new_query)]})\n",
"messages = langgraph_agent_executor.invoke(\n",
" {\"messages\": message_history + [(\"human\", new_query)]}\n",
")\n",
"{\n",
" \"input\": new_query,\n",
" \"output\": messages[\"messages\"][-1].content,\n",
@@ -309,10 +317,12 @@
"# This could also be a SystemMessage object\n",
"# system_message = SystemMessage(content=\"You are a helpful assistant. Respond only in Spanish.\")\n",
"\n",
"app = create_react_agent(model, tools, state_modifier=system_message)\n",
"langgraph_agent_executor = create_react_agent(\n",
" model, tools, state_modifier=system_message\n",
")\n",
"\n",
"\n",
"messages = app.invoke({\"messages\": [(\"user\", query)]})"
"messages = langgraph_agent_executor.invoke({\"messages\": [(\"user\", query)]})"
]
},
{
@@ -356,10 +366,12 @@
" ]\n",
"\n",
"\n",
"app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n",
"langgraph_agent_executor = create_react_agent(\n",
" model, tools, state_modifier=_modify_state_messages\n",
")\n",
"\n",
"\n",
"messages = app.invoke({\"messages\": [(\"human\", query)]})\n",
"messages = langgraph_agent_executor.invoke({\"messages\": [(\"human\", query)]})\n",
"print(\n",
" {\n",
" \"input\": query,\n",
@@ -503,13 +515,13 @@
"# system_message = SystemMessage(content=\"You are a helpful assistant. Respond only in Spanish.\")\n",
"\n",
"memory = MemorySaver()\n",
"app = create_react_agent(\n",
"langgraph_agent_executor = create_react_agent(\n",
" model, tools, state_modifier=system_message, checkpointer=memory\n",
")\n",
"\n",
"config = {\"configurable\": {\"thread_id\": \"test-thread\"}}\n",
"print(\n",
" app.invoke(\n",
" langgraph_agent_executor.invoke(\n",
" {\n",
" \"messages\": [\n",
" (\"user\", \"Hi, I'm polly! What's the output of magic_function of 3?\")\n",
@@ -520,15 +532,15 @@
")\n",
"print(\"---\")\n",
"print(\n",
" app.invoke({\"messages\": [(\"user\", \"Remember my name?\")]}, config)[\"messages\"][\n",
" -1\n",
" ].content\n",
" langgraph_agent_executor.invoke(\n",
" {\"messages\": [(\"user\", \"Remember my name?\")]}, config\n",
" )[\"messages\"][-1].content\n",
")\n",
"print(\"---\")\n",
"print(\n",
" app.invoke({\"messages\": [(\"user\", \"what was that output again?\")]}, config)[\n",
" \"messages\"\n",
" ][-1].content\n",
" langgraph_agent_executor.invoke(\n",
" {\"messages\": [(\"user\", \"what was that output again?\")]}, config\n",
" )[\"messages\"][-1].content\n",
")"
]
},
@@ -636,9 +648,13 @@
" return prompt.invoke({\"messages\": state[\"messages\"]}).to_messages()\n",
"\n",
"\n",
"app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n",
"langgraph_agent_executor = create_react_agent(\n",
" model, tools, state_modifier=_modify_state_messages\n",
")\n",
"\n",
"for step in app.stream({\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"):\n",
"for step in langgraph_agent_executor.stream(\n",
" {\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"\n",
"):\n",
" print(step)"
]
},
@@ -707,9 +723,9 @@
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"app = create_react_agent(model, tools=tools)\n",
"langgraph_agent_executor = create_react_agent(model, tools=tools)\n",
"\n",
"messages = app.invoke({\"messages\": [(\"human\", query)]})\n",
"messages = langgraph_agent_executor.invoke({\"messages\": [(\"human\", query)]})\n",
"\n",
"messages"
]
@@ -839,10 +855,10 @@
"\n",
"RECURSION_LIMIT = 2 * 3 + 1\n",
"\n",
"app = create_react_agent(model, tools=tools)\n",
"langgraph_agent_executor = create_react_agent(model, tools=tools)\n",
"\n",
"try:\n",
" for chunk in app.stream(\n",
" for chunk in langgraph_agent_executor.stream(\n",
" {\"messages\": [(\"human\", query)]},\n",
" {\"recursion_limit\": RECURSION_LIMIT},\n",
" stream_mode=\"values\",\n",
@@ -953,12 +969,12 @@
"source": [
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"app = create_react_agent(model, tools=tools)\n",
"langgraph_agent_executor = create_react_agent(model, tools=tools)\n",
"# Set the max timeout for each step here\n",
"app.step_timeout = 2\n",
"langgraph_agent_executor.step_timeout = 2\n",
"\n",
"try:\n",
" for chunk in app.stream({\"messages\": [(\"human\", query)]}):\n",
" for chunk in langgraph_agent_executor.stream({\"messages\": [(\"human\", query)]}):\n",
" print(chunk)\n",
" print(\"------\")\n",
"except TimeoutError:\n",
@@ -994,17 +1010,21 @@
"\n",
"from langgraph.prebuilt import create_react_agent\n",
"\n",
"app = create_react_agent(model, tools=tools)\n",
"langgraph_agent_executor = create_react_agent(model, tools=tools)\n",
"\n",
"\n",
"async def stream(app, inputs):\n",
" async for chunk in app.astream({\"messages\": [(\"human\", query)]}):\n",
"async def stream(langgraph_agent_executor, inputs):\n",
" async for chunk in langgraph_agent_executor.astream(\n",
" {\"messages\": [(\"human\", query)]}\n",
" ):\n",
" print(chunk)\n",
" print(\"------\")\n",
"\n",
"\n",
"try:\n",
" task = asyncio.create_task(stream(app, {\"messages\": [(\"human\", query)]}))\n",
" task = asyncio.create_task(\n",
" stream(langgraph_agent_executor, {\"messages\": [(\"human\", query)]})\n",
" )\n",
" await asyncio.wait_for(task, timeout=3)\n",
"except TimeoutError:\n",
" print(\"Task Cancelled.\")"
@@ -1108,10 +1128,10 @@
"\n",
"RECURSION_LIMIT = 2 * 1 + 1\n",
"\n",
"app = create_react_agent(model, tools=tools)\n",
"langgraph_agent_executor = create_react_agent(model, tools=tools)\n",
"\n",
"try:\n",
" for chunk in app.stream(\n",
" for chunk in langgraph_agent_executor.stream(\n",
" {\"messages\": [(\"human\", query)]},\n",
" {\"recursion_limit\": RECURSION_LIMIT},\n",
" stream_mode=\"values\",\n",
@@ -1289,10 +1309,14 @@
" return [(\"system\", \"You are a helpful assistant\"), state[\"messages\"][0]]\n",
"\n",
"\n",
"app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n",
"langgraph_agent_executor = create_react_agent(\n",
" model, tools, state_modifier=_modify_state_messages\n",
")\n",
"\n",
"try:\n",
" for step in app.stream({\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"):\n",
" for step in langgraph_agent_executor.stream(\n",
" {\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"\n",
" ):\n",
" pass\n",
"except GraphRecursionError as e:\n",
" print(\"Stopping agent prematurely due to triggering stop condition\")"

View File

@@ -77,7 +77,7 @@
"id": "08f8b820-5912-49c1-9d76-40be0571dffb",
"metadata": {},
"source": [
"This creates a retriever (specifically a [VectorStoreRetriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStoreRetriever.html)), which we can use in the usual way:"
"This creates a retriever (specifically a [VectorStoreRetriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.base.VectorStoreRetriever.html)), which we can use in the usual way:"
]
},
{

View File

@@ -29,7 +29,7 @@
"Ensure the `langchain_community` and `friendli-client` are installed.\n",
"\n",
"```sh\n",
"pip install -U langchain-comminity friendli-client.\n",
"pip install -U langchain-community friendli-client.\n",
"```\n",
"\n",
"Sign in to [Friendli Suite](https://suite.friendli.ai/) to create a Personal Access Token, and set it as the `FRIENDLI_TOKEN` environment."

View File

@@ -36,12 +36,12 @@
"### Integration details\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/openai) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| ChatWatsonx | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ibm?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ibm?style=flat-square&label=%20) |\n",
"| ChatWatsonx | ❌ | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ibm?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ibm?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | | | ❌ | ❌ | ✅ | ❌ | ✅ | | "
"| ✅ | ✅ | | | ❌ | ❌ | ✅ | ❌ | ✅ | | "
]
},
{
@@ -126,21 +126,19 @@
"source": [
"## Instantiation\n",
"\n",
"You might need to adjust model `parameters` for different models or tasks. For details, refer to [Available MetaNames](https://ibm.github.io/watsonx-ai-python-sdk/fm_model.html#metanames.GenTextParamsMetaNames)."
"You might need to adjust model `parameters` for different models or tasks. For details, refer to [Available TextChatParameters](https://ibm.github.io/watsonx-ai-python-sdk/fm_schema.html#ibm_watsonx_ai.foundation_models.schema.TextChatParameters)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 5,
"id": "407cd500",
"metadata": {},
"outputs": [],
"source": [
"parameters = {\n",
" \"decoding_method\": \"sample\",\n",
" \"max_new_tokens\": 100,\n",
" \"min_new_tokens\": 1,\n",
" \"stop_sequences\": [\".\"],\n",
" \"temperature\": 0.9,\n",
" \"max_tokens\": 200,\n",
"}"
]
},
@@ -160,20 +158,20 @@
"In this example, well use the `project_id` and Dallas URL.\n",
"\n",
"\n",
"You need to specify the `model_id` that will be used for inferencing. You can find the list of all the available models in [Supported foundation models](https://ibm.github.io/watsonx-ai-python-sdk/fm_model.html#ibm_watsonx_ai.foundation_models.utils.enums.ModelTypes)."
"You need to specify the `model_id` that will be used for inferencing. You can find the list of all the available models in [Supported chat models](https://ibm.github.io/watsonx-ai-python-sdk/fm_helpers.html#ibm_watsonx_ai.foundation_models_manager.FoundationModelsManager.get_chat_model_specs)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98371396",
"id": "e3568e91",
"metadata": {},
"outputs": [],
"source": [
"from langchain_ibm import ChatWatsonx\n",
"\n",
"chat = ChatWatsonx(\n",
" model_id=\"ibm/granite-13b-chat-v2\",\n",
" model_id=\"ibm/granite-34b-code-instruct\",\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
" params=parameters,\n",
@@ -196,7 +194,7 @@
"outputs": [],
"source": [
"chat = ChatWatsonx(\n",
" model_id=\"ibm/granite-13b-chat-v2\",\n",
" model_id=\"ibm/granite-34b-code-instruct\",\n",
" url=\"PASTE YOUR URL HERE\",\n",
" username=\"PASTE YOUR USERNAME HERE\",\n",
" password=\"PASTE YOUR PASSWORD HERE\",\n",
@@ -242,17 +240,17 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 8,
"id": "beea2b5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Je t'aime pour écouter la Rock.\", response_metadata={'token_usage': {'generated_token_count': 12, 'input_token_count': 28}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-05b305ce-5401-4a10-b557-41a4b15c7f6f-0')"
"AIMessage(content=\"J'adore que tu escois de écouter de la rock ! \", additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 34, 'total_tokens': 53}, 'model_name': 'ibm/granite-34b-code-instruct', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='chat-ef888fc41f0d4b37903b622250ff7528', usage_metadata={'input_tokens': 34, 'output_tokens': 19, 'total_tokens': 53})"
]
},
"execution_count": 22,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -273,17 +271,17 @@
},
{
"cell_type": "code",
"execution_count": 41,
"execution_count": 9,
"id": "8ab1a25a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Sure, I can help you with that! Horses are large, powerful mammals that belong to the family Equidae.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-391776ff-3b38-4768-91e8-ff64177149e5-0')"
"AIMessage(content='horses are quadrupedal mammals that are members of the family Equidae. They are typically farm animals, competing in horse racing and other forms of equine competition. With over 200 breeds, horses are diverse in their physical appearance and behavior. They are intelligent, social animals that are often used for transportation, food, and entertainment.', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 89, 'prompt_tokens': 29, 'total_tokens': 118}, 'model_name': 'ibm/granite-34b-code-instruct', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='chat-9a6e28abb3d448aaa4f83b677a9fd653', usage_metadata={'input_tokens': 29, 'output_tokens': 89, 'total_tokens': 118})"
]
},
"execution_count": 41,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -314,7 +312,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 10,
"id": "dd919925",
"metadata": {},
"outputs": [],
@@ -338,17 +336,17 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 11,
"id": "68160377",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Python.', response_metadata={'token_usage': {'generated_token_count': 5, 'input_token_count': 23}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-1b1ccf5d-0e33-46f2-a087-e2a136ba1fb7-0')"
"AIMessage(content='Ich liebe Python.', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 7, 'prompt_tokens': 28, 'total_tokens': 35}, 'model_name': 'ibm/granite-34b-code-instruct', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='chat-fef871190b6047a7a3e68c58b3810c33', usage_metadata={'input_tokens': 28, 'output_tokens': 7, 'total_tokens': 35})"
]
},
"execution_count": 18,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -376,7 +374,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 12,
"id": "3f63166a",
"metadata": {},
"outputs": [
@@ -384,7 +382,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"The moon is a natural satellite of the Earth, and it has been a source of fascination for humans for centuries."
"The Moon is the fifth largest moon in the solar system and the largest relative to its host planet. It is the fifth brightest object in Earth's night sky after the Sun, the stars, the Milky Way, and the Moon itself. It orbits around the Earth at an average distance of 238,855 miles (384,400 kilometers). The Moon's gravity is about one-sixthth of Earth's and thus allows for the formation of tides on Earth. The Moon is thought to have formed around 4.5 billion years ago from debris from a collision between Earth and a Mars-sized body named Theia. The Moon is effectively immutable, with its current characteristics remaining from formation. Aside from Earth, the Moon is the only other natural satellite of Earth. The most widely accepted theory is that it formed from the debris of a collision"
]
}
],
@@ -410,18 +408,18 @@
},
{
"cell_type": "code",
"execution_count": 32,
"execution_count": 13,
"id": "9e948729",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content='Cats are domestic animals that belong to the Felidae family.', response_metadata={'token_usage': {'generated_token_count': 13, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-71a8bd7a-a1aa-497b-9bdd-a4d6fe1d471a-0'),\n",
" AIMessage(content='Dogs are domesticated mammals of the family Canidae, characterized by their adaptability to various environments and social structures.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-22b7a0cb-e44a-4b68-9921-872f82dcd82b-0')]"
"[AIMessage(content='The cat is a popular domesticated carnivorous mammal that belongs to the family Felidae. Cats arefriendly, intelligent, and independent animals that are well-known for their playful behavior, agility, and ability to hunt prey. cats come in a wide range of breeds, each with their own unique physical and behavioral characteristics. They are kept as pets worldwide due to their affectionate nature and companionship. Cats are important members of the household and are often involved in everything from childcare to entertainment.', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 127, 'prompt_tokens': 28, 'total_tokens': 155}, 'model_name': 'ibm/granite-34b-code-instruct', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='chat-fa452af0a0fa4a668b6a704aecd7d718', usage_metadata={'input_tokens': 28, 'output_tokens': 127, 'total_tokens': 155}),\n",
" AIMessage(content='Dogs are domesticated animals that belong to the Canidae family, also known as wolves. They are one of the most popular pets worldwide, known for their loyalty and affection towards their owners. Dogs come in various breeds, each with unique characteristics, and are trained for different purposes such as hunting, herding, or guarding. They require a lot of exercise and mental stimulation to stay healthy and happy, and they need proper training and socialization to be well-behaved. Dogs are also known for their playful and energetic nature, making them great companions for people of all ages.', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 144, 'prompt_tokens': 28, 'total_tokens': 172}, 'model_name': 'ibm/granite-34b-code-instruct', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='chat-cae7663c50cf4f3499726821cc2f0ec7', usage_metadata={'input_tokens': 28, 'output_tokens': 144, 'total_tokens': 172})]"
]
},
"execution_count": 32,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -452,9 +450,7 @@
"\n",
"### ChatWatsonx.bind_tools()\n",
"\n",
"Please note that `ChatWatsonx.bind_tools` is on beta state, so right now we only support `mistralai/mixtral-8x7b-instruct-v01` model.\n",
"\n",
"You should also redefine `max_new_tokens` parameter to get the entire model response. By default `max_new_tokens` is set to 20."
"Please note that `ChatWatsonx.bind_tools` is on beta state, so we recommend using `mistralai/mistral-large` model."
]
},
{
@@ -466,10 +462,8 @@
"source": [
"from langchain_ibm import ChatWatsonx\n",
"\n",
"parameters = {\"max_new_tokens\": 200}\n",
"\n",
"chat = ChatWatsonx(\n",
" model_id=\"mistralai/mixtral-8x7b-instruct-v01\",\n",
" model_id=\"mistralai/mistral-large\",\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
" params=parameters,\n",
@@ -478,7 +472,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "e1633a73",
"metadata": {},
"outputs": [],
@@ -497,17 +491,17 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "3bf9b8ab",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'type': 'function'}, 'tool_calls': [{'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"Los Angeles\"}'}, 'id': None}, {'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"New York\"}'}, 'id': None}]}, response_metadata={'token_usage': {'generated_token_count': 99, 'input_token_count': 320}, 'model_name': 'mistralai/mixtral-8x7b-instruct-v01', 'system_fingerprint': '', 'finish_reason': 'eos_token'}, id='run-38627104-f2ac-4edb-8390-d5425fb65979-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None}, {'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}])"
"AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'chatcmpl-tool-6c06a19bbe824d78a322eb193dbde12d', 'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"Los Angeles, CA\"}'}}, {'id': 'chatcmpl-tool-493542e46f1141bfbfeb5deae6c9e086', 'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"New York, NY\"}'}}]}, response_metadata={'token_usage': {'completion_tokens': 46, 'prompt_tokens': 95, 'total_tokens': 141}, 'model_name': 'mistralai/mistral-large', 'system_fingerprint': '', 'finish_reason': 'tool_calls'}, id='chat-027f2bdb217e4238909cb26d3e8a8fbf', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'chatcmpl-tool-6c06a19bbe824d78a322eb193dbde12d', 'type': 'tool_call'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'chatcmpl-tool-493542e46f1141bfbfeb5deae6c9e086', 'type': 'tool_call'}], usage_metadata={'input_tokens': 95, 'output_tokens': 46, 'total_tokens': 141})"
]
},
"execution_count": 4,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -530,18 +524,24 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"id": "38f10ba7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None},\n",
" {'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}]"
"[{'name': 'GetWeather',\n",
" 'args': {'location': 'Los Angeles, CA'},\n",
" 'id': 'chatcmpl-tool-6c06a19bbe824d78a322eb193dbde12d',\n",
" 'type': 'tool_call'},\n",
" {'name': 'GetWeather',\n",
" 'args': {'location': 'New York, NY'},\n",
" 'id': 'chatcmpl-tool-493542e46f1141bfbfeb5deae6c9e086',\n",
" 'type': 'tool_call'}]"
]
},
"execution_count": 5,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -567,7 +567,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.10.14"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,460 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: ChatOCIModelDeployment\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ChatOCIModelDeployment\n",
"\n",
"This will help you getting started with OCIModelDeployment [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatOCIModelDeployment features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.ChatOCIModelDeployment.html).\n",
"\n",
"[OCI Data Science](https://docs.oracle.com/en-us/iaas/data-science/using/home.htm) is a fully managed and serverless platform for data science teams to build, train, and manage machine learning models in the Oracle Cloud Infrastructure. You can use [AI Quick Actions](https://blogs.oracle.com/ai-and-datascience/post/ai-quick-actions-in-oci-data-science) to easily deploy LLMs on [OCI Data Science Model Deployment Service](https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm). You may choose to deploy the model with popular inference frameworks such as vLLM or TGI. By default, the model deployment endpoint mimics the OpenAI API protocol.\n",
"\n",
"> For the latest updates, examples and experimental features, please see [ADS LangChain Integration](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/large_language_model/langchain_models.html).\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatOCIModelDeployment](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.ChatOCIModelDeployment.html) | [langchain-community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ❌ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| depends | depends | depends | depends | depends | depends | ✅ | ✅ | ✅ | ✅ | \n",
"\n",
"Some model features, including tool calling, structured output, JSON mode and multi-modal inputs, are depending on deployed model.\n",
"\n",
"\n",
"## Setup\n",
"\n",
"To use ChatOCIModelDeployment you'll need to deploy a chat model with chat completion endpoint and install the `langchain-community`, `langchain-openai` and `oracle-ads` integration packages.\n",
"\n",
"You can easily deploy foundation models using the [AI Quick Actions](https://github.com/oracle-samples/oci-data-science-ai-samples/blob/main/ai-quick-actions/model-deployment-tips.md) on OCI Data Science Model deployment. For additional deployment examples, please visit the [Oracle GitHub samples repository](https://github.com/oracle-samples/oci-data-science-ai-samples/tree/main/ai-quick-actions).\n",
"\n",
"### Policies\n",
"Make sure to have the required [policies](https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint) to access the OCI Data Science Model Deployment endpoint.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Credentials\n",
"\n",
"You can set authentication through Oracle ADS. When you are working in OCI Data Science Notebook Session, you can leverage resource principal to access other OCI resources."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ads\n",
"\n",
"# Set authentication through ads\n",
"# Use resource principal are operating within a\n",
"# OCI service that has resource principal based\n",
"# authentication configured\n",
"ads.set_auth(\"resource_principal\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can configure the credentials using the following environment variables. For example, to use API key with specific profile:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Set authentication through environment variables\n",
"# Use API Key setup when you are working from a local\n",
"# workstation or on platform which does not support\n",
"# resource principals.\n",
"os.environ[\"OCI_IAM_TYPE\"] = \"api_key\"\n",
"os.environ[\"OCI_CONFIG_PROFILE\"] = \"default\"\n",
"os.environ[\"OCI_CONFIG_LOCATION\"] = \"~/.oci\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check out [Oracle ADS docs](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html) to see more options."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain OCIModelDeployment integration lives in the `langchain-community` package. The following command will install `langchain-community` and the required dependencies."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community langchain-openai oracle-ads"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"You may instantiate the model with the generic `ChatOCIModelDeployment` or framework specific class like `ChatOCIModelDeploymentVLLM`.\n",
"\n",
"* Using `ChatOCIModelDeployment` when you need a generic entry point for deploying models. You can pass model parameters through `model_kwargs` during the instantiation of this class. This allows for flexibility and ease of configuration without needing to rely on framework-specific details."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOCIModelDeployment\n",
"\n",
"# Create an instance of OCI Model Deployment Endpoint\n",
"# Replace the endpoint uri with your own\n",
"# Using generic class as entry point, you will be able\n",
"# to pass model parameters through model_kwargs during\n",
"# instantiation.\n",
"chat = ChatOCIModelDeployment(\n",
" endpoint=\"https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict\",\n",
" streaming=True,\n",
" max_retries=1,\n",
" model_kwargs={\n",
" \"temperature\": 0.2,\n",
" \"max_tokens\": 512,\n",
" }, # other model params...\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Using framework specific class like `ChatOCIModelDeploymentVLLM`: This is suitable when you are working with a specific framework (e.g. `vLLM`) and need to pass model parameters directly through the constructor, streamlining the setup process."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatOCIModelDeploymentVLLM\n",
"\n",
"# Create an instance of OCI Model Deployment Endpoint\n",
"# Replace the endpoint uri with your own\n",
"# Using framework specific class as entry point, you will\n",
"# be able to pass model parameters in constructor.\n",
"chat = ChatOCIModelDeploymentVLLM(\n",
" endpoint=\"https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer.\", response_metadata={'token_usage': {'prompt_tokens': 44, 'total_tokens': 52, 'completion_tokens': 8}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-ca145168-efa9-414c-9dd1-21d10766fdd3-0')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"\n",
"ai_msg = chat.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"J'adore programmer.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chaining"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmierung.', response_metadata={'token_usage': {'prompt_tokens': 38, 'total_tokens': 48, 'completion_tokens': 10}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-5dd936b0-b97e-490e-9869-2ad3dd524234-0')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | chat\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Asynchronous calls"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='我喜欢编程', response_metadata={'token_usage': {'prompt_tokens': 37, 'total_tokens': 50, 'completion_tokens': 13}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-a2dc9393-f269-41a4-b908-b1d8a92cf827-0')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.chat_models import ChatOCIModelDeployment\n",
"\n",
"system = \"You are a helpful translator that translates {input_language} to {output_language}.\"\n",
"human = \"{text}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chat = ChatOCIModelDeployment(\n",
" endpoint=\"https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict\"\n",
")\n",
"chain = prompt | chat\n",
"\n",
"await chain.ainvoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"Chinese\",\n",
" \"text\": \"I love programming\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Streaming calls"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"1. California\n",
"2. Texas\n",
"3. Florida\n",
"4. New York\n",
"5. Illinois"
]
}
],
"source": [
"import os\n",
"import sys\n",
"\n",
"from langchain_community.chat_models import ChatOCIModelDeployment\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [(\"human\", \"List out the 5 states in the United State.\")]\n",
")\n",
"\n",
"chat = ChatOCIModelDeployment(\n",
" endpoint=\"https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict\"\n",
")\n",
"\n",
"chain = prompt | chat\n",
"\n",
"for chunk in chain.stream({}):\n",
" sys.stdout.write(chunk.content)\n",
" sys.stdout.flush()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Structured output"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'setup': 'Why did the cat get stuck in the tree?',\n",
" 'punchline': 'Because it was chasing its tail!'}"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.chat_models import ChatOCIModelDeployment\n",
"from pydantic import BaseModel\n",
"\n",
"\n",
"class Joke(BaseModel):\n",
" \"\"\"A setup to a joke and the punchline.\"\"\"\n",
"\n",
" setup: str\n",
" punchline: str\n",
"\n",
"\n",
"chat = ChatOCIModelDeployment(\n",
" endpoint=\"https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict\",\n",
")\n",
"structured_llm = chat.with_structured_output(Joke, method=\"json_mode\")\n",
"output = structured_llm.invoke(\n",
" \"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys\"\n",
")\n",
"\n",
"output.dict()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For comprehensive details on all features and configurations, please refer to the API reference documentation for each class:\n",
"\n",
"* [ChatOCIModelDeployment](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.oci_data_science.ChatOCIModelDeployment.html)\n",
"* [ChatOCIModelDeploymentVLLM](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.oci_data_science.ChatOCIModelDeploymentVLLM.html)\n",
"* [ChatOCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.oci_data_science.ChatOCIModelDeploymentTGI.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -434,6 +434,160 @@
"fine_tuned_model.invoke(messages)"
]
},
{
"cell_type": "markdown",
"id": "5d5d9793",
"metadata": {},
"source": [
"## Multimodal Inputs\n",
"\n",
"OpenAI has models that support multimodal inputs. You can pass in images or audio to these models. For more information on how to do this in LangChain, head to the [multimodal inputs](/docs/how_to/multimodal_inputs) docs.\n",
"\n",
"You can see the list of models that support different modalities in [OpenAI's documentation](https://platform.openai.com/docs/models).\n",
"\n",
"At the time of this doc's writing, the main OpenAI models you would use would be:\n",
"\n",
"- Image inputs: `gpt-4o`, `gpt-4o-mini`\n",
"- Audio inputs: `gpt-4o-audio-preview`\n",
"\n",
"For an example of passing in image inputs, see the [multimodal inputs how-to guide](/docs/how_to/multimodal_inputs).\n",
"\n",
"Below is an example of passing audio inputs to `gpt-4o-audio-preview`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "39d08780",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"I'm sorry, but I can't create audio content that involves yelling. Is there anything else I can help you with?\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import base64\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-4o-audio-preview\",\n",
" temperature=0,\n",
")\n",
"\n",
"with open(\n",
" \"../../../../libs/partners/openai/tests/integration_tests/chat_models/audio_input.wav\",\n",
" \"rb\",\n",
") as f:\n",
" # b64 encode it\n",
" audio = f.read()\n",
" audio_b64 = base64.b64encode(audio).decode()\n",
"\n",
"\n",
"output_message = llm.invoke(\n",
" [\n",
" (\n",
" \"human\",\n",
" [\n",
" {\"type\": \"text\", \"text\": \"Transcribe the following:\"},\n",
" # the audio clip says \"I'm sorry, but I can't create...\"\n",
" {\n",
" \"type\": \"input_audio\",\n",
" \"input_audio\": {\"data\": audio_b64, \"format\": \"wav\"},\n",
" },\n",
" ],\n",
" ),\n",
" ]\n",
")\n",
"output_message.content"
]
},
{
"cell_type": "markdown",
"id": "feb4a499",
"metadata": {},
"source": [
"## Audio Generation (Preview)\n",
"\n",
":::info\n",
"Requires `langchain-openai>=0.2.3`\n",
":::\n",
"\n",
"OpenAI has a new [audio generation feature](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-out) that allows you to use audio inputs and outputs with the `gpt-4o-audio-preview` model."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f67a2cac",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-4o-audio-preview\",\n",
" temperature=0,\n",
" model_kwargs={\n",
" \"modalities\": [\"text\", \"audio\"],\n",
" \"audio\": {\"voice\": \"alloy\", \"format\": \"wav\"},\n",
" },\n",
")\n",
"\n",
"output_message = llm.invoke(\n",
" [\n",
" (\"human\", \"Are you made by OpenAI? Just answer yes or no\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b7dd4e8b",
"metadata": {},
"source": [
"`output_message.additional_kwargs['audio']` will contain a dictionary like\n",
"```python\n",
"{\n",
" 'data': '<audio data b64-encoded',\n",
" 'expires_at': 1729268602,\n",
" 'id': 'audio_67127d6a44348190af62c1530ef0955a',\n",
" 'transcript': 'Yes.'\n",
"}\n",
"```\n",
"and the format will be what was passed in `model_kwargs['audio']['format']`.\n",
"\n",
"We can also pass this message with audio data back to the model as part of a message history before openai `expires_at` is reached.\n",
"\n",
":::note\n",
"Output audio is stored under the `audio` key in `AIMessage.additional_kwargs`, but input content blocks are typed with an `input_audio` type and key in `HumanMessage.content` lists. \n",
"\n",
"For more information, see OpenAI's [audio docs](https://platform.openai.com/docs/guides/audio).\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f5ae473d",
"metadata": {},
"outputs": [],
"source": [
"history = [\n",
" (\"human\", \"Are you made by OpenAI? Just answer yes or no\"),\n",
" output_message,\n",
" (\"human\", \"And what is your name? Just give your name.\"),\n",
"]\n",
"second_output_message = llm.invoke(history)"
]
},
{
"cell_type": "markdown",
"id": "a796d728-971b-408b-88d5-440015bbb941",
@@ -447,7 +601,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": ".venv",
"language": "python",
"name": "python3"
},

View File

@@ -0,0 +1,383 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"source": [
"---\n",
"sidebar_label: SambaStudio\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ChatSambaStudio\n",
"\n",
"This will help you getting started with SambaStudio [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaStudio.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaStudio](https://docs.sambanova.ai/sambastudio/latest/sambastudio-intro.html) SambaStudio is a rich, GUI-based platform that provides the functionality to train, deploy, and manage models in SambaNova [DataScale](https://sambanova.ai/products/datascale) systems.\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatSambaStudio](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaStudio.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"To access ChatSambaStudio models you will need to [deploy an endpoint](https://docs.sambanova.ai/sambastudio/latest/language-models.html) in your SambaStudio platform, install the `langchain_community` integration package, and install the `SSEClient` Package.\n",
"\n",
"```bash\n",
"pip install langchain-community\n",
"pip install sseclient-py\n",
"```\n",
"\n",
"### Credentials\n",
"\n",
"Get the URL and API Key from your SambaStudio deployed endpoint and add them to your environment variables:\n",
"\n",
"``` bash\n",
"export SAMBASTUDIO_URL=\"your-api-key-here\"\n",
"export SAMBASTUDIO_API_KEY=\"your-api-key-here\"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"SAMBASTUDIO_URL\"):\n",
" os.environ[\"SAMBASTUDIO_URL\"] = getpass.getpass(\"Enter your SambaStudio URL: \")\n",
"if not os.getenv(\"SAMBASTUDIO_API_KEY\"):\n",
" os.environ[\"SAMBASTUDIO_API_KEY\"] = getpass.getpass(\n",
" \"Enter your SambaStudio API key: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain __SambaStudio__ integration lives in the `langchain_community` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-community\n",
"%pip install -qu sseclient-py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.sambanova import ChatSambaStudio\n",
"\n",
"llm = ChatSambaStudio(\n",
" model=\"Meta-Llama-3-70B-Instruct-4096\", # set if using a CoE endpoint\n",
" max_tokens=1024,\n",
" temperature=0.7,\n",
" top_k=1,\n",
" top_p=0.01,\n",
" do_sample=True,\n",
" process_prompt=\"True\", # set if using a CoE endpoint\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': \"J'adore la programmation.\", 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>system<|end_header_id|>\\n\\nYou are a helpful assistant that translates English to French. Translate the user sentence.<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nI love programming.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n', 'stop_reason': 'end_of_text', 'tokens': ['J', \"'\", 'ad', 'ore', ' la', ' programm', 'ation', '.'], 'total_tokens_count': 43}, 'params': {}, 'status': None}, id='item0')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore la programmation.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe das Programmieren.', response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': 'Ich liebe das Programmieren.', 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>system<|end_header_id|>\\n\\nYou are a helpful assistant that translates English to German.<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nI love programming.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n', 'stop_reason': 'end_of_text', 'tokens': ['Ich', ' liebe', ' das', ' Programm', 'ieren', '.'], 'total_tokens_count': 36}, 'params': {}, 'status': None}, id='item0')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Streaming"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Arrr, ye landlubber! Ye be wantin' to learn about owls, eh? Well, matey, settle yerself down with a pint o' grog and listen close, for I be tellin' ye about these fascinatin' creatures o' the night!\n",
"\n",
"Owls be birds, but not just any birds, me hearty! They be nocturnal, meanin' they do their huntin' at night, when the rest o' the world be sleepin'. And they be experts at it, too! Their big, round eyes be designed for seein' in the dark, with a special reflective layer called the tapetum lucidum that helps 'em spot prey in the shadows. It's like havin' a built-in lantern, savvy?\n",
"\n",
"But that be not all, me matey! Owls also have acute hearin', which helps 'em pinpoint the slightest sounds in the dark. And their ears be asymmetrical, meanin' one ear be higher than the other, which gives 'em better depth perception. It's like havin' a built-in sonar system, arrr!\n",
"\n",
"Now, ye might be wonderin' how owls fly so silently, like ghosts in the night. Well, it be because o' their special feathers, me hearty! They have soft, fringed feathers on their wings that help reduce noise and turbulence, makin' 'em the sneakiest flyers on the seven seas... er, skies!\n",
"\n",
"Owls come in all shapes and sizes, from the tiny elf owl to the great grey owl, which be one o' the largest owl species in the world. And they be found on every continent, except Antarctica, o' course. They be solitary creatures, but some species be known to form long-term monogamous relationships, like the barn owl and its mate.\n",
"\n",
"So, there ye have it, me hearty! Owls be amazin' creatures, with their clever adaptations and stealthy ways. Now, go forth and spread the word about these magnificent birds o' the night! And remember, if ye ever encounter an owl in the wild, be sure to show respect and keep a weather eye open, or ye might just find yerself on the receivin' end o' a silent, flyin' tackle! Arrr!"
]
}
],
"source": [
"system = \"You are a helpful assistant with pirate accent.\"\n",
"human = \"I want to learn more about this animal: {animal}\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n",
"\n",
"chain = prompt | llm\n",
"\n",
"for chunk in chain.stream({\"animal\": \"owl\"}):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Async"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The capital of France is Paris.', response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': 'The capital of France is Paris.', 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>user<|end_header_id|>\\n\\nwhat is the capital of France?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n', 'stop_reason': 'end_of_text', 'tokens': ['The', ' capital', ' of', ' France', ' is', ' Paris', '.'], 'total_tokens_count': 24}, 'params': {}, 'status': None}, id='item0')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"human\",\n",
" \"what is the capital of {country}?\",\n",
" )\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"await chain.ainvoke({\"country\": \"France\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Async Streaming"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Quantum computers use quantum bits (qubits) to process multiple possibilities simultaneously, exponentially faster than classical computers, enabling breakthroughs in fields like cryptography, optimization, and simulation."
]
}
],
"source": [
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"human\",\n",
" \"in less than {num_words} words explain me {topic} \",\n",
" )\n",
" ]\n",
")\n",
"chain = prompt | llm\n",
"\n",
"async for chunk in chain.astream({\"num_words\": 30, \"topic\": \"quantum computers\"}):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatSambaStudio features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaStudio.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -29,7 +29,7 @@
"metadata": {},
"outputs": [],
"source": [
"% pip install -qU langchain-airbyte"
"%pip install -qU langchain-airbyte"
]
},
{

View File

@@ -24,7 +24,7 @@
"source": [
"## Setting up\n",
"\n",
"Follow [instructions to set up an AWS accoung](https://docs.aws.amazon.com/athena/latest/ug/setting-up.html).\n",
"Follow [instructions to set up an AWS account](https://docs.aws.amazon.com/athena/latest/ug/setting-up.html).\n",
"\n",
"Install a python library:"
]

View File

@@ -26,7 +26,7 @@
"metadata": {},
"outputs": [],
"source": [
"% pip install browserbase"
"%pip install browserbase"
]
},
{

View File

@@ -26,33 +26,32 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"### Credentials \n",
"\n",
"You will need to get your own API key. Go to [this page](https://firecrawl.dev) to learn more."
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if \"FIRECRAWL_API_KEY\" not in os.environ:\n",
" os.environ[\"FIRECRAWL_API_KEY\"] = getpass.getpass(\"Enter your Firecrawl API key: \")"
"pip install firecrawl-py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"You will need to install both the `langchain_community` and `firecrawl-py` pacakges:"
"## Usage"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will need to get your own API key. See https://firecrawl.dev"
]
},
{
@@ -61,42 +60,12 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU firecrawl-py==0.0.20 langchain_community"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialization\n",
"\n",
"### Modes\n",
"\n",
"- `scrape`: Scrape single url and return the markdown.\n",
"- `crawl`: Crawl the url and all accessible sub pages and return the markdown for each one."
"from langchain_community.document_loaders.firecrawl import FireCrawlLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.document_loaders import FireCrawlLoader\n",
"\n",
"loader = FireCrawlLoader(url=\"https://firecrawl.dev\", mode=\"crawl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -111,40 +80,14 @@
}
],
"source": [
"docs = loader.load()\n",
"\n",
"docs[0]"
"loader = FireCrawlLoader(\n",
" api_key=\"YOUR_API_KEY\", url=\"https://firecrawl.dev\", mode=\"scrape\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'ogUrl': 'https://www.firecrawl.dev/', 'title': 'Home - Firecrawl', 'robots': 'follow, index', 'ogImage': 'https://www.firecrawl.dev/og.png?123', 'ogTitle': 'Firecrawl', 'sitemap': {'lastmod': '2024-08-12T00:28:16.681Z', 'changefreq': 'weekly'}, 'keywords': 'Firecrawl,Markdown,Data,Mendable,Langchain', 'sourceURL': 'https://www.firecrawl.dev/', 'ogSiteName': 'Firecrawl', 'description': 'Firecrawl crawls and converts any website into clean markdown.', 'ogDescription': 'Turn any website into LLM-ready data.', 'pageStatusCode': 200, 'ogLocaleAlternate': []}\n"
]
}
],
"source": [
"print(docs[0].metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Lazy Load\n",
"\n",
"You can use lazy loading to minimize memory requirements."
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -160,39 +103,61 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"len(pages)"
"pages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Modes\n",
"\n",
"- `scrape`: Scrape single url and return the markdown.\n",
"- `crawl`: Crawl the url and all accessible sub pages and return the markdown for each one.\n",
"- `map`: Maps the URL and returns a list of semantically related pages."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Crawl\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introducing [Smart Crawl!](https://www.firecrawl.dev/smart-crawl)\n",
" Join the waitlist to turn any web\n",
"{'ogUrl': 'https://www.firecrawl.dev/blog/introducing-fire-engine-for-firecrawl', 'title': 'Introducing Fire Engine for Firecrawl', 'robots': 'follow, index', 'ogImage': 'https://www.firecrawl.dev/images/blog/fire-engine-launch.png', 'ogTitle': 'Introducing Fire Engine for Firecrawl', 'sitemap': {'lastmod': '2024-08-06T00:00:00.000Z', 'changefreq': 'weekly'}, 'keywords': 'firecrawl,fireengine,web crawling,dashboard,web scraping,LLM,data extraction', 'sourceURL': 'https://www.firecrawl.dev/blog/introducing-fire-engine-for-firecrawl', 'ogSiteName': 'Firecrawl', 'description': 'The most scalable, reliable, and fast way to get web data for Firecrawl.', 'ogDescription': 'The most scalable, reliable, and fast way to get web data for Firecrawl.', 'pageStatusCode': 200, 'ogLocaleAlternate': []}\n"
]
}
],
"outputs": [],
"source": [
"loader = FireCrawlLoader(\n",
" api_key=\"YOUR_API_KEY\",\n",
" url=\"https://firecrawl.dev\",\n",
" mode=\"crawl\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"data = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(pages[0].page_content[:100])\n",
"print(pages[0].metadata)"
@@ -202,10 +167,54 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Crawler Options\n",
"#### Crawl Options\n",
"\n",
"You can also pass `params` to the loader. This is a dictionary of options to pass to the crawler. See the [FireCrawl API documentation](https://github.com/mendableai/firecrawl-py) for more information.\n",
"\n"
"You can also pass `params` to the loader. This is a dictionary of options to pass to the crawler. See the [FireCrawl API documentation](https://github.com/mendableai/firecrawl-py) for more information."
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"### Map"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader = FireCrawlLoader(api_key=\"YOUR_API_KEY\", url=\"firecrawl.dev\", mode=\"map\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Map Options\n",
"\n",
"You can also pass `params` to the loader. This is a dictionary of options to pass to the loader. See the [FireCrawl API documentation](https://github.com/mendableai/firecrawl-py) for more information."
]
},
{
@@ -220,7 +229,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},

View File

@@ -22,7 +22,7 @@
"source": [
"## Setting up\n",
"\n",
"- Follow [instructions to set up an AWS accoung](https://docs.aws.amazon.com/athena/latest/ug/setting-up.html).\n",
"- Follow [instructions to set up an AWS account](https://docs.aws.amazon.com/athena/latest/ug/setting-up.html).\n",
"- Install the boto3 library: `pip install boto3`\n"
]
},

View File

@@ -25,9 +25,9 @@
}
},
"source": [
"# UpstageLayoutAnalysisLoader\n",
"# UpstageDocumentParseLoader\n",
"\n",
"This notebook covers how to get started with `UpstageLayoutAnalysisLoader`.\n",
"This notebook covers how to get started with `UpstageDocumentParseLoader`.\n",
"\n",
"## Installation\n",
"\n",
@@ -89,10 +89,10 @@
}
],
"source": [
"from langchain_upstage import UpstageLayoutAnalysisLoader\n",
"from langchain_upstage import UpstageDocumentParseLoader\n",
"\n",
"file_path = \"/PATH/TO/YOUR/FILE.pdf\"\n",
"layzer = UpstageLayoutAnalysisLoader(file_path, split=\"page\")\n",
"layzer = UpstageDocumentParseLoader(file_path, split=\"page\")\n",
"\n",
"# For improved memory efficiency, consider using the lazy_load method to load documents page by page.\n",
"docs = layzer.load() # or layzer.lazy_load()\n",

View File

@@ -80,7 +80,7 @@
"outputs": [],
"source": [
"graph = GremlinGraph(\n",
" url=f\"=wss://{cosmosdb_name}.gremlin.cosmos.azure.com:443/\",\n",
" url=f\"wss://{cosmosdb_name}.gremlin.cosmos.azure.com:443/\",\n",
" username=f\"/dbs/{cosmosdb_db_id}/colls/{cosmosdb_db_graph_id}\",\n",
" password=cosmosdb_access_Key,\n",
")"

View File

@@ -29,7 +29,7 @@
"Ensure the `langchain_community` and `friendli-client` are installed.\n",
"\n",
"```sh\n",
"pip install -U langchain-comminity friendli-client.\n",
"pip install -U langchain-community friendli-client.\n",
"```\n",
"\n",
"Sign in to [Friendli Suite](https://suite.friendli.ai/) to create a Personal Access Token, and set it as the `FRIENDLI_TOKEN` environment."

View File

@@ -0,0 +1,309 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NVIDIA\n",
"\n",
"This will help you getting started with NVIDIA [models](/docs/concepts/#llms). For detailed documentation of all `NVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.NVIDIA.html).\n",
"\n",
"## Overview\n",
"The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on \n",
"NVIDIA NIM inference microservice. These models are optimized by NVIDIA to deliver the best performance on NVIDIA \n",
"accelerated infrastructure and deployed as a NIM, an easy-to-use, prebuilt containers that deploy anywhere using a single \n",
"command on NVIDIA accelerated infrastructure.\n",
"\n",
"NVIDIA hosted deployments of NIMs are available to test on the [NVIDIA API catalog](https://build.nvidia.com/). After testing, \n",
"NIMs can be exported from NVIDIAs API catalog using the NVIDIA AI Enterprise license and run on-premises or in the cloud, \n",
"giving enterprises ownership and full control of their IP and AI application.\n",
"\n",
"NIMs are packaged as container images on a per model basis and are distributed as NGC container images through the NVIDIA NGC Catalog. \n",
"At their core, NIMs provide easy, consistent, and familiar APIs for running inference on an AI model.\n",
"\n",
"This example goes over how to use LangChain to interact with NVIDIA supported via the `NVIDIA` class.\n",
"\n",
"For more information on accessing the llm models through this api, check out the [NVIDIA](https://python.langchain.com/docs/integrations/llms/nvidia_ai_endpoints/) documentation.\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [NVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain_nvidia_ai_endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
"**To get started:**\n",
"\n",
"1. Create a free account with [NVIDIA](https://build.nvidia.com/), which hosts NVIDIA AI Foundation models.\n",
"\n",
"2. Click on your model of choice.\n",
"\n",
"3. Under `Input` select the `Python` tab, and click `Get API Key`. Then click `Generate Key`.\n",
"\n",
"4. Copy and save the generated key as `NVIDIA_API_KEY`. From there, you should have access to the endpoints.\n",
"\n",
"### Credentials\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"NVIDIA_API_KEY\"):\n",
" # Note: the API key should start with \"nvapi-\"\n",
" os.environ[\"NVIDIA_API_KEY\"] = getpass.getpass(\"Enter your NVIDIA API key: \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain NVIDIA AI Endpoints integration lives in the `langchain_nvidia_ai_endpoints` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-nvidia-ai-endpoints"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"See [LLM](/docs/how_to#llms) for full functionality."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from langchain_nvidia_ai_endpoints import NVIDIA"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = NVIDIA().bind(max_tokens=256)\n",
"llm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"prompt = \"# Function that does quicksort written in Rust without comments:\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(llm.invoke(prompt))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Stream, Batch, and Async\n",
"\n",
"These models natively support streaming, and as is the case with all LangChain LLMs they expose a batch method to handle concurrent requests, as well as async methods for invoke, stream, and batch. Below are a few examples."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for chunk in llm.stream(prompt):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm.batch([prompt])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await llm.ainvoke(prompt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async for chunk in llm.astream(prompt):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await llm.abatch([prompt])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async for chunk in llm.astream_log(prompt):\n",
" print(chunk)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = llm.invoke(\n",
" \"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1) #Train a logistic regression model, predict the labels on the test set and compute the accuracy score\"\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Supported models\n",
"\n",
"Querying `available_models` will still give you all of the other models offered by your API credentials."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NVIDIA.get_available_models()\n",
"# llm.get_available_models()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all `NVIDIA` features and configurations head to the API reference: https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.llms.NVIDIA.html"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain-nvidia-ai-endpoints-m0-Y4aGr-py3.10",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -8,9 +8,11 @@
"\n",
"[OCI Data Science](https://docs.oracle.com/en-us/iaas/data-science/using/home.htm) is a fully managed and serverless platform for data science teams to build, train, and manage machine learning models in the Oracle Cloud Infrastructure.\n",
"\n",
"> For the latest updates, examples and experimental features, please see [ADS LangChain Integration](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/large_language_model/langchain_models.html).\n",
"\n",
"This notebooks goes over how to use an LLM hosted on a [OCI Data Science Model Deployment](https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm).\n",
"\n",
"To authenticate, [oracle-ads](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html) has been used to automatically load credentials for invoking endpoint."
"For authentication, the [oracle-ads](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html) library is used to automatically load credentials required for invoking the endpoint."
]
},
{
@@ -29,29 +31,52 @@
"## Prerequisite\n",
"\n",
"### Deploy model\n",
"Check [Oracle GitHub samples repository](https://github.com/oracle-samples/oci-data-science-ai-samples/tree/main/model-deployment/containers/llama2) on how to deploy your llm on OCI Data Science Model deployment.\n",
"You can easily deploy, fine-tune, and evaluate foundation models using the [AI Quick Actions](https://docs.oracle.com/en-us/iaas/data-science/using/ai-quick-actions.htm) on OCI Data Science Model deployment. For additional deployment examples, please visit the [Oracle GitHub samples repository](https://github.com/oracle-samples/oci-data-science-ai-samples/blob/main/ai-quick-actions/llama3-with-smc.md). \n",
"\n",
"### Policies\n",
"Make sure to have the required [policies](https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint) to access the OCI Data Science Model Deployment endpoint.\n",
"\n",
"## Set up\n",
"\n",
"### vLLM\n",
"After having deployed model, you have to set up following required parameters of the `OCIModelDeploymentVLLM` call:\n",
"After having deployed model, you have to set up following required parameters of the call:\n",
"\n",
"- **`endpoint`**: The model HTTP endpoint from the deployed model, e.g. `https://<MD_OCID>/predict`. \n",
"- **`model`**: The location of the model.\n",
"- **`endpoint`**: The model HTTP endpoint from the deployed model, e.g. `https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict`. \n",
"\n",
"### Text generation inference (TGI)\n",
"You have to set up following required parameters of the `OCIModelDeploymentTGI` call:\n",
"\n",
"- **`endpoint`**: The model HTTP endpoint from the deployed model, e.g. `https://<MD_OCID>/predict`. \n",
"\n",
"### Authentication\n",
"\n",
"You can set authentication through either ads or environment variables. When you are working in OCI Data Science Notebook Session, you can leverage resource principal to access other OCI resources. Check out [here](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html) to see more options. \n",
"\n",
"## Example"
"## Examples"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ads\n",
"from langchain_community.llms import OCIModelDeploymentLLM\n",
"\n",
"# Set authentication through ads\n",
"# Use resource principal are operating within a\n",
"# OCI service that has resource principal based\n",
"# authentication configured\n",
"ads.set_auth(\"resource_principal\")\n",
"\n",
"# Create an instance of OCI Model Deployment Endpoint\n",
"# Replace the endpoint uri and model name with your own\n",
"# Using generic class as entry point, you will be able\n",
"# to pass model parameters through model_kwargs during\n",
"# instantiation.\n",
"llm = OCIModelDeploymentLLM(\n",
" endpoint=\"https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict\",\n",
" model=\"odsc-llm\",\n",
")\n",
"\n",
"# Run the LLM\n",
"llm.invoke(\"Who is the first president of United States?\")"
]
},
{
@@ -71,7 +96,11 @@
"\n",
"# Create an instance of OCI Model Deployment Endpoint\n",
"# Replace the endpoint uri and model name with your own\n",
"llm = OCIModelDeploymentVLLM(endpoint=\"https://<MD_OCID>/predict\", model=\"model_name\")\n",
"# Using framework specific class as entry point, you will\n",
"# be able to pass model parameters in constructor.\n",
"llm = OCIModelDeploymentVLLM(\n",
" endpoint=\"https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict\",\n",
")\n",
"\n",
"# Run the LLM\n",
"llm.invoke(\"Who is the first president of United States?\")"
@@ -97,14 +126,64 @@
"\n",
"# Set endpoint through environment variables\n",
"# Replace the endpoint uri with your own\n",
"os.environ[\"OCI_LLM_ENDPOINT\"] = \"https://<MD_OCID>/predict\"\n",
"os.environ[\"OCI_LLM_ENDPOINT\"] = (\n",
" \"https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict\"\n",
")\n",
"\n",
"# Create an instance of OCI Model Deployment Endpoint\n",
"# Using framework specific class as entry point, you will\n",
"# be able to pass model parameters in constructor.\n",
"llm = OCIModelDeploymentTGI()\n",
"\n",
"# Run the LLM\n",
"llm.invoke(\"Who is the first president of United States?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Asynchronous calls"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await llm.ainvoke(\"Tell me a joke.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Streaming calls"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for chunk in llm.stream(\"Tell me a joke.\"):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For comprehensive details on all features and configurations, please refer to the API reference documentation for each class:\n",
"\n",
"* [OCIModelDeploymentLLM](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentLLM.html)\n",
"* [OCIModelDeploymentVLLM](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentVLLM.html)\n",
"* [OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html)"
]
}
],
"metadata": {

View File

@@ -0,0 +1,44 @@
# BAAI
>[Beijing Academy of Artificial Intelligence (BAAI) (Wikipedia)](https://en.wikipedia.org/wiki/Beijing_Academy_of_Artificial_Intelligence),
> also known as `Zhiyuan Institute`, is a Chinese non-profit artificial
> intelligence (AI) research laboratory. `BAAI` conducts AI research
> and is dedicated to promoting collaboration among academia and industry,
> as well as fostering top talent and a focus on long-term research on
> the fundamentals of AI technology. As a collaborative hub, BAAI's founding
> members include leading AI companies, universities, and research institutes.
## Embedding Models
### HuggingFaceBgeEmbeddings
>[BGE models on the HuggingFace](https://huggingface.co/BAAI/bge-large-en-v1.5)
> are one of [the best open-source embedding models](https://huggingface.co/spaces/mteb/leaderboard).
See a [usage example](/docs/integrations/text_embedding/bge_huggingface).
```python
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
```
### IpexLLMBgeEmbeddings
>[IPEX-LLM](https://github.com/intel-analytics/ipex-llm) is a PyTorch
> library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU,
> discrete GPU such as Arc, Flex and Max) with very low latency.
See a [usage example running model on Intel CPU](/docs/integrations/text_embedding/ipex_llm).
See a [usage example running model on Intel GPU](/docs/integrations/text_embedding/ipex_llm_gpu).
```python
from langchain_community.embeddings import IpexLLMBgeEmbeddings
```
### QuantizedBgeEmbeddings
See a [usage example](/docs/integrations/text_embedding/itrex).
```python
from langchain_community.embeddings import QuantizedBgeEmbeddings
```

View File

@@ -8,15 +8,23 @@ Get the access token.
You can find the access instructions [here](https://open.larksuite.com/document)
## Document Loader
### Lark Suite
## Document Loaders
>[Lark Suite](https://www.larksuite.com/) is an enterprise collaboration platform
> developed by `ByteDance`.
See a [usage example](/docs/integrations/document_loaders/larksuite).
### Lark Suite for Document
See a [usage example](/docs/integrations/document_loaders/larksuite/#load-from-document).
```python
from langchain_community.document_loaders.larksuite import LarkSuiteDocLoader
```
### Lark Suite for Wiki
See a [usage example](/docs/integrations/document_loaders/larksuite/#load-from-wiki).
```python
from langchain_community.document_loaders.larksuite import LarkSuiteWikiLoader
```

View File

@@ -113,7 +113,7 @@ See [Databricks SQL Agent](https://docs.databricks.com/en/large-language-models/
Open Models
-----------
To directly integrate Databricks's open models hosted on HuggingFace, you can use the [HuggingFace Integration](/docs/integrations/platforms/huggingface) of LangChain.
To directly integrate Databricks's open models hosted on HuggingFace, you can use the [HuggingFace Integration](/docs/integrations/providers/huggingface) of LangChain.
```
from langchain_huggingface import HuggingFaceEndpoint

View File

@@ -72,7 +72,7 @@ See a [usage example](/docs/integrations/chat/google_vertex_ai_palm).
from langchain_google_vertexai import ChatVertexAI
```
### Chat Anthropic on Vertex AI Model Garden
### Anthropic on Vertex AI Model Garden
See a [usage example](/docs/integrations/llms/google_vertex_ai_palm).
@@ -80,19 +80,19 @@ See a [usage example](/docs/integrations/llms/google_vertex_ai_palm).
from langchain_google_vertexai.model_garden import ChatAnthropicVertex
```
### Chat Llama on Vertex AI Model Garden
### Llama on Vertex AI Model Garden
```python
from langchain_google_vertexai.model_garden_maas.llama import VertexModelGardenLlama
```
### Chat Mistral on Vertex AI Model Garden
### Mistral on Vertex AI Model Garden
```python
from langchain_google_vertexai.model_garden_maas.mistral import VertexModelGardenMistral
```
### Chat Gemma local from Hugging Face
### Gemma local from Hugging Face
>Local `Gemma` model loaded from `HuggingFace`.
@@ -106,7 +106,7 @@ pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaChatLocalHF
```
### Chat Gemma local from Kaggle
### Gemma local from Kaggle
>Local `Gemma` model loaded from `Kaggle`.
@@ -120,7 +120,7 @@ pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaChatLocalKaggle
```
### Chat Gemma on Vertex AI Model Garden
### Gemma on Vertex AI Model Garden
We need to install `langchain-google-vertexai` python package.
@@ -132,7 +132,7 @@ pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaChatVertexAIModelGarden
```
### Vertex AI image captioning chat
### Vertex AI image captioning
>Implementation of the `Image Captioning model` as a chat.
@@ -146,7 +146,7 @@ pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIImageCaptioningChat
```
### Vertex AI image editor chat
### Vertex AI image editor
>Given an image and a prompt, edit the image. Currently only supports mask-free editing.
@@ -160,7 +160,7 @@ pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIImageEditorChat
```
### Vertex AI image generator chat
### Vertex AI image generator
>Generates an image from a prompt.
@@ -174,7 +174,7 @@ pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIImageGeneratorChat
```
### Vertex AI visual QnA chat
### Vertex AI visual QnA
>Chat implementation of a visual QnA model

View File

@@ -1,20 +1,35 @@
# Jina
# Jina AI
This page covers how to use the Jina Embeddings within LangChain.
It is broken into two parts: installation and setup, and then references to specific Jina wrappers.
>[Jina AI](https://jina.ai/about-us) is a search AI company. `Jina` helps businesses and developers unlock multimodal data with a better search.
## Installation and Setup
- Get a Jina AI API token from [here](https://jina.ai/embeddings/) and set it as an environment variable (`JINA_API_TOKEN`)
There exists a Jina Embeddings wrapper, which you can access with
## Chat Models
```python
from langchain_community.embeddings import JinaEmbeddings
# you can pas jina_api_key, if none is passed it will be taken from `JINA_API_TOKEN` environment variable
embeddings = JinaEmbeddings(jina_api_key='jina_**', model_name='jina-embeddings-v2-base-en')
from langchain_community.chat_models import JinaChat
```
See a [usage examples](/docs/integrations/chat/jinachat).
## Embedding Models
You can check the list of available models from [here](https://jina.ai/embeddings/)
For a more detailed walkthrough of this, see [this notebook](/docs/integrations/text_embedding/jina)
```python
from langchain_community.embeddings import JinaEmbeddings
```
See a [usage examples](/docs/integrations/text_embedding/jina).
## Document Transformers
### Jina Rerank
```python
from langchain_community.document_compressors import JinaRerank
```
See a [usage examples](/docs/integrations/document_transformers/jina_rerank).

View File

@@ -0,0 +1,20 @@
# KoboldAI
>[KoboldAI](https://koboldai.com/) is a free, open-source project that allows users to run AI models locally
> on their own computer.
> It's a browser-based front-end that can be used for writing or role playing with an AI.
>[KoboldAI](https://github.com/KoboldAI/KoboldAI-Client) is a "a browser-based front-end for
> AI-assisted writing with multiple local & remote AI models...".
> It has a public and local API that can be used in LangChain.
## Installation and Setup
Check out the [installation guide](https://github.com/KoboldAI/KoboldAI-Client).
## LLMs
See a [usage example](/docs/integrations/llms/koboldai).
```python
from langchain_community.llms import KoboldApiLLM
```

View File

@@ -0,0 +1,21 @@
# KoNLPY
>[KoNLPy](https://konlpy.org/) is a Python package for natural language processing (NLP)
> of the Korean language.
## Installation and Setup
You need to install the `konlpy` python package.
```bash
pip install konlpy
```
## Text splitter
See a [usage example](/docs/how_to/split_by_token/#konlpy).
```python
from langchain_text_splitters import KonlpyTextSplitter
```

View File

@@ -0,0 +1,32 @@
# Kùzu
>[Kùzu](https://kuzudb.com/) is a company based in Waterloo, Ontario, Canada.
> It provides a highly scalable, extremely fast, easy-to-use [embeddable graph database](https://github.com/kuzudb/kuzu).
## Installation and Setup
You need to install the `kuzu` python package.
```bash
pip install kuzu
```
## Graph database
See a [usage example](/docs/integrations/graphs/kuzu_db).
```python
from langchain_community.graphs import KuzuGraph
```
## Chain
See a [usage example](/docs/integrations/graphs/kuzu_db/#creating-kuzuqachain).
```python
from langchain.chains import KuzuQAChain
```

View File

@@ -0,0 +1,32 @@
# LlamaIndex
>[LlamaIndex](https://www.llamaindex.ai/) is the leading data framework for building LLM applications
## Installation and Setup
You need to install the `llama-index` python package.
```bash
pip install llama-index
```
See the [installation instructions](https://docs.llamaindex.ai/en/stable/getting_started/installation/).
## Retrievers
### LlamaIndexRetriever
>It is used for the question-answering with sources over an LlamaIndex data structure.
```python
from langchain_community.retrievers.llama_index import LlamaIndexRetriever
```
### LlamaIndexGraphRetriever
>It is used for question-answering with sources over an LlamaIndex graph data structure.
```python
from langchain_community.retrievers.llama_index import LlamaIndexGraphRetriever
```

View File

@@ -0,0 +1,24 @@
# LlamaEdge
>[LlamaEdge](https://llamaedge.com/docs/intro/) is the easiest & fastest way to run customized
> and fine-tuned LLMs locally or on the edge.
>
>* Lightweight inference apps. `LlamaEdge` is in MBs instead of GBs
>* Native and GPU accelerated performance
>* Supports many GPU and hardware accelerators
>* Supports many optimized inference libraries
>* Wide selection of AI / LLM models
## Installation and Setup
See the [installation instructions](https://llamaedge.com/docs/user-guide/quick-start-command).
## Chat models
See a [usage example](/docs/integrations/chat/llama_edge).
```python
from langchain_community.chat_models.llama_edge import LlamaEdgeChatService
```

View File

@@ -0,0 +1,31 @@
# llamafile
>[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you distribute and run LLMs
> with a single file.
>`llamafile` makes open LLMs much more accessible to both developers and end users.
> `llamafile` is doing that by combining [llama.cpp](https://github.com/ggerganov/llama.cpp) with
> [Cosmopolitan Libc](https://github.com/jart/cosmopolitan) into one framework that collapses
> all the complexity of LLMs down to a single-file executable (called a "llamafile")
> that runs locally on most computers, with no installation.
## Installation and Setup
See the [installation instructions](https://github.com/Mozilla-Ocho/llamafile?tab=readme-ov-file#quickstart).
## LLMs
See a [usage example](/docs/integrations/llms/llamafile).
```python
from langchain_community.llms.llamafile import Llamafile
```
## Embedding models
See a [usage example](/docs/integrations/text_embedding/llamafile).
```python
from langchain_community.embeddings import LlamafileEmbeddings
```

View File

@@ -0,0 +1,24 @@
# LocalAI
>[LocalAI](https://localai.io/) is the free, Open Source OpenAI alternative.
> `LocalAI` act as a drop-in replacement REST API thats compatible with OpenAI API
> specifications for local inferencing. It allows you to run LLMs, generate images,
> audio (and not only) locally or on-prem with consumer grade hardware,
> supporting multiple model families and architectures.
## Installation and Setup
We have to install several python packages:
```bash
pip install tenacity openai
```
## Embedding models
See a [usage example](/docs/integrations/text_embedding/localai).
```python
from langchain_community.embeddings import LocalAIEmbeddings
```

View File

@@ -264,22 +264,20 @@ See a [usage example](/docs/integrations/document_loaders/url/#playwright-url-lo
from langchain_community.document_loaders.onenote import OneNoteLoader
```
## AI Agent Memory System
[AI agent](https://learn.microsoft.com/en-us/azure/cosmos-db/ai-agents) needs robust memory systems that support multi-modality, offer strong operational performance, and enable agent memory sharing as well as separation.
## Vector Stores
### Azure Cosmos DB
AI agents can rely on Azure Cosmos DB as a unified [memory system](https://learn.microsoft.com/en-us/azure/cosmos-db/ai-agents#memory-can-make-or-break-agents) solution, enjoying speed, scale, and simplicity. This service successfully [enabled OpenAI's ChatGPT service](https://www.youtube.com/watch?v=6IIUtEFKJec&t) to scale dynamically with high reliability and low maintenance. Powered by an atom-record-sequence engine, it is the world's first globally distributed [NoSQL](https://learn.microsoft.com/en-us/azure/cosmos-db/distributed-nosql), [relational](https://learn.microsoft.com/en-us/azure/cosmos-db/distributed-relational), and [vector database](https://learn.microsoft.com/en-us/azure/cosmos-db/vector-database) service that offers a serverless mode.
Below are two available Azure Cosmos DB APIs that can provide vector store functionalities.
### Azure Cosmos DB for MongoDB (vCore)
#### Azure Cosmos DB for MongoDB (vCore)
>[Azure Cosmos DB for MongoDB vCore](https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/) makes it easy to create a database with full native MongoDB support.
> You can apply your MongoDB experience and continue to use your favorite MongoDB drivers, SDKs, and tools by pointing your application to the API for MongoDB vCore account's connection string.
> Use vector search in Azure Cosmos DB for MongoDB vCore to seamlessly integrate your AI-based applications with your data that's stored in Azure Cosmos DB.
#### Installation and Setup
##### Installation and Setup
See [detail configuration instructions](/docs/integrations/vectorstores/azure_cosmos_db).
@@ -289,7 +287,7 @@ We need to install `pymongo` python package.
pip install pymongo
```
#### Deploy Azure Cosmos DB on Microsoft Azure
##### Deploy Azure Cosmos DB on Microsoft Azure
Azure Cosmos DB for MongoDB vCore provides developers with a fully managed MongoDB-compatible database service for building modern applications with a familiar architecture.
@@ -303,7 +301,7 @@ See a [usage example](/docs/integrations/vectorstores/azure_cosmos_db).
from langchain_community.vectorstores import AzureCosmosDBVectorSearch
```
### Azure Cosmos DB NoSQL
#### Azure Cosmos DB NoSQL
>[Azure Cosmos DB for NoSQL](https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/vector-search) now offers vector indexing and search in preview.
This feature is designed to handle high-dimensional vectors, enabling efficient and accurate vector search at any scale. You can now store vectors
@@ -312,7 +310,7 @@ but also high-dimensional vectors as other properties of the documents. This col
as the vectors are stored in the same logical unit as the data they represent. This simplifies data management, AI application architectures, and the
efficiency of vector-based operations.
#### Installation and Setup
##### Installation and Setup
See [detail configuration instructions](/docs/integrations/vectorstores/azure_cosmos_db_no_sql).
@@ -322,7 +320,7 @@ We need to install `azure-cosmos` python package.
pip install azure-cosmos
```
#### Deploy Azure Cosmos DB on Microsoft Azure
##### Deploy Azure Cosmos DB on Microsoft Azure
Azure Cosmos DB offers a solution for modern apps and intelligent workloads by being very responsive with dynamic and elastic autoscale. It is available
in every Azure region and can automatically replicate data closer to users. It has SLA guaranteed low-latency and high availability.
@@ -336,6 +334,7 @@ from langchain_community.vectorstores import AzureCosmosDBNoSQLVectorSearch
```
### Azure Database for PostgreSQL
>[Azure Database for PostgreSQL - Flexible Server](https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/service-overview) is a relational database service based on the open-source Postgres database engine. It's a fully managed database-as-a-service that can handle mission-critical workloads with predictable performance, security, high availability, and dynamic scalability.
See [set up instructions](https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/quickstart-create-server-portal) for Azure Database for PostgreSQL.
@@ -446,6 +445,38 @@ The `azure_ai_services` toolkit includes the following tools:
- Text to Speech: [AzureAiServicesTextToSpeechTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.azure_ai_services.text_to_speech.AzureAiServicesTextToSpeechTool.html)
- Text Analytics for Health: [AzureAiServicesTextAnalyticsForHealthTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.azure_ai_services.text_analytics_for_health.AzureAiServicesTextAnalyticsForHealthTool.html)
### Azure Cognitive Services
We need to install several python packages.
```bash
pip install azure-ai-formrecognizer azure-cognitiveservices-speech azure-ai-vision-imageanalysis
```
See a [usage example](/docs/integrations/tools/azure_cognitive_services).
```python
from langchain_community.agent_toolkits import AzureCognitiveServicesToolkit
```
#### Azure AI Services individual tools
The `azure_ai_services` toolkit includes the tools that queries the `Azure Cognitive Services`:
- `AzureCogsFormRecognizerTool`: Form Recognizer API
- `AzureCogsImageAnalysisTool`: Image Analysis API
- `AzureCogsSpeech2TextTool`: Speech2Text API
- `AzureCogsText2SpeechTool`: Text2Speech API
- `AzureCogsTextAnalyticsHealthTool`: Text Analytics for Health API
```python
from langchain_community.tools.azure_cognitive_services import (
AzureCogsFormRecognizerTool,
AzureCogsImageAnalysisTool,
AzureCogsSpeech2TextTool,
AzureCogsText2SpeechTool,
AzureCogsTextAnalyticsHealthTool,
)
```
### Microsoft Office 365 email and calendar
@@ -465,11 +496,11 @@ from langchain_community.agent_toolkits import O365Toolkit
#### Office 365 individual tools
You can use individual tools from the Office 365 Toolkit:
- `O365CreateDraftMessage`: tool for creating a draft email in Office 365
- `O365SearchEmails`: tool for searching email messages in Office 365
- `O365SearchEvents`: tool for searching calendar events in Office 365
- `O365SendEvent`: tool for sending calendar events in Office 365
- `O365SendMessage`: tool for sending an email in Office 365
- `O365CreateDraftMessage`: creating a draft email in Office 365
- `O365SearchEmails`: searching email messages in Office 365
- `O365SearchEvents`: searching calendar events in Office 365
- `O365SendEvent`: sending calendar events in Office 365
- `O365SendMessage`: sending an email in Office 365
```python
from langchain_community.tools.office365 import O365CreateDraftMessage
@@ -497,9 +528,9 @@ from langchain_community.utilities.powerbi import PowerBIDataset
#### PowerBI individual tools
You can use individual tools from the Azure PowerBI Toolkit:
- `InfoPowerBITool`: tool for getting metadata about a PowerBI Dataset
- `ListPowerBITool`: tool for getting tables names
- `QueryPowerBITool`: tool for querying a PowerBI Dataset
- `InfoPowerBITool`: getting metadata about a PowerBI Dataset
- `ListPowerBITool`: getting tables names
- `QueryPowerBITool`: querying a PowerBI Dataset
```python
from langchain_community.tools.powerbi.tool import InfoPowerBITool

View File

@@ -9,17 +9,25 @@
Install the Python SDK:
```bash
pip install pymilvus
pip install langchain-milvus
```
## Vector Store
There exists a wrapper around `Milvus` indexes, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
See a [usage example](/docs/integrations/vectorstores/milvus).
To import this vectorstore:
```python
from langchain_community.vectorstores import Milvus
from langchain_milvus import Milvus
```
## Retrievers
See a [usage example](/docs/integrations/retrievers/milvus_hybrid_search).
To import this vectorstore:
```python
from langchain_milvus.retrievers import MilvusCollectionHybridSearchRetriever
from langchain_milvus.utils.sparse import BM25SparseEmbedding
```
For a more detailed walkthrough of the `Miluvs` wrapper, see [this notebook](/docs/integrations/vectorstores/milvus)

View File

@@ -0,0 +1,24 @@
# MongoDB
>[MongoDB](https://www.mongodb.com/) is a NoSQL, document-oriented
> database that supports JSON-like documents with a dynamic schema.
**NOTE:**
- See other `MongoDB` integrations on the [MongoDB Atlas page](/docs/integrations/providers/mongodb_atlas).
## Installation and Setup
Install the Python package:
```bash
pip install langchain-mongodb
```
## Message Histories
See a [usage example](/docs/integrations/memory/mongodb_chat_message_history).
To import this vectorstore:
```python
from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory
```

View File

@@ -22,10 +22,30 @@ See a [usage example](/docs/integrations/vectorstores/mongodb_atlas).
from langchain_mongodb import MongoDBAtlasVectorSearch
```
## Retrievers
## LLM Caches
### Full Text Search Retriever
>`Hybrid Search Retriever` performs full-text searches using
> Lucenes standard (`BM25`) analyzer.
```python
from langchain_mongodb.retrievers import MongoDBAtlasFullTextSearchRetriever
```
### Hybrid Search Retriever
>`Hybrid Search Retriever` combines vector and full-text searches weighting
> them the via `Reciprocal Rank Fusion` (`RRF`) algorithm.
```python
from langchain_mongodb.retrievers import MongoDBAtlasHybridSearchRetriever
```
## Model Caches
### MongoDBCache
An abstraction to store a simple cache in MongoDB. This does not use Semantic Caching, nor does it require an index to be made on the collection before generation.
To import this cache:

View File

@@ -32,20 +32,18 @@ from langchain_community.embeddings import OCIGenAIEmbeddings
> as an OCI Model Deployment Endpoint using the
> [OCI Data Science Model Deployment Service](https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm).
If you deployed a LLM with the VLLM or TGI framework, you can use the
`OCIModelDeploymentVLLM` or `OCIModelDeploymentTGI` classes to interact with it.
To use, you should have the latest `oracle-ads` python SDK installed.
```bash
pip install -U oracle-ads
```
See [usage examples](/docs/integrations/llms/oci_model_deployment_endpoint).
See [chat](/docs/integrations/chat/oci_data_science) and [complete](/docs/integrations/llms/oci_model_deployment_endpoint) usage examples.
```python
from langchain_community.llms import OCIModelDeploymentVLLM
from langchain_community.chat_models import ChatOCIModelDeployment
from langchain_community.llms import OCIModelDeploymentTGI
from langchain_community.llms import OCIModelDeploymentLLM
```

View File

@@ -10,7 +10,7 @@
">\n",
">**Solar Mini Chat** is a fast yet powerful advanced large language model focusing on English and Korean. It has been specifically fine-tuned for multi-turn chat purposes, showing enhanced performance across a wide range of natural language processing tasks, like multi-turn conversation or tasks that require an understanding of long contexts, such as RAG (Retrieval-Augmented Generation), compared to other models of a similar size. This fine-tuning equips it with the ability to handle longer conversations more effectively, making it particularly adept for interactive applications.\n",
"\n",
">Other than Solar, Upstage also offers features for real-world RAG (retrieval-augmented generation), such as **Groundedness Check** and **Layout Analysis**. \n"
">Other than Solar, Upstage also offers features for real-world RAG (retrieval-augmented generation), such as **Document Parse** and **Groundedness Check**. \n"
]
},
{
@@ -24,7 +24,7 @@
"| Chat | Build assistants using Solar Mini Chat | `from langchain_upstage import ChatUpstage` | [Go](../../chat/upstage) |\n",
"| Text Embedding | Embed strings to vectors | `from langchain_upstage import UpstageEmbeddings` | [Go](../../text_embedding/upstage) |\n",
"| Groundedness Check | Verify groundedness of assistant's response | `from langchain_upstage import UpstageGroundednessCheck` | [Go](../../tools/upstage_groundedness_check) |\n",
"| Layout Analysis | Serialize documents with tables and figures | `from langchain_upstage import UpstageLayoutAnalysisLoader` | [Go](../../document_loaders/upstage) |\n",
"| Document Parse | Serialize documents with tables and figures | `from langchain_upstage import UpstageDocumentParseLoader` | [Go](../../document_loaders/upstage) |\n",
"\n",
"See [documentations](https://developers.upstage.ai/) for more details about the features."
]
@@ -122,7 +122,7 @@
"source": [
"## Document loader\n",
"\n",
"### Layout Analysis\n",
"### Document Parse\n",
"\n",
"See [a usage example](/docs/integrations/document_loaders/upstage)."
]
@@ -133,10 +133,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_upstage import UpstageLayoutAnalysisLoader\n",
"from langchain_upstage import UpstageDocumentParseLoader\n",
"\n",
"file_path = \"/PATH/TO/YOUR/FILE.pdf\"\n",
"layzer = UpstageLayoutAnalysisLoader(file_path, split=\"page\")\n",
"layzer = UpstageDocumentParseLoader(file_path, split=\"page\")\n",
"\n",
"# For improved memory efficiency, consider using the lazy_load method to load documents page by page.\n",
"docs = layzer.load() # or layzer.lazy_load()\n",

View File

@@ -52,18 +52,10 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "b87a8e8b-9b5a-4e78-97e4-274b6b0dd29f",
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter your Box Developer Token: ········\n"
]
}
],
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
@@ -81,7 +73,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
@@ -102,10 +94,18 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -qU langchain-box"
]
@@ -124,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"id": "70cc8e65-2a02-408a-bbc6-8ef649057d82",
"metadata": {},
"outputs": [],
@@ -146,7 +146,7 @@
},
{
"cell_type": "code",
"execution_count": 33,
"execution_count": 6,
"id": "97f3ae67",
"metadata": {},
"outputs": [
@@ -156,7 +156,7 @@
"[Document(metadata={'source': 'https://dl.boxcloud.com/api/2.0/internal_files/1514555423624/versions/1663171610024/representations/extracted_text/content/', 'title': 'Invoice-A5555_txt'}, page_content='Vendor: AstroTech Solutions\\nInvoice Number: A5555\\n\\nLine Items:\\n - Gravitational Wave Detector Kit: $800\\n - Exoplanet Terrarium: $120\\nTotal: $920')]"
]
},
"execution_count": 33,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -192,7 +192,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 7,
"id": "ee0e726d-9974-4aa0-9ce1-0057ec3e540a",
"metadata": {},
"outputs": [],
@@ -216,17 +216,17 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"id": "51a60dbe-9f2e-4e04-bb62-23968f17164a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(metadata={'source': 'Box AI', 'title': 'Box AI What was the most expensive item purchased'}, page_content='The most expensive item purchased was the **Gravitational Wave Detector Kit** from AstroTech Solutions, which cost $800.')]"
"[Document(metadata={'source': 'Box AI', 'title': 'Box AI What was the most expensive item purchased'}, page_content='The most expensive item purchased is the **Gravitational Wave Detector Kit** from AstroTech Solutions, which costs **$800**.')]"
]
},
"execution_count": 5,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -237,6 +237,80 @@
"retriever.invoke(query)"
]
},
{
"cell_type": "markdown",
"id": "31a59a51",
"metadata": {},
"source": [
"## Citations\n",
"\n",
"With Box AI and the `BoxRetriever`, you can return the answer to your prompt, return the citations used by Box to get that answer, or both. No matter how you choose to use Box AI, the retriever returns a `List[Document]` object. We offer this flexibility with two `bool` arguments, `answer` and `citations`. Answer defaults to `True` and citations defaults to `False`, do you can omit both if you just want the answer. If you want both, you can just include `citations=True` and if you only want citations, you would include `answer=False` and `citations=True`\n",
"\n",
"### Get both"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2eddc8c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(metadata={'source': 'Box AI', 'title': 'Box AI What was the most expensive item purchased'}, page_content='The most expensive item purchased is the **Gravitational Wave Detector Kit** from AstroTech Solutions, which costs **$800**.'),\n",
" Document(metadata={'source': 'Box AI What was the most expensive item purchased', 'file_name': 'Invoice-A5555.txt', 'file_id': '1514555423624', 'file_type': 'file'}, page_content='Vendor: AstroTech Solutions\\nInvoice Number: A5555\\n\\nLine Items:\\n - Gravitational Wave Detector Kit: $800\\n - Exoplanet Terrarium: $120\\nTotal: $920')]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever = BoxRetriever(\n",
" box_developer_token=box_developer_token, box_file_ids=box_file_ids, citations=True\n",
")\n",
"\n",
"retriever.invoke(query)"
]
},
{
"cell_type": "markdown",
"id": "d2e93a2e",
"metadata": {},
"source": [
"### Citations only"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c1892b07",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(metadata={'source': 'Box AI What was the most expensive item purchased', 'file_name': 'Invoice-A5555.txt', 'file_id': '1514555423624', 'file_type': 'file'}, page_content='Vendor: AstroTech Solutions\\nInvoice Number: A5555\\n\\nLine Items:\\n - Gravitational Wave Detector Kit: $800\\n - Exoplanet Terrarium: $120\\nTotal: $920')]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever = BoxRetriever(\n",
" box_developer_token=box_developer_token,\n",
" box_file_ids=box_file_ids,\n",
" answer=False,\n",
" citations=True,\n",
")\n",
"\n",
"retriever.invoke(query)"
]
},
{
"cell_type": "markdown",
"id": "dfe8aad4-8626-4330-98a9-7ea1ca5d2e0e",
@@ -260,7 +334,7 @@
"metadata": {},
"outputs": [
{
"name": "stdin",
"name": "stdout",
"output_type": "stream",
"text": [
"Enter your OpenAI key: ········\n"

View File

@@ -25,7 +25,7 @@
"\n",
"| Provider | Package |\n",
"|:--------:|:-------:|\n",
"| [Google](https://python.langchain.com/docs/integrations/platforms/google/) | [langchain-google-vertexai](https://python.langchain.com/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html) |\n",
"| [Google](https://python.langchain.com/docs/integrations/providers/google/) | [langchain-google-vertexai](https://python.langchain.com/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html) |\n",
"\n",
"## Setup\n",
"\n",

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Local BGE Embeddings with IPEX-LLM on Intel CPU\n",
"# IPEX-LLM: Local BGE Embeddings on Intel CPU\n",
"\n",
"> [IPEX-LLM](https://github.com/intel-analytics/ipex-llm) is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low latency.\n",
"\n",
@@ -92,10 +92,24 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Local BGE Embeddings with IPEX-LLM on Intel GPU\n",
"# IPEX-LLM: Local BGE Embeddings on Intel GPU\n",
"\n",
"> [IPEX-LLM](https://github.com/intel-analytics/ipex-llm) is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low latency.\n",
"\n",
@@ -155,10 +155,24 @@
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -5,7 +5,11 @@
"id": "1c0cf975",
"metadata": {},
"source": [
"# Jina"
"# Jina\n",
"\n",
"You can check the list of available models from [here](https://jina.ai/embeddings/).\n",
"\n",
"## Installation and setup"
]
},
{
@@ -231,7 +235,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -74,6 +74,24 @@
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(Optional) To increase the retry time for getting a function execution response, set environment variable UC_TOOL_CLIENT_EXECUTION_TIMEOUT. Default retry time value is 120s."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"UC_TOOL_CLIENT_EXECUTION_TIMEOUT\"] = \"200\""
]
},
{
"cell_type": "code",
"execution_count": 4,

View File

@@ -11,6 +11,8 @@
"\n",
"The `Jira` toolkit allows agents to interact with a given Jira instance, performing actions such as searching for issues and creating issues, the tool wraps the atlassian-python-api library, for more see: https://atlassian-python-api.readthedocs.io/jira.html\n",
"\n",
"## Installation and setup\n",
"\n",
"To use this tool, you must first set as environment variables:\n",
" JIRA_API_TOKEN\n",
" JIRA_USERNAME\n",
@@ -47,7 +49,7 @@
},
"outputs": [],
"source": [
"%pip install -qU langchain-community"
"%pip install -qU langchain-community langchain_openai"
]
},
{
@@ -58,6 +60,13 @@
"ExecuteTime": {
"end_time": "2023-04-17T10:21:23.730922Z",
"start_time": "2023-04-17T10:21:22.911233Z"
},
"execution": {
"iopub.execute_input": "2024-10-02T17:40:07.356954Z",
"iopub.status.busy": "2024-10-02T17:40:07.356792Z",
"iopub.status.idle": "2024-10-02T17:40:07.359943Z",
"shell.execute_reply": "2024-10-02T17:40:07.359476Z",
"shell.execute_reply.started": "2024-10-02T17:40:07.356942Z"
}
},
"outputs": [],
@@ -72,7 +81,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "b3050b55",
"metadata": {
"ExecuteTime": {
@@ -80,6 +89,13 @@
"start_time": "2023-04-17T10:22:42.499447Z"
},
"collapsed": false,
"execution": {
"iopub.execute_input": "2024-10-02T17:40:16.201684Z",
"iopub.status.busy": "2024-10-02T17:40:16.200922Z",
"iopub.status.idle": "2024-10-02T17:40:16.208035Z",
"shell.execute_reply": "2024-10-02T17:40:16.207564Z",
"shell.execute_reply.started": "2024-10-02T17:40:16.201634Z"
},
"jupyter": {
"outputs_hidden": false
}
@@ -93,6 +109,74 @@
"os.environ[\"JIRA_CLOUD\"] = \"True\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c0768000-227b-4aa1-a838-4befbdefadb1",
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-02T17:42:00.792867Z",
"iopub.status.busy": "2024-10-02T17:42:00.792365Z",
"iopub.status.idle": "2024-10-02T17:42:00.816979Z",
"shell.execute_reply": "2024-10-02T17:42:00.816419Z",
"shell.execute_reply.started": "2024-10-02T17:42:00.792827Z"
}
},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"jira = JiraAPIWrapper()\n",
"toolkit = JiraToolkit.from_jira_api_wrapper(jira)"
]
},
{
"cell_type": "markdown",
"id": "961b3187-daf0-4907-9cc0-a69796fba4aa",
"metadata": {},
"source": [
"## Tool usage\n",
"\n",
"Let's see what individual tools are in the Jira toolkit:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "eb5cf521-9a91-44bc-b68e-bc4067d05a76",
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-02T17:42:27.232022Z",
"iopub.status.busy": "2024-10-02T17:42:27.231140Z",
"iopub.status.idle": "2024-10-02T17:42:27.240169Z",
"shell.execute_reply": "2024-10-02T17:42:27.239693Z",
"shell.execute_reply.started": "2024-10-02T17:42:27.231949Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[('JQL Query',\n",
" '\\n This tool is a wrapper around atlassian-python-api\\'s Jira jql API, useful when you need to search for Jira issues.\\n The input to this tool is a JQL query string, and will be passed into atlassian-python-api\\'s Jira `jql` function,\\n For example, to find all the issues in project \"Test\" assigned to the me, you would pass in the following string:\\n project = Test AND assignee = currentUser()\\n or to find issues with summaries that contain the word \"test\", you would pass in the following string:\\n summary ~ \\'test\\'\\n '),\n",
" ('Get Projects',\n",
" \"\\n This tool is a wrapper around atlassian-python-api's Jira project API, \\n useful when you need to fetch all the projects the user has access to, find out how many projects there are, or as an intermediary step that involv searching by projects. \\n there is no input to this tool.\\n \"),\n",
" ('Create Issue',\n",
" '\\n This tool is a wrapper around atlassian-python-api\\'s Jira issue_create API, useful when you need to create a Jira issue. \\n The input to this tool is a dictionary specifying the fields of the Jira issue, and will be passed into atlassian-python-api\\'s Jira `issue_create` function.\\n For example, to create a low priority task called \"test issue\" with description \"test description\", you would pass in the following dictionary: \\n {{\"summary\": \"test issue\", \"description\": \"test description\", \"issuetype\": {{\"name\": \"Task\"}}, \"priority\": {{\"name\": \"Low\"}}}}\\n '),\n",
" ('Catch all Jira API call',\n",
" '\\n This tool is a wrapper around atlassian-python-api\\'s Jira API.\\n There are other dedicated tools for fetching all projects, and creating and searching for issues, \\n use this tool if you need to perform any other actions allowed by the atlassian-python-api Jira API.\\n The input to this tool is a dictionary specifying a function from atlassian-python-api\\'s Jira API, \\n as well as a list of arguments and dictionary of keyword arguments to pass into the function.\\n For example, to get all the users in a group, while increasing the max number of results to 100, you would\\n pass in the following dictionary: {{\"function\": \"get_all_users_from_group\", \"args\": [\"group\"], \"kwargs\": {{\"limit\":100}} }}\\n or to find out how many projects are in the Jira instance, you would pass in the following string:\\n {{\"function\": \"projects\"}}\\n For more information on the Jira API, refer to https://atlassian-python-api.readthedocs.io/jira.html\\n '),\n",
" ('Create confluence page',\n",
" 'This tool is a wrapper around atlassian-python-api\\'s Confluence \\natlassian-python-api API, useful when you need to create a Confluence page. The input to this tool is a dictionary \\nspecifying the fields of the Confluence page, and will be passed into atlassian-python-api\\'s Confluence `create_page` \\nfunction. For example, to create a page in the DEMO space titled \"This is the title\" with body \"This is the body. You can use \\n<strong>HTML tags</strong>!\", you would pass in the following dictionary: {{\"space\": \"DEMO\", \"title\":\"This is the \\ntitle\",\"body\":\"This is the body. You can use <strong>HTML tags</strong>!\"}} ')]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[(tool.name, tool.description) for tool in toolkit.get_tools()]"
]
},
{
"cell_type": "code",
"execution_count": 5,
@@ -105,9 +189,6 @@
},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"jira = JiraAPIWrapper()\n",
"toolkit = JiraToolkit.from_jira_api_wrapper(jira)\n",
"agent = initialize_agent(\n",
" toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
")"

View File

@@ -35,9 +35,16 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"id": "ff988466-c389-4ec6-b6ac-14364a537fd5",
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-02T17:52:40.107644Z",
"iopub.status.busy": "2024-10-02T17:52:40.107485Z",
"iopub.status.idle": "2024-10-02T17:52:40.110169Z",
"shell.execute_reply": "2024-10-02T17:52:40.109841Z",
"shell.execute_reply.started": "2024-10-02T17:52:40.107633Z"
},
"tags": []
},
"outputs": [],
@@ -50,16 +57,23 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "9ecd1ba0-3937-4359-a41e-68605f0596a1",
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-02T17:59:54.134295Z",
"iopub.status.busy": "2024-10-02T17:59:54.134138Z",
"iopub.status.idle": "2024-10-02T17:59:54.137250Z",
"shell.execute_reply": "2024-10-02T17:59:54.136636Z",
"shell.execute_reply.started": "2024-10-02T17:59:54.134283Z"
},
"tags": []
},
"outputs": [],
"source": [
"with open(\"openai_openapi.yml\") as f:\n",
" data = yaml.load(f, Loader=yaml.FullLoader)\n",
"json_spec = JsonSpec(dict_=data, max_value_length=4000)\n",
"json_spec = JsonSpec(dict_={}, max_value_length=4000)\n",
"json_toolkit = JsonToolkit(spec=json_spec)\n",
"\n",
"json_agent_executor = create_json_agent(\n",
@@ -67,6 +81,48 @@
")"
]
},
{
"cell_type": "markdown",
"id": "910eccbc-9d42-49b6-a4ca-1fbc418fcee7",
"metadata": {},
"source": [
"## Individual tools\n",
"\n",
"Let's see what individual tools are inside the Jira toolkit."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b16a3ee5-ca16-452e-993f-c27228b945ac",
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-02T18:00:30.527665Z",
"iopub.status.busy": "2024-10-02T18:00:30.527053Z",
"iopub.status.idle": "2024-10-02T18:00:30.538483Z",
"shell.execute_reply": "2024-10-02T18:00:30.537672Z",
"shell.execute_reply.started": "2024-10-02T18:00:30.527626Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[('json_spec_list_keys',\n",
" '\\n Can be used to list all keys at a given path. \\n Before calling this you should be SURE that the path to this exists.\\n The input is a text representation of the path to the dict in Python syntax (e.g. data[\"key1\"][0][\"key2\"]).\\n '),\n",
" ('json_spec_get_value',\n",
" '\\n Can be used to see value in string format at a given path.\\n Before calling this you should be SURE that the path to this exists.\\n The input is a text representation of the path to the dict in Python syntax (e.g. data[\"key1\"][0][\"key2\"]).\\n ')]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"[(el.name, el.description) for el in json_toolkit.get_tools()]"
]
},
{
"cell_type": "markdown",
"id": "05cfcb24-4389-4b8f-ad9e-466e3fca8db0",

View File

@@ -176,7 +176,7 @@
"id": "f8014c9d",
"metadata": {},
"source": [
"Now, we can initalize the agent with the LLM, the prompt, and the tools. The agent is responsible for taking in input and deciding what actions to take. Crucially, the Agent does not execute those actions - that is done by the AgentExecutor (next step). For more information about how to think about these components, see our [conceptual guide](/docs/concepts#agents)"
"Now, we can initialize the agent with the LLM, the prompt, and the tools. The agent is responsible for taking in input and deciding what actions to take. Crucially, the Agent does not execute those actions - that is done by the AgentExecutor (next step). For more information about how to think about these components, see our [conceptual guide](/docs/concepts#agents)"
]
},
{

View File

@@ -209,15 +209,25 @@
},
{
"cell_type": "markdown",
"id": "5f5751e3-2e98-485f-8164-db8094039c25",
"id": "4e3fd064-aa86-448d-8db3-3c55eaa5bc15",
"metadata": {},
"source": [
"API references:\n",
"\n",
"- [QuerySQLDataBaseTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLDataBaseTool.html)\n",
"- [InfoSQLDatabaseTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.InfoSQLDatabaseTool.html)\n",
"- [ListSQLDatabaseTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.ListSQLDatabaseTool.html)\n",
"- [QuerySQLCheckerTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLCheckerTool.html)"
"You can use the individual tools directly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7fa8d00c-750c-4803-9b66-057d12b26b06",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.tools.sql_database.tool import (\n",
" InfoSQLDatabaseTool,\n",
" ListSQLDatabaseTool,\n",
" QuerySQLCheckerTool,\n",
" QuerySQLDataBaseTool,\n",
")"
]
},
{
@@ -604,7 +614,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -52,7 +52,7 @@
}
],
"source": [
"%pip install --upgrade --quiet langchain-google-spanner"
"%pip install --upgrade --quiet langchain-google-spanner langchain-google-vertexai"
]
},
{
@@ -124,7 +124,8 @@
"PROJECT_ID = \"my-project-id\" # @param {type:\"string\"}\n",
"\n",
"# Set the project id\n",
"!gcloud config set project {PROJECT_ID}"
"!gcloud config set project {PROJECT_ID}\n",
"%env GOOGLE_CLOUD_PROJECT={PROJECT_ID}"
]
},
{
@@ -194,14 +195,16 @@
" instance_id=INSTANCE,\n",
" database_id=DATABASE,\n",
" table_name=TABLE_NAME,\n",
" id_column=\"row_id\",\n",
" metadata_columns=[\n",
" TableColumn(name=\"metadata\", type=\"JSON\", is_null=True),\n",
" TableColumn(name=\"title\", type=\"STRING(MAX)\", is_null=False),\n",
" ],\n",
" secondary_indexes=[\n",
" SecondaryIndex(index_name=\"row_id_and_title\", columns=[\"row_id\", \"title\"])\n",
" ],\n",
" # Customize the table creation\n",
" # id_column=\"row_id\",\n",
" # content_column=\"content_column\",\n",
" # metadata_columns=[\n",
" # TableColumn(name=\"metadata\", type=\"JSON\", is_null=True),\n",
" # TableColumn(name=\"title\", type=\"STRING(MAX)\", is_null=False),\n",
" # ],\n",
" # secondary_indexes=[\n",
" # SecondaryIndex(index_name=\"row_id_and_title\", columns=[\"row_id\", \"title\"])\n",
" # ],\n",
")"
]
},
@@ -262,9 +265,11 @@
" instance_id=INSTANCE,\n",
" database_id=DATABASE,\n",
" table_name=TABLE_NAME,\n",
" ignore_metadata_columns=[],\n",
" embedding_service=embeddings,\n",
" metadata_json_column=\"metadata\",\n",
" # Connect to a custom vector store table\n",
" # id_column=\"row_id\",\n",
" # content_column=\"content\",\n",
" # metadata_columns=[\"metadata\", \"title\"],\n",
")"
]
},
@@ -272,7 +277,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 🔐 Add Documents\n",
"#### Add Documents\n",
"To add documents in the vector store."
]
},
@@ -289,14 +294,15 @@
"loader = HNLoader(\"https://news.ycombinator.com/item?id=34817881\")\n",
"\n",
"documents = loader.load()\n",
"ids = [str(uuid.uuid4()) for _ in range(len(documents))]"
"ids = [str(uuid.uuid4()) for _ in range(len(documents))]\n",
"db.add_documents(documents, ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 🔐 Search Documents\n",
"#### Search Documents\n",
"To search documents in the vector store with similarity search."
]
},
@@ -313,7 +319,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 🔐 Search Documents\n",
"#### Search Documents\n",
"To search documents in the vector store with max marginal relevance search."
]
},
@@ -330,7 +336,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 🔐 Delete Documents\n",
"#### Delete Documents\n",
"To remove documents from the vector store, use the IDs that correspond to the values in the `row_id`` column when initializing the VectorStore."
]
},
@@ -347,7 +353,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 🔐 Delete Documents\n",
"#### Delete Documents\n",
"To remove documents from the vector store, you can utilize the documents themselves. The content column and metadata columns provided during VectorStore initialization will be used to find out the rows corresponding to the documents. Any matching rows will then be deleted."
]
},
@@ -377,7 +383,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
"version": "3.11.8"
}
},
"nbformat": 4,

View File

@@ -8,7 +8,7 @@ sidebar_class_name: hidden
**LangChain** is a framework for developing applications powered by large language models (LLMs).
LangChain simplifies every stage of the LLM application lifecycle:
- **Development**: Build your applications using LangChain's open-source [building blocks](/docs/concepts#langchain-expression-language-lcel), [components](/docs/concepts), and [third-party integrations](/docs/integrations/platforms/).
- **Development**: Build your applications using LangChain's open-source [building blocks](/docs/concepts#langchain-expression-language-lcel), [components](/docs/concepts), and [third-party integrations](/docs/integrations/providers/).
Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Use [LangSmith](https://docs.smith.langchain.com/) to inspect, monitor and evaluate your chains, so that you can continuously optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).

View File

@@ -6,7 +6,7 @@ LangChain has a large ecosystem of integrations with various external resources
When building such applications developers should remember to follow good security practices:
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), etc. as appropriate for your application.
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc. as appropriate for your application.
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, its safest to assume that any LLM able to use those credentials may in fact delete data.
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. Its best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.

View File

@@ -0,0 +1,14 @@
# INVALID_PROMPT_INPUT
A [prompt template](/docs/concepts#prompt-templates) received missing or invalid input variables.
## Troubleshooting
The following may help resolve this error:
- Double-check your prompt template to ensure that it is correct.
- If you are using the default f-string format and you are using curly braces `{` anywhere in your template, they should be double escaped like this: `{{` (and if you want to render a double curly brace, you should use four curly braces: `{{{{`).
- If you are using a [`MessagesPlaceholder`](/docs/concepts/#messagesplaceholder), make sure that you are passing in an array of messages or message-like objects.
- If you are using shorthand tuples to declare your prompt template, make sure that the variable name is wrapped in curly braces (`["placeholder", "{messages}"]`).
- Try viewing the inputs into your prompt template using [LangSmith](https://docs.smith.langchain.com/) or log statements to confirm they appear as expected.
- If you are pulling a prompt from the [LangChain Prompt Hub](https://smith.langchain.com/prompts), try pulling and logging it or running it in isolation with a sample input to confirm that it is what you expect.

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,122 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MESSAGE_COERCION_FAILURE\n",
"\n",
"Instead of always requiring instances of `BaseMessage`, several modules in LangChain take `MessageLikeRepresentation`, which is defined as:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from typing import Union\n",
"\n",
"from langchain_core.prompts.chat import (\n",
" BaseChatPromptTemplate,\n",
" BaseMessage,\n",
" BaseMessagePromptTemplate,\n",
")\n",
"\n",
"MessageLikeRepresentation = Union[\n",
" Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate],\n",
" tuple[\n",
" Union[str, type],\n",
" Union[str, list[dict], list[object]],\n",
" ],\n",
" str,\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These include OpenAI style message objects (`{ role: \"user\", content: \"Hello world!\" }`),\n",
"tuples, and plain strings (which are converted to [`HumanMessages`](/docs/concepts#humanmessage)).\n",
"\n",
"If one of these modules receives a value outside of one of these formats, you will receive an error like the following:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "Message dict must contain 'role' and 'content' keys, got {'role': 'HumanMessage', 'random_field': 'random value'}",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/messages/utils.py:318\u001b[0m, in \u001b[0;36m_convert_to_message\u001b[0;34m(message)\u001b[0m\n\u001b[1;32m 317\u001b[0m \u001b[38;5;66;03m# None msg content is not allowed\u001b[39;00m\n\u001b[0;32m--> 318\u001b[0m msg_content \u001b[38;5;241m=\u001b[39m \u001b[43mmsg_kwargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcontent\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 319\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"\u001b[0;31mKeyError\u001b[0m: 'content'",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[5], line 10\u001b[0m\n\u001b[1;32m 3\u001b[0m uncoercible_message \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 4\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrole\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHumanMessage\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 5\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrandom_field\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrandom value\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 6\u001b[0m }\n\u001b[1;32m 8\u001b[0m model \u001b[38;5;241m=\u001b[39m ChatAnthropic(model\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mclaude-3-5-sonnet-20240620\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 10\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43muncoercible_message\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/language_models/chat_models.py:287\u001b[0m, in \u001b[0;36mBaseChatModel.invoke\u001b[0;34m(self, input, config, stop, **kwargs)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 277\u001b[0m \u001b[38;5;28minput\u001b[39m: LanguageModelInput,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 282\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m BaseMessage:\n\u001b[1;32m 283\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(\n\u001b[1;32m 285\u001b[0m ChatGeneration,\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgenerate_prompt(\n\u001b[0;32m--> 287\u001b[0m [\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_convert_input\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m],\n\u001b[1;32m 288\u001b[0m stop\u001b[38;5;241m=\u001b[39mstop,\n\u001b[1;32m 289\u001b[0m callbacks\u001b[38;5;241m=\u001b[39mconfig\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 290\u001b[0m tags\u001b[38;5;241m=\u001b[39mconfig\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 291\u001b[0m metadata\u001b[38;5;241m=\u001b[39mconfig\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 292\u001b[0m run_name\u001b[38;5;241m=\u001b[39mconfig\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 293\u001b[0m run_id\u001b[38;5;241m=\u001b[39mconfig\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_id\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[1;32m 294\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 295\u001b[0m )\u001b[38;5;241m.\u001b[39mgenerations[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m0\u001b[39m],\n\u001b[1;32m 296\u001b[0m )\u001b[38;5;241m.\u001b[39mmessage\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/language_models/chat_models.py:267\u001b[0m, in \u001b[0;36mBaseChatModel._convert_input\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 265\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m StringPromptValue(text\u001b[38;5;241m=\u001b[39m\u001b[38;5;28minput\u001b[39m)\n\u001b[1;32m 266\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28minput\u001b[39m, Sequence):\n\u001b[0;32m--> 267\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ChatPromptValue(messages\u001b[38;5;241m=\u001b[39m\u001b[43mconvert_to_messages\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 268\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 269\u001b[0m msg \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 270\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid input type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28minput\u001b[39m)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 271\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMust be a PromptValue, str, or list of BaseMessages.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 272\u001b[0m )\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/messages/utils.py:348\u001b[0m, in \u001b[0;36mconvert_to_messages\u001b[0;34m(messages)\u001b[0m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(messages, PromptValue):\n\u001b[1;32m 347\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m messages\u001b[38;5;241m.\u001b[39mto_messages()\n\u001b[0;32m--> 348\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m[\u001b[49m\u001b[43m_convert_to_message\u001b[49m\u001b[43m(\u001b[49m\u001b[43mm\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m]\u001b[49m\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/messages/utils.py:348\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(messages, PromptValue):\n\u001b[1;32m 347\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m messages\u001b[38;5;241m.\u001b[39mto_messages()\n\u001b[0;32m--> 348\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43m_convert_to_message\u001b[49m\u001b[43m(\u001b[49m\u001b[43mm\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m m \u001b[38;5;129;01min\u001b[39;00m messages]\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/messages/utils.py:321\u001b[0m, in \u001b[0;36m_convert_to_message\u001b[0;34m(message)\u001b[0m\n\u001b[1;32m 319\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 320\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMessage dict must contain \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrole\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m and \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcontent\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m keys, got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 321\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 322\u001b[0m _message \u001b[38;5;241m=\u001b[39m _create_message_from_message_type(\n\u001b[1;32m 323\u001b[0m msg_type, msg_content, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmsg_kwargs\n\u001b[1;32m 324\u001b[0m )\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
"\u001b[0;31mValueError\u001b[0m: Message dict must contain 'role' and 'content' keys, got {'role': 'HumanMessage', 'random_field': 'random value'}"
]
}
],
"source": [
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"uncoercible_message = {\"role\": \"HumanMessage\", \"random_field\": \"random value\"}\n",
"\n",
"model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\")\n",
"\n",
"model.invoke([uncoercible_message])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Troubleshooting\n",
"\n",
"The following may help resolve this error:\n",
"\n",
"- Ensure that all inputs to chat models are an array of LangChain message classes or a supported message-like.\n",
" - Check that there is no stringification or other unexpected transformation occuring.\n",
"- Check the error's stack trace and add log or debugger statements."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,18 @@
# MODEL_AUTHENTICATION
Your model provider is denying you access to their service.
## Troubleshooting
The following may help resolve this error:
- Confirm that your API key or other credentials are correct.
- If you are relying on an environment variable to authenticate, confirm that the variable name is correct and that it has a value set.
- Note that environment variables can also be set by packages like `dotenv`.
- For models, you can try explicitly passing an `api_key` parameter to rule out any environment variable issues like this:
```python
model = ChatOpenAI(api_key="YOUR_KEY_HERE")
```
- If you are using a proxy or other custom endpoint, make sure that your custom provider does not expect an alternative authentication scheme.

View File

@@ -0,0 +1,10 @@
# MODEL_NOT_FOUND
The model name you have specified is not acknowledged by your provider.
## Troubleshooting
The following may help resolve this error:
- Double check the model string you are passing in.
- If you are using a proxy or other alternative host with a model wrapper, confirm that the permitted model names are not restricted or altered.

View File

@@ -0,0 +1,13 @@
# MODEL_RATE_LIMIT
You have hit the maximum number of requests that a model provider allows over a given time period and are being temporarily blocked.
Generally, this error is temporary and your limit will reset after a certain amount of time.
## Troubleshooting
The following may help resolve this error:
- Contact your model provider and ask for a rate limit increase.
- If many of your incoming requests are the same, utilize [model response caching](/docs/how_to/chat_model_caching/).
- Spread requests across different providers if your application allows it.
- Use a [`rate_limiter`](/docs/how_to/chat_model_rate_limiting/) to control the rate of requests to the model.

View File

@@ -0,0 +1,126 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OUTPUT_PARSING_FAILURE\n",
"\n",
"An [output parser](/docs/concepts#output-parsers) was unable to handle model output as expected.\n",
"\n",
"To illustrate this, let's say you have an output parser that expects a chat model to output JSON surrounded by a markdown code tag (triple backticks). Here would be an example of good input:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'foo': 'bar'}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.messages import AIMessage\n",
"from langchain_core.output_parsers import JsonOutputParser\n",
"\n",
"message = AIMessage(content='```\\n{\"foo\": \"bar\"}\\n```')\n",
"output_parser = JsonOutputParser()\n",
"output_parser.invoke(message)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Internally, our JSON parser stripped out the markdown fence and newlines and then ran `json.loads`.\n",
"\n",
"If instead the chat model generated an output with malformed JSON, we will get an error:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"ename": "OutputParserException",
"evalue": "Invalid json output: ```\n{{\"foo\":\n```",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/output_parsers/json.py:83\u001b[0m, in \u001b[0;36mJsonOutputParser.parse_result\u001b[0;34m(self, result, partial)\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 83\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mparse_json_markdown\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtext\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m JSONDecodeError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/utils/json.py:144\u001b[0m, in \u001b[0;36mparse_json_markdown\u001b[0;34m(json_string, parser)\u001b[0m\n\u001b[1;32m 143\u001b[0m json_str \u001b[38;5;241m=\u001b[39m json_string \u001b[38;5;28;01mif\u001b[39;00m match \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m match\u001b[38;5;241m.\u001b[39mgroup(\u001b[38;5;241m2\u001b[39m)\n\u001b[0;32m--> 144\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_parse_json\u001b[49m\u001b[43m(\u001b[49m\u001b[43mjson_str\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparser\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparser\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/utils/json.py:160\u001b[0m, in \u001b[0;36m_parse_json\u001b[0;34m(json_str, parser)\u001b[0m\n\u001b[1;32m 159\u001b[0m \u001b[38;5;66;03m# Parse the JSON string into a Python dictionary\u001b[39;00m\n\u001b[0;32m--> 160\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mparser\u001b[49m\u001b[43m(\u001b[49m\u001b[43mjson_str\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/utils/json.py:118\u001b[0m, in \u001b[0;36mparse_partial_json\u001b[0;34m(s, strict)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;66;03m# If we got here, we ran out of characters to remove\u001b[39;00m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;66;03m# and still couldn't parse the string as JSON, so return the parse error\u001b[39;00m\n\u001b[1;32m 117\u001b[0m \u001b[38;5;66;03m# for the original string.\u001b[39;00m\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mjson\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloads\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrict\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/.pyenv/versions/3.11.4/lib/python3.11/json/__init__.py:359\u001b[0m, in \u001b[0;36mloads\u001b[0;34m(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 358\u001b[0m kw[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mparse_constant\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m parse_constant\n\u001b[0;32m--> 359\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/.pyenv/versions/3.11.4/lib/python3.11/json/decoder.py:337\u001b[0m, in \u001b[0;36mJSONDecoder.decode\u001b[0;34m(self, s, _w)\u001b[0m\n\u001b[1;32m 333\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Return the Python representation of ``s`` (a ``str`` instance\u001b[39;00m\n\u001b[1;32m 334\u001b[0m \u001b[38;5;124;03mcontaining a JSON document).\u001b[39;00m\n\u001b[1;32m 335\u001b[0m \n\u001b[1;32m 336\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m--> 337\u001b[0m obj, end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraw_decode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_w\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mend\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 338\u001b[0m end \u001b[38;5;241m=\u001b[39m _w(s, end)\u001b[38;5;241m.\u001b[39mend()\n",
"File \u001b[0;32m~/.pyenv/versions/3.11.4/lib/python3.11/json/decoder.py:353\u001b[0m, in \u001b[0;36mJSONDecoder.raw_decode\u001b[0;34m(self, s, idx)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 353\u001b[0m obj, end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscan_once\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midx\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n",
"\u001b[0;31mJSONDecodeError\u001b[0m: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mOutputParserException\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[9], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m message \u001b[38;5;241m=\u001b[39m AIMessage(content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m```\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m{{\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfoo\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m```\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 2\u001b[0m output_parser \u001b[38;5;241m=\u001b[39m JsonOutputParser()\n\u001b[0;32m----> 3\u001b[0m \u001b[43moutput_parser\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/output_parsers/base.py:193\u001b[0m, in \u001b[0;36mBaseOutputParser.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 187\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 188\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, BaseMessage],\n\u001b[1;32m 189\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 190\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 191\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m 192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28minput\u001b[39m, BaseMessage):\n\u001b[0;32m--> 193\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_with_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43minner_input\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatGeneration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minner_input\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 196\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 199\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mparser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call_with_config(\n\u001b[1;32m 203\u001b[0m \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparse_result([Generation(text\u001b[38;5;241m=\u001b[39minner_input)]),\n\u001b[1;32m 204\u001b[0m \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m 205\u001b[0m config,\n\u001b[1;32m 206\u001b[0m run_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparser\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 207\u001b[0m )\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/runnables/base.py:1927\u001b[0m, in \u001b[0;36mRunnable._call_with_config\u001b[0;34m(self, func, input, config, run_type, serialized, **kwargs)\u001b[0m\n\u001b[1;32m 1923\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 1924\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, child_config)\n\u001b[1;32m 1925\u001b[0m output \u001b[38;5;241m=\u001b[39m cast(\n\u001b[1;32m 1926\u001b[0m Output,\n\u001b[0;32m-> 1927\u001b[0m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1928\u001b[0m \u001b[43m \u001b[49m\u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 1929\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 1930\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 1931\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1932\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1933\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1934\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 1935\u001b[0m )\n\u001b[1;32m 1936\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1937\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/runnables/config.py:396\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 394\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m 395\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 396\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/output_parsers/base.py:194\u001b[0m, in \u001b[0;36mBaseOutputParser.invoke.<locals>.<lambda>\u001b[0;34m(inner_input)\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 187\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 188\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, BaseMessage],\n\u001b[1;32m 189\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 190\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 191\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m T:\n\u001b[1;32m 192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28minput\u001b[39m, BaseMessage):\n\u001b[1;32m 193\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call_with_config(\n\u001b[0;32m--> 194\u001b[0m \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatGeneration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minner_input\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 196\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m 198\u001b[0m config,\n\u001b[1;32m 199\u001b[0m run_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparser\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 200\u001b[0m )\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call_with_config(\n\u001b[1;32m 203\u001b[0m \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparse_result([Generation(text\u001b[38;5;241m=\u001b[39minner_input)]),\n\u001b[1;32m 204\u001b[0m \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m 205\u001b[0m config,\n\u001b[1;32m 206\u001b[0m run_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mparser\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 207\u001b[0m )\n",
"File \u001b[0;32m~/langchain/oss-py/libs/core/langchain_core/output_parsers/json.py:86\u001b[0m, in \u001b[0;36mJsonOutputParser.parse_result\u001b[0;34m(self, result, partial)\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m JSONDecodeError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 85\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid json output: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtext\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m---> 86\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m OutputParserException(msg, llm_output\u001b[38;5;241m=\u001b[39mtext) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n",
"\u001b[0;31mOutputParserException\u001b[0m: Invalid json output: ```\n{{\"foo\":\n```"
]
}
],
"source": [
"message = AIMessage(content='```\\n{{\"foo\":\\n```')\n",
"output_parser = JsonOutputParser()\n",
"output_parser.invoke(message)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that some prebuilt constructs like [legacy LangChain agents](/docs/how_to/agent_executor) and chains may use output parsers internally,\n",
"so you may see this error even if you're not visibly instantiating and using an output parser.\n",
"\n",
"## Troubleshooting\n",
"\n",
"The following may help resolve this error:\n",
"\n",
"- Consider using [tool calling or other structured output techniques](/docs/how_to/structured_output/) if possible without an output parser to reliably output parseable values.\n",
" - If you are using a prebuilt chain or agent, use [LangGraph](https://langchain-ai.github.io/langgraph/) to compose your logic explicitly instead.\n",
"- Add more precise formatting instructions to your prompt. In the above example, adding `\"You must always return valid JSON fenced by a markdown code block. Do not return any additional text.\"` to your input may help steer the model to returning the expected format.\n",
"- If you are using a smaller or less capable model, try using a more capable one.\n",
"- Add [LLM-powered retries](/docs/how_to/output_parser_fixing/)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,12 @@
# Error reference
This page contains guides around resolving common errors you may find while building with LangChain.
Errors referenced below will have an `lc_error_code` property corresponding to one of the below codes when they are thrown in code.
- [INVALID_PROMPT_INPUT](/docs/troubleshooting/errors/INVALID_PROMPT_INPUT)
- [INVALID_TOOL_RESULTS](/docs/troubleshooting/errors/INVALID_TOOL_RESULTS)
- [MESSAGE_COERCION_FAILURE](/docs/troubleshooting/errors/MESSAGE_COERCION_FAILURE)
- [MODEL_AUTHENTICATION](/docs/troubleshooting/errors/MODEL_AUTHENTICATION)
- [MODEL_NOT_FOUND](/docs/troubleshooting/errors/MODEL_NOT_FOUND)
- [MODEL_RATE_LIMIT](/docs/troubleshooting/errors/MODEL_RATE_LIMIT)
- [OUTPUT_PARSING_FAILURE](/docs/troubleshooting/errors/OUTPUT_PARSING_FAILURE)

View File

@@ -438,7 +438,7 @@
"app = workflow.compile(checkpointer=MemorySaver())\n",
"\n",
"# Async invocation:\n",
"output = await app.ainvoke({\"messages\": input_messages}, config):\n",
"output = await app.ainvoke({\"messages\": input_messages}, config)\n",
"output[\"messages\"][-1].pretty_print()\n",
"```\n",
"\n",
@@ -449,7 +449,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Right now, all we've done is add a simple persistence layer around the model. We can start to make the more complicated and personalized by adding in a prompt template.\n",
"Right now, all we've done is add a simple persistence layer around the model. We can start to make the chatbot more complicated and personalized by adding in a prompt template.\n",
"\n",
"## Prompt templates\n",
"\n",
@@ -686,7 +686,7 @@
"\n",
"input_messages = [HumanMessage(query)]\n",
"output = app.invoke(\n",
" {\"messages\": input_messages, \"language\": language},\n",
" {\"messages\": input_messages},\n",
" config,\n",
")\n",
"output[\"messages\"][-1].pretty_print()"

View File

@@ -497,15 +497,14 @@
"# 4. Create chain\n",
"chain = prompt_template | model | parser\n",
"\n",
"\n",
"# 4. App definition\n",
"# 5. App definition\n",
"app = FastAPI(\n",
" title=\"LangChain Server\",\n",
" version=\"1.0\",\n",
" description=\"A simple API server using LangChain's Runnable interfaces\",\n",
")\n",
"\n",
"# 5. Adding chain route\n",
"# 6. Adding chain route\n",
"add_routes(\n",
" app,\n",
" chain,\n",

Some files were not shown because too many files have changed in this diff Show More