mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-05 08:40:36 +00:00
Compare commits
1 Commits
cc/thropic
...
erick/docs
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e18fc8bc16 |
2
.github/CODEOWNERS
vendored
2
.github/CODEOWNERS
vendored
@@ -1,2 +0,0 @@
|
||||
/.github/ @baskaryan @ccurme
|
||||
/libs/packages.yml @ccurme
|
||||
2
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
2
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
@@ -22,7 +22,7 @@ body:
|
||||
if there's another way to solve your problem:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://python.langchain.com/api_reference/),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
|
||||
6
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
6
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -16,7 +16,7 @@ body:
|
||||
if there's another way to solve your problem:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://python.langchain.com/api_reference/),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
@@ -29,14 +29,14 @@ body:
|
||||
options:
|
||||
- label: I added a very descriptive title to this issue.
|
||||
required: true
|
||||
- label: I searched the LangChain documentation with the integrated search.
|
||||
required: true
|
||||
- label: I used the GitHub search to find a similar question and didn't find it.
|
||||
required: true
|
||||
- label: I am sure that this is a bug in LangChain rather than my code.
|
||||
required: true
|
||||
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
|
||||
required: true
|
||||
- label: I posted a self-contained, minimal, reproducible example. A maintainer can copy it and run it AS IS.
|
||||
required: true
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/documentation.yml
vendored
2
.github/ISSUE_TEMPLATE/documentation.yml
vendored
@@ -21,7 +21,7 @@ body:
|
||||
place to ask your question:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://python.langchain.com/api_reference/),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
|
||||
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,8 +1,8 @@
|
||||
Thank you for contributing to LangChain!
|
||||
|
||||
- [ ] **PR title**: "package: description"
|
||||
- Where "package" is whichever of langchain, core, etc. is being modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI changes.
|
||||
- Example: "core: add foobar LLM"
|
||||
- Where "package" is whichever of langchain, community, core, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
|
||||
- Example: "community: add foobar LLM"
|
||||
|
||||
|
||||
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
|
||||
@@ -24,5 +24,6 @@ Additional guidelines:
|
||||
- Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests.
|
||||
- Most PRs should not touch more than one package.
|
||||
- Changes should be backwards compatible.
|
||||
- If you are adding something to community, do not re-import it in langchain.
|
||||
|
||||
If no one reviews your PR within a few days, please @-mention one of baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
|
||||
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
|
||||
|
||||
21
.github/actions/uv_setup/action.yml
vendored
21
.github/actions/uv_setup/action.yml
vendored
@@ -1,21 +0,0 @@
|
||||
# TODO: https://docs.astral.sh/uv/guides/integration/github/#caching
|
||||
|
||||
name: uv-install
|
||||
description: Set up Python and uv
|
||||
|
||||
inputs:
|
||||
python-version:
|
||||
description: Python version, supporting MAJOR.MINOR only
|
||||
required: true
|
||||
|
||||
env:
|
||||
UV_VERSION: "0.5.25"
|
||||
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
76
.github/scripts/check_diff.py
vendored
76
.github/scripts/check_diff.py
vendored
@@ -7,8 +7,6 @@ from typing import Dict, List, Set
|
||||
from pathlib import Path
|
||||
import tomllib
|
||||
|
||||
from packaging.requirements import Requirement
|
||||
|
||||
from get_min_versions import get_min_version_from_toml
|
||||
|
||||
|
||||
@@ -16,6 +14,7 @@ LANGCHAIN_DIRS = [
|
||||
"libs/core",
|
||||
"libs/text-splitters",
|
||||
"libs/langchain",
|
||||
"libs/community",
|
||||
]
|
||||
|
||||
# when set to True, we are ignoring core dependents
|
||||
@@ -31,14 +30,6 @@ IGNORED_PARTNERS = [
|
||||
# specifically in huggingface jobs
|
||||
# https://github.com/langchain-ai/langchain/issues/25558
|
||||
"huggingface",
|
||||
# prompty exhibiting issues with numpy for Python 3.13
|
||||
# https://github.com/langchain-ai/langchain/actions/runs/12651104685/job/35251034969?pr=29065
|
||||
"prompty",
|
||||
]
|
||||
|
||||
PY_312_MAX_PACKAGES = [
|
||||
"libs/partners/voyageai",
|
||||
"libs/partners/chroma", # https://github.com/chroma-core/chroma/issues/4382
|
||||
]
|
||||
|
||||
|
||||
@@ -63,17 +54,15 @@ def dependents_graph() -> dict:
|
||||
|
||||
# load regular and test deps from pyproject.toml
|
||||
with open(path, "rb") as f:
|
||||
pyproject = tomllib.load(f)
|
||||
pyproject = tomllib.load(f)["tool"]["poetry"]
|
||||
|
||||
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
|
||||
for dep in [
|
||||
*pyproject["project"]["dependencies"],
|
||||
*pyproject["dependency-groups"]["test"],
|
||||
*pyproject["dependencies"].keys(),
|
||||
*pyproject["group"]["test"]["dependencies"].keys(),
|
||||
]:
|
||||
requirement = Requirement(dep)
|
||||
package_name = requirement.name
|
||||
if "langchain" in dep:
|
||||
dependents[package_name].add(pkg_dir)
|
||||
dependents[dep].add(pkg_dir)
|
||||
continue
|
||||
|
||||
# load extended deps from extended_testing_deps.txt
|
||||
@@ -121,23 +110,23 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
return _get_pydantic_test_configs(dir_)
|
||||
|
||||
if dir_ == "libs/core":
|
||||
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
py_versions = ["3.9", "3.10", "3.11", "3.12"]
|
||||
# custom logic for specific directories
|
||||
elif dir_ == "libs/partners/milvus":
|
||||
# milvus doesn't allow 3.12 because they declare deps in funny way
|
||||
# milvus poetry doesn't allow 3.12 because they
|
||||
# declare deps in funny way
|
||||
py_versions = ["3.9", "3.11"]
|
||||
|
||||
elif dir_ in PY_312_MAX_PACKAGES:
|
||||
py_versions = ["3.9", "3.12"]
|
||||
elif dir_ in ["libs/community", "libs/langchain"] and job == "extended-tests":
|
||||
# community extended test resolution in 3.12 is slow
|
||||
# even in uv
|
||||
py_versions = ["3.9", "3.11"]
|
||||
|
||||
elif dir_ == "libs/langchain" and job == "extended-tests":
|
||||
py_versions = ["3.9", "3.13"]
|
||||
|
||||
elif dir_ == ".":
|
||||
# unable to install with 3.13 because tokenizers doesn't support 3.13 yet
|
||||
py_versions = ["3.9", "3.12"]
|
||||
elif dir_ == "libs/community" and job == "compile-integration-tests":
|
||||
# community integration deps are slow in 3.12
|
||||
py_versions = ["3.9", "3.11"]
|
||||
else:
|
||||
py_versions = ["3.9", "3.13"]
|
||||
py_versions = ["3.9", "3.12"]
|
||||
|
||||
return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions]
|
||||
|
||||
@@ -145,17 +134,17 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
def _get_pydantic_test_configs(
|
||||
dir_: str, *, python_version: str = "3.11"
|
||||
) -> List[Dict[str, str]]:
|
||||
with open("./libs/core/uv.lock", "rb") as f:
|
||||
core_uv_lock_data = tomllib.load(f)
|
||||
for package in core_uv_lock_data["package"]:
|
||||
with open("./libs/core/poetry.lock", "rb") as f:
|
||||
core_poetry_lock_data = tomllib.load(f)
|
||||
for package in core_poetry_lock_data["package"]:
|
||||
if package["name"] == "pydantic":
|
||||
core_max_pydantic_minor = package["version"].split(".")[1]
|
||||
break
|
||||
|
||||
with open(f"./{dir_}/uv.lock", "rb") as f:
|
||||
dir_uv_lock_data = tomllib.load(f)
|
||||
with open(f"./{dir_}/poetry.lock", "rb") as f:
|
||||
dir_poetry_lock_data = tomllib.load(f)
|
||||
|
||||
for package in dir_uv_lock_data["package"]:
|
||||
for package in dir_poetry_lock_data["package"]:
|
||||
if package["name"] == "pydantic":
|
||||
dir_max_pydantic_minor = package["version"].split(".")[1]
|
||||
break
|
||||
@@ -177,6 +166,11 @@ def _get_pydantic_test_configs(
|
||||
else "0"
|
||||
)
|
||||
|
||||
custom_mins = {
|
||||
# depends on pydantic-settings 2.4 which requires pydantic 2.7
|
||||
"libs/community": 7,
|
||||
}
|
||||
|
||||
max_pydantic_minor = min(
|
||||
int(dir_max_pydantic_minor),
|
||||
int(core_max_pydantic_minor),
|
||||
@@ -184,6 +178,7 @@ def _get_pydantic_test_configs(
|
||||
min_pydantic_minor = max(
|
||||
int(dir_min_pydantic_minor),
|
||||
int(core_min_pydantic_minor),
|
||||
custom_mins.get(dir_, 0),
|
||||
)
|
||||
|
||||
configs = [
|
||||
@@ -266,9 +261,6 @@ if __name__ == "__main__":
|
||||
# TODO: update to include all packages that rely on standard-tests (all partner packages)
|
||||
# note: won't run on external repo partners
|
||||
dirs_to_run["lint"].add("libs/standard-tests")
|
||||
dirs_to_run["test"].add("libs/standard-tests")
|
||||
dirs_to_run["lint"].add("libs/cli")
|
||||
dirs_to_run["test"].add("libs/cli")
|
||||
dirs_to_run["test"].add("libs/partners/mistralai")
|
||||
dirs_to_run["test"].add("libs/partners/openai")
|
||||
dirs_to_run["test"].add("libs/partners/anthropic")
|
||||
@@ -276,9 +268,8 @@ if __name__ == "__main__":
|
||||
dirs_to_run["test"].add("libs/partners/groq")
|
||||
|
||||
elif file.startswith("libs/cli"):
|
||||
dirs_to_run["lint"].add("libs/cli")
|
||||
dirs_to_run["test"].add("libs/cli")
|
||||
|
||||
# todo: add cli makefile
|
||||
pass
|
||||
elif file.startswith("libs/partners"):
|
||||
partner_dir = file.split("/")[2]
|
||||
if os.path.isdir(f"libs/partners/{partner_dir}") and [
|
||||
@@ -288,15 +279,14 @@ if __name__ == "__main__":
|
||||
] != ["README.md"]:
|
||||
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
|
||||
# Skip if the directory was deleted or is just a tombstone readme
|
||||
elif file == "libs/packages.yml":
|
||||
continue
|
||||
elif file.startswith("libs/"):
|
||||
raise ValueError(
|
||||
f"Unknown lib: {file}. check_diff.py likely needs "
|
||||
"an update for this new library!"
|
||||
)
|
||||
elif file.startswith("docs/") or file in ["pyproject.toml", "uv.lock"]: # docs or root uv files
|
||||
docs_edited = True
|
||||
elif any(file.startswith(p) for p in ["docs/", "templates/", "cookbook/"]):
|
||||
if file.startswith("docs/"):
|
||||
docs_edited = True
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
dependents = dependents_graph()
|
||||
|
||||
11
.github/scripts/check_prerelease_dependencies.py
vendored
11
.github/scripts/check_prerelease_dependencies.py
vendored
@@ -10,25 +10,26 @@ if __name__ == "__main__":
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# see if we're releasing an rc
|
||||
version = toml_data["project"]["version"]
|
||||
version = toml_data["tool"]["poetry"]["version"]
|
||||
releasing_rc = "rc" in version or "dev" in version
|
||||
|
||||
# if not, iterate through dependencies and make sure none allow prereleases
|
||||
if not releasing_rc:
|
||||
dependencies = toml_data["project"]["dependencies"]
|
||||
for dep_version in dependencies:
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
for lib in dependencies:
|
||||
dep_version = dependencies[lib]
|
||||
dep_version_string = (
|
||||
dep_version["version"] if isinstance(dep_version, dict) else dep_version
|
||||
)
|
||||
|
||||
if "rc" in dep_version_string:
|
||||
raise ValueError(
|
||||
f"Dependency {dep_version} has a prerelease version. Please remove this."
|
||||
f"Dependency {lib} has a prerelease version. Please remove this."
|
||||
)
|
||||
|
||||
if isinstance(dep_version, dict) and dep_version.get(
|
||||
"allow-prereleases", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Dependency {dep_version} has allow-prereleases set to true. Please remove this."
|
||||
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
|
||||
)
|
||||
|
||||
139
.github/scripts/get_min_versions.py
vendored
139
.github/scripts/get_min_versions.py
vendored
@@ -1,4 +1,3 @@
|
||||
from collections import defaultdict
|
||||
import sys
|
||||
from typing import Optional
|
||||
|
||||
@@ -8,23 +7,17 @@ else:
|
||||
# for python 3.10 and below, which doesnt have stdlib tomllib
|
||||
import tomli as tomllib
|
||||
|
||||
from packaging.requirements import Requirement
|
||||
from packaging.version import parse as parse_version
|
||||
from packaging.specifiers import SpecifierSet
|
||||
from packaging.version import Version
|
||||
|
||||
|
||||
import requests
|
||||
from packaging.version import parse
|
||||
from typing import List
|
||||
|
||||
import re
|
||||
|
||||
|
||||
MIN_VERSION_LIBS = [
|
||||
"langchain-core",
|
||||
"langchain-community",
|
||||
"langchain",
|
||||
"langchain-text-splitters",
|
||||
"numpy",
|
||||
"SQLAlchemy",
|
||||
]
|
||||
|
||||
@@ -34,81 +27,33 @@ SKIP_IF_PULL_REQUEST = [
|
||||
"langchain-core",
|
||||
"langchain-text-splitters",
|
||||
"langchain",
|
||||
"langchain-community",
|
||||
]
|
||||
|
||||
|
||||
def get_pypi_versions(package_name: str) -> List[str]:
|
||||
"""
|
||||
Fetch all available versions for a package from PyPI.
|
||||
def get_min_version(version: str) -> str:
|
||||
# base regex for x.x.x with cases for rc/post/etc
|
||||
# valid strings: https://peps.python.org/pep-0440/#public-version-identifiers
|
||||
vstring = r"\d+(?:\.\d+){0,2}(?:(?:a|b|rc|\.post|\.dev)\d+)?"
|
||||
# case ^x.x.x
|
||||
_match = re.match(f"^\\^({vstring})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
Args:
|
||||
package_name (str): Name of the package
|
||||
# case >=x.x.x,<y.y.y
|
||||
_match = re.match(f"^>=({vstring}),<({vstring})$", version)
|
||||
if _match:
|
||||
_min = _match.group(1)
|
||||
_max = _match.group(2)
|
||||
assert parse_version(_min) < parse_version(_max)
|
||||
return _min
|
||||
|
||||
Returns:
|
||||
List[str]: List of all available versions
|
||||
# case x.x.x
|
||||
_match = re.match(f"^({vstring})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
Raises:
|
||||
requests.exceptions.RequestException: If PyPI API request fails
|
||||
KeyError: If package not found or response format unexpected
|
||||
"""
|
||||
pypi_url = f"https://pypi.org/pypi/{package_name}/json"
|
||||
response = requests.get(pypi_url)
|
||||
response.raise_for_status()
|
||||
return list(response.json()["releases"].keys())
|
||||
|
||||
|
||||
def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
|
||||
"""
|
||||
Find the minimum published version that satisfies the given constraints.
|
||||
|
||||
Args:
|
||||
package_name (str): Name of the package
|
||||
spec_string (str): Version specification string (e.g., ">=0.2.43,<0.4.0,!=0.3.0")
|
||||
|
||||
Returns:
|
||||
Optional[str]: Minimum compatible version or None if no compatible version found
|
||||
"""
|
||||
# rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
spec_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", spec_string)
|
||||
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
spec_string = re.sub(rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y+1}", spec_string)
|
||||
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
spec_string = re.sub(
|
||||
rf"\^{x}\.(\d+)\.(\d+)", rf">={x}.\1.\2,<{x+1}", spec_string
|
||||
)
|
||||
|
||||
spec_set = SpecifierSet(spec_string)
|
||||
all_versions = get_pypi_versions(package_name)
|
||||
|
||||
valid_versions = []
|
||||
for version_str in all_versions:
|
||||
try:
|
||||
version = parse(version_str)
|
||||
if spec_set.contains(version):
|
||||
valid_versions.append(version)
|
||||
except ValueError:
|
||||
continue
|
||||
|
||||
return str(min(valid_versions)) if valid_versions else None
|
||||
|
||||
|
||||
def _check_python_version_from_requirement(
|
||||
requirement: Requirement, python_version: str
|
||||
) -> bool:
|
||||
if not requirement.marker:
|
||||
return True
|
||||
else:
|
||||
marker_str = str(requirement.marker)
|
||||
if "python_version" or "python_full_version" in marker_str:
|
||||
python_version_str = "".join(
|
||||
char
|
||||
for char in marker_str
|
||||
if char.isdigit() or char in (".", "<", ">", "=", ",")
|
||||
)
|
||||
return check_python_version(python_version, python_version_str)
|
||||
return True
|
||||
raise ValueError(f"Unrecognized version format: {version}")
|
||||
|
||||
|
||||
def get_min_version_from_toml(
|
||||
@@ -122,10 +67,8 @@ def get_min_version_from_toml(
|
||||
with open(toml_path, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
dependencies = defaultdict(list)
|
||||
for dep in toml_data["project"]["dependencies"]:
|
||||
requirement = Requirement(dep)
|
||||
dependencies[requirement.name].append(requirement)
|
||||
# Get the dependencies from tool.poetry.dependencies
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
|
||||
# Initialize a dictionary to store the minimum versions
|
||||
min_versions = {}
|
||||
@@ -140,14 +83,20 @@ def get_min_version_from_toml(
|
||||
if lib in dependencies:
|
||||
if include and lib not in include:
|
||||
continue
|
||||
requirements = dependencies[lib]
|
||||
for requirement in requirements:
|
||||
if _check_python_version_from_requirement(requirement, python_version):
|
||||
version_string = str(requirement.specifier)
|
||||
break
|
||||
# Get the version string
|
||||
version_string = dependencies[lib]
|
||||
|
||||
if isinstance(version_string, dict):
|
||||
version_string = version_string["version"]
|
||||
if isinstance(version_string, list):
|
||||
version_string = [
|
||||
vs
|
||||
for vs in version_string
|
||||
if check_python_version(python_version, vs["python"])
|
||||
][0]["version"]
|
||||
|
||||
# Use parse_version to get the minimum supported version from version_string
|
||||
min_version = get_minimum_version(lib, version_string)
|
||||
min_version = get_min_version(version_string)
|
||||
|
||||
# Store the minimum version in the min_versions dictionary
|
||||
min_versions[lib] = min_version
|
||||
@@ -163,20 +112,6 @@ def check_python_version(version_string, constraint_string):
|
||||
:param constraint_string: A string representing the package's Python version constraints (e.g. ">=3.6, <4.0").
|
||||
:return: True if the version matches the constraints, False otherwise.
|
||||
"""
|
||||
|
||||
# rewrite occurrences of ^0.0.z to 0.0.z (can be anywhere in constraint string)
|
||||
constraint_string = re.sub(r"\^0\.0\.(\d+)", r"0.0.\1", constraint_string)
|
||||
# rewrite occurrences of ^0.y.z to >=0.y.z,<0.y+1.0 (can be anywhere in constraint string)
|
||||
for y in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^0\.{y}\.(\d+)", rf">=0.{y}.\1,<0.{y+1}.0", constraint_string
|
||||
)
|
||||
# rewrite occurrences of ^x.y.z to >=x.y.z,<x+1.0.0 (can be anywhere in constraint string)
|
||||
for x in range(1, 10):
|
||||
constraint_string = re.sub(
|
||||
rf"\^{x}\.0\.(\d+)", rf">={x}.0.\1,<{x+1}.0.0", constraint_string
|
||||
)
|
||||
|
||||
try:
|
||||
version = Version(version_string)
|
||||
constraints = SpecifierSet(constraint_string)
|
||||
|
||||
101
.github/scripts/prep_api_docs_build.py
vendored
101
.github/scripts/prep_api_docs_build.py
vendored
@@ -1,101 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
"""Script to sync libraries from various repositories into the main langchain repository."""
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import yaml
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any
|
||||
|
||||
|
||||
def load_packages_yaml() -> Dict[str, Any]:
|
||||
"""Load and parse the packages.yml file."""
|
||||
with open("langchain/libs/packages.yml", "r") as f:
|
||||
return yaml.safe_load(f)
|
||||
|
||||
|
||||
def get_target_dir(package_name: str) -> Path:
|
||||
"""Get the target directory for a given package."""
|
||||
package_name_short = package_name.replace("langchain-", "")
|
||||
base_path = Path("langchain/libs")
|
||||
if package_name_short == "experimental":
|
||||
return base_path / "experimental"
|
||||
if package_name_short == "community":
|
||||
return base_path / "community"
|
||||
return base_path / "partners" / package_name_short
|
||||
|
||||
|
||||
def clean_target_directories(packages: list) -> None:
|
||||
"""Remove old directories that will be replaced."""
|
||||
for package in packages:
|
||||
|
||||
target_dir = get_target_dir(package["name"])
|
||||
if target_dir.exists():
|
||||
print(f"Removing {target_dir}")
|
||||
shutil.rmtree(target_dir)
|
||||
|
||||
|
||||
def move_libraries(packages: list) -> None:
|
||||
"""Move libraries from their source locations to the target directories."""
|
||||
for package in packages:
|
||||
|
||||
repo_name = package["repo"].split("/")[1]
|
||||
source_path = package["path"]
|
||||
target_dir = get_target_dir(package["name"])
|
||||
|
||||
# Handle root path case
|
||||
if source_path == ".":
|
||||
source_dir = repo_name
|
||||
else:
|
||||
source_dir = f"{repo_name}/{source_path}"
|
||||
|
||||
print(f"Moving {source_dir} to {target_dir}")
|
||||
|
||||
# Ensure target directory exists
|
||||
os.makedirs(os.path.dirname(target_dir), exist_ok=True)
|
||||
|
||||
try:
|
||||
# Move the directory
|
||||
shutil.move(source_dir, target_dir)
|
||||
except Exception as e:
|
||||
print(f"Error moving {source_dir} to {target_dir}: {e}")
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function to orchestrate the library sync process."""
|
||||
try:
|
||||
# Load packages configuration
|
||||
package_yaml = load_packages_yaml()
|
||||
|
||||
# Clean target directories
|
||||
clean_target_directories([
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if (p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref"))
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
])
|
||||
|
||||
# Move libraries to their new locations
|
||||
move_libraries([
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if not p.get("disabled", False)
|
||||
and (p["repo"].startswith("langchain-ai/") or p.get("include_in_api_ref"))
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
])
|
||||
|
||||
# Delete ones without a pyproject.toml
|
||||
for partner in Path("langchain/libs/partners").iterdir():
|
||||
if partner.is_dir() and not (partner / "pyproject.toml").exists():
|
||||
print(f"Removing {partner} as it does not have a pyproject.toml")
|
||||
shutil.rmtree(partner)
|
||||
|
||||
print("Library sync completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during library sync: {e}")
|
||||
raise
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
1
.github/workflows/.codespell-exclude
vendored
1
.github/workflows/.codespell-exclude
vendored
@@ -1,3 +1,4 @@
|
||||
libs/community/langchain_community/llms/yuan2.py
|
||||
"NotIn": "not in",
|
||||
- `/checkin`: Check-in
|
||||
docs/docs/integrations/providers/trulens.mdx
|
||||
|
||||
16
.github/workflows/_compile_integration_test.yml
vendored
16
.github/workflows/_compile_integration_test.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -21,23 +21,25 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "uv run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: compile-integration
|
||||
|
||||
- name: Install integration dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test --group test_integration
|
||||
run: poetry install --with=test_integration,test
|
||||
|
||||
- name: Check integration tests compile
|
||||
shell: bash
|
||||
run: uv run pytest -m compile tests/integration_tests
|
||||
run: poetry run pytest -m compile tests/integration_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
|
||||
28
.github/workflows/_integration_test.yml
vendored
28
.github/workflows/_integration_test.yml
vendored
@@ -6,14 +6,13 @@ on:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
python-version:
|
||||
required: true
|
||||
type: string
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -25,14 +24,28 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test --group test_integration
|
||||
run: poetry install --with test,test_integration
|
||||
|
||||
- name: Install deps outside pyproject
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
|
||||
shell: bash
|
||||
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Run integration tests
|
||||
shell: bash
|
||||
@@ -60,18 +73,19 @@ jobs:
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
run: |
|
||||
make integration_tests
|
||||
|
||||
|
||||
48
.github/workflows/_lint.yml
vendored
48
.github/workflows/_lint.yml
vendored
@@ -13,25 +13,38 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
# This env var allows us to get inline annotations when ruff has complaints.
|
||||
RUFF_OUTPUT_FORMAT: github
|
||||
|
||||
UV_FROZEN: "true"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: "make lint #${{ inputs.python-version }}"
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: lint-with-extras
|
||||
|
||||
- name: Check Poetry File
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry check
|
||||
|
||||
- name: Check lock file
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry lock --check
|
||||
|
||||
- name: Install dependencies
|
||||
# Also installs dev/lint/test/typing dependencies, to ensure we have
|
||||
@@ -44,7 +57,17 @@ jobs:
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --group lint --group typing
|
||||
poetry install --with lint,typing
|
||||
|
||||
- name: Get .mypy_cache to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache
|
||||
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
@@ -63,12 +86,21 @@ jobs:
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --inexact --group test
|
||||
poetry install --with test
|
||||
- name: Install unit+integration test dependencies
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --inexact --group test --group test_integration
|
||||
poetry install --with test,test_integration
|
||||
|
||||
- name: Get .mypy_cache_test to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache_test
|
||||
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
228
.github/workflows/_release.yml
vendored
228
.github/workflows/_release.yml
vendored
@@ -12,7 +12,6 @@ on:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
default: 'libs/langchain'
|
||||
dangerous-nonmaster-release:
|
||||
required: false
|
||||
@@ -22,8 +21,7 @@ on:
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -38,10 +36,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
# We want to keep this build stage *separate* from the release stage,
|
||||
# so that there's no sharing of permissions between them.
|
||||
@@ -55,7 +56,7 @@ jobs:
|
||||
# > from the publish job.
|
||||
# https://github.com/pypa/gh-action-pypi-publish#non-goals
|
||||
- name: Build project for distribution
|
||||
run: uv build
|
||||
run: poetry build
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
@@ -66,18 +67,11 @@ jobs:
|
||||
|
||||
- name: Check Version
|
||||
id: check-version
|
||||
shell: python
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
import os
|
||||
import tomllib
|
||||
with open("pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
pkg_name = data["project"]["name"]
|
||||
version = data["project"]["version"]
|
||||
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
|
||||
f.write(f"pkg-name={pkg_name}\n")
|
||||
f.write(f"version={version}\n")
|
||||
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
|
||||
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
|
||||
release-notes:
|
||||
needs:
|
||||
- build
|
||||
@@ -101,47 +95,9 @@ jobs:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
# Handle regular versions and pre-release versions differently
|
||||
if [[ "$VERSION" == *"-"* ]]; then
|
||||
# This is a pre-release version (contains a hyphen)
|
||||
# Extract the base version without the pre-release suffix
|
||||
BASE_VERSION=${VERSION%%-*}
|
||||
# Look for the latest release of the same base version
|
||||
REGEX="^$PKG_NAME==$BASE_VERSION\$"
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
|
||||
|
||||
# If no exact base version match, look for the latest release of any kind
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
|
||||
fi
|
||||
else
|
||||
# Regular version handling
|
||||
PREV_TAG="$PKG_NAME==${VERSION%.*}.$(( ${VERSION##*.} - 1 ))"; [[ "${VERSION##*.}" -eq 0 ]] && PREV_TAG=""
|
||||
|
||||
# backup case if releasing e.g. 0.3.0, looks up last release
|
||||
# note if last release (chronologically) was e.g. 0.1.47 it will get
|
||||
# that instead of the last 0.2 release
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
echo $REGEX
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P $REGEX || true) | head -1)
|
||||
fi
|
||||
fi
|
||||
|
||||
# if PREV_TAG is empty, let it be empty
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
echo "No previous tag found - first release"
|
||||
else
|
||||
# confirm prev-tag actually exists in git repo with git tag
|
||||
GIT_TAG_RESULT=$(git tag -l "$PREV_TAG")
|
||||
if [ -z "$GIT_TAG_RESULT" ]; then
|
||||
echo "Previous tag $PREV_TAG not found in git repo"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
echo $REGEX
|
||||
PREV_TAG=$(git tag --sort=-creatordate | grep -P $REGEX || true | head -1)
|
||||
TAG="${PKG_NAME}==${VERSION}"
|
||||
if [ "$TAG" == "$PREV_TAG" ]; then
|
||||
echo "No new version to release"
|
||||
@@ -190,7 +146,6 @@ jobs:
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
@@ -207,18 +162,15 @@ jobs:
|
||||
# - The package is published, and it breaks on the missing dependency when
|
||||
# used in the real world.
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Import dist package
|
||||
- name: Import published package
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
env:
|
||||
@@ -234,21 +186,27 @@ jobs:
|
||||
# - attempt install again after 5 seconds if it fails because there is
|
||||
# sometimes a delay in availability on test pypi
|
||||
run: |
|
||||
uv venv
|
||||
VIRTUAL_ENV=.venv uv pip install dist/*.whl
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" || \
|
||||
( \
|
||||
sleep 15 && \
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" \
|
||||
)
|
||||
|
||||
# Replace all dashes in the package name with underscores,
|
||||
# since that's how Python imports packages with dashes in the name.
|
||||
# also remove _official suffix
|
||||
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g | sed s/_official//g)"
|
||||
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g)"
|
||||
|
||||
uv run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
|
||||
poetry run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
|
||||
|
||||
- name: Import test dependencies
|
||||
run: uv sync --group test
|
||||
run: poetry install --with test
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Overwrite the local version of the package with the built version
|
||||
# Overwrite the local version of the package with the test PyPI version.
|
||||
- name: Import published package (again)
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
shell: bash
|
||||
@@ -256,7 +214,9 @@ jobs:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install dist/*.whl
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION"
|
||||
|
||||
- name: Run unit tests
|
||||
run: make tests
|
||||
@@ -265,15 +225,15 @@ jobs:
|
||||
- name: Check for prerelease versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install packaging requests
|
||||
python_version="$(uv run python --version | awk '{print $2}')"
|
||||
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
|
||||
poetry run pip install packaging
|
||||
python_version="$(poetry run python --version | awk '{print $2}')"
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
@@ -282,12 +242,18 @@ jobs:
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS --editable .
|
||||
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Import integration test dependencies
|
||||
run: uv sync --group test --group test_integration
|
||||
run: poetry install --with test,test_integration
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Run integration tests
|
||||
@@ -315,108 +281,28 @@ jobs:
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
|
||||
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Test select published packages against new core
|
||||
test-prior-published-packages-against-new-core:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
partner: [openai, anthropic]
|
||||
fail-fast: false # Continue testing other partners if one fails
|
||||
env:
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
# We implement this conditional as Github Actions does not have good support
|
||||
# for conditionally needing steps. https://github.com/actions/runner/issues/491
|
||||
- name: Check if libs/core
|
||||
run: |
|
||||
if [ "${{ startsWith(inputs.working-directory, 'libs/core') }}" != "true" ]; then
|
||||
echo "Not in libs/core. Exiting successfully."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
- name: Set up Python + uv
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Test against ${{ matrix.partner }}
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
run: |
|
||||
# Identify latest tag
|
||||
LATEST_PACKAGE_TAG="$(
|
||||
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
|
||||
| awk '{print $2}' \
|
||||
| sed 's|refs/tags/||' \
|
||||
| sort -Vr \
|
||||
| head -n 1
|
||||
)"
|
||||
echo "Latest package tag: $LATEST_PACKAGE_TAG"
|
||||
|
||||
# Shallow-fetch just that single tag
|
||||
git fetch --depth=1 origin tag "$LATEST_PACKAGE_TAG"
|
||||
|
||||
# Checkout the latest package files
|
||||
rm -rf $GITHUB_WORKSPACE/libs/partners/${{ matrix.partner }}/*
|
||||
rm -rf $GITHUB_WORKSPACE/libs/standard-tests/*
|
||||
cd $GITHUB_WORKSPACE/libs/
|
||||
git checkout "$LATEST_PACKAGE_TAG" -- standard-tests/
|
||||
git checkout "$LATEST_PACKAGE_TAG" -- partners/${{ matrix.partner }}/
|
||||
cd partners/${{ matrix.partner }}
|
||||
|
||||
# Print as a sanity check
|
||||
echo "Version number from pyproject.toml: "
|
||||
cat pyproject.toml | grep "version = "
|
||||
|
||||
# Run tests
|
||||
uv sync --group test --group test_integration
|
||||
uv pip install ../../core/dist/*.whl
|
||||
make integration_tests
|
||||
|
||||
publish:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- test-prior-published-packages-against-new-core
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is used for trusted publishing:
|
||||
@@ -433,10 +319,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
@@ -449,8 +338,6 @@ jobs:
|
||||
packages-dir: ${{ inputs.working-directory }}/dist/
|
||||
verbose: true
|
||||
print-hash: true
|
||||
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
|
||||
attestations: false
|
||||
|
||||
mark-release:
|
||||
needs:
|
||||
@@ -472,10 +359,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
|
||||
62
.github/workflows/_release_docker.yml
vendored
Normal file
62
.github/workflows/_release_docker.yml
vendored
Normal file
@@ -0,0 +1,62 @@
|
||||
name: release_docker
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
dockerfile:
|
||||
required: true
|
||||
type: string
|
||||
description: "Path to the Dockerfile to build"
|
||||
image:
|
||||
required: true
|
||||
type: string
|
||||
description: "Name of the image to build"
|
||||
|
||||
env:
|
||||
TEST_TAG: ${{ inputs.image }}:test
|
||||
LATEST_TAG: ${{ inputs.image }}:latest
|
||||
|
||||
jobs:
|
||||
docker:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Get git tag
|
||||
uses: actions-ecosystem/action-get-latest-tag@v1
|
||||
id: get-latest-tag
|
||||
- name: Set docker tag
|
||||
env:
|
||||
VERSION: ${{ steps.get-latest-tag.outputs.tag }}
|
||||
run: |
|
||||
echo "VERSION_TAG=${{ inputs.image }}:${VERSION#v}" >> $GITHUB_ENV
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Login to Docker Hub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
- name: Build for Test
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
file: ${{ inputs.dockerfile }}
|
||||
load: true
|
||||
tags: ${{ env.TEST_TAG }}
|
||||
- name: Test
|
||||
run: |
|
||||
docker run --rm ${{ env.TEST_TAG }} python -c "import langchain"
|
||||
- name: Build and Push to Docker Hub
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
file: ${{ inputs.dockerfile }}
|
||||
# We can only build for the intersection of platforms supported by
|
||||
# QEMU and base python image, for now build only for
|
||||
# linux/amd64 and linux/arm64
|
||||
platforms: linux/amd64,linux/arm64
|
||||
tags: ${{ env.LATEST_TAG }},${{ env.VERSION_TAG }}
|
||||
push: true
|
||||
21
.github/workflows/_test.yml
vendored
21
.github/workflows/_test.yml
vendored
@@ -13,8 +13,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -22,19 +21,21 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "make test #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test --dev
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Run core tests
|
||||
shell: bash
|
||||
@@ -46,9 +47,9 @@ jobs:
|
||||
id: min-version
|
||||
shell: bash
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install packaging tomli requests
|
||||
python_version="$(uv run python --version | awk '{print $2}')"
|
||||
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
|
||||
poetry run pip install packaging tomli
|
||||
python_version="$(poetry run python --version | awk '{print $2}')"
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
@@ -57,7 +58,7 @@ jobs:
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install $MIN_VERSIONS
|
||||
poetry run pip install $MIN_VERSIONS
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
|
||||
15
.github/workflows/_test_doc_imports.yml
vendored
15
.github/workflows/_test_doc_imports.yml
vendored
@@ -9,33 +9,34 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "check doc imports #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Install langchain editable
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install langchain-experimental langchain-community -e libs/core libs/langchain
|
||||
poetry run pip install langchain-experimental -e libs/core libs/langchain libs/community
|
||||
|
||||
- name: Check doc imports
|
||||
shell: bash
|
||||
run: |
|
||||
uv run python docs/scripts/check_imports.py
|
||||
poetry run python docs/scripts/check_imports.py
|
||||
|
||||
- name: Ensure the test did not create any additional files
|
||||
shell: bash
|
||||
|
||||
15
.github/workflows/_test_pydantic.yml
vendored
15
.github/workflows/_test_pydantic.yml
vendored
@@ -18,8 +18,7 @@ on:
|
||||
description: "Pydantic version to test."
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -27,23 +26,25 @@ jobs:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "make test # pydantic: ~=${{ inputs.pydantic-version }}, python: ${{ inputs.python-version }}, "
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Overwrite pydantic version
|
||||
shell: bash
|
||||
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
|
||||
run: poetry run pip install pydantic~=${{ inputs.pydantic-version }}
|
||||
|
||||
- name: Run core tests
|
||||
shell: bash
|
||||
|
||||
28
.github/workflows/_test_release.yml
vendored
28
.github/workflows/_test_release.yml
vendored
@@ -14,8 +14,8 @@ on:
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -29,10 +29,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
# We want to keep this build stage *separate* from the release stage,
|
||||
# so that there's no sharing of permissions between them.
|
||||
@@ -46,7 +49,7 @@ jobs:
|
||||
# > from the publish job.
|
||||
# https://github.com/pypa/gh-action-pypi-publish#non-goals
|
||||
- name: Build project for distribution
|
||||
run: uv build
|
||||
run: poetry build
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
@@ -57,18 +60,11 @@ jobs:
|
||||
|
||||
- name: Check Version
|
||||
id: check-version
|
||||
shell: python
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
import os
|
||||
import tomllib
|
||||
with open("pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
pkg_name = data["project"]["name"]
|
||||
version = data["project"]["version"]
|
||||
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
|
||||
f.write(f"pkg-name={pkg_name}\n")
|
||||
f.write(f"version={version}\n")
|
||||
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
|
||||
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
|
||||
|
||||
publish:
|
||||
needs:
|
||||
@@ -102,5 +98,3 @@ jobs:
|
||||
# This is *only for CI use* and is *extremely dangerous* otherwise!
|
||||
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
|
||||
skip-existing: true
|
||||
# Temp workaround since attestations are on by default as of gh-action-pypi-publish v1.11.0
|
||||
attestations: false
|
||||
|
||||
168
.github/workflows/api_doc_build.yml
vendored
168
.github/workflows/api_doc_build.yml
vendored
@@ -5,11 +5,11 @@ on:
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
env:
|
||||
POETRY_VERSION: "1.8.1"
|
||||
PYTHON_VERSION: "3.11"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
|
||||
runs-on: ubuntu-latest
|
||||
permissions: write-all
|
||||
steps:
|
||||
@@ -21,74 +21,120 @@ jobs:
|
||||
repository: langchain-ai/langchain-api-docs-html
|
||||
path: langchain-api-docs-html
|
||||
token: ${{ secrets.TOKEN_GITHUB_API_DOCS_HTML }}
|
||||
|
||||
- name: Get repos with yq
|
||||
id: get-unsorted-repos
|
||||
uses: mikefarah/yq@master
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
cmd: |
|
||||
yq '
|
||||
.packages[]
|
||||
| select(
|
||||
(
|
||||
(.repo | test("^langchain-ai/"))
|
||||
and
|
||||
(.repo != "langchain-ai/langchain")
|
||||
)
|
||||
or
|
||||
(.include_in_api_ref // false)
|
||||
)
|
||||
| .repo
|
||||
' langchain/libs/packages.yml
|
||||
|
||||
- name: Parse YAML and checkout repos
|
||||
env:
|
||||
REPOS_UNSORTED: ${{ steps.get-unsorted-repos.outputs.result }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
# Get unique repositories
|
||||
REPOS=$(echo "$REPOS_UNSORTED" | sort -u)
|
||||
|
||||
# Checkout each unique repository that is in langchain-ai org
|
||||
for repo in $REPOS; do
|
||||
REPO_NAME=$(echo $repo | cut -d'/' -f2)
|
||||
echo "Checking out $repo to $REPO_NAME"
|
||||
git clone --depth 1 https://github.com/$repo.git $REPO_NAME
|
||||
done
|
||||
|
||||
- name: Setup python ${{ env.PYTHON_VERSION }}
|
||||
uses: actions/setup-python@v5
|
||||
id: setup-python
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
repository: langchain-ai/langchain-datastax
|
||||
path: langchain-datastax
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-nvidia
|
||||
path: langchain-nvidia
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-cohere
|
||||
path: langchain-cohere
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-elastic
|
||||
path: langchain-elastic
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-postgres
|
||||
path: langchain-postgres
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-aws
|
||||
path: langchain-aws
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-weaviate
|
||||
path: langchain-weaviate
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-ai21
|
||||
path: langchain-ai21
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-together
|
||||
path: langchain-together
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-experimental
|
||||
path: langchain-experimental
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-milvus
|
||||
path: langchain-milvus
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-unstructured
|
||||
path: langchain-unstructured
|
||||
|
||||
- name: Install initial py deps
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m pip install -U uv
|
||||
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
|
||||
|
||||
- name: Move libs with script
|
||||
run: python langchain/.github/scripts/prep_api_docs_build.py
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Rm old html
|
||||
run:
|
||||
rm -rf langchain-api-docs-html/api_reference_build/html
|
||||
|
||||
- name: Install dependencies
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt
|
||||
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
|
||||
python -m uv pip install -r docs/api_reference/requirements.txt
|
||||
|
||||
- name: Set Git config
|
||||
working-directory: langchain
|
||||
run: |
|
||||
git config --local user.email "actions@github.com"
|
||||
git config --local user.name "Github Actions"
|
||||
|
||||
- name: Move libs
|
||||
run: |
|
||||
rm -rf \
|
||||
langchain/libs/partners/google-genai \
|
||||
langchain/libs/partners/google-vertexai \
|
||||
langchain/libs/partners/astradb \
|
||||
langchain/libs/partners/nvidia-trt \
|
||||
langchain/libs/partners/nvidia-ai-endpoints \
|
||||
langchain/libs/partners/cohere \
|
||||
langchain/libs/partners/elasticsearch \
|
||||
langchain/libs/partners/upstage \
|
||||
langchain/libs/partners/ai21 \
|
||||
langchain/libs/partners/together \
|
||||
langchain/libs/standard-tests \
|
||||
langchain/libs/experimental \
|
||||
langchain/libs/partners/milvus \
|
||||
langchain/libs/partners/unstructured
|
||||
mv langchain-google/libs/genai langchain/libs/partners/google-genai
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-google/libs/community langchain/libs/partners/google-community
|
||||
mv langchain-datastax/libs/astradb langchain/libs/partners/astradb
|
||||
mv langchain-nvidia/libs/ai-endpoints langchain/libs/partners/nvidia-ai-endpoints
|
||||
mv langchain-cohere/libs/cohere langchain/libs/partners/cohere
|
||||
mv langchain-elastic/libs/elasticsearch langchain/libs/partners/elasticsearch
|
||||
mv langchain-postgres langchain/libs/partners/postgres
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
mv langchain-weaviate/libs/weaviate langchain/libs/partners/weaviate
|
||||
mv langchain-ai21/libs/ai21 langchain/libs/partners/ai21
|
||||
mv langchain-together/libs/together langchain/libs/partners/together
|
||||
mv langchain-experimental/libs/experimental langchain/libs/experimental
|
||||
mv langchain-milvus/libs/milvus langchain/libs/partners/milvus
|
||||
mv langchain-unstructured/libs/unstructured langchain/libs/partners/unstructured
|
||||
|
||||
- name: Rm old html
|
||||
run:
|
||||
rm -rf langchain-api-docs-html/api_reference_build/html
|
||||
|
||||
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: api-docs
|
||||
working-directory: langchain
|
||||
|
||||
- name: Install dependencies
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m pip install -U uv
|
||||
python -m uv pip install --upgrade --no-cache-dir pip setuptools
|
||||
# skip airbyte and ibm due to pandas dependency issue
|
||||
python -m uv pip install $(ls ./libs/partners | grep -vE "airbyte|ibm" | xargs -I {} echo "./libs/partners/{}")
|
||||
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental
|
||||
python -m uv pip install -r docs/api_reference/requirements.txt
|
||||
|
||||
- name: Build docs
|
||||
working-directory: langchain
|
||||
@@ -104,4 +150,4 @@ jobs:
|
||||
- uses: EndBug/add-and-commit@v9
|
||||
with:
|
||||
cwd: langchain-api-docs-html
|
||||
message: 'Update API docs build'
|
||||
message: 'Update API docs build'
|
||||
2
.github/workflows/check-broken-links.yml
vendored
2
.github/workflows/check-broken-links.yml
vendored
@@ -7,7 +7,7 @@ on:
|
||||
|
||||
jobs:
|
||||
check-links:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
29
.github/workflows/check_core_versions.yml
vendored
29
.github/workflows/check_core_versions.yml
vendored
@@ -1,29 +0,0 @@
|
||||
name: Check `langchain-core` version equality
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- 'libs/core/pyproject.toml'
|
||||
- 'libs/core/langchain_core/version.py'
|
||||
|
||||
jobs:
|
||||
check_version_equality:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Check version equality
|
||||
run: |
|
||||
PYPROJECT_VERSION=$(grep -Po '(?<=^version = ")[^"]*' libs/core/pyproject.toml)
|
||||
VERSION_PY_VERSION=$(grep -Po '(?<=^VERSION = ")[^"]*' libs/core/langchain_core/version.py)
|
||||
|
||||
# Compare the two versions
|
||||
if [ "$PYPROJECT_VERSION" != "$VERSION_PY_VERSION" ]; then
|
||||
echo "langchain-core versions in pyproject.toml and version.py do not match!"
|
||||
echo "pyproject.toml version: $PYPROJECT_VERSION"
|
||||
echo "version.py version: $VERSION_PY_VERSION"
|
||||
exit 1
|
||||
else
|
||||
echo "Versions match: $PYPROJECT_VERSION"
|
||||
fi
|
||||
29
.github/workflows/check_diffs.yml
vendored
29
.github/workflows/check_diffs.yml
vendored
@@ -1,10 +1,10 @@
|
||||
---
|
||||
name: CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
merge_group:
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
@@ -17,8 +17,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -32,7 +31,7 @@ jobs:
|
||||
uses: Ana06/get-changed-files@v2.2.0
|
||||
- id: set-matrix
|
||||
run: |
|
||||
python -m pip install packaging requests
|
||||
python -m pip install packaging
|
||||
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
|
||||
outputs:
|
||||
lint: ${{ steps.set-matrix.outputs.lint }}
|
||||
@@ -120,26 +119,30 @@ jobs:
|
||||
job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }}
|
||||
fail-fast: false
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.job-configs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies and run extended tests
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with uv..."
|
||||
uv venv
|
||||
uv sync --group test
|
||||
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
|
||||
VIRTUAL_ENV=.venv make extended_tests
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install --with test
|
||||
poetry run pip install uv
|
||||
poetry run uv pip install -r extended_testing_deps.txt
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
|
||||
1
.github/workflows/check_new_docs.yml
vendored
1
.github/workflows/check_new_docs.yml
vendored
@@ -1,3 +1,4 @@
|
||||
---
|
||||
name: Integration docs lint
|
||||
|
||||
on:
|
||||
|
||||
1
.github/workflows/codespell.yml
vendored
1
.github/workflows/codespell.yml
vendored
@@ -1,3 +1,4 @@
|
||||
---
|
||||
name: CI / cd . / make spell_check
|
||||
|
||||
on:
|
||||
|
||||
44
.github/workflows/codspeed.yml
vendored
44
.github/workflows/codspeed.yml
vendored
@@ -1,44 +0,0 @@
|
||||
name: CodSpeed
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
paths:
|
||||
- 'libs/core/**'
|
||||
# `workflow_dispatch` allows CodSpeed to trigger backtest
|
||||
# performance analysis in order to generate initial data.
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
codspeed:
|
||||
name: Run benchmarks
|
||||
if: (github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'run-codspeed-benchmarks')) || github.event_name == 'workflow_dispatch' || github.event_name == 'push'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
# We have to use 3.12, 3.13 is not yet supported
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
python-version: "3.12"
|
||||
|
||||
# Using this action is still necessary for CodSpeed to work
|
||||
- uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: "3.12"
|
||||
|
||||
- name: install deps
|
||||
run: uv sync --group test
|
||||
working-directory: ./libs/core
|
||||
|
||||
- name: Run benchmarks
|
||||
uses: CodSpeedHQ/action@v3
|
||||
with:
|
||||
token: ${{ secrets.CODSPEED_TOKEN }}
|
||||
run: |
|
||||
cd libs/core
|
||||
uv run --no-sync pytest ./tests/benchmarks --codspeed
|
||||
mode: walltime
|
||||
14
.github/workflows/langchain_release_docker.yml
vendored
Normal file
14
.github/workflows/langchain_release_docker.yml
vendored
Normal file
@@ -0,0 +1,14 @@
|
||||
---
|
||||
name: docker/langchain/langchain Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
workflow_call: # Allows triggering from another workflow
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses: ./.github/workflows/_release_docker.yml
|
||||
with:
|
||||
dockerfile: docker/Dockerfile.base
|
||||
image: langchain/langchain
|
||||
secrets: inherit
|
||||
13
.github/workflows/people.yml
vendored
13
.github/workflows/people.yml
vendored
@@ -6,10 +6,15 @@ on:
|
||||
push:
|
||||
branches: [jacob/people]
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
debug_enabled:
|
||||
description: 'Run the build with tmate debugging enabled (https://github.com/marketplace/actions/debugging-with-tmate)'
|
||||
required: false
|
||||
default: 'false'
|
||||
|
||||
jobs:
|
||||
langchain-people:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
runs-on: ubuntu-latest
|
||||
permissions: write-all
|
||||
steps:
|
||||
@@ -21,6 +26,12 @@ jobs:
|
||||
# Ref: https://github.com/actions/runner/issues/2033
|
||||
- name: Fix git safe.directory in container
|
||||
run: mkdir -p /home/runner/work/_temp/_github_home && printf "[safe]\n\tdirectory = /github/workspace" > /home/runner/work/_temp/_github_home/.gitconfig
|
||||
# Allow debugging with tmate
|
||||
- name: Setup tmate session
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
if: ${{ github.event_name == 'workflow_dispatch' && github.event.inputs.debug_enabled == 'true' }}
|
||||
with:
|
||||
limit-access-to-actor: true
|
||||
- uses: ./.github/actions/people
|
||||
with:
|
||||
token: ${{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}
|
||||
51
.github/workflows/run_notebooks.yml
vendored
51
.github/workflows/run_notebooks.yml
vendored
@@ -8,65 +8,56 @@ on:
|
||||
required: false
|
||||
default: '3.11'
|
||||
working-directory:
|
||||
description: 'Working directory or subset (e.g., docs/docs/tutorials/llm_chain.ipynb or docs/docs/how_to)'
|
||||
description: 'Working directory or subset (e.g., docs/docs/tutorials/llm_chain.ipynb)'
|
||||
required: false
|
||||
default: 'all'
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
if: github.repository == 'langchain-ai/langchain' || github.event_name != 'schedule'
|
||||
|
||||
name: "Test docs"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ github.event.inputs.python_version || '3.11' }}
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Configure AWS Credentials
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ secrets.AWS_REGION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: run-notebooks
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv sync --group dev --group test
|
||||
pip install -e libs/core
|
||||
pip install -e libs/langchain
|
||||
pip install -e libs/community
|
||||
pip install --upgrade langchain-experimental
|
||||
pip install -e libs//partners/anthropic
|
||||
pip install -e libs//partners/chroma
|
||||
pip install -e libs//partners/openai
|
||||
pip install -e libs//partners/mistralai
|
||||
pip install jupyter langgraph click pypdf vcrpy
|
||||
|
||||
- name: Pre-download files
|
||||
- name: Pre-download tiktoken files
|
||||
run: |
|
||||
uv run python docs/scripts/cache_data.py
|
||||
curl -s https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql | sqlite3 docs/docs/how_to/Chinook.db
|
||||
cp docs/docs/how_to/Chinook.db docs/docs/tutorials/Chinook.db
|
||||
python docs/scripts/download_tiktoken.py
|
||||
|
||||
- name: Prepare notebooks
|
||||
run: |
|
||||
uv run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
|
||||
python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells
|
||||
|
||||
- name: Run notebooks
|
||||
env:
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
TAVILY_API_KEY: ${{ secrets.TAVILY_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
WORKING_DIRECTORY: ${{ github.event.inputs.working-directory || 'all' }}
|
||||
run: |
|
||||
./docs/scripts/execute_notebooks.sh $WORKING_DIRECTORY
|
||||
./docs/scripts/execute_notebooks.sh ${{ github.event.inputs.working-directory || 'all' }}
|
||||
|
||||
80
.github/workflows/scheduled_test.yml
vendored
80
.github/workflows/scheduled_test.yml
vendored
@@ -2,62 +2,32 @@ name: Scheduled tests
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
inputs:
|
||||
working-directory-force:
|
||||
type: string
|
||||
description: "From which folder this pipeline executes - defaults to all in matrix - example value: libs/partners/anthropic"
|
||||
python-version-force:
|
||||
type: string
|
||||
description: "Python version to use - defaults to 3.9 and 3.11 in matrix - example value: 3.9"
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.8.4"
|
||||
UV_FROZEN: "true"
|
||||
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
|
||||
POETRY_LIBS: ("libs/partners/google-vertexai" "libs/partners/google-genai" "libs/partners/aws")
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
compute-matrix:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
runs-on: ubuntu-latest
|
||||
name: Compute matrix
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Set matrix
|
||||
id: set-matrix
|
||||
env:
|
||||
DEFAULT_LIBS: ${{ env.DEFAULT_LIBS }}
|
||||
WORKING_DIRECTORY_FORCE: ${{ github.event.inputs.working-directory-force || '' }}
|
||||
PYTHON_VERSION_FORCE: ${{ github.event.inputs.python-version-force || '' }}
|
||||
run: |
|
||||
# echo "matrix=..." where matrix is a json formatted str with keys python-version and working-directory
|
||||
# python-version should default to 3.9 and 3.11, but is overridden to [PYTHON_VERSION_FORCE] if set
|
||||
# working-directory should default to DEFAULT_LIBS, but is overridden to [WORKING_DIRECTORY_FORCE] if set
|
||||
python_version='["3.9", "3.11"]'
|
||||
working_directory="$DEFAULT_LIBS"
|
||||
if [ -n "$PYTHON_VERSION_FORCE" ]; then
|
||||
python_version="[\"$PYTHON_VERSION_FORCE\"]"
|
||||
fi
|
||||
if [ -n "$WORKING_DIRECTORY_FORCE" ]; then
|
||||
working_directory="[\"$WORKING_DIRECTORY_FORCE\"]"
|
||||
fi
|
||||
matrix="{\"python-version\": $python_version, \"working-directory\": $working_directory}"
|
||||
echo $matrix
|
||||
echo "matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
build:
|
||||
if: github.repository_owner == 'langchain-ai' || github.event_name != 'schedule'
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
name: Python ${{ matrix.python-version }} - ${{ matrix.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
needs: [compute-matrix]
|
||||
timeout-minutes: 20
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ${{ fromJSON(needs.compute-matrix.outputs.matrix).python-version }}
|
||||
working-directory: ${{ fromJSON(needs.compute-matrix.outputs.matrix).working-directory }}
|
||||
python-version:
|
||||
- "3.9"
|
||||
- "3.11"
|
||||
working-directory:
|
||||
- "libs/partners/openai"
|
||||
- "libs/partners/anthropic"
|
||||
- "libs/partners/fireworks"
|
||||
- "libs/partners/groq"
|
||||
- "libs/partners/mistralai"
|
||||
- "libs/partners/google-vertexai"
|
||||
- "libs/partners/google-genai"
|
||||
- "libs/partners/aws"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
@@ -81,8 +51,7 @@ jobs:
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} with poetry
|
||||
if: contains(env.POETRY_LIBS, matrix.working-directory)
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
@@ -90,12 +59,6 @@ jobs:
|
||||
working-directory: langchain/${{ matrix.working-directory }}
|
||||
cache-key: scheduled
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + uv
|
||||
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
|
||||
uses: "./langchain/.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
@@ -109,20 +72,12 @@ jobs:
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ secrets.AWS_REGION }}
|
||||
|
||||
- name: Install dependencies (poetry)
|
||||
if: contains(env.POETRY_LIBS, matrix.working-directory)
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with poetry..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
poetry install --with=test_integration,test
|
||||
|
||||
- name: Install dependencies (uv)
|
||||
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with uv..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
uv sync --group test --group test_integration
|
||||
|
||||
- name: Run integration tests
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
@@ -134,18 +89,15 @@ jobs:
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
PPLX_API_KEY: ${{ secrets.PPLX_API_KEY }}
|
||||
run: |
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
make integration_tests
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -59,7 +59,6 @@ coverage.xml
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
.codspeed/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
|
||||
@@ -1,117 +0,0 @@
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: core
|
||||
name: format core
|
||||
language: system
|
||||
entry: make -C libs/core format
|
||||
files: ^libs/core/
|
||||
pass_filenames: false
|
||||
- id: langchain
|
||||
name: format langchain
|
||||
language: system
|
||||
entry: make -C libs/langchain format
|
||||
files: ^libs/langchain/
|
||||
pass_filenames: false
|
||||
- id: standard-tests
|
||||
name: format standard-tests
|
||||
language: system
|
||||
entry: make -C libs/standard-tests format
|
||||
files: ^libs/standard-tests/
|
||||
pass_filenames: false
|
||||
- id: text-splitters
|
||||
name: format text-splitters
|
||||
language: system
|
||||
entry: make -C libs/text-splitters format
|
||||
files: ^libs/text-splitters/
|
||||
pass_filenames: false
|
||||
- id: anthropic
|
||||
name: format partners/anthropic
|
||||
language: system
|
||||
entry: make -C libs/partners/anthropic format
|
||||
files: ^libs/partners/anthropic/
|
||||
pass_filenames: false
|
||||
- id: chroma
|
||||
name: format partners/chroma
|
||||
language: system
|
||||
entry: make -C libs/partners/chroma format
|
||||
files: ^libs/partners/chroma/
|
||||
pass_filenames: false
|
||||
- id: couchbase
|
||||
name: format partners/couchbase
|
||||
language: system
|
||||
entry: make -C libs/partners/couchbase format
|
||||
files: ^libs/partners/couchbase/
|
||||
pass_filenames: false
|
||||
- id: exa
|
||||
name: format partners/exa
|
||||
language: system
|
||||
entry: make -C libs/partners/exa format
|
||||
files: ^libs/partners/exa/
|
||||
pass_filenames: false
|
||||
- id: fireworks
|
||||
name: format partners/fireworks
|
||||
language: system
|
||||
entry: make -C libs/partners/fireworks format
|
||||
files: ^libs/partners/fireworks/
|
||||
pass_filenames: false
|
||||
- id: groq
|
||||
name: format partners/groq
|
||||
language: system
|
||||
entry: make -C libs/partners/groq format
|
||||
files: ^libs/partners/groq/
|
||||
pass_filenames: false
|
||||
- id: huggingface
|
||||
name: format partners/huggingface
|
||||
language: system
|
||||
entry: make -C libs/partners/huggingface format
|
||||
files: ^libs/partners/huggingface/
|
||||
pass_filenames: false
|
||||
- id: mistralai
|
||||
name: format partners/mistralai
|
||||
language: system
|
||||
entry: make -C libs/partners/mistralai format
|
||||
files: ^libs/partners/mistralai/
|
||||
pass_filenames: false
|
||||
- id: nomic
|
||||
name: format partners/nomic
|
||||
language: system
|
||||
entry: make -C libs/partners/nomic format
|
||||
files: ^libs/partners/nomic/
|
||||
pass_filenames: false
|
||||
- id: ollama
|
||||
name: format partners/ollama
|
||||
language: system
|
||||
entry: make -C libs/partners/ollama format
|
||||
files: ^libs/partners/ollama/
|
||||
pass_filenames: false
|
||||
- id: openai
|
||||
name: format partners/openai
|
||||
language: system
|
||||
entry: make -C libs/partners/openai format
|
||||
files: ^libs/partners/openai/
|
||||
pass_filenames: false
|
||||
- id: prompty
|
||||
name: format partners/prompty
|
||||
language: system
|
||||
entry: make -C libs/partners/prompty format
|
||||
files: ^libs/partners/prompty/
|
||||
pass_filenames: false
|
||||
- id: qdrant
|
||||
name: format partners/qdrant
|
||||
language: system
|
||||
entry: make -C libs/partners/qdrant format
|
||||
files: ^libs/partners/qdrant/
|
||||
pass_filenames: false
|
||||
- id: voyageai
|
||||
name: format partners/voyageai
|
||||
language: system
|
||||
entry: make -C libs/partners/voyageai format
|
||||
files: ^libs/partners/voyageai/
|
||||
pass_filenames: false
|
||||
- id: root
|
||||
name: format docs, cookbook
|
||||
language: system
|
||||
entry: make format
|
||||
files: ^(docs|cookbook)/
|
||||
pass_filenames: false
|
||||
@@ -1,7 +1,12 @@
|
||||
# Read the Docs configuration file
|
||||
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||
|
||||
# Required
|
||||
version: 2
|
||||
|
||||
formats:
|
||||
- pdf
|
||||
|
||||
# Set the version of Python and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
@@ -10,16 +15,15 @@ build:
|
||||
commands:
|
||||
- mkdir -p $READTHEDOCS_OUTPUT
|
||||
- cp -r api_reference_build/* $READTHEDOCS_OUTPUT
|
||||
|
||||
# Build documentation in the docs/ directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/api_reference/conf.py
|
||||
|
||||
# If using Sphinx, optionally build your docs in additional formats such as PDF
|
||||
formats:
|
||||
- pdf
|
||||
# formats:
|
||||
# - pdf
|
||||
|
||||
# Optionally declare the Python requirements required to build your docs
|
||||
python:
|
||||
install:
|
||||
- requirements: docs/api_reference/requirements.txt
|
||||
- requirements: docs/api_reference/requirements.txt
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
# Migrating
|
||||
|
||||
Please see the following guides for migrating LangChain code:
|
||||
Please see the following guides for migratin LangChain code:
|
||||
|
||||
* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/)
|
||||
* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/)
|
||||
* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/)
|
||||
* Upgrade to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
|
||||
* Upgrate to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/)
|
||||
|
||||
The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help you automatically upgrade your code to use non-deprecated imports.
|
||||
The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help automatically upgrade your code to use non deprecated imports.
|
||||
This will be especially helpful if you're still on either version 0.0.x or 0.1.x of LangChain.
|
||||
|
||||
42
Makefile
42
Makefile
@@ -1,8 +1,5 @@
|
||||
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
|
||||
|
||||
.EXPORT_ALL_VARIABLES:
|
||||
UV_FROZEN = true
|
||||
|
||||
## help: Show this help info.
|
||||
help: Makefile
|
||||
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
|
||||
@@ -28,20 +25,20 @@ docs_clean:
|
||||
|
||||
## docs_linkcheck: Run linkchecker on the documentation.
|
||||
docs_linkcheck:
|
||||
uv run --no-group test linkchecker _dist/docs/ --ignore-url node_modules
|
||||
poetry run linkchecker _dist/docs/ --ignore-url node_modules
|
||||
|
||||
## api_docs_build: Build the API Reference documentation.
|
||||
api_docs_build:
|
||||
uv run --no-group test python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && uv run --no-group test make html
|
||||
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
poetry run python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && poetry run make html
|
||||
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
|
||||
API_PKG ?= text-splitters
|
||||
|
||||
api_docs_quick_preview:
|
||||
uv run --no-group test python docs/api_reference/create_api_rst.py $(API_PKG)
|
||||
cd docs/api_reference && uv run make html
|
||||
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
poetry run python docs/api_reference/create_api_rst.py $(API_PKG)
|
||||
cd docs/api_reference && poetry run make html
|
||||
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
open docs/api_reference/_build/html/reference.html
|
||||
|
||||
## api_docs_clean: Clean the API Reference documentation build artifacts.
|
||||
@@ -53,15 +50,15 @@ api_docs_clean:
|
||||
|
||||
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
|
||||
api_docs_linkcheck:
|
||||
uv run --no-group test linkchecker docs/api_reference/_build/html/index.html
|
||||
poetry run linkchecker docs/api_reference/_build/html/index.html
|
||||
|
||||
## spell_check: Run codespell on the project.
|
||||
spell_check:
|
||||
uv run --no-group test codespell --toml pyproject.toml
|
||||
poetry run codespell --toml pyproject.toml
|
||||
|
||||
## spell_fix: Run codespell on the project and fix the errors.
|
||||
spell_fix:
|
||||
uv run --no-group test codespell --toml pyproject.toml -w
|
||||
poetry run codespell --toml pyproject.toml -w
|
||||
|
||||
######################
|
||||
# LINTING AND FORMATTING
|
||||
@@ -69,19 +66,12 @@ spell_fix:
|
||||
|
||||
## lint: Run linting on the project.
|
||||
lint lint_package lint_tests:
|
||||
uv run --group lint ruff check docs cookbook
|
||||
uv run --group lint ruff format docs cookbook cookbook --diff
|
||||
uv run --group lint ruff check --select I docs cookbook
|
||||
git --no-pager grep 'from langchain import' docs cookbook | grep -vE 'from langchain import (hub)' && echo "Error: no importing langchain from root in docs, except for hub" && exit 1 || exit 0
|
||||
|
||||
git --no-pager grep 'api.python.langchain.com' -- docs/docs ':!docs/docs/additional_resources/arxiv_references.mdx' ':!docs/docs/integrations/document_loaders/sitemap.ipynb' || exit 0 && \
|
||||
echo "Error: you should link python.langchain.com/api_reference, not api.python.langchain.com in the docs" && \
|
||||
exit 1
|
||||
poetry run ruff check docs templates cookbook
|
||||
poetry run ruff format docs templates cookbook --diff
|
||||
poetry run ruff check --select I docs templates cookbook
|
||||
git grep 'from langchain import' docs/docs templates cookbook | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
|
||||
## format: Format the project files.
|
||||
format format_diff:
|
||||
uv run --group lint ruff format docs cookbook
|
||||
uv run --group lint ruff check --select I --fix docs cookbook
|
||||
|
||||
update-package-downloads:
|
||||
uv run python docs/scripts/packages_yml_get_downloads.py
|
||||
poetry run ruff format docs templates cookbook
|
||||
poetry run ruff check --select I --fix docs templates cookbook
|
||||
|
||||
178
README.md
178
README.md
@@ -1,12 +1,6 @@
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset="docs/static/img/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset="docs/static/img/logo-light.svg">
|
||||
<img alt="LangChain Logo" src="docs/static/img/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
# 🦜️🔗 LangChain
|
||||
|
||||
<div>
|
||||
<br>
|
||||
</div>
|
||||
⚡ Build context-aware reasoning applications ⚡
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
|
||||
@@ -15,69 +9,133 @@
|
||||
[](https://star-history.com/#langchain-ai/langchain)
|
||||
[](https://github.com/langchain-ai/langchain/issues)
|
||||
[](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
|
||||
[<img src="https://github.com/codespaces/badge.svg" title="Open in Github Codespace" width="150" height="20">](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://twitter.com/langchainai)
|
||||
[](https://codspeed.io/langchain-ai/langchain)
|
||||
|
||||
> [!NOTE]
|
||||
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
LangChain is a framework for building LLM-powered applications. It helps you chain
|
||||
together interoperable components and third-party integrations to simplify AI
|
||||
application development — all while future-proofing decisions as the underlying
|
||||
technology evolves.
|
||||
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
|
||||
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
|
||||
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
|
||||
|
||||
## Quick Install
|
||||
|
||||
With pip:
|
||||
|
||||
```bash
|
||||
pip install -U langchain
|
||||
pip install langchain
|
||||
```
|
||||
|
||||
To learn more about LangChain, check out
|
||||
[the docs](https://python.langchain.com/docs/introduction/). If you’re looking for more
|
||||
advanced customization or agent orchestration, check out
|
||||
[LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building
|
||||
controllable agent workflows.
|
||||
With conda:
|
||||
|
||||
## Why use LangChain?
|
||||
```bash
|
||||
conda install langchain -c conda-forge
|
||||
```
|
||||
|
||||
LangChain helps developers build applications powered by LLMs through a standard
|
||||
interface for models, embeddings, vector stores, and more.
|
||||
## 🤔 What is LangChain?
|
||||
|
||||
Use LangChain for:
|
||||
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and
|
||||
external / internal systems, drawing from LangChain’s vast library of integrations with
|
||||
model providers, tools, vector stores, retrievers, and more.
|
||||
- **Model interoperability**. Swap models in and out as your engineering team
|
||||
experiments to find the best choice for your application’s needs. As the industry
|
||||
frontier evolves, adapt quickly — LangChain’s abstractions keep you moving without
|
||||
losing momentum.
|
||||
**LangChain** is a framework for developing applications powered by large language models (LLMs).
|
||||
|
||||
## LangChain’s ecosystem
|
||||
While the LangChain framework can be used standalone, it also integrates seamlessly
|
||||
with any LangChain product, giving developers a full suite of tools when building LLM
|
||||
applications.
|
||||
For these applications, LangChain simplifies the entire application lifecycle:
|
||||
|
||||
To improve your LLM application development, pair LangChain with:
|
||||
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel), [components](https://python.langchain.com/docs/concepts/), and [third-party integrations](https://python.langchain.com/docs/integrations/platforms/).
|
||||
Use [LangGraph](https://langchain-ai.github.io/langgraph/) to build stateful agents with first-class streaming and human-in-the-loop support.
|
||||
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
|
||||
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
|
||||
|
||||
- [LangSmith](http://www.langchain.com/langsmith) - Helpful for agent evals and
|
||||
observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain
|
||||
visibility in production, and improve performance over time.
|
||||
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can
|
||||
reliably handle complex tasks with LangGraph, our low-level agent orchestration
|
||||
framework. LangGraph offers customizable architecture, long-term memory, and
|
||||
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
|
||||
Uber, Klarna, and GitLab.
|
||||
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/#langgraph-platform) - Deploy
|
||||
and scale agents effortlessly with a purpose-built deployment platform for long
|
||||
running, stateful workflows. Discover, reuse, configure, and share agents across
|
||||
teams — and iterate quickly with visual prototyping in
|
||||
[LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
|
||||
### Open-source libraries
|
||||
|
||||
## Additional resources
|
||||
- [Tutorials](https://python.langchain.com/docs/tutorials/): Simple walkthroughs with
|
||||
guided examples on getting started with LangChain.
|
||||
- [How-to Guides](https://python.langchain.com/docs/how_to/): Quick, actionable code
|
||||
snippets for topics such as tool calling, RAG use cases, and more.
|
||||
- [Conceptual Guides](https://python.langchain.com/docs/concepts/): Explanations of key
|
||||
concepts behind the LangChain framework.
|
||||
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
|
||||
navigating base packages and integrations for LangChain.
|
||||
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
|
||||
- **`langchain-community`**: Third party integrations.
|
||||
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
|
||||
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph).
|
||||
|
||||
### Productionization:
|
||||
|
||||
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||
### Deployment:
|
||||
|
||||
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
|
||||
|
||||

|
||||
|
||||
## 🧱 What can you build with LangChain?
|
||||
|
||||
**❓ Question answering with RAG**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/tutorials/rag/)
|
||||
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
|
||||
|
||||
**🧱 Extracting structured output**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/tutorials/extraction/)
|
||||
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
|
||||
|
||||
**🤖 Chatbots**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/tutorials/chatbot/)
|
||||
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
|
||||
|
||||
And much more! Head to the [Tutorials](https://python.langchain.com/docs/tutorials/) section of the docs for more.
|
||||
|
||||
## 🚀 How does LangChain help?
|
||||
|
||||
The main value props of the LangChain libraries are:
|
||||
|
||||
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
|
||||
|
||||
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
|
||||
LCEL is a key part of LangChain, allowing you to build and organize chains of processes in a straightforward, declarative manner. It was designed to support taking prototypes directly into production without needing to alter any code. This means you can use LCEL to set up everything from basic "prompt + LLM" setups to intricate, multi-step workflows.
|
||||
|
||||
- **[Overview](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
|
||||
- **[Interface](https://python.langchain.com/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
|
||||
- **[Primitives](https://python.langchain.com/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes
|
||||
- **[Cheatsheet](https://python.langchain.com/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns
|
||||
|
||||
## Components
|
||||
|
||||
Components fall into the following **modules**:
|
||||
|
||||
**📃 Model I/O**
|
||||
|
||||
This includes [prompt management](https://python.langchain.com/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/docs/concepts/#output-parsers).
|
||||
|
||||
**📚 Retrieval**
|
||||
|
||||
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/docs/concepts/#retrievers) it for use in the generation step.
|
||||
|
||||
**🤖 Agents**
|
||||
|
||||
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents.
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
Please see [here](https://python.langchain.com) for full documentation, which includes:
|
||||
|
||||
- [Introduction](https://python.langchain.com/docs/introduction/): Overview of the framework and the structure of the docs.
|
||||
- [Tutorials](https://python.langchain.com/docs/tutorials/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
|
||||
- [How-to guides](https://python.langchain.com/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
|
||||
- [Conceptual guide](https://python.langchain.com/docs/concepts/): Conceptual explanations of the key parts of the framework.
|
||||
- [API Reference](https://api.python.langchain.com): Thorough documentation of every class and method.
|
||||
|
||||
## 🌐 Ecosystem
|
||||
|
||||
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
|
||||
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
|
||||
- [🦜🏓 LangServe](https://python.langchain.com/docs/langserve): Deploy LangChain runnables and chains as REST APIs.
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
|
||||
For detailed information on how to contribute, see [here](https://python.langchain.com/docs/contributing/).
|
||||
|
||||
## 🌟 Contributors
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/graphs/contributors)
|
||||
|
||||
37
SECURITY.md
37
SECURITY.md
@@ -1,30 +1,5 @@
|
||||
# Security Policy
|
||||
|
||||
LangChain has a large ecosystem of integrations with various external resources like local and remote file systems, APIs and databases. These integrations allow developers to create versatile applications that combine the power of LLMs with the ability to access, interact with and manipulate external resources.
|
||||
|
||||
## Best practices
|
||||
|
||||
When building such applications developers should remember to follow good security practices:
|
||||
|
||||
* [**Limit Permissions**](https://en.wikipedia.org/wiki/Principle_of_least_privilege): Scope permissions specifically to the application's need. Granting broad or excessive permissions can introduce significant security vulnerabilities. To avoid such vulnerabilities, consider using read-only credentials, disallowing access to sensitive resources, using sandboxing techniques (such as running inside a container), specifying proxy configurations to control external requests, etc. as appropriate for your application.
|
||||
* **Anticipate Potential Misuse**: Just as humans can err, so can Large Language Models (LLMs). Always assume that any system access or credentials may be used in any way allowed by the permissions they are assigned. For example, if a pair of database credentials allows deleting data, it’s safest to assume that any LLM able to use those credentials may in fact delete data.
|
||||
* [**Defense in Depth**](https://en.wikipedia.org/wiki/Defense_in_depth_(computing)): No security technique is perfect. Fine-tuning and good chain design can reduce, but not eliminate, the odds that a Large Language Model (LLM) may make a mistake. It’s best to combine multiple layered security approaches rather than relying on any single layer of defense to ensure security. For example: use both read-only permissions and sandboxing to ensure that LLMs are only able to access data that is explicitly meant for them to use.
|
||||
|
||||
Risks of not doing so include, but are not limited to:
|
||||
* Data corruption or loss.
|
||||
* Unauthorized access to confidential information.
|
||||
* Compromised performance or availability of critical resources.
|
||||
|
||||
Example scenarios with mitigation strategies:
|
||||
|
||||
* A user may ask an agent with access to the file system to delete files that should not be deleted or read the content of files that contain sensitive information. To mitigate, limit the agent to only use a specific directory and only allow it to read or write files that are safe to read or write. Consider further sandboxing the agent by running it in a container.
|
||||
* A user may ask an agent with write access to an external API to write malicious data to the API, or delete data from that API. To mitigate, give the agent read-only API keys, or limit it to only use endpoints that are already resistant to such misuse.
|
||||
* A user may ask an agent with access to a database to drop a table or mutate the schema. To mitigate, scope the credentials to only the tables that the agent needs to access and consider issuing READ-ONLY credentials.
|
||||
|
||||
If you're building applications that access external resources like file systems, APIs
|
||||
or databases, consider speaking with your company's security team to determine how to best
|
||||
design and secure your applications.
|
||||
|
||||
## Reporting OSS Vulnerabilities
|
||||
|
||||
LangChain is partnered with [huntr by Protect AI](https://huntr.com/) to provide
|
||||
@@ -39,7 +14,7 @@ Before reporting a vulnerability, please review:
|
||||
|
||||
1) In-Scope Targets and Out-of-Scope Targets below.
|
||||
2) The [langchain-ai/langchain](https://python.langchain.com/docs/contributing/repo_structure) monorepo structure.
|
||||
3) The [Best practicies](#best-practices) above to
|
||||
3) LangChain [security guidelines](https://python.langchain.com/docs/security) to
|
||||
understand what we consider to be a security vulnerability vs. developer
|
||||
responsibility.
|
||||
|
||||
@@ -58,13 +33,13 @@ The following packages and repositories are eligible for bug bounties:
|
||||
All out of scope targets defined by huntr as well as:
|
||||
|
||||
- **langchain-experimental**: This repository is for experimental code and is not
|
||||
eligible for bug bounties (see [package warning](https://pypi.org/project/langchain-experimental/)), bug reports to it will be marked as interesting or waste of
|
||||
eligible for bug bounties, bug reports to it will be marked as interesting or waste of
|
||||
time and published with no bounty attached.
|
||||
- **tools**: Tools in either langchain or langchain-community are not eligible for bug
|
||||
bounties. This includes the following directories
|
||||
- libs/langchain/langchain/tools
|
||||
- libs/community/langchain_community/tools
|
||||
- Please review the [best practices](#best-practices)
|
||||
- langchain/tools
|
||||
- langchain-community/tools
|
||||
- Please review our [security guidelines](https://python.langchain.com/docs/security)
|
||||
for more details, but generally tools interact with the real world. Developers are
|
||||
expected to understand the security implications of their code and are responsible
|
||||
for the security of their tools.
|
||||
@@ -72,7 +47,7 @@ All out of scope targets defined by huntr as well as:
|
||||
case basis, but likely will not be eligible for a bounty as the code is already
|
||||
documented with guidelines for developers that should be followed for making their
|
||||
application secure.
|
||||
- Any LangSmith related repositories or APIs (see [Reporting LangSmith Vulnerabilities](#reporting-langsmith-vulnerabilities)).
|
||||
- Any LangSmith related repositories or APIs see below.
|
||||
|
||||
## Reporting LangSmith Vulnerabilities
|
||||
|
||||
|
||||
@@ -60,7 +60,7 @@
|
||||
"id": "CI8Elyc5gBQF"
|
||||
},
|
||||
"source": [
|
||||
"Go to the VertexAI Model Garden on Google Cloud [console](https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/335), and deploy the desired version of Gemma to VertexAI. It will take a few minutes, and after the endpoint is ready, you need to copy its number."
|
||||
"Go to the VertexAI Model Garden on Google Cloud [console](https://pantheon.corp.google.com/vertex-ai/publishers/google/model-garden/335), and deploy the desired version of Gemma to VertexAI. It will take a few minutes, and after the endpoint it ready, you need to copy its number."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -21,6 +21,7 @@ Notebook | Description
|
||||
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
|
||||
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
|
||||
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
|
||||
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
|
||||
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
|
||||
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
|
||||
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools
|
||||
@@ -49,7 +50,7 @@ Notebook | Description
|
||||
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
|
||||
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
|
||||
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
|
||||
[rag_upstage_document_parse_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_document_parse_groundedness_check.ipynb) | End-to-end RAG example using Upstage Document Parse and Groundedness Check.
|
||||
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check.
|
||||
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
|
||||
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
|
||||
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
|
||||
@@ -61,6 +62,4 @@ Notebook | Description
|
||||
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
|
||||
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.
|
||||
[rag-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag-locally-on-intel-cpu.ipynb) | Perform Retrieval-Augmented-Generation (RAG) on locally downloaded open-source models using langchain and open source tools and execute it on Intel Xeon CPU. We showed an example of how to apply RAG on Llama 2 model and enable it to answer the queries related to Intel Q1 2024 earnings release.
|
||||
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.
|
||||
[contextual_rag.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/contextual_rag.ipynb) | Performs contextual retrieval-augmented generation (RAG) prepending chunk-specific explanatory context to each chunk before embedding.
|
||||
[rag-agents-locally-on-intel-cpu.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/local_rag_agents_intel_cpu.ipynb) | Build a RAG agent locally with open source models that routes questions through one of two paths to find answers. The agent generates answers based on documents retrieved from either the vector database or retrieved from web search. If the vector database lacks relevant information, the agent opts for web search. Open-source models for LLM and embeddings are used locally on an Intel Xeon CPU to execute this pipeline.
|
||||
[visual_RAG_vdms.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/visual_RAG_vdms.ipynb) | Performs Visual Retrieval-Augmented-Generation (RAG) using videos and scene descriptions generated by open source models.
|
||||
@@ -30,7 +30,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
|
||||
"! pip install \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml matplotlib tiktoken open_clip_torch torch"
|
||||
"! pip install \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml pillow matplotlib tiktoken open_clip_torch torch"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -409,7 +409,7 @@
|
||||
" table_summaries,\n",
|
||||
" tables,\n",
|
||||
" image_summaries,\n",
|
||||
" img_base64_list,\n",
|
||||
" image_summaries,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -31,8 +31,8 @@
|
||||
"source": [
|
||||
"# Optional\n",
|
||||
"import os\n",
|
||||
"# os.environ['LANGSMITH_TRACING'] = 'true' # enables tracing\n",
|
||||
"# os.environ['LANGSMITH_API_KEY'] = <your-api-key>"
|
||||
"# os.environ['LANGCHAIN_TRACING_V2'] = 'true' # enables tracing\n",
|
||||
"# os.environ['LANGCHAIN_API_KEY'] = <your-api-key>"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -66,7 +66,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!python3 -m pip install --upgrade langchain langchain-deeplake openai"
|
||||
"#!python3 -m pip install --upgrade langchain deeplake openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -666,26 +666,89 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Your Deep Lake dataset has been successfully created!\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" \r"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Dataset(path='hub://adilkhan/langchain-code', tensors=['embedding', 'id', 'metadata', 'text'])\n",
|
||||
"\n",
|
||||
" tensor htype shape dtype compression\n",
|
||||
" ------- ------- ------- ------- ------- \n",
|
||||
" embedding embedding (8244, 1536) float32 None \n",
|
||||
" id text (8244, 1) str None \n",
|
||||
" metadata json (8244, 1) str None \n",
|
||||
" text text (8244, 1) str None \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": []
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_deeplake.vectorstores import DeeplakeVectorStore\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"username = \"<USERNAME_OR_ORG>\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"db = DeeplakeVectorStore.from_documents(\n",
|
||||
" documents=texts,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" dataset_path=f\"hub://{username}/langchain-code\",\n",
|
||||
" overwrite=True,\n",
|
||||
"db = DeepLake.from_documents(\n",
|
||||
" texts, embeddings, dataset_path=f\"hub://{username}/langchain-code\", overwrite=True\n",
|
||||
")\n",
|
||||
"db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`Optional`: You can also use Deep Lake's Managed Tensor Database as a hosting service and run queries there. In order to do so, it is necessary to specify the runtime parameter as {'tensor_db': True} during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"# db = DeepLake.from_documents(\n",
|
||||
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
|
||||
"# )\n",
|
||||
"# db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
@@ -697,16 +760,24 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Deep Lake Dataset in hub://adilkhan/langchain-code already exists, loading from the storage\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db = DeeplakeVectorStore(\n",
|
||||
"db = DeepLake(\n",
|
||||
" dataset_path=f\"hub://{username}/langchain-code\",\n",
|
||||
" read_only=True,\n",
|
||||
" embedding_function=embeddings,\n",
|
||||
" embedding=embeddings,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -725,6 +796,36 @@
|
||||
"retriever.search_kwargs[\"k\"] = 20"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also specify user defined functions using [Deep Lake filters](https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def filter(x):\n",
|
||||
" # filter based on source code\n",
|
||||
" if \"something\" in x[\"text\"].data()[\"value\"]:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" # filter based on path e.g. extension\n",
|
||||
" metadata = x[\"metadata\"].data()[\"value\"]\n",
|
||||
" return \"only_this\" in metadata[\"source\"] or \"also_that\" in metadata[\"source\"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### turn on below for custom filtering\n",
|
||||
"# retriever.search_kwargs['filter'] = filter"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
@@ -736,8 +837,10 @@
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
|
||||
"qa = RetrievalQA.from_llm(model, retriever=retriever)"
|
||||
"model = ChatOpenAI(\n",
|
||||
" model_name=\"gpt-3.5-turbo-0613\"\n",
|
||||
") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
|
||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
273
cookbook/databricks_sql_db.ipynb
Normal file
273
cookbook/databricks_sql_db.ipynb
Normal file
@@ -0,0 +1,273 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "707d13a7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Databricks\n",
|
||||
"\n",
|
||||
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
|
||||
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0076d072",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Installation and Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "739b489b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install databricks-sql-connector"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "73113163",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Connecting to Databricks\n",
|
||||
"\n",
|
||||
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
|
||||
"\n",
|
||||
"### Syntax\n",
|
||||
"```python\n",
|
||||
"SQLDatabase.from_databricks(\n",
|
||||
" catalog: str,\n",
|
||||
" schema: str,\n",
|
||||
" host: Optional[str] = None,\n",
|
||||
" api_token: Optional[str] = None,\n",
|
||||
" warehouse_id: Optional[str] = None,\n",
|
||||
" cluster_id: Optional[str] = None,\n",
|
||||
" engine_args: Optional[dict] = None,\n",
|
||||
" **kwargs: Any)\n",
|
||||
"```\n",
|
||||
"### Required Parameters\n",
|
||||
"* `catalog`: The catalog name in the Databricks database.\n",
|
||||
"* `schema`: The schema name in the catalog.\n",
|
||||
"\n",
|
||||
"### Optional Parameters\n",
|
||||
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
|
||||
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
|
||||
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
|
||||
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
|
||||
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
|
||||
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
|
||||
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b11c7e48",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Examples"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "8102bca0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Connecting to Databricks with SQLDatabase wrapper\n",
|
||||
"from langchain_community.utilities import SQLDatabase\n",
|
||||
"\n",
|
||||
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "9dd36f58",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Creating a OpenAI Chat LLM wrapper\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5b5c5f1a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### SQL Chain example\n",
|
||||
"\n",
|
||||
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "36f2270b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities import SQLDatabaseChain\n",
|
||||
"\n",
|
||||
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "4e2b5f25",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
|
||||
"What is the average duration of taxi rides that start between midnight and 6am?\n",
|
||||
"SQLQuery:\u001b[32;1m\u001b[1;3mSELECT AVG(UNIX_TIMESTAMP(tpep_dropoff_datetime) - UNIX_TIMESTAMP(tpep_pickup_datetime)) as avg_duration\n",
|
||||
"FROM trips\n",
|
||||
"WHERE HOUR(tpep_pickup_datetime) >= 0 AND HOUR(tpep_pickup_datetime) < 6\u001b[0m\n",
|
||||
"SQLResult: \u001b[33;1m\u001b[1;3m[(987.8122786304605,)]\u001b[0m\n",
|
||||
"Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db_chain.run(\n",
|
||||
" \"What is the average duration of taxi rides that start between midnight and 6am?\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e496d5e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### SQL Database Agent example\n",
|
||||
"\n",
|
||||
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/tools/sql_database) for answering questions over a Databricks database."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "9918e86a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import create_sql_agent\n",
|
||||
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
|
||||
"\n",
|
||||
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
|
||||
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "c484a76e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n",
|
||||
"Action Input: \u001b[0m\n",
|
||||
"Observation: \u001b[38;5;200m\u001b[1;3mtrips\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
|
||||
"Action: schema_sql_db\n",
|
||||
"Action Input: trips\u001b[0m\n",
|
||||
"Observation: \u001b[33;1m\u001b[1;3m\n",
|
||||
"CREATE TABLE trips (\n",
|
||||
"\ttpep_pickup_datetime TIMESTAMP, \n",
|
||||
"\ttpep_dropoff_datetime TIMESTAMP, \n",
|
||||
"\ttrip_distance FLOAT, \n",
|
||||
"\tfare_amount FLOAT, \n",
|
||||
"\tpickup_zip INT, \n",
|
||||
"\tdropoff_zip INT\n",
|
||||
") USING DELTA\n",
|
||||
"\n",
|
||||
"/*\n",
|
||||
"3 rows from trips table:\n",
|
||||
"tpep_pickup_datetime\ttpep_dropoff_datetime\ttrip_distance\tfare_amount\tpickup_zip\tdropoff_zip\n",
|
||||
"2016-02-14 16:52:13+00:00\t2016-02-14 17:16:04+00:00\t4.94\t19.0\t10282\t10171\n",
|
||||
"2016-02-04 18:44:19+00:00\t2016-02-04 18:46:00+00:00\t0.28\t3.5\t10110\t10110\n",
|
||||
"2016-02-17 17:13:57+00:00\t2016-02-17 17:17:55+00:00\t0.7\t5.0\t10103\t10023\n",
|
||||
"*/\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
|
||||
"Action: query_checker_sql_db\n",
|
||||
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
|
||||
"Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
|
||||
"Action: query_sql_db\n",
|
||||
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3m[(30.6, '0 00:43:31.000000000')]\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
|
||||
"Final Answer: The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent.run(\"What is the longest trip distance and how long did it take?\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -115,7 +115,7 @@
|
||||
"\n",
|
||||
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",
|
||||
"\n",
|
||||
"Unless told to do not query for all the columns from a specific index, only ask for a few relevant columns given the question.\n",
|
||||
"Unless told to do not query for all the columns from a specific index, only ask for a the few relevant columns given the question.\n",
|
||||
"\n",
|
||||
"Pay attention to use only the column names that you can see in the mapping description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which index. Return the query as valid json.\n",
|
||||
"\n",
|
||||
|
||||
@@ -358,7 +358,7 @@
|
||||
"id": "6e5cd014-db86-4d6b-8399-25cae3da5570",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Helper function to plot retrieved similar images"
|
||||
"## Helper function to plot retrived similar images"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -124,8 +124,8 @@
|
||||
"# Optional-- If you want to enable Langsmith -- good for debugging\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass()"
|
||||
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -156,7 +156,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Ensure you have an HF_TOKEN in your development environment:\n",
|
||||
"# Ensure you have an HF_TOKEN in your development enviornment:\n",
|
||||
"# access tokens can be created or copied from the Hugging Face platform (https://huggingface.co/docs/hub/en/security-tokens)\n",
|
||||
"\n",
|
||||
"# Load MongoDB's embedded_movies dataset from Hugging Face\n",
|
||||
|
||||
@@ -23,41 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2498a0a1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Packages\n",
|
||||
"\n",
|
||||
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install --quiet -U langchain-vdms langchain-experimental langchain-ollama\n",
|
||||
"\n",
|
||||
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
|
||||
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" \"onnxruntime==1.17.0\" pillow pydantic lxml open_clip_torch"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "78ac6543",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from dotenv import load_dotenv, find_dotenv\n",
|
||||
"# load_dotenv(find_dotenv(), override=True);"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e5c8916e",
|
||||
"id": "6a6b6e73",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Start VDMS Server\n",
|
||||
@@ -68,15 +34,15 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "1e6e2c15",
|
||||
"execution_count": 1,
|
||||
"id": "5f483872",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"a701e5ac3523006e9540b5355e2d872d5d78383eab61562a675d5b9ac21fde65\n"
|
||||
"a1b9206b08ef626e15b356bf9e031171f7c7eb8f956a2733f196f0109246fe2b\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -84,11 +50,45 @@
|
||||
"! docker run --rm -d -p 55559:55555 --name vdms_rag_nb intellabs/vdms:latest\n",
|
||||
"\n",
|
||||
"# Connect to VDMS Vector Store\n",
|
||||
"from langchain_vdms.vectorstores import VDMS_Client\n",
|
||||
"from langchain_community.vectorstores.vdms import VDMS_Client\n",
|
||||
"\n",
|
||||
"vdms_client = VDMS_Client(port=55559)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2498a0a1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Packages\n",
|
||||
"\n",
|
||||
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install --quiet -U vdms langchain-experimental\n",
|
||||
"\n",
|
||||
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
|
||||
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml open_clip_torch"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "78ac6543",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from dotenv import load_dotenv, find_dotenv\n",
|
||||
"# load_dotenv(find_dotenv(), override=True);"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1e94b3fb-8e3e-4736-be0a-ad881626c7bd",
|
||||
@@ -115,12 +115,11 @@
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"# Folder to store pdf and extracted images\n",
|
||||
"base_datapath = Path(\"./data/multimodal_files\").resolve()\n",
|
||||
"datapath = base_datapath / \"images\"\n",
|
||||
"datapath = Path(\"./data/multimodal_files\").resolve()\n",
|
||||
"datapath.mkdir(parents=True, exist_ok=True)\n",
|
||||
"\n",
|
||||
"pdf_url = \"https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\"\n",
|
||||
"pdf_path = str(base_datapath / pdf_url.split(\"/\")[-1])\n",
|
||||
"pdf_path = str(datapath / pdf_url.split(\"/\")[-1])\n",
|
||||
"with open(pdf_path, \"wb\") as f:\n",
|
||||
" f.write(requests.get(pdf_url).content)"
|
||||
]
|
||||
@@ -186,8 +185,8 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import VDMS\n",
|
||||
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
|
||||
"from langchain_vdms import VDMS\n",
|
||||
"\n",
|
||||
"# Create VDMS\n",
|
||||
"vectorstore = VDMS(\n",
|
||||
@@ -313,10 +312,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_community.llms.ollama import Ollama\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_ollama.llms import OllamaLLM\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def prompt_func(data_dict):\n",
|
||||
@@ -341,8 +340,8 @@
|
||||
" \"As an expert art critic and historian, your task is to analyze and interpret images, \"\n",
|
||||
" \"considering their historical and cultural significance. Alongside the images, you will be \"\n",
|
||||
" \"provided with related text to offer context. Both will be retrieved from a vectorstore based \"\n",
|
||||
" \"on user-input keywords. Please use your extensive knowledge and analytical skills to provide a \"\n",
|
||||
" \"comprehensive summary that includes:\\n\"\n",
|
||||
" \"on user-input keywords. Please convert answers to english and use your extensive knowledge \"\n",
|
||||
" \"and analytical skills to provide a comprehensive summary that includes:\\n\"\n",
|
||||
" \"- A detailed description of the visual elements in the image.\\n\"\n",
|
||||
" \"- The historical and cultural context of the image.\\n\"\n",
|
||||
" \"- An interpretation of the image's symbolism and meaning.\\n\"\n",
|
||||
@@ -360,7 +359,7 @@
|
||||
" \"\"\"Multi-modal RAG chain\"\"\"\n",
|
||||
"\n",
|
||||
" # Multi-modal LLM\n",
|
||||
" llm_model = OllamaLLM(\n",
|
||||
" llm_model = Ollama(\n",
|
||||
" verbose=True, temperature=0.5, model=\"llava\", base_url=\"http://localhost:11434\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
@@ -420,121 +419,6 @@
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"© 2017 LARRY D. MOORE\n",
|
||||
"\n",
|
||||
"contemporary criticism of the less-than- thoughtful circumstances under which Lange photographed Thomson, the picture’s power to engage has not diminished. Artists in other countries have appropriated the image, changing the mother’s features into those of other ethnicities, but keeping her expression and the positions of her clinging children. Long after anyone could help the Thompson family, this picture has resonance in another time of national crisis, unemployment and food shortages.\n",
|
||||
"\n",
|
||||
"A striking, but very different picture is a 1900 portrait of the legendary Hin-mah-too-yah- lat-kekt (Chief Joseph) of the Nez Percé people. The Bureau of American Ethnology in Washington, D.C., regularly arranged for its photographer, De Lancey Gill, to photograph Native American delegations that came to the capital to confer with officials about tribal needs and concerns. Although Gill described Chief Joseph as having “an air of gentleness and quiet reserve,” the delegate skeptically appraises the photographer, which is not surprising given that the United States broke five treaties with Chief Joseph and his father between 1855 and 1885.\n",
|
||||
"\n",
|
||||
"More than a glance, second looks may reveal new knowledge into complex histories.\n",
|
||||
"\n",
|
||||
"Anne Wilkes Tucker is the photography curator emeritus of the Museum of Fine Arts, Houston and curator of the “Not an Ostrich” exhibition.\n",
|
||||
"\n",
|
||||
"28\n",
|
||||
"\n",
|
||||
"28 LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"THEYRE WILLING TO HAVE MEENTERTAIN THEM DURING THE DAY,BUT AS SOON AS IT STARTSGETTING DARK, THEY ALLGO OFF, AND LEAVE ME! \n",
|
||||
"ROSA PARKS: IN HER OWN WORDS\n",
|
||||
"\n",
|
||||
"COMIC ART: 120 YEARS OF PANELS AND PAGES\n",
|
||||
"\n",
|
||||
"SHALL NOT BE DENIED: WOMEN FIGHT FOR THE VOTE\n",
|
||||
"\n",
|
||||
"More information loc.gov/exhibits\n",
|
||||
"Nuestra Sefiora de las Iguanas\n",
|
||||
"\n",
|
||||
"Graciela Iturbide’s 1979 portrait of Zobeida Díaz in the town of Juchitán in southeastern Mexico conveys the strength of women and reflects their important contributions to the economy. Díaz, a merchant, was selling iguanas to cook and eat, carrying them on her head, as is customary.\n",
|
||||
"\n",
|
||||
"GRACIELA ITURBIDE. “NUESTRA SEÑORA DE LAS IGUANAS.” 1979. GELATIN SILVER PRINT. © GRACIELA ITURBIDE, USED BY PERMISSION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
|
||||
"\n",
|
||||
"Iturbide requested permission to take a photograph, but this proved challenging because the iguanas were constantly moving, causing Díaz to laugh. The result, however, was a brilliant portrait that the inhabitants of Juchitán claimed with pride. They have reproduced it on posters and erected a statue honoring Díaz and her iguanas. The photo now appears throughout the world, inspiring supporters of feminism, women’s rights and gender equality.\n",
|
||||
"\n",
|
||||
"—Adam Silvia is a curator in the Prints and Photographs Division.\n",
|
||||
"\n",
|
||||
"6\n",
|
||||
"\n",
|
||||
"6 LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"‘Migrant Mother’ is Florence Owens Thompson\n",
|
||||
"\n",
|
||||
"The iconic portrait that became the face of the Great Depression is also the most famous photograph in the collections of the Library of Congress.\n",
|
||||
"\n",
|
||||
"The Library holds the original source of the photo — a nitrate negative measuring 4 by 5 inches. Do you see a faint thumb in the bottom right? The photographer, Dorothea Lange, found the thumb distracting and after a few years had the negative altered to make the thumb almost invisible. Lange’s boss at the Farm Security Administration, Roy Stryker, criticized her action because altering a negative undermines the credibility of a documentary photo.\n",
|
||||
"Shrimp Picker\n",
|
||||
"\n",
|
||||
"The photos and evocative captions of Lewis Hine served as source material for National Child Labor Committee reports and exhibits exposing abusive child labor practices in the United States in the first decades of the 20th century.\n",
|
||||
"\n",
|
||||
"LEWIS WICKES HINE. “MANUEL, THE YOUNG SHRIMP-PICKER, FIVE YEARS OLD, AND A MOUNTAIN OF CHILD-LABOR OYSTER SHELLS BEHIND HIM. HE WORKED LAST YEAR. UNDERSTANDS NOT A WORD OF ENGLISH. DUNBAR, LOPEZ, DUKATE COMPANY. LOCATION: BILOXI, MISSISSIPPI.” FEBRUARY 1911. NATIONAL CHILD LABOR COMMITTEE COLLECTION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
|
||||
"\n",
|
||||
"For 15 years, Hine\n",
|
||||
"\n",
|
||||
"crisscrossed the country, documenting the practices of the worst offenders. His effective use of photography made him one of the committee's greatest publicists in the campaign for legislation to ban child labor.\n",
|
||||
"\n",
|
||||
"Hine was a master at taking photos that catch attention and convey a message and, in this photo, he framed Manuel in a setting that drove home the boy’s small size and unsafe environment.\n",
|
||||
"\n",
|
||||
"Captions on photos of other shrimp pickers emphasized their long working hours as well as one hazard of the job: The acid from the shrimp made pickers’ hands sore and “eats the shoes off your feet.”\n",
|
||||
"\n",
|
||||
"Such images alerted viewers to all that workers, their families and the nation sacrificed when children were part of the labor force. The Library holds paper records of the National Child Labor Committee as well as over 5,000 photographs.\n",
|
||||
"\n",
|
||||
"—Barbara Natanson is head of the Reference Section in the Prints and Photographs Division.\n",
|
||||
"\n",
|
||||
"8\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"Intergenerational Portrait\n",
|
||||
"\n",
|
||||
"Raised on the Apsáalooke (Crow) reservation in Montana, photographer Wendy Red Star created her “Apsáalooke Feminist” self-portrait series with her daughter Beatrice. With a dash of wry humor, mother and daughter are their own first-person narrators.\n",
|
||||
"\n",
|
||||
"Red Star explains the significance of their appearance: “The dress has power: You feel strong and regal wearing it. In my art, the elk tooth dress specifically symbolizes Crow womanhood and the matrilineal line connecting me to my ancestors. As a mother, I spend hours searching for the perfect elk tooth dress materials to make a prized dress for my daughter.”\n",
|
||||
"\n",
|
||||
"In a world that struggles with cultural identities, this photograph shows us the power and beauty of blending traditional and contemporary styles.\n",
|
||||
"‘American Gothic’ Product #216040262 Price: $24\n",
|
||||
"\n",
|
||||
"U.S. Capitol at Night Product #216040052 Price: $24\n",
|
||||
"\n",
|
||||
"Good Reading Ahead Product #21606142 Price: $24\n",
|
||||
"\n",
|
||||
"Gordon Parks created an iconic image with this 1942 photograph of cleaning woman Ella Watson.\n",
|
||||
"\n",
|
||||
"Snow blankets the U.S. Capitol in this classic image by Ernest L. Crandall.\n",
|
||||
"\n",
|
||||
"Start your new year out right with a poster promising good reading for months to come.\n",
|
||||
"\n",
|
||||
"▪ Order online: loc.gov/shop ▪ Order by phone: 888.682.3557\n",
|
||||
"\n",
|
||||
"26\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"SUPPORT\n",
|
||||
"\n",
|
||||
"A PICTURE OF PHILANTHROPY Annenberg Foundation Gives $1 Million and a Photographic Collection to the Library.\n",
|
||||
"\n",
|
||||
"A major gift by Wallis Annenberg and the Annenberg Foundation in Los Angeles will support the effort to reimagine the visitor experience at the Library of Congress. The foundation also is donating 1,000 photographic prints from its Annenberg Space for Photography exhibitions to the Library.\n",
|
||||
"\n",
|
||||
"The Library is pursuing a multiyear plan to transform the experience of its nearly 2 million annual visitors, share more of its treasures with the public and show how Library collections connect with visitors’ own creativity and research. The project is part of a strategic plan established by Librarian of Congress Carla Hayden to make the Library more user-centered for Congress, creators and learners of all ages.\n",
|
||||
"\n",
|
||||
"A 2018 exhibition at the Annenberg Space for Photography in Los Angeles featured over 400 photographs from the Library. The Library is planning a future photography exhibition, based on the Annenberg-curated show, along with a documentary film on the Library and its history, produced by the Annenberg Space for Photography.\n",
|
||||
"\n",
|
||||
"“The nation’s library is honored to have the strong support of Wallis Annenberg and the Annenberg Foundation as we enhance the experience for our visitors,” Hayden said. “We know that visitors will find new connections to the Library through the incredible photography collections and countless other treasures held here to document our nation’s history and creativity.”\n",
|
||||
"\n",
|
||||
"To enhance the Library’s holdings, the foundation is giving the Library photographic prints for long-term preservation from 10 other exhibitions hosted at the Annenberg Space for Photography. The Library holds one of the world’s largest photography collections, with about 14 million photos and over 1 million images digitized and available online.\n",
|
||||
"18 LIBRARY OF CONGRESS MAGAZINE\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -577,17 +461,10 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" The image is a black and white photograph by Dorothea Lange titled \"Destitute Pea Pickers in California. Mother of Seven Children. Age Thirty-Two. Nipomo, California.\" It was taken in March 1936 as part of the Farm Security Administration-Office of War Information Collection.\n",
|
||||
"\n",
|
||||
"The photograph features a woman with seven children, who appear to be in a state of poverty and hardship. The woman is seated, looking directly at the camera, while three of her children are standing behind her. They all seem to be dressed in ragged clothing, indicative of their impoverished condition.\n",
|
||||
"\n",
|
||||
"The historical context of this image is related to the Great Depression, which was a period of economic hardship in the United States that lasted from 1929 to 1939. During this time, many people struggled to make ends meet, and poverty was widespread. This photograph captures the plight of one such family during this difficult period.\n",
|
||||
"\n",
|
||||
"The symbolism of the image is multifaceted. The woman's direct gaze at the camera can be seen as a plea for help or an expression of desperation. The ragged clothing of the children serves as a stark reminder of the poverty and hardship experienced by many during this time.\n",
|
||||
"\n",
|
||||
"In terms of connections to the related text, it is mentioned that Florence Owens Thompson, the woman in the photograph, initially regretted having her picture taken. However, she later came to appreciate the importance of the image as a representation of the struggles faced by many during the Great Depression. The mention of Helena Zinkham suggests that she may have played a role in the creation or distribution of this photograph.\n",
|
||||
"\n",
|
||||
"Overall, this image is a powerful depiction of poverty and hardship during the Great Depression, capturing the resilience and struggles of one family amidst difficult times. \n"
|
||||
" The image depicts a woman with several children. The woman appears to be of Cherokee heritage, as suggested by the text provided. The image is described as having been initially regretted by the subject, Florence Owens Thompson, due to her feeling that it did not accurately represent her leadership qualities.\n",
|
||||
"The historical and cultural context of the image is tied to the Great Depression and the Dust Bowl, both of which affected the Cherokee people in Oklahoma. The photograph was taken during this period, and its subject, Florence Owens Thompson, was a leader within her community who worked tirelessly to help those affected by these crises.\n",
|
||||
"The image's symbolism and meaning can be interpreted as a representation of resilience and strength in the face of adversity. The woman is depicted with multiple children, which could signify her role as a caregiver and protector during difficult times.\n",
|
||||
"Connections between the image and the related text include Florence Owens Thompson's leadership qualities and her regretted feelings about the photograph. Additionally, the mention of Dorothea Lange, the photographer who took this photo, ties the image to its historical context and the broader narrative of the Great Depression and Dust Bowl in Oklahoma. \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -614,17 +491,11 @@
|
||||
"source": [
|
||||
"! docker kill vdms_rag_nb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fe4a98ee",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".test-venv",
|
||||
"display_name": ".langchain-venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -638,7 +509,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.10"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -71,9 +71,9 @@
|
||||
"# Optional: LangSmith API keys\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"os.environ[\"LANGSMITH_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
|
||||
"os.environ[\"LANGSMITH_API_KEY\"] = \"api_key\""
|
||||
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
|
||||
"os.environ[\"LANGCHAIN_API_KEY\"] = \"api_key\""
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -29,7 +29,7 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGSMITH_PROJECT\"] = \"movie-qa\""
|
||||
"os.environ[\"LANGCHAIN_PROJECT\"] = \"movie-qa\""
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,82 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RAG using Upstage Document Parse and Groundedness Check\n",
|
||||
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Document Parse and Groundedness Check."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables.base import RunnableSerializable\n",
|
||||
"from langchain_upstage import (\n",
|
||||
" ChatUpstage,\n",
|
||||
" UpstageDocumentParseLoader,\n",
|
||||
" UpstageEmbeddings,\n",
|
||||
" UpstageGroundednessCheck,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = ChatUpstage()\n",
|
||||
"\n",
|
||||
"files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n",
|
||||
"\n",
|
||||
"loader = UpstageDocumentParseLoader(file_path=files, split=\"element\")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"vectorstore = DocArrayInMemorySearch.from_documents(\n",
|
||||
" docs, embedding=UpstageEmbeddings(model=\"solar-embedding-1-large\")\n",
|
||||
")\n",
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"output_parser = StrOutputParser()\n",
|
||||
"\n",
|
||||
"retrieved_docs = retriever.get_relevant_documents(\"How many parameters in SOLAR model?\")\n",
|
||||
"\n",
|
||||
"groundedness_check = UpstageGroundednessCheck()\n",
|
||||
"groundedness = \"\"\n",
|
||||
"while groundedness != \"grounded\":\n",
|
||||
" chain: RunnableSerializable = RunnablePassthrough() | prompt | model | output_parser\n",
|
||||
"\n",
|
||||
" result = chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"question\": \"How many parameters in SOLAR model?\",\n",
|
||||
" }\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" groundedness = groundedness_check.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"answer\": result,\n",
|
||||
" }\n",
|
||||
" )"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,82 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RAG using Upstage Layout Analysis and Groundedness Check\n",
|
||||
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Layout Analysis and Groundedness Check."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables.base import RunnableSerializable\n",
|
||||
"from langchain_upstage import (\n",
|
||||
" ChatUpstage,\n",
|
||||
" UpstageEmbeddings,\n",
|
||||
" UpstageGroundednessCheck,\n",
|
||||
" UpstageLayoutAnalysisLoader,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = ChatUpstage()\n",
|
||||
"\n",
|
||||
"files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n",
|
||||
"\n",
|
||||
"loader = UpstageLayoutAnalysisLoader(file_path=files, split=\"element\")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
"vectorstore = DocArrayInMemorySearch.from_documents(\n",
|
||||
" docs, embedding=UpstageEmbeddings(model=\"solar-embedding-1-large\")\n",
|
||||
")\n",
|
||||
"retriever = vectorstore.as_retriever()\n",
|
||||
"\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"output_parser = StrOutputParser()\n",
|
||||
"\n",
|
||||
"retrieved_docs = retriever.get_relevant_documents(\"How many parameters in SOLAR model?\")\n",
|
||||
"\n",
|
||||
"groundedness_check = UpstageGroundednessCheck()\n",
|
||||
"groundedness = \"\"\n",
|
||||
"while groundedness != \"grounded\":\n",
|
||||
" chain: RunnableSerializable = RunnablePassthrough() | prompt | model | output_parser\n",
|
||||
"\n",
|
||||
" result = chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"question\": \"How many parameters in SOLAR model?\",\n",
|
||||
" }\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" groundedness = groundedness_check.invoke(\n",
|
||||
" {\n",
|
||||
" \"context\": retrieved_docs,\n",
|
||||
" \"answer\": result,\n",
|
||||
" }\n",
|
||||
" )"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -233,7 +233,7 @@ Question: {input}"""
|
||||
|
||||
_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.
|
||||
|
||||
Never query for all the columns from a specific table, only ask for a few relevant columns given the question.
|
||||
Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.
|
||||
|
||||
Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
|
||||
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"76e78b89cee4d6d31154823f93592315df79c28410dfbfc87c9f70cbfdfa648b\n"
|
||||
"2e44b44201c8778b462342ac97f5ccf05a4e02aa8a04505ecde97bf20dcc4cbb\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -49,7 +49,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install --quiet -U langchain-vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
|
||||
"! pip install --quiet -U vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -63,16 +63,7 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/data1/cwlacewe/apps/cwlacewe_langchain/.langchain-venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
@@ -89,10 +80,10 @@
|
||||
"from langchain_community.embeddings.sentence_transformer import (\n",
|
||||
" SentenceTransformerEmbeddings,\n",
|
||||
")\n",
|
||||
"from langchain_community.vectorstores.vdms import VDMS, VDMS_Client\n",
|
||||
"from langchain_core.callbacks.manager import CallbackManagerForLLMRun\n",
|
||||
"from langchain_core.runnables import ConfigurableField\n",
|
||||
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
|
||||
"from langchain_vdms.vectorstores import VDMS, VDMS_Client\n",
|
||||
"from transformers import (\n",
|
||||
" AutoModelForCausalLM,\n",
|
||||
" AutoTokenizer,\n",
|
||||
@@ -372,7 +363,7 @@
|
||||
"\t\tThere are 2 shoppers in this video. Shopper 1 is wearing a plaid shirt and a spectacle. Shopper 2 who is not completely captured in the frame seems to wear a black shirt and is moving away with his back turned towards the camera. There is a shelf towards the right of the camera frame. Shopper 2 is hanging an item back to a hanger and then quickly walks away in a similar fashion as shopper 2. Contents of the nearer side of the shelf with respect to camera seems to be camping lanterns and cleansing agents, arranged at the top. In the middle part of the shelf, various tools including grommets, a pocket saw, candles, and other helpful camping items can be observed. Midway through the shelf contains items which appear to be steel containers and items made up of plastic with red, green, orange, and yellow colors, while those at the bottom are packed in cardboard boxes. Contents at the farther part of the shelf are well stocked and organized but are not glaringly visible.\n",
|
||||
"\n",
|
||||
"\tMetadata:\n",
|
||||
"\t\t{'fps': 24.0, 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
|
||||
"\t\t{'fps': 24.0, 'id': 'c6e5f894-b905-46f5-ac9e-4487a9235561', 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
|
||||
"Retrieved Top matching video!\n",
|
||||
"\n",
|
||||
"\n"
|
||||
@@ -401,12 +392,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Loading checkpoint shards: 100%|██████████| 2/2 [00:18<00:00, 9.01s/it]\n",
|
||||
"WARNING:accelerate.big_modeling:Some parameters are on the meta device because they were offloaded to the cpu.\n"
|
||||
]
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "3edf8783e114487ca490d8dec5c46884",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -558,7 +555,7 @@
|
||||
"\t\tA single shopper is seen in this video standing facing the shelf and in the bottom part of the frame. He's wearing a light-colored shirt and a spectacle. The shopper is carrying a red colored basket in his left hand. The entire basket is not clearly visible, but it does seem to contain something in a blue colored package which the shopper has just placed in the basket given his right hand was seen inside the basket. Then the shopper leans towards the shelf and checks out an item in orange package. He picks this single item with his right hand and proceeds to place the item in the basket. The entire shelf looks well stocked except for the top part of the shelf which is empty. The shopper has not picked any item from this part of the shelf. The rest of the shelf looks well stocked and does not need any restocking. The contents on the farther part of the shelf consists of items, majority of which are packed in black, yellow, and green packages. No other details are visible of these items.\n",
|
||||
"\n",
|
||||
"\tMetadata:\n",
|
||||
"\t\t{'fps': 24.0, 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
|
||||
"\t\t{'fps': 24.0, 'id': '37ddc212-994e-4db0-877f-5ed09965ab90', 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
|
||||
"Retrieved Top matching video!\n",
|
||||
"\n",
|
||||
"\n"
|
||||
@@ -588,7 +585,7 @@
|
||||
"User : Find a man holding a red shopping basket\n",
|
||||
"Assistant : Most relevant retrieved video is **clip9.mp4** \n",
|
||||
"\n",
|
||||
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the available information, I cannot confirm whether the basket is empty or contains items. However, the rest of the\n"
|
||||
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the scene description, I can confirm that the person is indeed holding a red shopping basket.</s>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -658,7 +655,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".langchain-venv",
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -672,7 +669,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.10"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -144,8 +144,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# import os\n",
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_PROJECT\"] = \"default\" # Make sure this session actually exists."
|
||||
"# os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\"\n",
|
||||
"# os.environ[\"LANGCHAIN_SESSION\"] = \"default\" # Make sure this session actually exists."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
3
docker/Dockerfile.base
Normal file
3
docker/Dockerfile.base
Normal file
@@ -0,0 +1,3 @@
|
||||
FROM python:3.11
|
||||
|
||||
RUN pip install langchain
|
||||
12
docker/Makefile
Normal file
12
docker/Makefile
Normal file
@@ -0,0 +1,12 @@
|
||||
# Makefile
|
||||
|
||||
build_graphdb:
|
||||
docker build --tag graphdb ./graphdb
|
||||
|
||||
start_graphdb:
|
||||
docker-compose up -d graphdb
|
||||
|
||||
down:
|
||||
docker-compose down -v --remove-orphans
|
||||
|
||||
.PHONY: build_graphdb start_graphdb down
|
||||
84
docker/docker-compose.yml
Normal file
84
docker/docker-compose.yml
Normal file
@@ -0,0 +1,84 @@
|
||||
# docker-compose to make it easier to spin up integration tests.
|
||||
# Services should use NON standard ports to avoid collision with
|
||||
# any existing services that might be used for development.
|
||||
# ATTENTION: When adding a service below use a non-standard port
|
||||
# increment by one from the preceding port.
|
||||
# For credentials always use `langchain` and `langchain` for the
|
||||
# username and password.
|
||||
version: "3"
|
||||
name: langchain-tests
|
||||
|
||||
services:
|
||||
redis:
|
||||
image: redis/redis-stack-server:latest
|
||||
# We use non standard ports since
|
||||
# these instances are used for testing
|
||||
# and users may already have existing
|
||||
# redis instances set up locally
|
||||
# for other projects
|
||||
ports:
|
||||
- "6020:6379"
|
||||
volumes:
|
||||
- ./redis-volume:/data
|
||||
graphdb:
|
||||
image: graphdb
|
||||
ports:
|
||||
- "6021:7200"
|
||||
mongo:
|
||||
image: mongo:latest
|
||||
container_name: mongo_container
|
||||
ports:
|
||||
- "6022:27017"
|
||||
environment:
|
||||
MONGO_INITDB_ROOT_USERNAME: langchain
|
||||
MONGO_INITDB_ROOT_PASSWORD: langchain
|
||||
postgres:
|
||||
image: postgres:16
|
||||
environment:
|
||||
POSTGRES_DB: langchain
|
||||
POSTGRES_USER: langchain
|
||||
POSTGRES_PASSWORD: langchain
|
||||
ports:
|
||||
- "6023:5432"
|
||||
command: |
|
||||
postgres -c log_statement=all
|
||||
healthcheck:
|
||||
test:
|
||||
[
|
||||
"CMD-SHELL",
|
||||
"psql postgresql://langchain:langchain@localhost/langchain --command 'SELECT 1;' || exit 1",
|
||||
]
|
||||
interval: 5s
|
||||
retries: 60
|
||||
volumes:
|
||||
- postgres_data:/var/lib/postgresql/data
|
||||
pgvector:
|
||||
# postgres with the pgvector extension
|
||||
image: ankane/pgvector
|
||||
environment:
|
||||
POSTGRES_DB: langchain
|
||||
POSTGRES_USER: langchain
|
||||
POSTGRES_PASSWORD: langchain
|
||||
ports:
|
||||
- "6024:5432"
|
||||
command: |
|
||||
postgres -c log_statement=all
|
||||
healthcheck:
|
||||
test:
|
||||
[
|
||||
"CMD-SHELL",
|
||||
"psql postgresql://langchain:langchain@localhost/langchain --command 'SELECT 1;' || exit 1",
|
||||
]
|
||||
interval: 5s
|
||||
retries: 60
|
||||
volumes:
|
||||
- postgres_data_pgvector:/var/lib/postgresql/data
|
||||
vdms:
|
||||
image: intellabs/vdms:latest
|
||||
container_name: vdms_container
|
||||
ports:
|
||||
- "6025:55555"
|
||||
|
||||
volumes:
|
||||
postgres_data:
|
||||
postgres_data_pgvector:
|
||||
5
docker/graphdb/Dockerfile
Normal file
5
docker/graphdb/Dockerfile
Normal file
@@ -0,0 +1,5 @@
|
||||
FROM ontotext/graphdb:10.5.1
|
||||
RUN mkdir -p /opt/graphdb/dist/data/repositories/langchain
|
||||
COPY config.ttl /opt/graphdb/dist/data/repositories/langchain/
|
||||
COPY graphdb_create.sh /run.sh
|
||||
ENTRYPOINT bash /run.sh
|
||||
46
docker/graphdb/config.ttl
Normal file
46
docker/graphdb/config.ttl
Normal file
@@ -0,0 +1,46 @@
|
||||
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
|
||||
@prefix rep: <http://www.openrdf.org/config/repository#>.
|
||||
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
|
||||
@prefix sail: <http://www.openrdf.org/config/sail#>.
|
||||
@prefix graphdb: <http://www.ontotext.com/config/graphdb#>.
|
||||
|
||||
[] a rep:Repository ;
|
||||
rep:repositoryID "langchain" ;
|
||||
rdfs:label "" ;
|
||||
rep:repositoryImpl [
|
||||
rep:repositoryType "graphdb:SailRepository" ;
|
||||
sr:sailImpl [
|
||||
sail:sailType "graphdb:Sail" ;
|
||||
|
||||
graphdb:read-only "false" ;
|
||||
|
||||
# Inference and Validation
|
||||
graphdb:ruleset "empty" ;
|
||||
graphdb:disable-sameAs "true" ;
|
||||
graphdb:check-for-inconsistencies "false" ;
|
||||
|
||||
# Indexing
|
||||
graphdb:entity-id-size "32" ;
|
||||
graphdb:enable-context-index "false" ;
|
||||
graphdb:enablePredicateList "true" ;
|
||||
graphdb:enable-fts-index "false" ;
|
||||
graphdb:fts-indexes ("default" "iri") ;
|
||||
graphdb:fts-string-literals-index "default" ;
|
||||
graphdb:fts-iris-index "none" ;
|
||||
|
||||
# Queries and Updates
|
||||
graphdb:query-timeout "0" ;
|
||||
graphdb:throw-QueryEvaluationException-on-timeout "false" ;
|
||||
graphdb:query-limit-results "0" ;
|
||||
|
||||
# Settable in the file but otherwise hidden in the UI and in the RDF4J console
|
||||
graphdb:base-URL "http://example.org/owlim#" ;
|
||||
graphdb:defaultNS "" ;
|
||||
graphdb:imports "" ;
|
||||
graphdb:repository-type "file-repository" ;
|
||||
graphdb:storage-folder "storage" ;
|
||||
graphdb:entity-index-size "10000000" ;
|
||||
graphdb:in-memory-literal-properties "true" ;
|
||||
graphdb:enable-literal-index "true" ;
|
||||
]
|
||||
].
|
||||
28
docker/graphdb/graphdb_create.sh
Normal file
28
docker/graphdb/graphdb_create.sh
Normal file
@@ -0,0 +1,28 @@
|
||||
#! /bin/bash
|
||||
REPOSITORY_ID="langchain"
|
||||
GRAPHDB_URI="http://localhost:7200/"
|
||||
|
||||
echo -e "\nUsing GraphDB: ${GRAPHDB_URI}"
|
||||
|
||||
function startGraphDB {
|
||||
echo -e "\nStarting GraphDB..."
|
||||
exec /opt/graphdb/dist/bin/graphdb
|
||||
}
|
||||
|
||||
function waitGraphDBStart {
|
||||
echo -e "\nWaiting GraphDB to start..."
|
||||
for _ in $(seq 1 5); do
|
||||
CHECK_RES=$(curl --silent --write-out '%{http_code}' --output /dev/null ${GRAPHDB_URI}/rest/repositories)
|
||||
if [ "${CHECK_RES}" = '200' ]; then
|
||||
echo -e "\nUp and running"
|
||||
break
|
||||
fi
|
||||
sleep 30s
|
||||
echo "CHECK_RES: ${CHECK_RES}"
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
startGraphDB &
|
||||
waitGraphDBStart
|
||||
wait
|
||||
@@ -13,25 +13,32 @@ OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
|
||||
|
||||
PYTHON = .venv/bin/python
|
||||
|
||||
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec sh -c ' \
|
||||
for dir; do \
|
||||
if find "$$dir" -maxdepth 1 -type f \( -name "pyproject.toml" -o -name "setup.py" \) | grep -q .; then \
|
||||
echo "$$dir"; \
|
||||
fi \
|
||||
done' sh {} + | grep -vE "airbyte|ibm|couchbase|databricks" | tr '\n' ' ')
|
||||
|
||||
PORT ?= 3001
|
||||
|
||||
clean:
|
||||
rm -rf build
|
||||
|
||||
install-vercel-deps:
|
||||
yum -y -q update
|
||||
yum -y -q install gcc bzip2-devel libffi-devel zlib-devel wget tar gzip rsync -y
|
||||
yum -y update
|
||||
yum install gcc bzip2-devel libffi-devel zlib-devel wget tar gzip rsync -y
|
||||
|
||||
install-py-deps:
|
||||
python3 -m venv .venv
|
||||
$(PYTHON) -m pip install -q --upgrade pip
|
||||
$(PYTHON) -m pip install -q --upgrade uv
|
||||
$(PYTHON) -m uv pip install -q --pre -r vercel_requirements.txt
|
||||
$(PYTHON) -m uv pip install -q --pre $$($(PYTHON) scripts/partner_deps_list.py) --overrides vercel_overrides.txt
|
||||
$(PYTHON) -m pip install --upgrade pip
|
||||
$(PYTHON) -m pip install --upgrade uv
|
||||
$(PYTHON) -m uv pip install --pre -r vercel_requirements.txt
|
||||
$(PYTHON) -m uv pip install --pre --editable $(PARTNER_DEPS_LIST)
|
||||
|
||||
generate-files:
|
||||
mkdir -p $(INTERMEDIATE_DIR)
|
||||
cp -rp $(SOURCE_DIR)/* $(INTERMEDIATE_DIR)
|
||||
cp -r $(SOURCE_DIR)/* $(INTERMEDIATE_DIR)
|
||||
|
||||
$(PYTHON) scripts/tool_feat_table.py $(INTERMEDIATE_DIR)
|
||||
|
||||
@@ -40,7 +47,6 @@ generate-files:
|
||||
$(PYTHON) scripts/partner_pkg_table.py $(INTERMEDIATE_DIR)
|
||||
|
||||
curl https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md | sed 's/<=/\<=/g' > $(INTERMEDIATE_DIR)/langserve.md
|
||||
cp ../SECURITY.md $(INTERMEDIATE_DIR)/security.md
|
||||
$(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langserve.md https://github.com/langchain-ai/langserve/tree/main/
|
||||
|
||||
copy-infra:
|
||||
@@ -53,7 +59,6 @@ copy-infra:
|
||||
cp package.json $(OUTPUT_NEW_DIR)
|
||||
cp sidebars.js $(OUTPUT_NEW_DIR)
|
||||
cp -r static $(OUTPUT_NEW_DIR)
|
||||
cp -r ../libs/cli/langchain_cli/integration_template $(OUTPUT_NEW_DIR)/src/theme
|
||||
cp yarn.lock $(OUTPUT_NEW_DIR)
|
||||
|
||||
render:
|
||||
@@ -75,7 +80,6 @@ build: install-py-deps generate-files copy-infra render md-sync append-related
|
||||
vercel-build: install-vercel-deps build generate-references
|
||||
rm -rf docs
|
||||
mv $(OUTPUT_NEW_DOCS_DIR) docs
|
||||
cp -r ../libs/cli/langchain_cli/integration_template src/theme
|
||||
rm -rf build
|
||||
mkdir static/api_reference
|
||||
git clone --depth=1 https://github.com/langchain-ai/langchain-api-docs-html.git
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
# LangChain Documentation
|
||||
|
||||
For more information on contributing to our documentation, see the [Documentation Contributing Guide](https://python.langchain.com/docs/contributing/how_to/documentation)
|
||||
For more information on contributing to our documentation, see the [Documentation Contributing Guide](https://python.langchain.com/docs/contributing/documentation)
|
||||
|
||||
@@ -80,8 +80,6 @@
|
||||
html {
|
||||
--pst-font-family-base: 'Inter';
|
||||
--pst-font-family-heading: 'Inter Tight', sans-serif;
|
||||
|
||||
--pst-icon-versionmodified-deprecated: var(--pst-icon-exclamation-triangle);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
@@ -94,7 +92,7 @@ html {
|
||||
* https://sass-lang.com/documentation/interpolation
|
||||
*/
|
||||
/* Defaults to light mode if data-theme is not set */
|
||||
html:not([data-theme]), html[data-theme=light] {
|
||||
html:not([data-theme]) {
|
||||
--pst-color-primary: #287977;
|
||||
--pst-color-primary-bg: #80D6D3;
|
||||
--pst-color-secondary: #6F3AED;
|
||||
@@ -124,8 +122,58 @@ html:not([data-theme]), html[data-theme=light] {
|
||||
--pst-color-on-background: #F4F9F8;
|
||||
--pst-color-surface: #F4F9F8;
|
||||
--pst-color-on-surface: #222832;
|
||||
--pst-color-deprecated: #f47d2e;
|
||||
--pst-color-deprecated-bg: #fff3e8;
|
||||
}
|
||||
html:not([data-theme]) {
|
||||
--pst-color-link: var(--pst-color-primary);
|
||||
--pst-color-link-hover: var(--pst-color-secondary);
|
||||
}
|
||||
html:not([data-theme]) .only-dark,
|
||||
html:not([data-theme]) .only-dark ~ figcaption {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
/* NOTE: @each {...} is like a for-loop
|
||||
* https://sass-lang.com/documentation/at-rules/control/each
|
||||
*/
|
||||
html[data-theme=light] {
|
||||
--pst-color-primary: #287977;
|
||||
--pst-color-primary-bg: #80D6D3;
|
||||
--pst-color-secondary: #6F3AED;
|
||||
--pst-color-secondary-bg: #DAD6FE;
|
||||
--pst-color-accent: #c132af;
|
||||
--pst-color-accent-bg: #f8dff5;
|
||||
--pst-color-info: #276be9;
|
||||
--pst-color-info-bg: #dce7fc;
|
||||
--pst-color-warning: #f66a0a;
|
||||
--pst-color-warning-bg: #f8e3d0;
|
||||
--pst-color-success: #00843f;
|
||||
--pst-color-success-bg: #d6ece1;
|
||||
--pst-color-attention: var(--pst-color-warning);
|
||||
--pst-color-attention-bg: var(--pst-color-warning-bg);
|
||||
--pst-color-danger: #d72d47;
|
||||
--pst-color-danger-bg: #f9e1e4;
|
||||
--pst-color-text-base: #222832;
|
||||
--pst-color-text-muted: #48566b;
|
||||
--pst-color-heading-color: #ffffff;
|
||||
--pst-color-shadow: rgba(0, 0, 0, 0.1);
|
||||
--pst-color-border: #d1d5da;
|
||||
--pst-color-border-muted: rgba(23, 23, 26, 0.2);
|
||||
--pst-color-inline-code: #912583;
|
||||
--pst-color-inline-code-links: #246161;
|
||||
--pst-color-target: #f3cf95;
|
||||
--pst-color-background: #ffffff;
|
||||
--pst-color-on-background: #F4F9F8;
|
||||
--pst-color-surface: #F4F9F8;
|
||||
--pst-color-on-surface: #222832;
|
||||
color-scheme: light;
|
||||
}
|
||||
html[data-theme=light] {
|
||||
--pst-color-link: var(--pst-color-primary);
|
||||
--pst-color-link-hover: var(--pst-color-secondary);
|
||||
}
|
||||
html[data-theme=light] .only-dark,
|
||||
html[data-theme=light] .only-dark ~ figcaption {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
html[data-theme=dark] {
|
||||
@@ -158,8 +206,6 @@ html[data-theme=dark] {
|
||||
--pst-color-on-background: #222832;
|
||||
--pst-color-surface: #29313d;
|
||||
--pst-color-on-surface: #f3f4f5;
|
||||
--pst-color-deprecated: #b46f3e;
|
||||
--pst-color-deprecated-bg: #341906;
|
||||
/* Adjust images in dark mode (unless they have class .only-dark or
|
||||
* .dark-light, in which case assume they're already optimized for dark
|
||||
* mode).
|
||||
@@ -170,30 +216,6 @@ html[data-theme=dark] {
|
||||
*/
|
||||
color-scheme: dark;
|
||||
}
|
||||
|
||||
html:not([data-theme]) {
|
||||
--pst-color-link: var(--pst-color-primary);
|
||||
--pst-color-link-hover: var(--pst-color-secondary);
|
||||
}
|
||||
html:not([data-theme]) .only-dark,
|
||||
html:not([data-theme]) .only-dark ~ figcaption {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
/* NOTE: @each {...} is like a for-loop
|
||||
* https://sass-lang.com/documentation/at-rules/control/each
|
||||
*/
|
||||
html[data-theme=light] {
|
||||
color-scheme: light;
|
||||
}
|
||||
html[data-theme=light] {
|
||||
--pst-color-link: var(--pst-color-primary);
|
||||
--pst-color-link-hover: var(--pst-color-secondary);
|
||||
}
|
||||
html[data-theme=light] .only-dark,
|
||||
html[data-theme=light] .only-dark ~ figcaption {
|
||||
display: none !important;
|
||||
}
|
||||
html[data-theme=dark] {
|
||||
--pst-color-link: var(--pst-color-primary);
|
||||
--pst-color-link-hover: var(--pst-color-secondary);
|
||||
@@ -328,7 +350,7 @@ html[data-theme=dark] .MathJax_SVG * {
|
||||
}
|
||||
|
||||
.bd-sidebar-primary {
|
||||
width: max-content; /* Adjust this value to your preference */
|
||||
width: 22%; /* Adjust this value to your preference */
|
||||
line-height: 1.4;
|
||||
}
|
||||
|
||||
@@ -367,13 +389,6 @@ html[data-theme=dark] .MathJax_SVG * {
|
||||
div.deprecated {
|
||||
margin-top: 0.5em;
|
||||
margin-bottom: 2em;
|
||||
|
||||
background-color: var(--pst-color-deprecated-bg);
|
||||
border-color: var(--pst-color-deprecated);
|
||||
}
|
||||
|
||||
span.versionmodified.deprecated:before {
|
||||
color: var(--pst-color-deprecated);
|
||||
}
|
||||
|
||||
.admonition-beta.admonition, div.admonition-beta.admonition {
|
||||
@@ -393,4 +408,4 @@ dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.glossary):not(.
|
||||
p {
|
||||
font-size: 0.9rem;
|
||||
margin-bottom: 0.5rem;
|
||||
}
|
||||
}
|
||||
@@ -11,7 +11,6 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import toml
|
||||
@@ -88,24 +87,12 @@ class Beta(BaseAdmonition):
|
||||
def setup(app):
|
||||
app.add_directive("example_links", ExampleLinksDirective)
|
||||
app.add_directive("beta", Beta)
|
||||
app.connect("autodoc-skip-member", skip_private_members)
|
||||
|
||||
|
||||
def skip_private_members(app, what, name, obj, skip, options):
|
||||
if skip:
|
||||
return True
|
||||
if hasattr(obj, "__doc__") and obj.__doc__ and ":private:" in obj.__doc__:
|
||||
return True
|
||||
if name == "__init__" and obj.__objclass__ is object:
|
||||
# dont document default init
|
||||
return True
|
||||
return None
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = "🦜🔗 LangChain"
|
||||
copyright = f"{datetime.now().year}, LangChain Inc"
|
||||
copyright = "2023, LangChain Inc"
|
||||
author = "LangChain, Inc"
|
||||
|
||||
html_favicon = "_static/img/brand/favicon.png"
|
||||
@@ -129,7 +116,6 @@ extensions = [
|
||||
"_extensions.gallery_directive",
|
||||
"sphinx_design",
|
||||
"sphinx_copybutton",
|
||||
"sphinxcontrib.googleanalytics",
|
||||
]
|
||||
source_suffix = [".rst", ".md"]
|
||||
|
||||
@@ -236,7 +222,9 @@ html_theme_options = {
|
||||
},
|
||||
],
|
||||
"icon_links_label": "Quick Links",
|
||||
"external_links": [],
|
||||
"external_links": [
|
||||
{"name": "Legacy reference", "url": "https://api.python.langchain.com/"},
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
@@ -269,14 +257,8 @@ html_show_sourcelink = False
|
||||
# Set canonical URL from the Read the Docs Domain
|
||||
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
|
||||
|
||||
googleanalytics_id = "G-9B66JQQH2F"
|
||||
|
||||
# Tell Jinja2 templates the build is running on Read the Docs
|
||||
if os.environ.get("READTHEDOCS", "") == "True":
|
||||
html_context["READTHEDOCS"] = True
|
||||
|
||||
master_doc = "index"
|
||||
|
||||
# If a signature’s length in characters exceeds 60,
|
||||
# each parameter within the signature will be displayed on an individual logical line
|
||||
maximum_signature_line_length = 60
|
||||
|
||||
@@ -72,21 +72,14 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
|
||||
Returns:
|
||||
list: A list of loaded module objects.
|
||||
"""
|
||||
|
||||
classes_: List[ClassInfo] = []
|
||||
functions: List[FunctionInfo] = []
|
||||
module = importlib.import_module(module_path)
|
||||
|
||||
if ":private:" in (module.__doc__ or ""):
|
||||
return ModuleMembers(classes_=[], functions=[])
|
||||
|
||||
for name, type_ in inspect.getmembers(module):
|
||||
if not hasattr(type_, "__module__"):
|
||||
continue
|
||||
if type_.__module__ != module_path:
|
||||
continue
|
||||
if ":private:" in (type_.__doc__ or ""):
|
||||
continue
|
||||
|
||||
if inspect.isclass(type_):
|
||||
# The type of the class is used to select a template
|
||||
@@ -486,11 +479,11 @@ def _package_namespace(package_name: str) -> str:
|
||||
Returns:
|
||||
modified package_name: Can be either "langchain" or "langchain_{package_name}"
|
||||
"""
|
||||
if package_name == "langchain":
|
||||
return "langchain"
|
||||
if package_name == "standard-tests":
|
||||
return "langchain_tests"
|
||||
return f"langchain_{package_name.replace('-', '_')}"
|
||||
return (
|
||||
package_name
|
||||
if package_name == "langchain"
|
||||
else f"langchain_{package_name.replace('-', '_')}"
|
||||
)
|
||||
|
||||
|
||||
def _package_dir(package_name: str = "langchain") -> Path:
|
||||
@@ -502,7 +495,6 @@ def _package_dir(package_name: str = "langchain") -> Path:
|
||||
"core",
|
||||
"cli",
|
||||
"text-splitters",
|
||||
"standard-tests",
|
||||
):
|
||||
return ROOT_DIR / "libs" / package_name / _package_namespace(package_name)
|
||||
else:
|
||||
@@ -528,12 +520,7 @@ def _get_package_version(package_dir: Path) -> str:
|
||||
"Aborting the build."
|
||||
)
|
||||
exit(1)
|
||||
try:
|
||||
# uses uv
|
||||
return pyproject["project"]["version"]
|
||||
except KeyError:
|
||||
# uses poetry
|
||||
return pyproject["tool"]["poetry"]["version"]
|
||||
return pyproject["tool"]["poetry"]["version"]
|
||||
|
||||
|
||||
def _out_file_path(package_name: str) -> Path:
|
||||
@@ -543,9 +530,9 @@ def _out_file_path(package_name: str) -> Path:
|
||||
|
||||
def _build_index(dirs: List[str]) -> None:
|
||||
custom_names = {
|
||||
"airbyte": "Airbyte",
|
||||
"aws": "AWS",
|
||||
"ai21": "AI21",
|
||||
"ibm": "IBM",
|
||||
}
|
||||
ordered = ["core", "langchain", "text-splitters", "community", "experimental"]
|
||||
main_ = [dir_ for dir_ in ordered if dir_ in dirs]
|
||||
@@ -613,11 +600,9 @@ For the legacy API reference hosted on ReadTheDocs see [https://api.python.langc
|
||||
]
|
||||
for header_name, dir_ in sorted(
|
||||
zip(integration_headers, integrations),
|
||||
key=lambda h_d: (
|
||||
integrations_to_show.index(h_d[1])
|
||||
if h_d[1] in integrations_to_show
|
||||
else len(integrations_to_show)
|
||||
),
|
||||
key=lambda h_d: integrations_to_show.index(h_d[1])
|
||||
if h_d[1] in integrations_to_show
|
||||
else len(integrations_to_show),
|
||||
)[: len(integrations_to_show)]:
|
||||
integration_grid += f'\n- header: "**{header_name}**"\n content: {_package_namespace(dir_).replace("_", "-")} {_get_package_version(_package_dir(dir_))}\n link: {dir_.replace("-", "_")}/index.html'
|
||||
doc += f"""## Integrations
|
||||
@@ -662,7 +647,7 @@ def main(dirs: Optional[list] = None) -> None:
|
||||
dirs = [
|
||||
dir_
|
||||
for dir_ in os.listdir(ROOT_DIR / "libs")
|
||||
if dir_ not in ("cli", "partners", "packages.yml")
|
||||
if dir_ not in ("cli", "partners", "standard-tests")
|
||||
]
|
||||
dirs += [
|
||||
dir_
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -9,4 +9,3 @@ pyyaml
|
||||
sphinx-design
|
||||
sphinx-copybutton
|
||||
beautifulsoup4
|
||||
sphinxcontrib-googleanalytics
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
|
||||
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
|
||||
|
||||
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_config <langchain_core.runnables.base.Runnable.with_config>`, :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
|
||||
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
|
||||
|
||||
{% block attributes %}
|
||||
{% if attributes %}
|
||||
|
||||
@@ -19,6 +19,6 @@
|
||||
|
||||
.. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>`. 🏃
|
||||
|
||||
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_config <langchain_core.runnables.base.Runnable.with_config>`, :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
|
||||
The :py:class:`Runnable Interface <langchain_core.runnables.base.Runnable>` has additional methods that are available on runnables, such as :py:meth:`with_types <langchain_core.runnables.base.Runnable.with_types>`, :py:meth:`with_retry <langchain_core.runnables.base.Runnable.with_retry>`, :py:meth:`assign <langchain_core.runnables.base.Runnable.assign>`, :py:meth:`bind <langchain_core.runnables.base.Runnable.bind>`, :py:meth:`get_graph <langchain_core.runnables.base.Runnable.get_graph>`, and more.
|
||||
|
||||
.. example_links:: {{ objname }}
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
eNrlV09z28YVb6c3nXLpfY3JKUNAAAiRoDSaDkUptqJItCXFlpzRcJaLBQETwMK7C4qkR4e4/QK49dZpLZMdjeokY0+bpnXPPfQLKId+iH6CvgUhi4o8k8zklJEO0P5577fv/3t8Ph1QLkKW/PI8TCTlmEjYiPz5lNOnGRXyd5OYyoB5p/fbe/svMh5efBRImYrlxUWchgZLaYJDg7B4cWAtkgDLRVinES1gTrvMG333qz8802IqBO5RoS2jz59phMFbiYSNdsgyhDlFGAU0Sv0sQliIUEgM1xWkcRZRRSZGQtJYO6mga9xBeGeeKhOUaydHcBIzj0bqqJdK3VE0Cews+C8kpziGjeQZhT3ApqC3zLiCMI26OmMsKkWVo7SA9rOkMI2CerdeBmkSHBcEEg/CaNQRFHMSdDgVWSRF54mYsXhUEB6mJZfWRDM6RJNemFDE4CYOx9RDPuNIWZDTgCYiHICImJAMBFSrxFNigyk8VL5goM8EVWZTjMfAg0Zg0YQChWTAII4pR4UnlUMQ7rJMIsDjYEFEB/AFiM0khVMRsCzyUFc5oxQPGPnIUAqkmIOiECGi0Drl4HkuQzrbFnTF6nuKzuMogSLG+ihLFeKlZcEhYdLTTk6UIyHoQk49ZfsS9GiOlHWfUCKBtIiDH+2aCCc9EYcyKL3zHofszeRURgwT+MZY3ZTm+hT49xS/gT4GApyMblj0HUmlsH8MPkIQjUgGoUAqnO78BCN+33ogIrgfzAb+4z/ZlEcn04BiD4T67y8+OA2YkPmr66n9JUQghTyiCWEePJD/pTcO0wryqB9BXJ5BQia0MHt+1qc01XEEgTuZceVf4TSNQlIYdFHlw3mZwLqS5eb1mcpiHYpFIvM3bRCiubl4fwQ1KEGW4biG+dVQh/oQJhHUFF35Np+kxf0/5i9STPoAopf1LZ/MmF/N0zCRv9zGpL13DVJFQv4S87jmvJ4/51kCWUrzaev+zefKy6vnqoZlGfWvrwGLUULylz6OBP3bNWZw5kgnDDDyP5oTAm4OaX7xv06H+J1uvPqw39qUtQfe2tOsNfC2HlqfdFwvpYa9Y2ztd9b47vHmuPHIP3y03detut0wrXq9ZumWYRqWYenuI+4d7nWfGs7GQcewNx5Vm87DVnWte9BYam7Y487OJ7Vk2xpxbm9Fw6f+w/XHtt11PzsYDrea9Z2dJTl6cHdIXKdtGoMN233czPpucwWBdNkg9FaJ3ep2HtDd0T1n3F4ye6mz5taOwyr/9LFnthph0FvvM9Eye87GnHhLtqubpYQ103FN9ffqMjYiqIwyyF807PqfodSlkGr0txMwmczE81OIQ/qff0/LrvKn9tZVCP/6dB1iMn+7r6q7tYTaRCLbtB1kucuOvezU0d3t/fNW+cy+CsELJOlQLhbVUJ/1hxUEvYwLKlcz6evu1/scSqkPcblxmQNTEmRJn3pnrfdG/1sV/eBapQ+0J50OUyaoXoqZnx/ou7MGq2+uv56lms54DyfhuEiF/G2RBsfj4bFHMs8LBsex2Rg71bBLM+K/KVmghKhnQCA9FvkLx669Km8uA/EMlDd1y9RN69uhrvpIBK0GDFx8yy4v8tMlsP43Nwkk60Mfyl8W7vnX/D2nMcSvevkKxGk0Gv98P9ElUL3RqDvfXqcBO8+BWHYsvrlJUAKcWo1YnA8v6fXQyy8+hE0HV52GT2zXIth3rTqpOtitNahXX6Jmo+Hjv6vqSABHuTJlHFxNoRGGcpRfVGI8VCVntWotVWug6QrUWBJlHt3LuutM6SBWEDTliGHvy9bHeguTgOp7RTjm0/XDneb2ZuuvB/p8XOntdDZMTRMmktD3J3uUg1vyMxKxzIPayekEsHabh/kb16tafrVuYRfbrk/r+lp7b4ojEHJA8tdBdVVbdpyqtoJivOrWHNMsZqsvJrOS/93C7z0sseodIVR8TQ1iBMYwvbnZS+7SsajbGzsu6UdbVnjYfFLbsb1d09Mql21gxmFcjW5GEd1AQCAbpOoi7xK3VrmcrmbDlW7WrCpQzka0jg/iUJ6CVACbZFEEGAELiWpyME+FiUeH2rJZgSYXSawtPyunN21u7rsa8TTYcJhvBI5maCcVLWI9CPuuuISHF0OhRi6shq0Z1dHJwsLP1yJX6t+jUcS0W6b0ndumMLrHjm+dzgQnt07nzVun8ayq3zq14UfgrdNZMg+PbpvWv7kVCv+wjpqQLNXmtPx8vb2zcbSw8H/cixps
|
||||
@@ -1 +0,0 @@
|
||||
eNrlV01v48YZbtHb9tJL7rNEgQCFSJMSJZE2jECWnazi2Nq1HK+9gSGMyKHIiORwZ4b68MKHbnvshT+hXa8UGO4mwS7aNO323EP/gHPoj+gv6DsUFcvxAi2QUyEfaA7nnWfej+f90PPZkDAe0PinV0EsCMOOgAXPns8YeZoSLn47jYjwqXvxsN05fJGy4PpXvhAJX19bw0mg0YTEONAcGq0NjTXHx2IN3pOQ5DAXPepOvvvZ7JkSEc5xn3BlHX32THEo3BULWCgnNEWYEYSRT8LES0OEOQ+4wLBdQgqjIZFifMIFiZTzErp12g/uo9b7EerR3rJ0yglTzk/hS0RdEspP/USoppSJYWXAfy4YwREsBEsJrAE+AftFyiSErtXlN0rDQmUxSXJoL41zF0mo79/XQasYR7mAwMMgnHQ5wczxu4zwNBS8+zmfH3EJd1iQFKeUBprLIRL3g5ggCjtRcEZc5FGGpCcZ8UnMgyGoiB0nBQXlW+xKtcElLipu0NCnnEj3yYMjOIMm4NmYgISgcICPCEN5RGVgEO7RVCDAY+BJRIbwBIhWnMBX7tM0dFFPBqVQDw6yiSYNSDADQ4EpPLc6YcAAJgIyX+Zy+dsPDF3GkQqFlA5QmkjEhWchIEHcV87PZSCBfAEjrvR9AXq6JEp7nxNHgGjOh/85NCGO+zwKhF9E5x0B6cz1lE4MYnhGWO4U7voEznfkeQ19CAI4ntzx6Pcipdz/EcQIARuR8AOOJJ3u/wgn/tB7oCKEH9wG8WM/2pWn5zOfYBeU+tdPfnHhUy6yV7dT/EtgIIE8IrFDXbgg+2P/LEhKyCVeCLy8hMSMSe727HJASKLiEIg7nZ/KvsJJEgZO7tA1mQ9XRSKrUpe725cyi1UoGrHI3rRBiUZr7eEEalGMDM20NP2rsQp1IohDqC2qjG02TfL9vy5vJNgZAIha1LlsOj/8almG8uzlHnbanVuQkgnZS8yimvl6+TtLY8hSks2aD+9eV2zeXFfRDEOrf30LmE9iJ3vp4ZCTP986DMGcqA4FjOz3+tSBMAcku/53t+t43V60eTRotkTtkbv1NG0O3d0j4+Ou5SZEK+9ru4fdLXYwap3Zj72Tx3sD1aiXbd2o12uGami6ZmiGaj1m7kmn91Qzd467WnnncaVhHjUrW71ju9rYKZ919z+uxXvGhLHybjh+6h1tPymXe9anx+PxbqO+v18Vk0cfjR3LbOvacKdsPWmkA6uxgUC7dBi4m0652es+IgeTB+ZZu6r3E3PLqo2CCvvkias37cDvbw8ob+p9c2dJvWrZUvVCw5puWrr8e7XgRgiVUfjZC7tS/QJKXQKpRn4zBZeJlD+/AB6Sf/5jVnSXP7R3byj83sU2cDJ7eyiru1FFbUegsl42kWGtm5V1w0Af7R1eNYtrDiUFr5EgY7GWV0N13h82EPQ0xonYTIWnWl8fMiilHvByZ5EDM8dP4wFxL5vvZP9byX4IrbQH2pNKxgnlRC3UzK6O1YN5o1Vb26/nqaZS1sdxcJanQvY2T4PR2XjkOqnr+sNRpNtnZiXokdTx3hRHoITIa0AhNeLZi0pFf1XsLIh4CcbrqqGruvHtWJV9JIRWAw7On0W359lFFbz/zV0BQQfQh7KXeXj+vrzPSAT8lTffgJi2bf/t3UILoLpt18vf3pYBPy+BGOWIf3NXoAC4KBsRvxov5NXAza5/CYuua5sWqTvEs4jtVO1K3XZdXLUNy6qVDbvi/EVWRwdwZCgTyiDUBBphICbZdSnCY1lyNitGtVIDSzegxjph6pJO2tum0ga+gaAphxS7XzY/VJvY8YnayemYzbZP9ht7reafjtVlXqntZD5UzWLK48Dzph3CICzZpRPS1IXaycgUsA4aJ9kby60YnqnbGNc8yyN1davdmeEQlBw62Wu/sqmsm2ZF2UAR3rRqpq7nM9avp/OS/93Pf+digWXvCKDiK3Igc2AcUxutPrSzo11Bjf090TiIY7dZjmh7d3TYGSqlRRuYn9BuRjgtZzcIOJANQnaRReLaRmkxXc2HK1WvGRWQnI9qXQ/UISwBrQA2TsMQMHwaOLLJwTwVxC4ZK+t6CZpcKLCy/qyY3pSl+e9m1FNgwWC+4Tico52XlJD2gfY9voCHGwMuRy4sh6251On5vXv/vx65Mf8BCUOqrJjRaAvG+hWz+f7KBfkBHa2czQ6OV87m1spZPO9kK2c2/PBdOZsFdfFk1az+YCUM/u82KlzQRFmy8rPt9v7O6b17/wHa8ni8
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
eNrlV09v28gVb4GeAhTopfcJUaDAQqRJkZIpG0Ygy95E67WVxN7EzsIQRuRQ5Irk0DNDSXTgw2b7BfgR2nWkwnCzu0jQbrdNzz30C3gP/RD9BH1DUWs5DrAF9lTIB5rDee8378/vvXl6MR0SxgMa//wyiAVh2BGw4PmLKSMnKeHid5OICJ+65w87+wdfpiy4+sAXIuFrKys4CTSakBgHmkOjlaGx4vhYrMB7EpIC5rxH3ez7X3zwXIkI57hPuLKGPn2uOBTOigUslCOaIswIwsgnYeKlIcKcB1xg2K4ghdGQSDGecUEi5ayCbmj7wV0UZSjGEUEBRz3aW1RKOWG3VB6QMKRok/buogd0hBwco3Z5JsrAGEFdnN1bhLk26F2sEfj7Wz634N7ts4/hS0RdEspP/USolpSJYWXAfy4YwREsBEsJrMHDBFIgUiYhdG1VfqM0LKMmsqSA9tK4yJKE+uF9DSyTRkgBgYdBmHU5wczxu4zwNBS8+xmfqbiEOyxISi2liWZyiMT9ICaIwk4UnBIXeZQhmUxGfBLzYAgmYsdJwUD5FrvSbMiKi8oTNPQJJzKDUnEEOkU8YwISgoICHxGGClJJbiDco6lAgMcgmogM4QkQ7TiBr9ynaeiinuRFaR4oskyTDiSYgaNAVl54nTAgIRMBmS0LueLtHUcXcaRBIaUDlCYScR5ZSEgQ95WzM5lI4H/AiCtjX4IeL4jS3mfEAUacFZz4n1MT4rjPo0D4ZXbek5D9mZ0yiEEMzwjLnTJcH4P+vtTX0IcggOPsVkR/EKkU8Y8gRwjYiIQPFSLpdPcnBPHd6IGJkH4IG+SP/eRQHp9NfYJdMOrfP/vVuU+5yF/d7DJfAQMJ1BGJHerCAfmf+qdBUkEu8ULg5QUUZ0yKsOcXA0ISFYdA3MlMK/8aJ0kYOEVAV2Q9XJbFrEpbbm9fyCpWoW/FIn/TASOa7ZWHGbTDGBmaZWv612MVOkMQh9DeVJnbfJIU+39b3EiwMwAQtWy1+WSm/GpRhvL85S52Ovs3ICUT8peYRXXr9eJ3lsZQpSSfth7ePq7cvD7O1AxDW/3mBjDPYid/6eGQk7/cUIZkZqpDASP/vT5xIM0Bya/+0+06XrcXbTwZtNqi/sjdPElbQ3fnifFR13YTolX3tJ2D7iZ7PGqfNp56R093B6qxWm3oxupq3VANTdcMzVDtp8w92u+daNb2YVerbj81m9aTlrnZO2zUmtvV0+7eR/V418gYq+6E4xPvydazarVnf3I4Hu80V/f2aiJ7dH/s2FZH14bbVftZMx3YzXUE1qXDwN1wqq1e9xF5nD2wTjs1vZ9Ym3Z9FJjs42eu3moEfn9rQHlL71vbC+bVqraqlxbWdcvW5d+rOTdC6IzCz88NvV7/I/S6BGqNfDGBmImUvzgHIpJ//XNa3nB/6Oxcc/jX51tAyvztgWzvRg11HIGqetVChr1mmWuGju7vHly2ynMOJAevkCBjsVK0Q3V2QawjuFcZJ2IjFZ5qf3PAoJd6QMzteRFMHT+NB8S9aL2X/m8l/SG30iG4n1QyTignamlmfnmoPp5d9mp76/Ws1lTK+jgOTotayN8WdTA6HY9cJ3VdfziK9MapZQY9kjrem1IFeog8BgxSI55/Was2XpU7cyZegPO6auiqbnw3VuVFEsJdAxEunuXEwfPzGoT/29sCgg7gIspfFvn5x+I+IxEQWJ58DWI1Go2/v19oDrTaaNRq392UgTgvgBjViH97W6AEODfNiF+O5/Jq4OZXv4FFt25WPcOwa45tOI2qaXmGTlzDaGC7ZlrE6P1VtkcHcGQqE8og1QRuwkBk+VUlwmPZczZMo2bWwdN1aLJOmLpkP+1tUekDX0dwK4cUu1+1PlRb2PGJul/QMZ9uHe01d9utPx+qi7xSO8lssJvGlMeB5032CYO05BdOSFMXmicjE8B63DzK39iuaXgWpIqAwR5ZVTc7+1McgpFDJ3/tmxvKmmWZyjqK8IZdt3S9mPM+n8x6/ve/TF0ssLw8Amj5ihwKHRgJ1Wa7H5Os1hmMzHZbzwYndfv+/fZe2D70n9WUyvwemGlo12OkVrAbBByoBiGvkXnlNvTKfLyaTVeqXjdMkJyNi10PzCEsAasANk7DEDB8GjjyloOBKohdMlbWAAQgBFbWnpfj28LIV7me9xRYMBhwOA5naGcVJaR9oH2Pz+HhxIDLmQvLaWsmdXx2587/b0Su3YdRXY7TS+VzMdgvndMBXzqX4QfhsvmsLV2S4Qf/0vns4HjpfG4vncezgWXp3M5ounQ+eykTPlm6SezeUjj84z4qXNBEWfDy063O3vbxnTv/BYvRO3Y=
|
||||
@@ -1 +0,0 @@
|
||||
eNqlVmtsFNcVXnDaEJSGNK2gUisyWaEWAbOemR3vw64T1muTGD/W9hq/iLXMztzdHe/szHge+zBxG9y0/EgbaeKa0KSlSbC9yDg2yA5QwECV4lRqUx5JaOwAjRQUFzUVAlKXJKXpmdk12IE/VfbH7Nx7z/nuud/5zrnTk00iReUlcdEwL2pIYVgNBqrRk1VQp45U7ZnBBNJiEtdfFwg27tYVfmpNTNNktbiwkJF5hyQjkeEdrJQoTJKFbIzRCuFdFpAF0x+WuMx0QXqrPYFUlYki1V6Mbd5qZyXYS9RgYG8Glx+omBZDWAox8KdgvIgFNzxmX4fZFUlAppGuIsXe3Q4zCYlDgjkVlTWcNm1EGJHwr2oKYhIwiDCCimBCQwkZDqTpiolBONzmnCQJ+Ri0jGxhR3TROrOJdeu9GNtqF5mEZaAxSV7IhFTEKGwspCBVFzQ11KHmXDiksgov573sPixnhyExyosIk2AlwXchDotICmZSo6AYElU+CSEyLKtDgOabyGGaoqsaGOZ3cGCbVBTRBcsxBT5YRtIxEYGFJoGDmgKqrBSZTGNMWNI1DPAUIBZDSXgCRKUow6wak3SBw8IIY+bCA0cl4zAPIDMKHBRSr1qnlhVIqaLxKDe07Ky3Lx10Po4ZkCBJcUyXTcQ5ZiEjvBi1d3ebmQQ18QriTO7zoO3zTKVwB2I1MAXb/yM1AiNG1QSvxfLZuUtCgrk4TRJ5EZ4JxlzJ01UN/kHT34FtAANGzNzB6C2TdRb/CcgRBnIEwfKgWpDTI1+BxC+zZ0pfQUAb5E/5ylS2d2djiOEgqIu2B/tjkqoZIwtrdhQUiKCQkMhKHGxgvBbt4uV1GIciAuhyCOpURBbtxlAcIRlnBBDuYM7L2MfIssCzFqGFZj0M5+saN2O5c3nILGMcuoCoGeMBCMJXWViXgeYiYqSD9jiIfWlc1RheFKBZ4GZujUHZWj8yf0Fm2DiA4PnGZQzmnEfm20iqMVDDsIHgAkhTCcYAoyRc9Nj8eUUXoUqRkfXX3bldfvH2dk4HSTrc+xcAqxmRNQasznNwgTMkM4OzEmAYrxCDLKSZR8bUtVCIjYTCidKmuL9Sc9VzZZ26P8lVNZEbQx5ORg6q1lHVGCpTGlKVXd7mSGtzTRwn3ZSXIN1uF4mTDsJBOkjc06xwrcFwp4OuaAk5qIpmp49u8jvLwi3eIl8F1RWq3egSa8iMolBVQroz0lTeRlFhz6aWdLrK566tLdIy9Y+nWQ8dIBzJCsrT5tPjHl8JBtHpSZ4rZSl/OFSPGjJP0F2BIiIq02UeV4p3KtVtHOH38rFoeVxS/USUrpgXXhHlwYl8hC6C9hDmb2ROGwJ0Ri1m7PZ4PHug1clQaugng0CZpqs9/aBD9Oc/ZvPXxauBqtsSXt5fDpo0Jhp1aJhkERZgNYwiKBojPcU0VUzT2OM1jcP+/DaNd5Xg/kYFOmcEZFgxJ/ksG9PFOOKG/HcV+4QpdsikGT5cRzhKy5KK8HxUxnAL3pC7KPHK8rFcZeGSEmVEvsva1piwVJ/qSqc4Vue4WDKVILxdtJMPI52NjOddoGOY20BAeEI1+skip3skvzQnvCE4LIGTBE6Qh9O4eW8IcLUAodYzf12DbxGwfehOA02Kw71jDFjpODZ/XUEJ0Ku59W0Q2uv1Hr270RyQ2+t1uw4vtFHR/EhIKqEeutMgD9BPehLqcHrOHuc5Y2oVDEIczbk93jAi6QiBKJIiIpzbzTldbq87TEc49DuzG7KAY+ZSlhQNVxFcfLyWMabWJZi02WJKnUChC05aAj2VFXQOBfVwuWSeQS3B4BIWJIYb9W/A/QwbQ3jQkp+RLW+t9dVU+g+04PN1hAfk3FdRVpRUkY9EBoNIgbQYQ6wg6Rz0SgUNAlaDr9UY93BOMuIsClMIsZ4IcuNl0IXm0G6prt9stFlGgNiTrDEWc5baQcFOewmWYEo9LpogrG+nbYO5zn9y0dsPP7vEZv0KhIYaaXr9gxOfN//8o+o1Jxb1SMYS+wuzp5+cfqi1919bdoxEL1zQ2565caXvG+/Vblm2992j3Vfe+usji9f/hlm858C3G+tfPPLmzJPLx3cWXr8qf0btenT53hv/uMR/unL02n0PdPys+/39S1ecW4GePSufbqrdp1Rvi797Rvjhw89Fxvjztp++9d4740fvT/079cbl1Y86DzStnd15YnSJ7YPT53Xx+auPVW/xHCpfOrtLmey/ec/Tf3mxuOfSxOy2VR+8XNDXd6Ihu7aPLMVa4g0Vk9pkVv37xJGvG+Tl8is/Gv7+qVVTb1R980+nPu0N/XLZJ6/NpJ6/+EJN2UsbG9/fufLiZG8gYlvdSJ9ff2X64+CpS++49I/Xfuupw9ebO2xPOEaX7qhr7tn+um34auCkeHzynnN71sy0LP4PWro5+fLXjvWeOGus/mdf+4dtz93wffKdC13HZ6dn0sEMNXNs14dvJusmPxoYk/4b/Fvn7orPD6+8VnPzJlm+4uDkvXuX9U6enXr1fn7f8daOqfqnftxwUiwo0b73299vKfjVyjj13fOnq5wP9L+0KXYwYEwr5+q314/+If725oey1OuXmtecab3v5sV7HWd/sePX7Ze1I0NnyM+W2WxffFFge3p2+/VXCmy2/wE4OX83
|
||||
@@ -1 +0,0 @@
|
||||
eNrtHctu3Na1QYEuDBRoFwW6vB20UBKIHL7mJcMoRiPZUWRZtiVLfsggOOTlDD18mZechwwBbfrYD7rptrUsFYbrJEiQpmndRVdd9AecRRf9hK676LmXpIZja2Ln0TYeMnDk4X2ce97n8pzj0TvHfRwQy3Nfe2S5IQ40PYQH8qt3jgN8N8Ik/PmRg8OuZxxe3tzavh8F1tM3u2Hok6VyWfMt3vOxq1m87jnlvljWu1pYhs++jRmYw7ZnjD795of3Sg4mROtgUlpCt+6VdA/OckN4KN3wIqQFGGmoi23fjGykEWKRUIPpRVQKPBvTZWREQuyUDhbR1O4BHEhQ2MVogDX4K0CWi4j54+zWiOCgdHAbRhzPwDYd6vghp9A1LjyJ8DcJA6w58BAGEYZnOMsHZoRRQEEIfI2OeZ6d4B+OfAbajFzGLwrq5PMSoOhqDlsQan3LHqkEa4HeVQNMIjsk6h0SbzEw0QPLT3aVmiheh7DbsVyMPJhxrH1sINMLEGVrgLvYJVYfUNR0PQIE6SfXoGgDfwyUnMCjawRTXtKNA9iDRsBmF8OK0IMNZACcYuKlUkJa24tCBPACYCvCffgJINZcH0ZJ14tsA7WphBL0YGMw4ikBvhYAoaA2hFHtB6AOQWjh+JGtY5+eITQLhyJke14PRT6FmHIWBGK5ndLBARUkaKIVYIPyPgF6O7PUa9/BeghLmXK8tGhsze0Qxwq7iXROEchWjCdlouXCT0ejMwm7LsL+LbqfR+dhgeaOnuPoyZJFxn8HZIRAG0FfLVBaUKcffAkmPss9qvkBBraB/IIvzcrbB8ddrBmA1D++8Z3DrkfC8eNpe38XNBCDHWFX9ww4YPz7zr7lLyIDmzbo5UOwUhczto8f9jD2Oc0GxT2Kd43f03zftnTG0DK1h0eJVXMUl+enH1Ir5sCDuOH4w01AorlWvjwCx+QikVfqvPDekAOnYbk2OBqOynZ85LP5P2UnfE3vARAucXrjo3jz4+waj4wfbGj65tYUSKoJ4wda4FSVD7LjQeSCleLxcevy88clk5PjZF4U+dr7U4DJyNXHD0zNJvgPU5tBmCNO9wDG+DfCkQ5itvD46b9UVTfVtnNup9daC6tXjOW7UatvrO+Ib6t1w8e8dIlf31aXg6uDtf3Grnljd6PHiTWpIYi1WlXkRF7gRV7k6ruBcWOrfZdXVq+rvLS6KzeVnZa83L7eqDRXpX310ttVd0McBYG0bg/vmjsrNyWpXb92fThcb9YuXaqEoysXhnpd2RT4/qpUv9mMevXmWQTYRX3LOKdLrbZ6BV8dvaXsb1aEjq8s16sDSw4u3jSEVsPqdlZ6HmkJHWU1g15FqnNCgmFVUOoC/e9xqhs2eMawO77fUOq/A1fng6nhnx0By8KIvHMIeoj//rfjJNT8dnN9osLfO1wBnRw/2abeXaygTT1EkiApSKwvKfKSIKALG9uPWskx21QFn6IQD8My84ZcHB/OIghwAcHhuSg0ufr72wG4UhP0cjW1gWO9G7k9bDxsnar9T6j2g2gpPRCeODz0PYK5BM3xo+vc1TjqcmsrH8SmxnlBR3OtfWYK4yfMDAb7w4GhR4bR7Q8cobGvyFYbR7r5YbIFXAg9BhDiHDK+X2vUHyczqSI+BOIFThQ4QfxkyNE4YkOoAQazn0noJ+PDCnD/4+cXhF4P4tD4ARPPX7LzAXZAf+nJEyBKo9H48+mLUkCAotL4ZHoN8DkDRJQc8vHzC1IAoig75NEw3cBZxvjpD+FBlWVFrghG1RA1s1HHstDGhiS321IFV4EJ8h+pe9QBEJWl7wUgawyR0ApH46eLjjakPuecLFbkKpB6FpysbkcG3oraKx4lgpxFEJVtTzPebZ3nWprexdwW08fx8cqNS82NtdZH17msYnGbzIXDvOsR1zLNoy0cgFzGD3XbiwxwngE+AlhXmzfGH9YNWTTltqk3RKNu4hq3vLl1rNmAZF8ff9CVz5WWFEUunUWOdq5eVQSB3bh+ehT7/E+/+4ahhRoNHha4/BK9nulwOeOaax13OwrvOm4nuHIh3NheX3UvCFf98zW5MyotpnEg3sFPLnQ8U29YoIM5hDSMpJZbayym16v4dsUJVVGGlfHFTTUBHRz4gBWAdSPbBhhdz9JplIMLleUaeFhaEhYhytmhVlq6l1zfSpnb4OTiFwOgEVTVNdt+FkZMLEyoO/tv7e7cUfrhzZv25ZFldIM7YrRcXwVgcczL3BMy14T0lvCZ97eSFnQih96VYCHEzNuLEF7NiGh2jODBYsn2OmCLbZJiDFywCIWjUQjxqtsHZ868ulKaKYMsM7OMurfnUl4VzDmNOahgzUzW7JUK5sxiTnyTL9gzgz178H/BnMKwPj9zkpxIwaCZ2pPk3QoOzeSQVVx4ZjNnSyu4M5s75+GlVLeI7hU8mh3bixeK2dw5yAtrXkxjlnkZWm+tbF5avX3mzOyC15NsvStOCLB6V5wUiEtcr30b+O5bag+PWNmnb4+4cHulUmtuXe2t4uXo7uaN+tCorK+HeLilCBu9SzWao0+z++lFI1vGAteYcQC0fKUN0xQEbJEW00KKamA/7FIomtGH9cBomEsyVaoR56loxp+m+vHw1OF0dVwbglGWj85MBNpAnRTenp21nKS4xyZOage/fHiN5iubLG3/UZyPP8nplSVehj/vNuM6wurpdYSjeHp8/83ymzOyqo/T9NrFJD0sVRvTudznygmfJ3v8ixnHviClLNOUcprbe0AresNnET0UKw3xBZhOJ/S+VTupCL2EypRMz7a9gRr56klpKrWOVNDxUyq/WyyJlagYLXRaIcvC7c4+IwqoEac2MhgM+AQhai7UTrKJu9K9BduLqVsAP7NA02zwYWEK6MIiWghwJ16z0AJmm17gWhodZ+WQYEQnrrkWLXnSbCsmyDNR08EBsI4uA82BJXKNr9Uq9JGB4kRJ4hWxLsNIuK9aBoWSbCpf9IjaBKdjY8IAAJY2rd2o2Pf0LqxMXZcoZacpCCp1mksHJRDFJUVcOKCIxtJhVNoaCUEIBvWBz8ITBIHhO1nxPEhZoCjRmrSq050KL6TPJjxXajwlySKqoVHOiIxPrmGdsJlWMijYDYuEFJSlx7wtl3XDfVZeyWO5qgyrShlAlkVF5n23E/PfoDSLgixQKgfgiVXHp/TIvJIO9NhAZTJg4E6A6T5JFk7GrIBJfpeC9UHpSBRg1Wkz6GKdkXgybFF0ZYEXavGobvmq4yzQ0rwwGWGr4pFu5FjAAMqOBt3DcusMNJ01MbaJbfVwzE+Zr08NMqZW2SBFVe9atp1dORnMrARvEbK4lJXRZDAjKAMPfA8iWwpSyY4lEKkM+yDRnsOQZsDos2NRBV1CVTYS9Rnj6eJOBBoUS0LhK+lALIkaLx0c0OCqe7SfQeAbDVDjah1sPevV46T1xOinjBJxKHUC5wGKDgqLNjSfwPgO7I5Ib3SqM+gnk3HI1FzOzPiOiV+YPuufv/7JyWlmehotw4sCAoUki1P1eDPwHEQr6F7gwSUArNlG1KtTd7cI7rGtaw58IJEbWASzfgn4THAIkyAcNhBrkBXvQg4ljJ7HKvW+rekY8TxP3byDtsHs9z0XL6FTfAd6/dp2i6u9gcqolfhn6iZALRUwYxYgyqIAFoX4kwUppWcnnD2LtiKXIbbhAT5w9rT4qg25WqmeJr/YgbPYptKTS0sSX60cfJX9PGe+/zXo55neyKLYZMnUkdlL86zmHXrfRS8qGX2hHp/MbRyV7u3F0XsPHvZeGMD30uv7NI9uARSwsxjGZ8TdPTh+L90Yry6ibxF9i+j7/4i+e8xjzTDc2THyFBuejpR7kVQVhCJYTgdL4PbtbMigIWAqFKgv4/CLntGiZ7ToGS16Roue0TnoGT2UKnXlq20aVea5aVSRK1//ptGqIn2ZplGpWj+9abSqtau6UcGi3hBN3DYlUW/XRCxKdUlQavVXomnU0JU6WMbnbxpt/3t2Feh6bUPaiEa9u9bO2h3Rvyp2l5fPi/ubvS9UBYJ3wf9h02ip9N9o0Py6c2RC/nYXl3JGMjrp38kZ3SddOTmjm/ba5Ixk1kGTM5ozfTH5onwxd6KeJKALWc+7rOOaQv48OKuh5C9W549kLX8kxy1IuaN7aS93tzIud7q9nan45E2/cyfsvBEsKnmjmM8bwULeCP7re63c+a3X80ZxpVY4rjknWM6f4zqfN5LfKN6g5j847ea0TtVKG4SL98Z5FzXt+s4b0YXrzoHrhun8lWp8nL8CVZHrK96nijfmV5vg3CVzkeN3i46Rue/v9Bz271TyVlQPPCd3RIc57F8mXhR2Bzh/b5CoeIWcfxlfTv6BefFCVbxQzVnzhCDmjeR68Q5ZtIvM2ztku8jcF9euedPqt6LcvTyybyMqrpnFNXO+CG7krtXtR0WAmn8z3rGI1bbswmUXLnsOMwPFe3LxnjxnRtxz8veenL+LyGUbqMpfDc71QpzDYqsW5pDoHH4nQeZbSouvoJh/kiM/f2adu6+JQvSr7ItvV5l/kj2zSBjMe8JALJJg895+n7+MAfsVLvm7idBfyJS7GOUWMWrOCZYEqfgHNUUZsqjUFCJ+tURcKYpx80jwS/w2cBJ6/mm/B/w/5izgpg==
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
eNrlV91u28gV7gK9CrBAb3o/YQssUIg0KVF/NoxAlp1E69hKIm9ie2EII3IoMiI5zMxQf4EvmvYF+AjddaSF4WZ3kaDdbpte96Iv4L3oQ/QJeoak1nIcoAX2qpAvaA7nnG/OzzfnHL2cDwnjHg0/uvBCQRi2BCx48nLOyPOYcPH7WUCES+2zh+3OwZcx8y5/4woR8fW1NRx5Go1IiD3NosHa0FizXCzW4D3ySQpz1qP25Ief/+qFEhDOcZ9wZR19/kKxKJwVClgoRzRGmBGEkUv8yIl9hDn3uMCwXUAKoz6RYnzCBQmU0wK6pu16t1HrkwD1aG9ZOuaE3ZC9T3yfoi3au43u0xGycIha+WFoAlYIauPJnWWYK0vexxqBo59wFExQiANy5+bZJ/AloDbx5ad+JFRTyoSwMuA/F4zgABaCxQTW4FoEsRcxkxC6VpXfKPXzcIlJlEI7cZimR0L9+L4OlkkjpIDAQ8+fdDnBzHK7jPDYF7z7jGcqNuEW86JcS2mgTA6RsO+FBFHYCbwpsZFDGZJZZMQlIfeGYCK2rBgMlG+hLc2GdNgoP0FDn3EiUycVR6CTxjMkICEoKPARYShlkyQFwj0aCwR4DKKJyBCeANEKI/jKXRr7NupJQuTmgSKbaNKBCDNwFFjKU68jBuxjwiPZMpVL395zdBlHGuRTOkBxJBEXkYWEeGFfOT2ViQTie4zYMvY56MmSKO09IxYw4jTlxP+cGh+HfR54ws2z84GEdDI7ZRC9EJ4Bljt5uB6Afkfqa+guCOBwciOiP4oU0vgHkCMEbETC9TiSdLr9E4L4fvTAREg/hA3yx35yKE9O5y7BNhj1r5/94sylXCSvr5eXr4GBBO4RCS1qwwHJH/tTLyogmzg+8PIcLmdI0rAn5wNCIhX7QNxZppV8g6PI96w0oGvyPlzkl1mVttzcPpe3WIWCFYrkbRuMaLTWHk6gDobI0Myapn8zVqEyeKEPdU2VuU1mUbr/1+WNCFsDAFHzGpvMMuXXyzKUJ6/2sNXuXIOUTEheYRZUzDfL31kcwi0lybz58OZx+ebVcSXNMLTqt9eA+SS0klcO9jn58zVlSOZEtShgJH/QZxak2SPJ5b+7Xcvp9oLNJ4NmS1Qe2VvP4+bQ3n1ifNqt2RHRivva7kF3iz0etab1p87R072BalSLdd2oViuGami6ZmiGWnvK7KNO77lm7hx2teLO01LDfNIsbfUO6+XGTnHa3f+0Eu4ZE8aKu/74ufNk+7hY7NU+OxyPdxvV/f2ymDy6N7ZqZlvXhjvF2nEjHtQaGwisi4eevWkVm73uI/J4ct+ctst6PzK3apWRV2IPjm29Wffc/vaA8qbeN3eWzCsXa6qeW1jRzZou/14vuOFDZRRucmbo5fpXUOsiuGvkdzOImYj5yzMgIvnnP+Z5a/uivXvF4V+ebQMpk3cHsrwbZdS2BCrqRRMZtXWztG4U0b29g4tmfs6B5OAlEmQs1tJyqGYNYgNBQ2WciM1YOGrt2wMGtdQBYu4sLsHccuNwQOzz5gfp/07SH3IrHYL+pJJxRDlRczOTi0P1cdbl1db2m+yuqZT1cehN07uQvEvvwWg6HtlWbNvucBTo9alZ8noktpy3uQrUEHkMGKQGPPnSLBuv850FE8/BeV01dFU3vh+rspH40GsgwukzHzV4claG8H93U0DQATSi5FWan78v7zMSAIHlyVcgZr1e/9uHhRZA1Xq9XP3+ugzEeQnEKAb8u5sCOcBZCbYvxgt51bOTy1/DoutAwMslbFTqlWKtTvSyZVrVUqlqwncTsvEXWR4twJGpjCiDVBPohJ6YJJeFAI9lzdksGeVSBTzdgCJr+bFNOnFvm0of+AaCruxTbH/dvKs2seUStZPSMZlvH+039lrNPx2qy7xS21E20c1DykPPcWYdwiAtybnl09iG4snIDLAeN46StzW7ZDim7pi9olFzSFXdanfm2Acjh1byxi1tKuumWVI2UIA3axVT19MB77ezrOb/8HFsY4Fl8/Cg5CtyGrRgFlQbrT50pgejfmsUNw8ePbsXuXeP2fE03u47baWw6AOZhnY1P2opu0HAgtsgZBtZ3Nx6sbAYr7LpStUrRgkkszmx64A5hEVgFcCGse8Dhks9S3Y5GKi80CZjZV0vQJfzBVbWX+Tj29LIV7ia9xRYMBhwOPYztNOC4tM+0L7HF/BwosflzIXltJVJnZzeuvX/G5Er92FGl+P0SvmcDvYr57THV85l+EG4aj5rK5dk+MG/cj5bOFw5n1sr53E2sKyc2xMar5zPTsyES1ZuEruzEg7/dx8VLmikLHn5+XZ7f+fk1q3/ABRjSX4=
|
||||
@@ -1 +0,0 @@
|
||||
eNrtVs1u20YQRoA+CLHoqRAlkvpnkYNhBAnQGg4Qt0ARBIsVOSS3JneZ3aVlxdAhbq49sE/Q1oYVGEnbQ9FLG7THHvoC7r3v0VlKyo+jIkZ6CloBgqSdnZlvZr75qOPFASjNpbj2hAsDikUGf+ivjhcK7legzaOzAkwm45ObN/ZOKsUv3s+MKXXY6bCSt3XBTdbOmUijjHHRjmTR4SKRpxMZz35bZMBiDP/o/BMNyt1KQZj6R3u78XPLWcdr+20/GH2/FUVQGveGiGTMRVo/TR/wsuXEkOTMwNnSXP/AyjLnEbMYO59rKc63pRDQYK7P9wFKl+X8AB4r0CWWAV+cacNMpY9PMS788fuiAK1ZCt/ufrQG9+VpjBnqZ3sVtBy/7+xGxgm8oOf4o7AXhL2uc3Nn70kksTvCuGZWwuswnkYsysC1l5TM68dCus3JLxa31u720uBu5bmcujtNQ3X9zQcXzsYL2wpiTMZZrutToyr46dK1HXZou1mfDDzv540hdhVPuai/Xmzlxr1zENUX7ax7nYS9Xpd86BTsetAfB57ntbKuG4w3GM5wYkiNelEd8EgqsbmUW8seYinfba869DGI1GT1SW/UP/mUs/ocB+ykUqY5PLsU48ZhKTW8FKShzUOcmUIO/HntryOyYicJidcetgceaRHsPOBoKRyWXDUzoIYXQEJR5XmLTJiJMor+SF6KE0l4SsIjUqFHUeWGl0wZCiIuJRKehLa9LaIjlgOtSnpf8wdAMX+agiKhb1v0wipMphCspjlHAqN5sDbGciqogKI0sxfePbTacOvbTaznB3QyM6BJGHjjod8PvHmLcIF0FRFQZH2qLWxcGVxKA5RxivuoZgidTXKI18ilSmmEoJo+xFyvjAlyx9aVySk1JqcVXzsY3HGskIOicbXqX8xmTbZcitTuDwboNWAzqczqwO8hQA1MYXcvYZhKta9LG1ZHsgRqMXFxwJvy1ki6VBupcPde9Z7P/1lqdt8kNfjGU93JpnimwR92ML1g3E0qsRQyl1nR6VgR0eZ/Vfqvq9KpH/j/Vpbe+/WILIlHkXQZShPzB/0+DmfiDVgyicf92B/2euMk8Lv+IBj74A2DQeJ34yhhyXjsRZEX+yNvNGTxYDRmfRS1ggmeIEXtFnJcjbvkOdPRWiqJyqLxG54Y/NjGj9vN4R5qjiUjuYfKGOGa4oYjGxAVzh0RVxFuHXrsT5laSsqKbPj97pVy3ZlpA8XO0uttky6jvqm61a0Weds0Zu0Rks9k5TAFDnMyyMukyh2mNbf6ahNwUVaGHjDFrRbZXmCOtTdNpCqw9pAk7nLoFhs+N5D7L/scze2rdaUurvqnb+eok5nMkVpXL0uWdqlZvhbcNQYqWNH4YQ6acSuwM3JVRLcqJN07N9ajZnLzjSNcHpF3Y5Kr5+LlUTbPK3yOKvs3pmQxjvPexlpfu9h6lQatdTewLgKHDBuy5Pn8b285bDI=
|
||||
@@ -1 +0,0 @@
|
||||
eNqlVn1sG+UZd+mQAE0VTAy0Tduu3oeq4jvf2Wf7nCxDjuPSNM13SJNAcM93r+2r7yv3vufYCZEgoEpogurKKv6YQCt1bAhpStVs7QodG4zQfVVDQ2ihY9PUlX0VujLgj2mse+7stA7pPxP+43zv+z5f7+/5Pc9zs7UisrBi6BsWFJ0gS5QILLAzW7PQhI0webiqIZI35Epf7+DQIdtSVrbmCTFxSzAomgpjmEgXFUYytGCRC0p5kQTh3VSRZ6aSMeTyWxsz034NYSzmEPa3UPdM+yUDfOkEFv7tymZ/gPJbhorcpY2R5Z8Zhx3NkJHqbuVMQvOujA4rDv4xsZCowSIrqhjBBkGaCaET23JtsEzM3TMMteGNlE3PdtbWvdu5tq68t1DTfl3UPAEiFhW1nMZItKR82kLYVglO78F1FRlhyVLMhpY/QdXlKKTnFB1RBpxoyhSSqaxhUS4IFsojHStFCFGUJBsCdN90mSKWjQkINjww1N0YZW3VU5wEHaps2JSOQIIYoIAnkUV5yXAxpcSMYRMK7FkAIYWK8AQTnboJuzhv2KpMZRAlroYHilaZcS9gihZcFJKMvVubFiTPIgqqLz057+0TF2224wakGkaBsk3X4iqykBFFz/lnZtxMAm8UC8ku9g2j402iRmYPkgiIguz/kRpV1HNYU0i+kZ1rJGSwHqcLoqLDUxPdkwZcO0F/0NVnqG0gIOrldYheEQl4+GuQIwroSJG8gimXTps/BYifRA9ChPQDbJA/61NDOT5TyyNRhqD+4Lu5kjcwcRbXVucRYCCCQkK6ZMjgwDmcm1LMACWjrAq8nIeK1JEHuzNfQMikRRWIW61rOc+Lpqkqkgdo0K2HhUYF024s64/n3TKmod514iz1QhCJzmBfGdqITnEMLzDs8yUaE1HRVWgLtJtbp2p65y80H5iiVAAjdKNFOdW68mKzjIGduW5R6h1cY9JlgjMnWlqUP9a8b9k6VClyasm+9e4ah1fdhRmOY2JH1xjGZV1y5rzOc3yNMiSzTEsG2HAOslUJ0qwgZ+X9dFrKpjNa23Ah2Umi/XL7hJ0syl3D3I60IJuICfUwXUPpdmtgsnMqvis7uqu7QHOxUJzlYrEoR3MMy3AMRwu7LHl0MDPB8KmRNBNK7Qon+OFkuD0zEo8kUqGpdM+OqN7NlS0r1KWWJrLDHWOhUEa4e6RU6krEenoipNx/V0kS+F6WKaZCwljCLgiJVgqis4uK3CaFkpl0Pxoob+eneiNszuTbheikErZ2jslsMq7kcx0FAyfZHJ9qCi8SEmi2EWGU5QXW/S2uckOFzkjyziEhGn0GWp0JpYYeqgJkxMazFeAh+tXpWmMwPN3bdZXCt1U6gJPOqSEbGiYXoXolQoXYEE9xQgsfauHD1F3dQwvJhpuha1Lw6JAFnTMLNEytUr4m5W29gOT55DXJfsolO2TSDR/GEY1KpoER3YjKWRihB+ojke7sOFavLNqwcqKuTHlunVMe6yenSpOyZMtyvjipsfEpPqxkkC1llxoq0DFcNxAQrWGnwoUEdrFxtEq8ebgsS3MszXInS7Q7N1QYLQCo92wMZtCNANon1gsQowBzx5nz0vHj5nMLacBX1/VVI3w8Hn/x2kKrhmLxuBA6uVYGo+ZIuJCGT6wXaBiocGENL5RW5WlFdla+Dos0F+GlcDYcF0UWyTEhk4lwfFSUZC6K2JjIh3/kdkMJ7Li5NA2L0BjB4FNI2VkJaGLJbTFtYS4SjsJNW6GnSqoto0E702G4d8CtFAxh1RDlI8ltdFKU8oge9Ojn1DpGexLdnckfjtDNPKJ7zfr3T003sK5ks9VBZEFanHlJNWwZeqWFqmBrIDHqLAlymMuGIyE+izghi2J0O3ShVWtXWFdxG21NVCH2ouQcy4fb/C08H/a3UprYJkR5lvW+kh6s1jv/qxvSX/3ODT7vt1HtP6q/zN76+399/shTB3f4bol0pUZ3B5K3HJ4/Lez72eFzuVcfe+uGSxcPJK9LkEvmX1r/+OS+Db7Hv9D1wCOzrf1fjNy3gD9++fbvmcdvLr4ZeOJi6sWZt7XzZ/fyXypf/+5LfSfu+3DLM/xNT15Q+jdP/nX8UOn9W7dNfGvf2NOVzx544vzyo7lz5le6W1OJge+jG+//jM/32kcfrJC9LwUeNN/42jfGfonln5//nO+57eWHJwpz9r2t0ZP7Z5eSby+PHxz4wHfHvzf8NLLwp8ADe/eY3730TnnLwj/77nlv4z/Gnt105/j+Lb/oTk2fvXT7f6gfLKXGNh+vfPzcm45IT9/k+/bZ5Q+7b8xu3fpo15dnDn209/U//+3Ca4vnNv1O3/TO6YnIT2qn/r4c/PVvJp69sDv8zRNb2Bd2vLK7773/vn45cOb6uTMX750988jKckvgtw+9ER+u7n83uCQ9NXsnIHn58kbfzsdeOXD/dT7f/wBEhTET
|
||||
@@ -1 +0,0 @@
|
||||
eNrlV89u28gZb9Fb0EMvvU+IngqRJiVKomwYhSw7G8drK7G8iZ2FIYyGQ5ErksPMDCXRgQ/N7gvwEdo4cmG43l0kaLfbpuce+gLeQx+iT9BvKGktrwO0wJ4K+UBzON//7/f90avzIeUiYPFPL4NYUo6JhIPIX51z+iKlQn4xiaj0mXv2uN05eJ3y4PrXvpSJWF1ZwUlgsITGODAIi1aG1grxsVyB9ySkhZizHnOz73529VKLqBC4T4W2ij59qREGumIJB+2IpQhzijDyaZh4aYiwEIGQGK5LSOMspIpMZELSSDstoVvcfnAfRRmKcURRIFCP9RaZUkG5dnoMXyLm0lB96idStxVNDCcL/gvJKY7gIHlK4QxaEgiDTLkSYRp19Y2xcGa5zJJCtJfGRaSUqO/fV8E4ZYoikHgYhFlXUMyJ3+VUpKEU3c/ElMWlgvAgmXFpTTSlQzTuBzFFDG6i4IS6yGMcqYBy6tNYBEMwEROSgoHqLXaV2RAZF800GOgTQVUUFeMIeFAGAY4pUEgGDGJEOSoSq/KDcI+lEoE8DgFFdAhPELEdJ/BV+CwNXdRTuZmZB4w8M5QDCebgKABGFF4nHIDAZUCnx4KuePuBo4tylEEhYwOUJkriPLKQkCDua6enKpGAwYBTV8V+JvR4gZT1PqNEAmkBi/85NSGO+yIKpD/LzgcS0pnaqYIYxPCMsLqZhetj4O8ofgM9AAIcZ3ci+j1JqYh/BDlCgEYkfUCpgtP9HxHEH0YPTIT0Q9ggf/xHh/L49Nyn2AWj/vWTX5z5TMj86nalfwkIpFBHNCbMBQX5H/snQVJCLvVCwOUF1GdMi7DnFwNKEx2HANzJlCv/CidJGJAioCuqHi5n9awrW+5eX6gq1qF3xDJ/1wYjmtsrjzNoSTGyDNsxzK/GOrSLIA6hxegqt/kkKe7/uniRYDIAIfqs3eWTKfPVIg0T+ZtdTNqdWyIVEvI3mEc1++3id57GUKU0P289vqtudnmjrmJYllH/+pZgkcUkf+PhUNA/32KGZGY6YSAj/505IZDmgObX/+52idftRetPB61tWXvibrxIW0N356n1qOu4CTXKe8bOQXeD74+2TxrPvKNnuwPdqpcbplWv1yzdMkzDMizdecbdo07vhWFvHXaN8tazStN+2qps9A4b1eZW+aS796gW71oZ5+WdcPzCe7r5vFzuOZ8cjsc7zfreXlVmTz4aE8dum8Zwq+w8b6YDp7mGwLp0GLjrpNzqdZ/Q/eyhfdKumv3E3nBqo6DCP37umq1G4Pc3B0y0zL69tWBetezo5szCmmk7pvq7mmMjhM4o/fx1wy7/AVpdAqVGP59AyGQqXp0BDuk//3E+GzK/b+/cQPiXZ5uAyfz9geruVhW1iURls2wjy1m1K6tmA320e3DZmqk5UBC8RpKO5UrRDfXpfFhDMNq4oHI9lZ7ufH3AoZV6gMuteQ2cEz+NB9S9aH0Q/e8V+iG1yh8YTzodJ0xQfWZmfnmo70/nrb69+XZaajrjfRwHJ0Up5O+LMhidjEcuSV3XH44is3FiV4IeTYn3bsYCLUSpAYP0SOSvK/Xq1exmDsQLcN7ULVM3rW/HupojIYwaCHDxnA19kZ9VIfrf3CWQbABzKH9TpOfvi/ecRoBfpflGiN1oNP72YaK5oHqj7tjf3qaBOC8IscqR+OYuwVyAVbMicTmeM+iBm1//Cg7dHq3WzYqHTeI0qrWaW673ana9YfYauEGo2fiLao8EBKlcJoxDrilMwkBm+XUpwmPVc9YrVrVSA1fXoMmSMHVpJ+1tMuWEWEMwlUOG3S9bD/QWJj7VOwUe8/PNo73m7nbrT4f6IrD0djJdrs5jJuLA8yYdyiEv+QUJWepC8+R0ArL2m0f5O8etWF7FIybBZcejdX2j3TnHIRg5JPlbv7Kurdp2RVtDEV53arZpFrvWbyfTnv/dz09dLLEaHgG0fE0tZgTWMr253Y/dTpDWB2lWblqPnAdmNjraq+PDo/G+VprPgSmHcbPKGQW8gYBAOUg1RuaV6zRK8/Vqul3pZs2qAOV0Zet6YA7lCVgFYuM0DEGGzwKiphwsVEHs0rG2apZgyoUSa6svZ+ubtrAH3qx8Ghw4LDgCh1NppyUtZH3AfU/MxYPGQKidC6tta0p1fHrv3v9vRG7cf0jDkGlL5nRp2RxGG/BDZsl8vr90SX7IRkvnM8Hx0vm8vXQeT0f30rkNP/WXzmfJXJwtm9e/WQqH/7uPmpAs0Ra8/HSzvbd1fO/efwCXssYa
|
||||
@@ -1 +0,0 @@
|
||||
eNqdVX1sE2UY7xhEE40fASVGEroqRHDX3l2v7XWjIVtXYIytbN1Xx5bmeve2PXpfu4+uHYIyvmKQmDMgGKM4V9plzvGxReZgfIhDRI1GEBiGjwTRSDTGv4yo4HtdJ1vgL/tH7573ed7n6/f8nuvKJoCssKJQ0M8KKpApWoWCondlZdCuAUXdnOGBGhOZ9Gp/oL5Hk9nxxTFVlZQSm42SWKsoAYFirbTI2xKYjY5Rqg2+SxzIuUmHRSY13r7OwgNFoaJAsZSY16yz0CIMJahQsMTYIkux2SKLHDBETQGyZX0bPOFFBnDGUVRSEcKwEaCEwaeiyoDioRChOAXAAxXwEsxc1WTDB2p1rc/GAMXAul5Px0RF1QemZ7qfomkAvQKBFhlWiOofRjtZqdjMgAhHqaAPpieAXB/0vjgAEkJxbAJkJm7pByhJ4liaMvS2tYoo9OfLQdSUBO5X9xk1IbB4QdWH/DCJskrb6hRsqWDGrARpRQ8kEUWlWIGDPUI4CuaTkXL6I1MVEkXHoRMkD5eembg8MNVGVPR91RTtD0xzScl0TN9HybyTGJx6LmuCyvJAz3pX3x8ur7wXzm7FMKvr4DTHSkqg9X05GA5PuwxUOYXQIvShd6MDk/3hgBBVY3oPhtl7ZaBIcEDApgy8pmpKVxpiAb48k81Pyvv+qkkQr5rmpisgLvpovQbhxhxmP62acRQnzBhZQuAlBGZeXl3f782HqX8gDAfrZUpQIhAK3yTsWTqmCXHA9HkfCPioATisxkgfzicCkpKoACSfld7fjNRNUASprBicmC5ElKOUwHbmwuqjOeQ7OpMdDK0xTCzRwaPuTsLOhoFGR4byVyRZNMLAhBBe0XucTtdAXjPZ+z5YK4pgKIJiI0kEDjrgWJ6F/cz953mq6GkHiqLD9xuoYhxARu8joRo9NlUvAx5CZkS+54Rwu91HH2w06cjldpP4yHQbBUzNBMN5Zfh+g7yDNGbnlf7kpD3CMvr481AIualIGAdON0aTACNwewR12DECEATjZhgyDD6G1Gdp6MeAUhJlFVEADVeSmtLHi3kqabDMY8ccdiestNTMCjSnMSCghStEowal1CzJgBMpZr93GeKl6BhAArnp07MVwZqy6kpvXwCm6RXFOAveuFxQGArRkVCY9zTGvZWqs5Ypb9e8CaaqEVsZIhkJWPEaa1V9qFyu66jsdDdFgk3VcQRz4W4Uc7mcGIJZUStmxRCySWaCgXC7lfA1h6y4r8leRjR67eXhZrejzId3hmpWOoVqLCXLeBWXbI80VrTgeJhsaE4mq8pcNTUONVW7PEmThB+1Jnw42VKmxckyWA2lxjy2UjOcTBZ22JPnBwL5gRjscJdgk+woNTO5Hnis03dhqXkF3OZ+gUuVmgNGMwF8UjwIsCrw1IgCGN8Je6AlWMZD495wqBbUpVYQnX4HGpWIctLZwdrlVS0M6nWzsWhFXFS8aJTwTWmCAycRNN8HJ0rkhhC9l/r/zOqjZmQq3RG/NPHZygqiIrCRSCYAZEgfvY/mRI2Ba10GGYh5XVlQHyIZOxaxE5DcNEFGgAsphwtz0tt/yyFtfBOyFAdnLEHrgzG7x1JCEHZLqZmnPKSTQNHcx21jxphJITpW0Dp/+8Om3K+Q078SNqFPbP5tydiFn9JddzZvrdpye3fr7RkNW+YNvjL7hu9Sb3fD1dFD3UUN8u/U6WvJxD+zTehbgzP39A4/pfX8+PPIeXbDtaXrjz/9te3IWMnV0eO/Vh/d9T0B7Mu/iWz/5E7txa5by7p3pR9aM3QGGTn/wrHg1tp5tnLx/M4euXn80p9XlrRWHH6uVp8Ta54xv8B04vWlba53bry74Hpq//nYozZ9wWdVpv4FN+ec3qGflvlxDp/Fbr98sa27Tp314u0ZJx39lOm97GPFN4++vGTWmuKSU23UlUWOW9vo2T5w7tvTr92ptaXfzJxt+WHr0Lrvmtfu6Xi84ER27/Bfrpnxlr5n3w5e7k5s/KJoR/UHnj+KgwML3Z172s6clYdaFyuHbAuHe9G9Z1DymV/+/rzqyVNS3e7oopN7Pl0lFl8IFmmv8udW3i3coG+7Ptdkunu30DT2iPBScobJ9C/lF2Dr
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
eNqFVktv20YQRi75HQtd1KYSxZeeQREocpwUsaU0UmAUQUFsyJG0Fblkdpd6xPCh6eOuv9C4dhGkrU+95eJTD/0F+TWdJUVZzqMFJIj77ezszPfNDPXyfA5CspjfeMO4AkF9hQu5fnku4HkKUv14FoGaxsHpo8Fw9CoV7O1UqUR2ajWaMEPROQtXhh9HNQlU+NPTZ3Gwenfj5nEJt70ZrEodUlLzcFVVo716szt8PLsHd9Png29ay6D+8KGC5dA1D2f9ZqlCSnijyE4splQRJomaAlkAxR9BGCfDfW0V0aUnQKahkmhrI5Lf7QWQqKk+ToM55T4E2ppxP0wD8II4oozrE0+/RRiWH4ULa8rlAgSiYxpK2NkQdOH5MVLF1Ud2WUQnIIuNk/Mp0AD5/fn1Ewmi2p3gqfVfyQoJ5dUNwbJmGw5+/uz6PsZfvcf9OGB8sv598oIlFRLAOKQKzvLt9atbtVuvezHnkCm1fj0DSKo0ZHP4o5fHVT0APlHT9Su7Yb8psNEqgfUFTZKQ+VSfrH0nY/4b8pig3vDDmVRUpfLlKd4O//x9HoGUmMsvg4dFEj994trTPQxv/XaUIhFWnQx8RWzTdonV6rh2x2mR+4ejsyEILLT1r3zC+PL9QE+thuv+T6RZYX2PUQrk5t3N8Lgolv+qldI4DsN44aWJl3GtS7vU4WkYVkqFwvmqEA6LoLStrafHJcVUCHjJ0Y5jysm+wPpi0o/xjlSEaFB0xWKxMDZR6AbRnYE224opHZfDOE+r3CHHZU4jwIfyNaflCikLmOQ25R6yPI4FZ1TjfpxyJVZ64wlnCgIyROFAknhMuhEI5EybYcmgidM0ms26XmauqpZtG67VchBRLzwWaC+bQ7WDWHpdPoEQZOYAowwVi8CDJPanaGk17bZpNZuWvbutXWi5q5ZZRfUtq+Na5RMdaCoEppxlGVKpUIQAAw3e92eaZhbvlcWHLh1Th6QgSjxfn3QNs1iPcV1vGjolJr2AamasjCcesC3NOGZ0JOVDJpV2xfyc21rND/j7em2WtYa7bLg1dFmzXMdI+CTnP9A5W6Zj6iwXjAdelOh8HMMtgFkG1K+AACYC9DnbMbcYE5nyR9ptgkUnUwFe9CzzbrWyFLcw0+E6pmE2c9RniRdFiJmFnUYyqxyZphFDAjQdbX3GD+M0yFzr3TFAKEM2g5xPx2hdAzNSGxmoQ/WnLAx3La/AHUscEwpxWO5qdAXuCBXAIonxdVO4dHexjUet4RwVnUVZ0JkzvY6YLtAOaWRIOs+I18aTFCsoV8I16gWQK9E07JMTbEPsLYHdbBrtttV2Wg3s9d1xrkfBSeWq6ftZn9KQFN2vpxjz4YOmx/YEHyu4qCRjEs9rOL19FMBIpskdxpNU5bPrS2z1L7atXul1r42HXt41ZFu+kuB0G3b7ZP9xt9/7atgbkL3BUX+EX/LZcH/Qsz4nB1Rtet2sNy4v+gcxR850r9uNtnt5cXQvhDkidaRxrAzS7xooxeXFvoEyXV70DGIY+Egj8mhvlA1wCyXJWrCRXIG2mYPEIPubhMkeJpFK/QcC0W6Qx4yMPQYZp8IHmfv+FJO3r09TcpeuSFcArZBe9zaxLXIf/5EAeRAnCR7qzvEVM1RxQuq3yaHmTMBKm5K203adar1u4kYvjiKkUN4hXxcz/8517c1Gu2F9TPt8+GcvRE8Pt1IHOayf/AtKkges
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
eNqdVntQFPcdB8HKxNqQZDo2sY/NNTEJsMfu3cLdQa6KhzyFAw5Pnr38bvd3dwt3u+s+7gFzfSCxKcmksybRpo5xgsAhIhLxhUE6dbQx0bGx1WRwEhxjoq1NGlPb2s4kob9dDoXR/tOdm9vd3+/zfX++3992JcJQlFieSx1mORmKgJbRi6R2JUS4UYGS3D0QgnKAZ/pqnK76XYrITmUFZFmQCnJzgcAaeQFygDXSfCg3TObSASDnomchCHU1fV6eiV1ctKzTEIKSBPxQMhRgzZ0Gmke2OBm9GDYgkSckTA5ALAIBuokYy2GukhysutGBAY7B1hWtMuRgBpEPQk1AkaBoiLeilRDPwKC25BdknOLxEMuxGpJDayS6S7IIQQi9+EBQgmhBhiEBhSgroqaJMFq0NZ4PJr2SY4JuwadwehY0XbefC7BOAwdCOsAPZQ+tiCIKwZN0WsMyUKJFVkjCDaVQ1sNKIueHBzA/G4YcFuRpMGdJACJSj0og6bbmnOG9bZCWdYCIki3KLJwF3Jadj0Yhs5z/Hs7Ua46wckzPqCQDGeUDGv1GzAU4rEQEHM1KNJ+DOYoMcSStcKz8PxRDTtFy2mygYVBiFUnPEgigEAMQCbXGNXmNPKwIGR1421O0F2+NJwIQMCjMX/UFeElWRxbSaB+gaYjqCTmaZ5BJda+/gxVyMAb6gsjrIUQdDuolUYfaIRRwEESpHJiVUkeBIATZWXO5bRLPDSephmuB3L09pLEJR8TkZPWAEzlRVJ5bE0N85zDSSFmNxGgUR9liuSDiLx4EyJ8BQd9/c/6GAOh2pARP9pI6MCs8Mh/DS2p/FaCdrgUqgUgH1H4ghvKpsfnrosLJbAiqCUfN3eaSm3fMmY0kabS8sUCxFONotV+n/uEFwlAWYzjNIx3q68TIXH6CkPPLAXVXnilvUISSgLoXbhrQmKJIXX2oFvDMqUSyi3udlXNFnE5Z3leM6qIeq1cQpcg8zEnLmIkwURhpLaCsBSYLVlpVP+xImqm/ZxneqEcMlHyoFGvnyp6gAwrXDpkhxz0LfkwrOIpGcx9NBhxGBV6CeNIrdbgBr5udX3h58dgsu3Be9AOO7dDNqsf0ykc6ohGGVhgmEI6ECFsHZWa9UKF9B5IiqOc0M8ghPCSpfaSFsI0kt+aSP4SCJXCSwAnyaBRH0wUG2RCLEqr/J6coks0jCOLI3QCZb4do3iYoQr8m5yNEGEJV04zfUUPZbLaJe4PmVJkRxGYxHV2IkuB8b0hTSDpyNyCpopeQhqNzaJxl1KnH0IvHCqwkBSBtIYCN8dI2CPOpPMgAkvIxlDefGNemBI20aNUUeFHGJYimHxo76lROCES1RrObyTxzPoq0EA1COqgw0KV4i3ktBqkQE0QY5AGzz1GCOwAdgLhLJ6CaKG6sLqoqdwy5kJMOnm9n4ZaLqWkeD+3zeEN2ckNFLByLkkZorGWrq0maYRqpMlO+i5MdZnddGRptAa8MIkXlEZy0mGwEaSUJC04aCSNpJPGGoLQ+wpQ7q8sbobKOoqIeqzdCUlFFCHsVX2lDcXsZIxr5end4zUaHk2OKnXTE3Rhx+SJlHn8DjAU2uNcW842VSpFobA+3yx0WtqnGj6JBA9+eW4ghcqJhKNmTLYKjFsG1BrEVkHMNUogxeg7sxoXjsBArQ6etkwvGCjGXlkyI7uiccLEytFfzHJx6GeVACbOMva2oxN/kq/OVlvirQa3Q3sQI+T7GpWzwtIGwMy9gqo14ItXGjdY6/7wkmBB5iWQe8gnKqrPwjuv/p1eHGvD5HY87hdnPigTHSxzr8w24oIgaSB2ig7zCoMkuwgFU87qiRvWAlTGTPq83n/H6gBX98DVoZs5puz0f+rRjIQGCiGNhWh0LmO2GAooyGwqxELBb81E76R8fPx+YPblOLsJ/8HxGin6lnamv4revzjx2M9stHcp+4aVfC2NZNuXlplrvePj6fXu3peb/OHzub3XLm7/+/Nv/Tvuovu1+e3faxR1vdZr5E2fOPpoeTU9N3Vp3en+L/IsrJyauv/1p7ei5aMErhuXxdWN//uLt1g8cCe/ghWxTpzfuzTq9uGnk41TfI7tPVhy03OA+fO2StK8dcz3Q07P140Od/Ucf3jbx1/Hp9e9/T+78Wt2Rdfbd1asnC7sz9++5tH6H6bgnM/Ow1MMEvlmV2XWztPtn7t6elLzNKyr7n61OMz2OvzMkN2acWzRcZ2Dqn1v5xeWpg2erxgYzL1+H8VW+P/X+9l+n31xhvzU5HfvJUxPuyU3yq+8vPvksc23lwRvS00fKSjLKfnPhg/TQqfv21l4UNp0fGMxlMlKHXjI42Oylo81dNS+4j1dmnHrwtd2P/bDq8Subd3/rP0+3HP/+dNmnzYfj13Z2jE5NTpzYdeFEyeGp9+Jb4MzpnO17Plvy2e/SLczr/zjqWPn8DJjxP7rz2q0x5S/bdl2+cXn7qv1XqOl1Pxr8agk8VbPyyXe//GqJdedPD/y+mG75TtaLN6+0UEu7K8S97qveSezqlu3U+bKq0H47d/ap5h1LeiwPLRt3N3KOPe89md14qfC5NWPyI4LQsuyZV/p7f3lrxDlsEUH31r93fPSHys21W73na1oTn9yI/3FV+XdbxFcnXBtfrHimgiaX0saHzo9f/WdJl/X+c81rox++tSLd//mX30hJmZlJS/nk4Xce2Lk4JeW/GC9YXA==
|
||||
@@ -1 +0,0 @@
|
||||
eNptVX1sHMUVP5OiOm2RqBCRIvVje7gVpN7z7t3eee8cI/wd2zhn+85N4phYc7tzd5Pb3dnszN5XlNCYFgqISCvRBFJASny5a69OsEka0hRbRSECEUpoWiEMbUQrUIVaRNT80SqEj9nzmdhK9o+7nTdvfu/33vvN26lKFloEYaNhBhkUWkChbEGcqYoFd9mQ0J+VdUjTWC0NR2PxadtCixvSlJok0tICTOTDJjQA8ilYb8mKLUoa0Bb2bmqwBlNKYLXwbkN0t1eHhIAUJN4It323V8EslkHZwrvFQhRy2KYcTUMuiTUN55CR4lh04GJwNnGXQEvBhAWQwpGCnsAacd0NjmAtCzlEfdwYgXUESwd0wpgwekbGOuL90c0Rn883YcSi949dX00Y3mbOa2ENuhxIgVCoe/c0c6uo5TkWkECVo7gGTdPIUjlTswlHYJZFdzkyJqJ/JZhNoOXd8wCz6FiFmmtKmZQP+II8ta0Edn0NZhXZP6HYdB2WyXlrNgsCnVmTDBsyA6Nmssawwy6+4BP2VNIQqKxtlzy3l9KYUOf46lY8DxQFspjQULDKquccSxWR2cypMKkBCqssRwPWGu1UMxCaPNBQFpaXTjmzwDQ1pNSq37KTYGOmXhOeFkx443bVzZhnzTWoczLKSHT0twwXmGYMTvRJsk+YzfOEAmRoTAO8Bhifslnb/8PKDRMoGQbC1/XolJcOH1/pg4lzdAgo0dgqSGApaecosPSQdGKl3bINinToVLqGbwxX37weLuATRV/r3CpgUjAU52itES+uOgypVeAVzDCcw0JZwTiDoLP438lJJTmZ0NuHbTw0LPemhUJs2FRQvm+obwwkY1AIbgGddCCTTcX9PsPsmUxneLHVHxZEWRQkXvQJPtEn8vEiUIeknZs6EqQQFzKdZlxU5ZGYJu3qHCz05/oGwmhoa/9k3I6FRwfz23IdPX57rJd2wq0IxYrjRJQoao0LW8b1PnkT3FQoCOOgO9XGMXZ2FqntcjETHFEzvWEUMrHW110UcoEBKPQRnLZNLBcQpOObW2E0qY6soBcKh3mhzjAkSLLgPseXtaFBI0XTznQgEPy1BYnJbj98qMxKRm0yVWI6hG+8VqlPgSPRwesSXlfqZpp05uM2E7sY5KIK5fyCX+JEOSLJEX+Q6xuKz3TVw8RvKsG5uAUMkmQy7FmWfEVJ20YGqtWum4p93hU766RLn91cHuZNTCBfZ+XMbOVHl+Yf3999Yulm8dhKAQMVa2Gd+Zrqc8V8TlVsVU1nc7oQLkoBlIC2kjxZP2Ja2A3DCPE6caalVuF4fWdZd1WWq8CLAi+IZ/I8u+ZQQzpi9az91ocwcUpBVuzTNzpQnIFsXFekWjeEhZUeFtSZYN3Y12GkcDj80s2dlqECzCUs+c+s9iJwJRvRr5PTNzrUIY4IZCa/7M0j1VlsYovJcCAh+MMiDKtCQBYkMQjDYqAVggCQoSpC8fds9CGFobjNNLFFeQIV9sWhBWexWQd5d8a0B8RgIMQybeOQoWi2CmN2ohu7OZA2zrSghoH6fFcv3wWUNORjNf05le5tmzuG+rtObeVXComPmktfu4qBiYGSyXIMWqwxTlXRsK2yYWnBMsMa7djmnJTVgJhMJPyJsNgqKVDmO9kYWkb7SnYld9JWgMa4ZxXnRDrQ7o1IUsDbxumgXQ6xNtW+ifvKbq5G6lwD+v7jjZ7as0YbPr/5rHD7S//68U8WLh6R+du6/znc9LV2T/Wnay68bp/6zctz/O677jz8edvAoVDPx+ceWX/hP29c6/Xc/2Hzmh8dnFI/og9uvGfKWts++kJ1x3MXf/XR5Z0vvzr93pa9B1/YcWz2SsuTJ8eeHdgeeaI0s/jWxWlu5oHCoYlXrj3z6tmH79b3nzlw5/6rD/3lxL1je41Pxeib4x9e3PDoPnh5XYPnWgg/++cPTifWvzLPjyYaj9x34ON7GwRsPyF8e+obTd+a29E3kGkcuuPT4tWNew9t/Ftq9up3/ri2ZK7dWGj9JDn5/q6RW0e+Hvrl2/zCpR++dcq89GbX+U8u/9y/oTn1vZ7Z8sK61yJvz/678f1pNP7ZNy888+LR6fWLWPrdP4S/vzNnvLf/g7MHmgY7c///xf/2n/6T1XSYvrP9sf4fHHwq97r87m+z+StPnSs/5z+3b/CvkbnLdzSeX+x8+pb5K9XFhaet737W4PF88cUaz7EDHeuLt3g8XwL1DYCO
|
||||
@@ -1 +0,0 @@
|
||||
eNqdVWtsHNUVtklKo5aQNK0UVeUxrBxaBc94ZnfW++q2rN+OsdfOrvEjTqzZmbs7w84rc+/sw5aDYqKYKFVgSv7wI62w116yGDvUDgkhTqENEiVIFBkjnAjaKCgEUhVaVNyKSOmd9bqxlfzq/JiZe++53/nO+c65dzifAgaUNLV8UlIRMDge4QG0hvMG2GsCiA5MKACJmpBrD0eiY6YhLW4XEdKhv6qK0yVK04HKSRSvKVUppooXOVSF/3UZFGFyMU3IXiwPDDoUACGXANDhJ3YNOngN+1IRHji6DAkBQjMRgURAxDVZ1tKSmiCwd87GIExoDzk5AWIGJ/EEzCoxTYa2uUpATU4BQkIU0QlBCcFQONSn9qn1HZ2haHO4zU9RVJ8aCT/WeWvUpzoqCYehycDmALMQAcUxVEmsoZYhsEMIBAJpRWgkSoZA6LIJCQhS2LvNETNhnKvBTAgMx9BuPKNoApDtqYSOSBflJpFpxDTbVsWzDP5CZABOwYM4xgF4AtPQsQjY0MaiKXooLwJOwBI9kxM1iKyptUmf5ngeYHSg8pqA82S9nBiQ9EpCAHGZQ6CAo1FBUVKrkARAJzlZSoGJ5V3WCU7XZYkv5rnqCaipk6XoSZTVwe3LBTs2EsuoIms2jEmEmqvas7g6VIKhWC9Fn8iQEHGSKmO1SZnDfCb04vrrqxd0jk9iELJUedbE8uap1TYatMZbOT4cWQPJGbxojXOGUs3OrJ43TBVJCrDyte23uyst3nLnohiG8ryyBhhmVd4aL8pwas1mgIwsyWsYw3qBnlrJjwzUBBKtMRfjftEAUMe1Dp6awNuQCYdzWAvw7tv5Us2PhltWRPykbGuuDutizUVNLDfjJsI8Ipy0kyUYr5/1+vFPY2t0srbkJnpHGV6JGpwK41iK+hXZ87xoqkkgFGrvKPicLTiOxqaP65QEGV2DgCyxsia7yZ3L3U42180sVxepGQlOlQaKbq25ovLpgUxa4E1BEFNphfYNsC4pBkw+Plvaohua7QYTIhVojflYeqq0spL7Ao6VJhmapJkzGRIXOpAlRcL5LL5LRw60cm6apk/fboC0JMCHU56li8+51RYGULBotu9bMKzP5zt7Z6MVKBc28bFr2WBFwWo2jFOBp283KEGM0nAys2JNSoK1WIEH/XEP72TcHsbt8nm8gPG6PC6v00PTsZgvDtxu12u4+SUeo9hi6pqBSAh4fL6irLVYqXAZu8+CuL5c1TjSACGpvGwKIGLG6jQ7BhggdAPIGidM1zaQtRwvAjJSrD8rX9fTFmptri1EMMlaTUtK4NcXy9f19/Px/pgSbDe11nZvg0hnI+06L2UaWxs7uXgE0O4urgbtSKYSUSel6vX9YpJkPE4fzXgZmiUZiqYYiiGjA5zQyj7RFIrBbJRO1uhRRvB2RGR2b01LtjnduMMntXY390fNiG9nS6YnHap3mp0NqAZ0S1JkoBcyLJI8UbqrV2n0NoGmbJbu5eoSOBoOicGqAIFrU8L5DZY6hMQdQtr94fMzK/0RIIRiDoLU2tMwQDThqymsytkAEbGTCfCXU0AEXzHBNk0Fi0dxDsyUJAS9A0l3h5Bs8EnVuiY31g3QadcOQDdCTTR1zZuVAOpt84BwXOhYlYRqn4+kS3mopllvsQpvUf8/Wb3aTa5ueDKsL9/BeVWDqhSPT0SAgRvIKvCyZgr4YDfABNZ8Z6jHmvUKLiYe42IACDGWB16yBh+ZK2j/Ox5y9q2Q52RcYynemhFdQYefZV2OAKFwQW81bqfiTb1/wq5JNfFW+fEHD28oKz7r5I431flHN899+0jD4Lbjfzt9/ND4fcPrX9zSHtp1qLBfnHvgUsuHgQ//3r29YHz24L8D59a/fOXh/d/8bmTp6tyxpavMXZvP/Mi3YaHpcSUx8dKFi57+rvRH6Vn/k0tXr2z9/Av05tbOb/Y98nAo9Nam6I2cP/JB6u6e5z6ef+cF4Z6p5upd5/90vaLtu6PjW1qfXbg/PD/zn6ODXX9m2+Jfdyw++/i1+nuXflD2xpWvDt6vHNrkGMn888DstbnJjk9HHiq7/Pb6uqYvTyaknseO5BwXxJGTf9l3bvfHfXuG3rl8efB708RT2ypmTu6+dP2lTacG48r0t8PHovf8OHqk92dP/+SrM3W/nVY2U9wDrMc4/MbG4S++v77x/KMLT86fOPDL3+97L7y0t/tfew7+QtbeffrLe8s3Lhwb+8MzN8qnZxfOLXqP/kbecOV5P3Pi9Q1/vdQu3Ax7RuEHqbPcxdGNBz9b/KTtvnC6Zs+vKn7YAs9v/fzT75xqPVR58h8/Hdm8o3D3hTHnkbbR4M2vtx0e+rlyPUG9f63iRvi9j9TtShIdm/+jNLI9/X4/1uTmzXVlWx46CxbvKiv7LxN30us=
|
||||
@@ -1 +0,0 @@
|
||||
eNrFVs1u20YQbk8FfGrfYEu0zUWUSMk/EouicGU7DQzHjiUgcX5grJZjiTa5y+wuFSuGDnXzAnyE1ooUCHYSowF6aHrvoS+gHvos3ZWov1h2bioPIndmduabb2ZnddqpAxceo5+ee1QCx0SqhYhPOxyeRiDki3YAssbc1s52qXwWca/3dU3KUDiZDA69NKayxlnokTRhQaZuZwIQAldBtCrMbfRenBgBPt6X7AioMByUXUohY2ii1o9ODM58UF9GJIAbSkuYwkGlFpXB91EACKND5cBoPtGbmQu+VhIfRy6YOVMwSkGaWSu7aGWzBe1DSA44UFaSR9Ds1AC7Kst/P/m8VWNCxpdXkL/BhEAoTaCEuR6txhfV516YQi4c+FhCl+gYfWri7hFAaGLfq0N7sCt+i8PQ9wjW+syhwnOeJGHKRghX1V2dq6kooDJ+vyoalKwOwWR2Goptiqx0bjltvT02hcQe9RVjpo8VrnbY1/8xqQgxOVLOzKSScXuw+fWkDRPxyy1MtktTLjEntfgl5sHy4m+Tch5R6QUQd4o7V8MlynG4XNq20yuXU451UvFF/+X0fz12OWJ8tLWripYzrWXTsn+fCgGSN0zCVKT4F+v1kE0faFXW4jM7l33FQYSqUeHnttomI3HaUpWDv//qJN316/bmuO5ftNZUFeM/74ObQvYy2iYS6X5Bdt7JrjhLi+j2Vvm8mIQp66L1kIRjmYG6lgz66VtEapgLkN9F8sDMX5Y5puJAVXJ92DUdUovoEbjd4sx+uShiUgNTx1FdH7+izCRa0jPG1HAF1PcCT5rJAVSF18u4tWhZVu+bGy05BIpCjaSVKxQKH/GrKAQZv9NEmLZl2svlIR0Pe2jWzsExTvC0NR6F6KsbLMd4htboRutr8OQedhPQpufG79X3vmWXCkubh7u5xrN77vpBtFHYy9eLzzfO6h6Ou3baRlXGqj68KW6YA9ZL/TaJO2t7d1e37hTPH5i7rMIUDWWs6KKMQrsEXHVm3CU+i1x18Dm01fbd1b34Xd7NYbti5Qp52110rbz5w3apP+J+Uv3HVYb/fPa03ysOShpwX/UllwsulthBJ4aeBIZjTCmN1HBtOCeG52q9qKrcNh4EW+XSpheuB7d3+L27e3sra7uuMp/2ogSD6WlgITzlkvZdDibkDQNyPGMfPUmpYcnCfdXfysxwaOT7iUhoyimBoTAaAaVhJEcz3bZTBovklKjZRP2nubCQkJJE3K/4jBzNpmaGiYLqUReODcdKTes1jmSfPqeaGv1yDONK6FBV54NYyNBC4zp4ij+Jb4bXN5mCN5BMwxqZJeB+BA4DgHMPfUsk1yg6YHxI0uiZOxzUYJHzmD6m92uNMZr5wyCYJuHnXxGpKlLxSIP4gPTh/b+AuCgKUaUx2RTzL4QnBfgH36M78pboI5k/BPmMmdLrn9D51+DLqTN5/eBk4cfmJgsnol93zIf30MyEppTGRAJTV8XkP/uZV0Zz4s744IbILjWvATQrw0mdMZHLf6ahi3k=
|
||||
@@ -1 +0,0 @@
|
||||
eNqFVFtoHFUYTolC+6DGPoig6DikYjVnd2ZndzMbKzZuL2rZbmhWkqZoODvz7840szOTmbMhsSTUJFaxIBy0D9EX22x2yxqbhkYLSZVKo/hgvWC8rGBKKb6JBFGRIKlnNru5kBDn6cx//f7v/84ZLPSA4+qWuW1cNwk4WCHsx6WDBQe6s+CS4XwGiGapuZZ4a2I06+ilXRohttvk92Nb92GTaI5l64pPsTL+HtGfAdfFaXBzSUvtK/Wc4DO4t5NYXWC6fBMnCoFgA8dXg5jl2AnesQxgJz7rgsMzr2IxJCbxTG0aJpzuciL3BBd4mu9/0Uu2VDA8p2LgrApIQq5lmkBQgBUXAoEI31/QAKtsrvmaupxmuYRObsA6gRUFbILAVCxVN9P0g/TLut3AqZAyMIGi4tUsk0GLXQA2wobeA/nlLHoR27ahK9jz+4+z/uMV0Ij02bDRXfRmQ2xkk9DLzVUc/pY+Rq3JCT4p7BMu9iKXYN00GDnIwAxS3i77Z9Y6bKx0sTqosjaaX06+sDbGculYDCvx1nUlsaNodAw7mXDw0lq7kzWJngFaiLZsbFdxrraTfKLoa5xcV9jtMxU6lsKGC5MrJK+kFNleJCSEkSBeXlcaiNOHFIt1oGeFC1UCDTDTRKOjoiifd8C1mRphKM/SSNYdzLFlwZdfFCoCOhc/tLrqnbl9bHH04zZQGzgxzMUVwnmS4ES5KSA3BWXuYCwxHq20SWy6p8mEg003xXa1v6qLgqJlzS5Qi9FNFVHiVyd2WH9Dz+gEVS4P26P3S3NBQRBKj24Z6UCGMeN1zEmRSOR/6jJmgNApbz4kCkgMJ5anDAU7StxmmctXsIIn7+FhiOq3iFzFU43mtozeHE9Q7ihWQCNdpVfYuVMQQ23d4YNEFk1RS0J7RAwFDriZxg97kWJYWRUR9gwBKguil9ASJ6UkSRZCycakIAmhSESVQI4EcTgYUTGoycbRHh3TougTubRlpQ2YiB5AUaxogFrLsqGFfUcPN8eei463oyNW0mL8JTDj2bRMyLeCw5RKi+XW7O47kGfpR5qP0ilZlbCohOQQqGE5pabQM+xKVQW0IpCc93CUn7tXmEwdZpqde/j09pryV5t48/rzs3vrhjt3zX2/o/6t/eTqoatPNfQu5Pidp3Klu776W/3ul/eGr8yo3w4VBicGzt956+TJSw/OFAfmj52YnmnpspYWFuf2/P7S5x+dGhqIT409W//Qjrvdww+8zo9q6qvXIve8XfdNQas9E9s9MjL155kbL8zfuHb26/HZNxY++Tf2eH/m1/fvmPssdvP0a+c+XbzJvVMw84+N3Lt3Dzku3fqxbvr+7vh2Y3fkp7862oU/1J/1pfr7hhd/eOTdpej16SUG//bt2pptpd+e/Ied/wPrJ3ik
|
||||
@@ -1 +0,0 @@
|
||||
eNqFVFtoHFUYjqRSwSC13qA+dBi0iMnZnZm9JBuKIdlUMZoLydY2qTGcPfPv7jSzM+PM2bhpaNW0aoqiHARffIg1m92yrmmDrSmkBaVWS40SGwpdwRuC+FJqQayIEM9sdnMhIQ7zcM75b9//f985o7khsB3NNO4oaAYFGxPKNw4bzdnwYgoceiybBJow1UxXZ09kImVrxUcTlFpOo9eLLc2DDZqwTUsjHmImvUOyNwmOg+PgZKKmOlwcGhGTOD1AzUEwHLFRkCXFXyeIFSd+cmBEtE0d+EpMOWCL3EpMjsSg7tG+BKaC5giyUCsoTeLhfjfYVEF3jUTHKRWQDzmmYQBFCk8uKUpIPJxLAFZ5Xz9WbcskTIey6XVYT2FCwKIIDGKqmhFnH8cPaVadoEJMxxTyxM1ZGgbLDwJYCOvaEGSXothpbFm6RrBr9x7k9Qtl0IgOW7DenHd7Q7xlg7KZ5goOb9cwH60hSB5f0COdTiOHYs3Q+XCQjjmkrFWyz642WJgM8jyoTBvLLgVPrfYxHTbZjklnz5qU2CYJNontZND/yepzO2VQLQksF+5aX65sXCnn88iyp356TWJn2CBsMoZ1B6aXh7wckue8+JAURJI8syY1UHsYEZNXYCekqcoAdTDiNMEmZLnhpA2OxdUIR7M8jKac0QwnC+Yu58oC+rDzmRWqt2daOXHswj5Q6wQ5KHQSKriSEOSGRiXEf+Gp9kghXC4T2ZCn6YiNDSfGudpT0UWOJFLGIKj58IaKKIorHdu8vq4lNYrKl4fz6G5Zxi9JUnHXpp42JPlk3IoZXygU+p+8fDJA2Rm3PyRLSA5GlroM+PuKwkaRS1ewjCfr4uGIHtnEcwVPxVvY1HtjPEqoL18GjTSVnefrAUneCy0BpS0tB1r2d3MisdZntpE9Z9OI6GZKRZQ/Q4BKgkhTVhRA8dXLUa6imKrU1/tIwBfAIQC5ISjHfH5/dGJIwywve2QhbppxHU6Fn0RhTBKAekqyYbnW3o7m9qfDhf2o24yafH4RzOdsmAZke8DmSmX5Uml+923I8vDu5l52pkH1YVkNYCkqSyEpGEUt/EpVBLQskIz7cJSeu1e5TG1+9MXVnW/eVVX6qiNvf3PworTt2MClubPKdfuxyPyBjkszz7e0SfkL53ZduXJt6oPjt2YfeuOv+YXP6pvmRrVXLu79cir/zk4ycn38+8z4whPXbvzSfvPXu2v+DC68J97btL2mu+bhP8R3T8Zf+zxwz/0/z28d3/r4+92iT9NqZz8q/BD753Jbwbr59U+Zq7efOzIW7t/9wKdptKMQr/6u4aXj51tfr741r3W8NRD+vfa+21u+Cm05+u+53x58dnf8hv+FsTunjgTHehdPxPpf5uAXF6urDu0Y+fZvvv4PjzlyYA==
|
||||
@@ -1 +0,0 @@
|
||||
eNqFVFtoHFUYTokPKgiiFYq0OFncoJizO5fNZDeCNdk0aau5mKzG1pZ4dubPzjSzM9OZs2nWECE3bxXlPIgIBbHZ7Oo2bROSEqXqg82DSsVL2+AKaqUWX0SxL7aIxDOb3VxIiPN05r9+//d/54zk+sFxdcvcNqWbBBysEPbj0pGcA0dT4JKxbBKIZqmZjvau2ETK0Qt+jRDbrQ8Gsa0HsEk0x7J1JaBYyWC/EEyC6+IEuJm4paYL/YO+JB7oIVYfmK6vnhN4MVTD+cpBzPLcoM+xDGAnX8oFx8e8isWQmMQzdWuYcLrLCdwjnLjbN3TYS7ZUMDynYuCUCkhCrmWaQJDIivOiGPEN5TTAKpvrp4q7M5rlEjqzAetZrChgEwSmYqm6maCnEy/odg2nQq+BCeQVr2aRDJrvA7ARNvR+yC5n0Wls24auYM8fPML6T5VAI5K2YaM7782G2MgmofMNZRzBjjSj1uT4gCQH+OkB5BKsmwYjBxmYQcraRf/5tQ4bK32sDiqtjWaXk8+sjbFcOtmKlfaudSWxo2h0EjtJOTS71u6kTKIngeaiHRvblZyr7aSAIATqZtYVdtOmQid7seHCzArJKyl5thcJ8TLihfl1pYE4aaRYrAN9jz9TJtAAM0E0OiEI4fcdcG2mRhjNsjSSckcybFlw8fNcSUAn259YXfU9mSa2OPpJN6g1nCBz7QrhPElwQrhe4uslkWtpjU1FS21im+5pJuZg0+1lu9pT1kVO0VJmH6j56KaKKPhWJ3ZYf0NP6gSVLg/bo/dLMyGe5wvVW0Y6kGTMeB0zUiQS+Z+6jBkgdM6bDwk8EuTY8pS1oYMFbrPM5StYwpP18DBED24RuYqnHM1tGb05Hkk8mC+BRrpKP2bnHl5ofuqobodaUolYZ7eEY2pjW4smiOcGkGJYKRUR9gwBKgpigNACVydH4nI4HhGgThIFrMp8KKQoUi3Pi1iWa+WJfh3TvBAQuIRlJQw4G21GUaxogLqKsqG5pgNtDa37olPPok4rbjH+YpjxbFomZLvAYUql+WJrdvcdyLL0zoYDdC6sSlgA4CMRlY/wYh1qZFeqLKAVgWS8h6P43A0zmTrMtHDlgeO3VxS/ytgbX+2/8Pj28R7/idP37q0+991wYH/V8cCeQw/5X//CP9b2Z+ajYx13pI/t+3b8VOXPt365uKM+fGjSeu0GXNp9pXLo8tvzv3194doHP+zq6RsefvHNuezehb9vG334pfsGaMPl2c+u3v/onbY22r7r+tMB+k5ofvzH7Yt/PP9N8zPx8cF3l6rf+nTxxuGdX/5eNVt47NT0ibuarn3/5K9+cecr55svLdysHTNf/dAfbqvakfmntk65KugTfzXW2NcXuep/X87DrW0VFUtLlRVwZG7wJpvlP8uBc0g=
|
||||
@@ -1 +0,0 @@
|
||||
eNrVVnlwG9UddmzSGmjBMCRpywCLIGOGeKVd3ZIriCzfl2zLRxwndVa7T9JKe3kPWbLjgA1paEKBTUM6oTCQ2JaCI3Jgk6uxmYZCgaTTZEIbDA0DDRMakjbttKWEJk3f6nDsJjOd9r/uH9K+9773O77f+31vh5JRIEo0z81L0ZwMRIKU4UBSh5Ii6FGAJD+eYIEc4qmRJq+vdVgR6ekHQ7IsSE6DgRBoPS8AjqD1JM8aoriBDBGyAb4LDEibGfHzVPyD/E/6dSyQJCIIJJ0T6erXkTz0xclwoOuFW4olxE8Hg0BEaA4xYkYzUu9GeBFp7PToShCdyDNAgyoSEHUDK+EMy1OA0aaCgoyaeQ3EwSEO/yVZBAQLBwGCkQCckAErwLxkRdSMYHpMm+N5JhuKHBfSxgMKl05dszXz7kT6dRzBpgFVQO4AhByCMUAIBSRSpIUsSltE4BJCKqIIE0N6M0gtHwIJ0lHAIQxPEjkHAiFCq5BuKe1CECGNokyDzHAGqQ3+zVGr5oSW4wjBUYgkEzJMEeiDesRHcEilSHAkLZF8CeJxa35yyUFSaC6oGxjQ2IR1pUVAaelfdbVyFpr3hwEpQzSE/3cENfGCwsxk+R84EmbA/+80rRxIhgBBwTifHgnxkqzunNsauwiSBPCkAo7kKehBfSXYRwslCAUCkAAwBtuBA2lC1bEIAAJKMJCLRGaXupsQBIbOBGAISzyXyrYPqkVy7fKY1icobDZOVie8MAh3jaEpDnuYQ3C92a7HdsdQSAnNMbAnUYaA8SSE9PpPZy8IBBmBRtCsPqiJzOadszG8pI42EKTXN8ckIZIhdZQQWat5fPa8qHAyzQI16Wm61l128ao7kx7H9bY9cwxLcY5UR9OdvW/OZiCLcZTkoQ11K7Yzxw8DuKAcUodtJtt2EUgCVCTwWEI7Doo0NAJrAY6+ncwq0zZvXa6IH+UtGimHdVEnOwBVguBWxEvKGV3CHU6T2YlhSFVDa8qTddN63TLsaYXHTArAUlTkyp4kQwoXAdSY57oFn9QKDrPRwoeah4KYwEsAzUalppahLRlNRmvKxzOnC+XFIMHRfWm36mS68r19sV6KVCgqFO1lMUef2UT7gUIGJrJbYBtpbmBAKCupI7jJZN+ZXcqRPwaTxVAcQzH8YAyF4gkYmqUhoenf7M0A91owDNt/LUDmIwDeIQk7pj1TswEiYGHRNN9XrZgdDseh64NylmwQYrMcnAuSwOxYcCMr7b8WkLUwjLNSKpaDozSlTt8PB90YwEkHbgPmAMCsJqMds9upgN9iCxhtwGH0kwc0TSChGa2YAi/KqASggEFpUadLWCKm9ZnLhFtMVphpKRQyklEo4FP85byWg1SKCCJgeILa5alEPQQZAqgvff7UZHlno7uhxjPmg1F6eD5Cg40fzCvo7iYD3X7WVa2Y/IE6YzDaJHrYqrYmm5GKi7EAHm80N3fUNMd8FeGwo6w5LNWRKG4zOnDMZjTDmukxPa7HUc7bV9sSj1TrQ0ZLXbC8zco0twXCfE933E3XY1iIsQAuVEExbXKjkSwrt2L1DQGL2xvwtnN8q7nJwtpieEWfv5zTt9CWzmgt0dPtEZphNvBecxlKEXg2oTpKrmyHoLBDUNgfRsyJ5fqjFKHSHLj0c9WwFKmGHxBejomXIj6NTAD/oc77aBm4GnkOTG+CHChRmnJVuSua3B1tVHl7T9jnNXsob5inY2yt0tve0w4avFW9hHV5EPgZqXcWCRbMjmJZHqyYOXMKr4b+P0a1dxk6u+FRr5D5UkpyvMTRgUDCB0TYP+oYyfAKBYVdBAlY8xZ3pzphp0yEzU+ZjX6HyUxSBFoGJTNnbUYeRrRbIUkw8IxFSXU8ZHLpnGazSVeKsITLbjVjWPp7ajCRuafezM+7Z0NhXvopOOo7wn2IFR06t+QJV93alH3N7898x51/n3LivQbyvbVLmyM/sFa8qnv2N5ZLF9Z+uo4qfqAvdUv+gSNbTnUe5e4qe7S46PZV336t5OThOxsOnqIvfmv8F/9YZ9B1vbLuzOKpn509YR8nhSWPr+94+/xtf3vq5RU3T6x4Z+C5BdVoe+qFNdj5Ly9/HF5WLD770vZVL+/9Xkd88B7Z9cjHFycLMN/zWwefWS0V3kt1XdmxEAy9jtw/1f/kp6FvNNx2+MR9ZS81bVufZ/n+nXWj8/fVGBej745FOm86XrtstPzn24saPrm8j33hJ47me7eNPPmXd84X/LOw9SE1LP293/rFrr+OtfHeyeOK50jLqydWL7/o++6hByoLq587+X7XxK21Px6aci8tPKZDpU17w3fvvblo/a8Ni4o2zv/tEk+lsWLwrcWnj+dHhcrdkVPRPz5MX3n+I2bqId8XZ09L2ItTt7b3rv6Tsf/g5QsT3j8Xb9nh/8PGs5cuHPZ+dgHtumN/yTcXfP11+yJT/taWldvfX/HljZtXiD+qmN/ii0Q+POJo33FuafzMqmNr333th6nlw6lQ6ZpHfnXTL4cs0+fe0D/atnn9ws+/esJ5esPtE5tOLnyYXTBc8sbI4FeNdb87t41vPg/ELVP+nlvqV1nf8t+NHqjfc2z+ro6izc7P35ycd9cNa2xfC352aV5e3pUrBXmGQOLpDTfk5f0LncGBPg==
|
||||
@@ -1 +0,0 @@
|
||||
eNqFVF1sU1UcH4EQgh8jkviwGHdpNkzcTntv292uJSTUzokfc4M1OoZkOT33rL309t7Lved2K8semEuQzECOidHNgMC6FmvdWAbhQRiJEGIUH5SZWKMkU+ODihhYxPiC53btPrJl3qdz/5+//+//O2cgm8SGKWvqurysEmxARNiPSQeyBj5kYZMMZhKYxDQp3dbaHh61DLlQGyNENwMuF9RlJ1RJzNB0GTmRlnAlBVcCmyaMYjMd0aRU4XifIwF7u4gWx6rpCHAC7/bWc45yELPs73MYmoLZyWGZ2HAwL9IYEpXYpp4YJM+YXEqzDE6FCezoP2CnaxJWbDdSoCVh4AENwNRUFRPgZg140c3bdQhO6GwiYhl2ed7J92djGEps3tsVW9IxzSR0csUMExAhrBOAVaRJshqln0QPy3o9J+FuBRKcQ3afIkk0F8dYB1CRkzgzn0XPQ11XZARtv+sgw5QvDQNISscr3Tl7ZsCoUAm9FCzjcLWlGOUqg+wRnfz5XmASKKsKIw0okEHK6EX/p0sdOkRxVgeU1kkz88njS2M0k461QNTavqwkNFCMjkEjIXqnltoNSyVyAtNsqG1lu5JzsZ3HKQhO3+SywmZKRXSsGyomnlwgeSElx3blAbwIeOHSstKYGCmANNaBnuHHywQqWI2SGB0VvO5zBjZ1plL8ZoalEcscSLNl4ZufZ0vCOtv68uKqn0g3scXRK69jqZ4TRK4VEc6WCSf4Ax5PoMHHvdASzodKbcKr7mkybEDV7Ga7er6siyyKWWocS7nQqoooOBYnZhrEipyQCShdKrZH+5emvTzPF7avGWngBGPG7pj2+P3+/6nLmMGEXrDnAwIPBDFsT+kNNHg7C9xqmfNXs4QnY+NhiGrWiFzEU47m1oxeDQ9jXezMlUADWaKX2bmLF8QWEkniSE8qrvsO9xgopYY8ncGLvQApmiUBwp4nDIqC6CW0wCHkE/0SFn2i6PF4PW7kbkT+Rh77fA1+UWh0jyZlSHOCU+CimhZV8ESoGYQgimHQXpQNzTbtezXY8mIo3wH2ahGN8ReGjGdVU3GmHRtMqTRXbM3uvoEzLH1vcB+90Ch5oC+CBD9r7UWIB8+xK1UW0IJA0vbDUXwGjzCZGsx0/bfqoU0VxW99+PhXL13ftWWwC+eH3jtW8/W3ePxU09+nT592wN0j+JVvtt7amRd++bE2WHlq8/S/Z7oHNz5+5amPL/d+9+DO/d9nD+2ufjDd79958sbdDzY9cnJjZ3vNTyc2DAnJur8cwZmpz86eeMzSz+34sOoL59SB7XTYW3f/3rNXnWbHDH23Y/b2r1f3jE1cnD52Dbr/6HMHb94RCfxz7o1Hj4683Xxr60fDkcC1e+q2qqMHa1x0dtcP4ZHmGxPb5obfig/8PGM9Ke+4273h6Xdeq9ofOVK3eej9uervwZeVbKiHD9dXVFr/1Fatq6j4D8RVhls=
|
||||
@@ -1 +0,0 @@
|
||||
eNqdVXlsFFUYX0TiFdQYIwqik1XQSN/uXHu7mHZ703Zrd4EW1Do782Z3unMxb6bdRfEoaAweOEgEjxhrl11TSxFpKqJgjCeJaDSiKYpoDCrxChoPvN9st9IG/nL+2Nn3vvv3+75v+ku90ECSps4YllQTGhxv4gOy+0sGXGVBZK4rKtDMaEKhPZ5IDlqGNH5NxjR1FPZ6OV3yaDpUOcnDa4q3l/LyGc704v+6DMtuCilNyI/ffotbgQhxaYjcYWLlLW5ew6FUEx/cfdjiKkTkNcsgVE6B7irCbWgydGQWgoZ7zY34RtEEKDtXad0ErOYoqfhI4TcyDcgp+CByMoL4woSKjuswLcNxQnrINaUM5ARc5YZCRkOmPTI97+0cz0PsFqq8Jkhq2t6WXi3pVYQARZkz4RBOVoVlVOyhLIQ64GSpFxYnrOxnOV2XJZ5z5N4epKnDleKAmdfhyeIhpyiAoVBNezSOk6hu8rbnMcAqQXnYoId8NgeQyUmqjBEDMofzKepl+YtTBTrHZ7ETUCHPLk4Yj0zV0ZC9tZXj44lpLjmDz9hbOUPxszun3huWakoKtEux9pPDVYQnwjEeivIEdkxzjPIqb28t0/D8NGNoGnnAa9iHPUCOTOIjQzVtZuxBig48bUCk43aBa4vYzLRQfwFzAd9+q1Tpm6fiSyZJ/NQ1p1CLebH3LIdCFUH5iThvEjRJswQVCjNM2OcjGlqTw7FKmOQpadiRNDgViZiKuknaS3zGUrNQGIqdkvA9DuG4Gid93KAA5nQNQVDJyh7uBB0TAwOaandOdBfQjDSnSqvLYe09Zeb7Vuf6BN4ShExvn0KGVrOMlIIWL45WTHRDc8LghICC7EG/nx2pSCaxH8K1koAiAUntzgHc6FCWFAnjWf6tTC2yCz6SJHedrGBqWYjnuxgknWfvVAUDKpgzJ/QJL2woFHrp1EqTngJYJRDaPV0Jwam5ULSCdp2sUPEwSCloODepDiTBHr8SH7pDJMXyPBOk2YBAkyFaYAUf5U8FSR9MwZAv8AKefYnHbhwudc0wAYI83lBm3h6vUricM2ZRhvIxflxphJBUXrYEmLBStZpTA4oQugFljRO2x+pBjOMzECTK7WeXarvaqlubYkMJnGVM07IS3Hhwxszubl7sTinRUA1DCzVtS/qWtjVacg2tGaJRl2ZqQz6lvrpLbIqtSNT08DEUaEkDKkCHKDJAMz5AeUgP5aHAKqvH38KKoVrRv8yjZNNGgtfpumS9L52TtXQjnWnrZNO5xkamaYUP+pd0tixvytU31AnXyyuWkl2SUs81B9X2YGeHp6O6JWa11PoYsS+Nq+HMTNQbIXBrShjgaGVAAB4QgMeDJsPk5HhECKGMQdQzfRlGiEa83OOqnI8QCQdMiN94LSckE0bbNBWOb8IYWL2SECWbG6VknacjGQiq2Xx3vYpQt2GKal6u6YR0NmYkE4FkdU9jelXXFBAwbYCs4OAn2YkuPJH6/8xqrBNMnXcQ1ye+YiVVQ6okisUENPD82EO8rFkC3usGLGLOO6q77NGgwHCBVIonQyIbFAUG1OCNOentv+1QcD4KJU7GPdbL2zszTNQdZlnGHSEULhr0syRZ/tbdWXR6Uk2/PuOey+8901V+Zsr2/rYvyAvv+jW/ftH2eZuKA+AQcfMrG0Tq/fvEdeevv/SrhVRw78K9A4mB5p/mvnRZvP/H2MrT53nfOXb81u9/XuIiTM8yIrmg68A769KBJoOJXLdv5V+jt9329x/8sXZZ/ebN3979ffnChTf2P3dG8k873JGMrB3ed+5YTzvd+8FR9+JH6u/N9X4yz3cks7vzaLDl6vsGg2cNwov3v3lz3YqBOYt2neNy3fT7zmcy6M+rlp3funjT3D2bF6w/8P0Fd2TeMtc/+Gn23fef2/Jta93D7/2ybfvhv1/+8MkCteXVugXHf/zqhyt2PeW7Wvp87t3Xyk/PKt6gtp0Xmn3Rts2HLh7ziR88/2Lq7uaP2r9suL0052BP99bZzfGxRZ8/8vjXhxSXftj75F/sQ/rsAw8kig2j8/XwfD318rGZyP9oS9X+mzY8tC8wyjY8fPC3tbPOXrD0ruOLL5l1xuCaNT9FXiOfGDsyp5ncuO5w7o0wGAU7Vt1/2d6CfvTax7xH6Ac2tpz+8WfzXa5//pnpGknM++6x01yufwGzrHh3
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user