Compare commits

...

49 Commits

Author SHA1 Message Date
Bagatur
6e90b7a91b langchain[patch]: bump community >=0.0.8,<0.1 (#15492) 2024-01-03 13:31:48 -05:00
Bagatur
8b7d6531a5 langchain[patch]: Release 0.0.354 (#15482) 2024-01-03 12:51:55 -05:00
Bagatur
0b579dc623 infra: update community test min reqs (#15490) 2024-01-03 12:13:29 -05:00
Bagatur
266db0efc8 community[patch]: bump core version >=0.1.5,<0.2 (#15488) 2024-01-03 12:03:31 -05:00
Bagatur
63e0cae2b1 infra: fix min deps test (#15486) 2024-01-03 11:34:46 -05:00
Bagatur
a2324ee533 community[patch]: Release 0.0.8 (#15481) 2024-01-03 11:28:50 -05:00
Bagatur
54b58c03db infra: add minimum deps pre release check (#15485) 2024-01-03 11:28:35 -05:00
Bagatur
b317ad2472 core[patch]: Release 0.1.5 (#15480) 2024-01-03 10:26:27 -05:00
Bagatur
baeac236b6 langchain[patch], experimental[patch]: update utilities imports (#15438) 2024-01-03 02:18:15 -05:00
Harutaka Kawamura
73da8f863c Remove unused Params (#14385)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Removes unused `Params` in `libs/langchain/langchain/llms/mlflow.py`.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 22:45:18 -08:00
chyroc
b65e57971e Patch: improve type hint (#15451) 2024-01-02 22:39:27 -08:00
Harutaka Kawamura
8ebf55ebbf Fix llms.Mlflow example (#14386)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

The example code for `llms.Mlflow` is outdated.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 22:35:13 -08:00
Nolan
6c4b5a4eff Add option to preserve headers in MarkdownHeaderTextSplitter (#14433)
- **Description:** `MarkdownHeaderTextSplitter` currently strips header
lines from chunked content. Many applications require these header lines
are preserved. This adds an optional parameter to preserve those headers
in the chunked content.
  - **Issue:** #2836 (relevant)
  - **Dependencies:** -
  - **Tag maintainer:** @baskaryan
  - **Twitter handle:** @finnless

Unit tests and new examples in notebook included.

cc @rlancemartin

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 22:34:52 -08:00
Xin Liu
0a7d360ba4 feat: new integration wasm_chat (#14787)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Adds `WasmChat` integration. `WasmChat` runs GGUF models locally or via
chat service in lightweight and secure WebAssembly containers. In this
PR, `WasmChatService` is introduced as the first step of the
integration. `WasmChatService` is driven by
[llama-api-server](https://github.com/second-state/llama-utils) and
[WasmEdge Runtime](https://wasmedge.org/).

---------

Signed-off-by: Xin Liu <sam@secondstate.io>
2024-01-02 22:33:14 -08:00
Harrison Chase
51dcb89a72 cleanup getting started (#15450) 2024-01-02 22:26:35 -08:00
Leonid Ganeline
2bbee894bb fixed a dependency duplicate (#15444)
BaseModel is derived twice. Left only one.
2024-01-02 21:40:04 -08:00
William FH
65afc13b8b [Improvement] Evals: Add git info (#15446) 2024-01-02 20:08:50 -08:00
Anush
58cc7878e9 refactor: Qdrant async improvements (#14492)
Follow up on https://github.com/langchain-ai/langchain/pull/13048.
This PR intends to simplify the Qdrant async implementation by replacing
the internal GRPC methods with the `QdrantAsyncClient` methods.
This is a backward compatible change with no additional steps required
after merge.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 20:07:48 -08:00
Li-Lun Lin
cda68d717c core[patch]: update LanguageModelInput from List to Sequence (#14405)
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-02 18:49:01 -08:00
JuR-0
4dab37741a Fix Bedrock broad error catching (#14398)
Fixes #14347 

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- **Description:** Added the traceback of the previous error to keep the
initial error type,
  - **Issue:** #14347 ,
  - **Dependencies:** None,
  - **Tag maintainer:** 

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Julien Raffy <julien.raffy@emeria.eu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 17:25:48 -08:00
amaleki2
413a56b8f1 adding vectorstore_kwarg attribute to search_similarity function (#14604)
- **Description:** the ability to add all extra parameter of vectorstore
and using them SemanticSimilarityExampleSelector.
  - **Issue:** #14583
  - **Dependencies:** no dependensies
  - **Tag maintainer:** 
  - **Twitter handle:** @AmirMalekiz

---------

Co-authored-by: Amir Maleki <amaleki@fb.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 17:18:33 -08:00
Bob Lin
e93be14c11 Improvement: Allow passing parameters to the underlying es_client. Closes: #14403 (#14435)
### Description

In https://github.com/langchain-ai/langchain/issues/14403, the user
mentioned that he hopes not to verify ssl and needs to pass more
parameters

I found that the `Elasticsearch` class [has very many
parameters](98f2af2134/elasticsearch/_sync/client/__init__.py (L131-L191)
):

<img width="1097" alt="Screenshot 2023-12-08 at 4 24 39 PM"
src="https://github.com/langchain-ai/langchain/assets/10000925/f2201554-b41a-4388-a8e8-c14a2d0466d4">

In order to adapt to more situations, I want to add the kwargs parameter
so that users can enter more `Elasticsearch` parameters. Like
[redis](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/redis/base.py#L253),
[tair](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/tair.py#L32),
[myscale](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/myscale.py#L112)
and so on.
2024-01-02 16:48:17 -08:00
codehound42
8aa921d3a4 Support score_threshold in SupabaseVectorStore similarity search (#14439)
Description: Add support for setting the `score_threshold` for
similarity search in SupabaseVectoreStore.

This pull request addresses issue #14438

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 16:47:05 -08:00
Antonio Pisani
d4a98e4e04 core: update json output parser (#15079)
- **Description:** changed json.py to handle additional cases of partial
json string to be parsed, basically by dropping the last character in
the string until a valid json string is found or the string is empty.
Also added additional test cases.
  
- **Issue:** function parse_partial_json could not parse cases where the
key is present but the value is not.

---------

Co-authored-by: Nuno Campos <nuno@langchain.dev>
2024-01-02 16:34:43 -08:00
YISH
eecfa81918 Add the collection_description parameter to Milvus (#14524)
Because Milvus' collection_name doesn't support UFT8 characters in other
languages, I want the `collection_descriotion`.


<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-02 16:28:01 -08:00
Evgenii Molov
b4ec340fb3 Fix failing serpapi response processing for Google Maps API (#14817)
**Description:** Fix for processing for serpapi response for Google Maps
API
**Issue:** Due to the fact corresponding
[api](https://serpapi.com/google-maps-api) returns 'local_results' as
list, and old version requested `res["local_results"].keys()` of the
list. As the result we got exception: ```AttributeError: 'list' object
has no attribute 'keys'```.

Way to reproduce wrong behaviour:
```
    params = {
        "engine": "google_maps",
        "type": "search",
        "google_domain": "google.de",
        "ll": "@51.1917,10.525,14z",
        "hl": "de",
        "gl": "de",
    }
    search = SerpAPIWrapper(params=params)
    results = search.run("cafe")
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Ran <rccalman@gmail.com>
2024-01-02 16:17:21 -08:00
YISH
da0f750a0b Milvus allows to store metadata as json field (#14636)
Because Milvus doesn't support nullable fields, but document metadata is
very rich, so it makes more sense to store it as json.


https://github.com/milvus-io/pymilvus/issues/1705#issuecomment-1731112372

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 16:12:00 -08:00
Erick Friis
620168e459 docs: together ai updates (#15435) 2024-01-02 16:05:53 -08:00
Bagatur
93e924ec96 langchain[patch], docs: update agent toolkit imports (#15434) 2024-01-02 18:58:50 -05:00
Ashley Xu
0ce7858529 feat: add Google BigQueryVectorSearch in vectorstore (#14829)
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.

This PR integrates LangChain vectorstore with BigQuery Vector Search.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Vlad Kolesnikov <vladkol@google.com>
2024-01-02 15:57:14 -08:00
JaguarDB
02f59c2035 Use args option in jaguar so it takes more options in similarity search (#15080)
- **Description:** replace score_threshold with args
  - **Issue:** needs a way to pass more options to similarity search
  - **Dependencies:** None
  - **Twitter handle:** @workbot

---------

Co-authored-by: JY <jyjy@jaguardb>
2024-01-02 15:53:06 -08:00
chyroc
37ad6ec248 Refactor: use SecretStr for tongyi chat-model (#15102) 2024-01-02 15:45:23 -08:00
Shaurya Rohatgi
e1c2cd7a28 community: Semanticscholar tool to search 200M+ scientific articles (#15151)
- **Description:** Tool now supports querying over 200 million
scientific articles, vastly expanding its reach beyond the 2 million
articles accessible through Arxiv. This update significantly broadens
access to the entire scope of scientific literature.
- **Dependencies:** semantischolar
https://github.com/danielnsilva/semanticscholar
  - **Twitter handle:** @shauryr

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 15:36:03 -08:00
aqibamir
073e4107cd Fixed minor type in self_query.ipynb (#15196)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-02 15:34:09 -08:00
dudub12
7e6b0056b8 SQLDatabase drop the column names in the result. (#15361)
Fix for the following bug:
https://github.com/langchain-ai/langchain/issues/15360

---------

Co-authored-by: dudu butbul <100126964+dudu-upstream@users.noreply.github.com>
2024-01-02 15:29:25 -08:00
chyroc
07d294b5ec Fix: fix Bing Search empty result exception, fix #15384 (#15387)
fix https://github.com/langchain-ai/langchain/issues/15384
2024-01-02 15:25:00 -08:00
Bagatur
1678d6ca17 langchain[patch], experimental[patch], docs: update tools imports (#15433) 2024-01-02 18:23:34 -05:00
Bob Lin
e57e50b213 Remove unused _get_python_repl (#15389)
This part of the code can also be safely cleaned up.
2024-01-02 15:21:00 -08:00
Dariusz Kajtoch
15b6c049d4 core:adds tests for partial_variables (#15427)
**Description:** Added small tests to test partial_variables in
PromptTemplate. It was missing.
2024-01-02 15:00:06 -08:00
suhas-kotaki
73a628de9a added fix for key error: doc_id (#15428)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-02 14:59:53 -08:00
Leonid Ganeline
1e6519edc2 docs Microsoft platform page update (#15420)
Added two new document_loader references. Improved the format
consistency of the example pages
2024-01-02 14:59:40 -08:00
Leonid Ganeline
b8c6ebf647 refactor utils (#15432)
The `langchain` [still holds several
artifacts](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.utils)
that belongs to `community`. If they moved then `langchain.utils`
namespace would be removed completely.
- moved `ernie_functions` artifacts to `community`
2024-01-02 14:56:38 -08:00
Bagatur
fa5d49f2c1 docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00
Harrison Chase
a33d92306c add get prompts method (#15425) 2024-01-02 12:44:14 -08:00
Nuno Campos
6810b4b0bc Use tz-aware utc datetimes in tracer (#15187)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-02 12:36:40 -08:00
Bagatur
480626dc99 docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00
Nuno Campos
9cbf14dec2 Fetch runnable config from context var inside runnable lambda and runnable generator (#15334)
- easier to write custom logic/loops with automatic tracing
- if you don't want to streaming support write a regular function and
pass to RunnableLambda
- if you do want streaming write a generator and pass it to
RunnableGenerator

```py
import json
from typing import AsyncIterator

from langchain_core.messages import BaseMessage, FunctionMessage, HumanMessage
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import Runnable, RunnableGenerator, RunnablePassthrough
from langchain_core.tools import BaseTool

from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.tools.render import format_tool_to_openai_function


def _get_tavily():
    from langchain.tools.tavily_search import TavilySearchResults
    from langchain.utilities.tavily_search import TavilySearchAPIWrapper

    tavily_search = TavilySearchAPIWrapper()
    return TavilySearchResults(api_wrapper=tavily_search)


async def _agent_executor_generator(
    input: AsyncIterator[list[BaseMessage]],
    *,
    max_iterations: int = 10,
    tools: dict[str, BaseTool],
    agent: Runnable[list[BaseMessage], BaseMessage],
    parser: Runnable[BaseMessage, AgentAction | AgentFinish],
) -> AsyncIterator[BaseMessage]:
    messages = [m async for mm in input for m in mm]
    for _ in range(max_iterations):
        next_message = await agent.ainvoke(messages)
        yield next_message
        messages.append(next_message)

        parsed = await parser.ainvoke(next_message)
        if isinstance(parsed, AgentAction):
            result = await tools[parsed.tool].ainvoke(parsed.tool_input)
            next_message = FunctionMessage(name=parsed.tool, content=json.dumps(result))
            yield next_message
            messages.append(next_message)
        elif isinstance(parsed, AgentFinish):
            return


def get_agent_executor(tools: list[BaseTool], system_message: str):
    llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0, streaming=True)
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_message),
            MessagesPlaceholder(variable_name="messages"),
        ]
    )
    llm_with_tools = llm.bind(
        functions=[format_tool_to_openai_function(t) for t in tools]
    )

    agent = {"messages": RunnablePassthrough()} | prompt | llm_with_tools
    parser = OpenAIFunctionsAgentOutputParser()
    executor = RunnableGenerator(_agent_executor_generator)
    return executor.bind(
        tools={tool.name for tool in tools}, agent=agent, parser=parser
    )


agent = get_agent_executor([_get_tavily()], "You are a very nice agent!")


async def main():
    async for message in agent.astream(
        [HumanMessage(content="whats the weather in sf tomorrow?")]
    ):
        print(message)


if __name__ == "__main__":
    import asyncio

    asyncio.run(main())
```

results in this trace
https://smith.langchain.com/public/fa17f05d-9724-4d08-8fa1-750f8fcd051b/r
2024-01-02 12:16:39 -08:00
Bagatur
8e0d5813c2 langchain[patch], experimental[patch]: replace langchain.schema imports (#15410)
Import from core instead.

Ran:
```bash
git grep -l 'from langchain.schema\.output_parser' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.output_parser/from\ langchain_core.output_parsers/g"
git grep -l 'from langchain.schema\.messages' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.messages/from\ langchain_core.messages/g"
git grep -l 'from langchain.schema\.document' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.document/from\ langchain_core.documents/g"
git grep -l 'from langchain.schema\.runnable' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.runnable/from\ langchain_core.runnables/g"
git grep -l 'from langchain.schema\.vectorstore' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.vectorstore/from\ langchain_core.vectorstores/g"
git grep -l 'from langchain.schema\.language_model' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.language_model/from\ langchain_core.language_models/g"
git grep -l 'from langchain.schema\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.embeddings/from\ langchain_core.embeddings/g"
git grep -l 'from langchain.schema\.storage' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.storage/from\ langchain_core.stores/g"
git checkout master libs/langchain/tests/unit_tests/schema/
make format
cd libs/experimental
make format
cd ../langchain
make format
```
2024-01-02 15:09:45 -05:00
Bagatur
a3d47b4f19 docs: fix model i/o index links (#15421) 2024-01-02 13:38:05 -05:00
1348 changed files with 7228 additions and 4007 deletions

View File

@@ -159,6 +159,12 @@ jobs:
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
- name: Run unit tests with minimum dependency versions
if: ${{ (inputs.working-directory == 'libs/langchain') || (inputs.working-directory == 'libs/community') || (inputs.working-directory == 'libs/experimental') }}
run: |
poetry run pip install -r _test_minimum_requirements.txt
make tests
working-directory: ${{ inputs.working-directory }}
publish:
needs:

View File

@@ -61,13 +61,13 @@
],
"source": [
"# Local\n",
"from langchain.chat_models import ChatOllama\n",
"from langchain_community.chat_models import ChatOllama\n",
"\n",
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
"\n",
"# API\n",
"from langchain.llms import Replicate\n",
"from langchain_community.llms import Replicate\n",
"\n",
"# REPLICATE_API_TOKEN = getpass()\n",
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
@@ -107,7 +107,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SQLDatabase\n",
"from langchain_community.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info=0)\n",
"\n",

View File

@@ -101,7 +101,7 @@
"If you want to use the provided folder, then simply opt for a [pdf loader](https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf) for the document:\n",
"\n",
"```\n",
"from langchain.document_loaders import PyPDFLoader\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"loader = PyPDFLoader(path + fname)\n",
"docs = loader.load()\n",
"tables = [] # Ignore w/ basic pdf loader\n",
@@ -198,8 +198,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"\n",
@@ -353,10 +353,10 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"\n",

View File

@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import PyPDFLoader\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"\n",
"loader = PyPDFLoader(\"./cj/cj.pdf\")\n",
"docs = loader.load()\n",
@@ -158,11 +158,11 @@
}
],
"source": [
"from langchain.chat_models import ChatVertexAI\n",
"from langchain.llms import VertexAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain_community.chat_models import ChatVertexAI\n",
"from langchain_community.llms import VertexAI\n",
"from langchain_core.messages import AIMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda\n",
"\n",
"\n",
@@ -243,7 +243,7 @@
"import base64\n",
"import os\n",
"\n",
"from langchain.schema.messages import HumanMessage\n",
"from langchain_core.messages import HumanMessage\n",
"\n",
"\n",
"def encode_image(image_path):\n",
@@ -342,11 +342,11 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import VertexAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.embeddings import VertexAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"\n",
"def create_multi_vector_retriever(\n",
@@ -440,7 +440,7 @@
"import re\n",
"\n",
"from IPython.display import HTML, display\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from PIL import Image\n",
"\n",
"\n",

View File

@@ -235,8 +235,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
@@ -318,10 +318,10 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

View File

@@ -211,8 +211,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
@@ -373,10 +373,10 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

View File

@@ -209,8 +209,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOllama\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOllama\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
@@ -376,10 +376,10 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import GPT4AllEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"# The vectorstore to use to index the child chunks\n",

View File

@@ -62,7 +62,7 @@
"path = \"/Users/rlm/Desktop/cpi/\"\n",
"\n",
"# Load\n",
"from langchain.document_loaders import PyPDFLoader\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"\n",
"loader = PyPDFLoader(path + \"cpi.pdf\")\n",
"pdf_pages = loader.load()\n",
@@ -132,8 +132,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"baseline = Chroma.from_texts(\n",
" texts=all_splits_pypdf_texts,\n",
@@ -160,8 +160,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"# Prompt\n",

View File

@@ -28,10 +28,10 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"llm = OpenAI(temperature=0)"
]
@@ -69,7 +69,7 @@
}
],
"source": [
"from langchain.document_loaders import TextLoader\n",
"from langchain_community.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader(doc_path)\n",
"documents = loader.load()\n",
@@ -99,7 +99,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import WebBaseLoader"
"from langchain_community.document_loaders import WebBaseLoader"
]
},
{
@@ -161,7 +161,7 @@
"source": [
"# Import things that are needed generically\n",
"from langchain.agents import AgentType, Tool, initialize_agent\n",
"from langchain.llms import OpenAI"
"from langchain_community.llms import OpenAI"
]
},
{

View File

@@ -29,7 +29,7 @@
"outputs": [],
"source": [
"from langchain.chains import AnalyzeDocumentChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
]

View File

@@ -28,9 +28,9 @@
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain.utilities import SerpAPIWrapper\n",
"from langchain_community.tools.file_management.read import ReadFileTool\n",
"from langchain_community.tools.file_management.write import WriteFileTool\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"\n",
"search = SerpAPIWrapper()\n",
"tools = [\n",
@@ -62,8 +62,8 @@
"outputs": [],
"source": [
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS"
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
]
},
{
@@ -100,7 +100,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.autonomous_agents import AutoGPT"
]
},
@@ -167,7 +167,7 @@
},
"outputs": [],
"source": [
"from langchain.memory.chat_message_histories import FileChatMessageHistory\n",
"from langchain_community.chat_message_histories import FileChatMessageHistory\n",
"\n",
"agent = AutoGPT.from_llm_and_tools(\n",
" ai_name=\"Tom\",\n",

View File

@@ -39,9 +39,9 @@
"\n",
"import nest_asyncio\n",
"import pandas as pd\n",
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore.document import Document\n",
"from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.autonomous_agents import AutoGPT\n",
"\n",
"# Needed synce jupyter runs an async eventloop\n",
@@ -93,8 +93,8 @@
"from typing import Optional\n",
"\n",
"from langchain.agents import tool\n",
"from langchain.tools.file_management.read import ReadFileTool\n",
"from langchain.tools.file_management.write import WriteFileTool\n",
"from langchain_community.tools.file_management.read import ReadFileTool\n",
"from langchain_community.tools.file_management.write import WriteFileTool\n",
"\n",
"ROOT_DIR = \"./data/\"\n",
"\n",
@@ -311,8 +311,8 @@
"# Memory\n",
"import faiss\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"\n",
"embeddings_model = OpenAIEmbeddings()\n",
"embedding_size = 1536\n",

View File

@@ -31,8 +31,8 @@
"source": [
"from typing import Optional\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
@@ -54,7 +54,7 @@
"outputs": [],
"source": [
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.vectorstores import FAISS"
"from langchain_community.vectorstores import FAISS"
]
},
{

View File

@@ -28,9 +28,9 @@
"from typing import Optional\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import BabyAGI"
]
},
@@ -63,7 +63,7 @@
"%pip install faiss-cpu > /dev/null\n",
"%pip install google-search-results > /dev/null\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.vectorstores import FAISS"
"from langchain_community.vectorstores import FAISS"
]
},
{
@@ -108,8 +108,8 @@
"source": [
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import SerpAPIWrapper\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"\n",
"todo_prompt = PromptTemplate.from_template(\n",
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",

View File

@@ -36,7 +36,6 @@
"source": [
"from typing import List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
@@ -46,7 +45,8 @@
" BaseMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
")\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -47,7 +47,7 @@
"outputs": [],
"source": [
"from IPython.display import SVG\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.cpal.base import CPALChain\n",
"from langchain_experimental.pal_chain import PALChain\n",
"\n",

View File

@@ -23,9 +23,9 @@
"metadata": {},
"source": [
"1. Prepare data:\n",
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
"2. Question-Answering:\n",
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
" 2. Prepare questions.\n",
@@ -166,7 +166,7 @@
}
],
"source": [
"from langchain.document_loaders import TextLoader\n",
"from langchain_community.document_loaders import TextLoader\n",
"\n",
"root_dir = \"../../../../../../libs\"\n",
"\n",
@@ -657,7 +657,7 @@
}
],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"embeddings"
@@ -706,7 +706,7 @@
{
"data": {
"text/plain": [
"<langchain.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
]
},
"execution_count": 15,
@@ -715,7 +715,7 @@
}
],
"source": [
"from langchain.vectorstores import DeepLake\n",
"from langchain_community.vectorstores import DeepLake\n",
"\n",
"username = \"<USERNAME_OR_ORG>\"\n",
"\n",
@@ -740,7 +740,7 @@
"metadata": {},
"outputs": [],
"source": [
"# from langchain.vectorstores import DeepLake\n",
"# from langchain_community.vectorstores import DeepLake\n",
"\n",
"# db = DeepLake.from_documents(\n",
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
@@ -834,7 +834,7 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",

View File

@@ -40,12 +40,12 @@
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.tools.plugin import AIPlugin"
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.tools.plugin import AIPlugin"
]
},
{
@@ -114,9 +114,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS"
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
]
},
{

View File

@@ -65,12 +65,12 @@
" AgentOutputParser,\n",
" LLMSingleActionAgent,\n",
")\n",
"from langchain.agents.agent_toolkits import NLAToolkit\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.tools.plugin import AIPlugin"
"from langchain_community.agent_toolkits import NLAToolkit\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.tools.plugin import AIPlugin"
]
},
{
@@ -138,9 +138,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS"
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
]
},
{

View File

@@ -39,10 +39,10 @@
" Tool,\n",
")\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.utilities import SerpAPIWrapper"
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import SerpAPIWrapper"
]
},
{
@@ -103,9 +103,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS"
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS"
]
},
{

View File

@@ -26,7 +26,7 @@
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool\n",
"from langchain.utilities import SerpAPIWrapper"
"from langchain_community.utilities import SerpAPIWrapper"
]
},
{

View File

@@ -80,7 +80,7 @@
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"from langchain.utilities import SQLDatabase\n",
"from langchain_community.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
]
@@ -93,7 +93,7 @@
"outputs": [],
"source": [
"# Creating a OpenAI Chat LLM wrapper\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
]
@@ -115,7 +115,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SQLDatabaseChain\n",
"from langchain_community.utilities import SQLDatabaseChain\n",
"\n",
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
]
@@ -177,7 +177,7 @@
"outputs": [],
"source": [
"from langchain.agents import create_sql_agent\n",
"from langchain.agents.agent_toolkits import SQLDatabaseToolkit\n",
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
"\n",
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"

View File

@@ -52,13 +52,13 @@
"import os\n",
"\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.text_splitter import (\n",
" CharacterTextSplitter,\n",
" RecursiveCharacterTextSplitter,\n",
")\n",
"from langchain.vectorstores import DeepLake\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.vectorstores import DeepLake\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",

View File

@@ -470,12 +470,12 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},
@@ -545,10 +545,10 @@
"source": [
"import uuid\n",
"\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores.chroma import Chroma\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores.chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"\n",
"\n",

View File

@@ -39,7 +39,7 @@
"source": [
"from elasticsearch import Elasticsearch\n",
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
"from langchain.chat_models import ChatOpenAI"
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -22,7 +22,7 @@
"from typing import List, Optional\n",
"\n",
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.pydantic_v1 import BaseModel"
]
},

View File

@@ -20,7 +20,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms.fake import FakeListLLM"
"from langchain_community.llms.fake import FakeListLLM"
]
},
{

View File

@@ -73,10 +73,10 @@
" AsyncCallbackManagerForRetrieverRun,\n",
" CallbackManagerForRetrieverRun,\n",
")\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.schema import BaseRetriever, Document\n",
"from langchain.utilities import GoogleSerperAPIWrapper"
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import GoogleSerperAPIWrapper"
]
},
{

View File

@@ -47,11 +47,11 @@
"from datetime import datetime, timedelta\n",
"from typing import List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.docstore import InMemoryDocstore\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from termcolor import colored"
]
},

View File

@@ -75,7 +75,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
"\n",
"# %env OPENAI_API_BASE=http://localhost:8000/v1"

View File

@@ -159,7 +159,7 @@
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent, load_tools\n",
"from langchain.llms import OpenAI"
"from langchain_community.llms import OpenAI"
]
},
{

View File

@@ -20,7 +20,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models.human import HumanInputChatModel"
"from langchain_community.chat_models.human import HumanInputChatModel"
]
},
{

View File

@@ -19,7 +19,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms.human import HumanInputLLM"
"from langchain_community.llms.human import HumanInputLLM"
]
},
{

View File

@@ -21,9 +21,9 @@
"outputs": [],
"source": [
"from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate"
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.llms import OpenAI"
]
},
{
@@ -172,7 +172,7 @@
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"with open(\"../../state_of_the_union.txt\") as f:\n",
" state_of_the_union = f.read()\n",

View File

@@ -49,7 +49,7 @@
"source": [
"# pick and configure the LLM of your choice\n",
"\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")"
]

View File

@@ -43,7 +43,7 @@
}
],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",

View File

@@ -42,7 +42,7 @@
],
"source": [
"from langchain.chains import LLMCheckerChain\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0.7)\n",
"\n",

View File

@@ -46,7 +46,7 @@
],
"source": [
"from langchain.chains import LLMMathChain\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_math = LLMMathChain.from_llm(llm, verbose=True)\n",

View File

@@ -331,7 +331,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=2)\n",
@@ -822,7 +822,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=3)\n",
@@ -1096,7 +1096,7 @@
],
"source": [
"from langchain.chains import LLMSummarizationCheckerChain\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, max_checks=3, verbose=True)\n",

View File

@@ -14,7 +14,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.llm_symbolic_math.base import LLMSymbolicMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",

View File

@@ -57,9 +57,9 @@
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferWindowMemory\n",
"from langchain.prompts import PromptTemplate"
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import OpenAI"
]
},
{

View File

@@ -91,7 +91,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage"
]
},

View File

@@ -187,7 +187,7 @@
"\n",
"import chromadb\n",
"import numpy as np\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from PIL import Image as _PILImage\n",
"\n",
@@ -315,7 +315,7 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",

View File

@@ -43,8 +43,8 @@
"outputs": [],
"source": [
"from langchain.agents import AgentType, initialize_agent\n",
"from langchain.llms import OpenAI\n",
"from langchain.tools import SteamshipImageGenerationTool"
"from langchain.tools import SteamshipImageGenerationTool\n",
"from langchain_community.llms import OpenAI"
]
},
{

View File

@@ -28,11 +28,11 @@
"source": [
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
")\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -33,7 +33,6 @@
"from typing import Callable, List\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import (\n",
" PromptTemplate,\n",
@@ -41,7 +40,8 @@
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
")\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -27,13 +27,13 @@
"from typing import Callable, List\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
")\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -31,9 +31,9 @@
"from os import environ\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.utilities import SQLDatabase\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import SQLDatabase\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"from sqlalchemy import MetaData, create_engine\n",
"\n",
@@ -57,7 +57,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import HuggingFaceInstructEmbeddings\n",
"from langchain_community.embeddings import HuggingFaceInstructEmbeddings\n",
"from langchain_experimental.sql.vector_sql import VectorSQLOutputParser\n",
"\n",
"output_parser = VectorSQLOutputParser.from_embeddings(\n",
@@ -75,8 +75,8 @@
"outputs": [],
"source": [
"from langchain.callbacks import StdOutCallbackHandler\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities.sql_database import SQLDatabase\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities.sql_database import SQLDatabase\n",
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
"\n",
@@ -117,7 +117,7 @@
"outputs": [],
"source": [
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.retrievers.vector_sql_database import (\n",
" VectorSQLDatabaseChainRetriever,\n",
")\n",

View File

@@ -20,10 +20,10 @@
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.document_loaders import TextLoader\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma"
"from langchain_community.document_loaders import TextLoader\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma"
]
},
{
@@ -52,8 +52,8 @@
"source": [
"from langchain.chains import create_qa_with_sources_chain\n",
"from langchain.chains.combine_documents.stuff import StuffDocumentsChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate"
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -28,7 +28,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.messages import HumanMessage, SystemMessage"
]
},
@@ -414,7 +414,7 @@
"BREAKING CHANGES:\n",
"- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
"```python\n",
"from langchain.embeddings import AzureOpenAIEmbeddings\n",
"from langchain_community.embeddings import AzureOpenAIEmbeddings\n",
"```\n",
"\n",
"\n",

View File

@@ -47,12 +47,12 @@
"import inspect\n",
"\n",
"import tenacity\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers import RegexParser\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
")\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -30,9 +30,9 @@
"outputs": [],
"source": [
"from langchain.chains import LLMMathChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_core.tools import Tool\n",
"from langchain_experimental.plan_and_execute import (\n",
" PlanAndExecute,\n",

View File

@@ -81,8 +81,8 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.retrievers import KayAiRetriever\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"retriever = KayAiRetriever.create(\n",

View File

@@ -17,7 +17,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_experimental.pal_chain import PALChain"
]
},

View File

@@ -27,7 +27,7 @@
],
"source": [
"from langchain.chains import create_citation_fuzzy_match_chain\n",
"from langchain.chat_models import ChatOpenAI"
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -59,11 +59,13 @@
"from baidubce.auth.bce_credentials import BceCredentials\n",
"from baidubce.bce_client_configuration import BceClientConfiguration\n",
"from langchain.chains.retrieval_qa import RetrievalQA\n",
"from langchain.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader\n",
"from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n",
"from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.vectorstores import BESVectorStore"
"from langchain_community.document_loaders.baiducloud_bos_directory import (\n",
" BaiduBOSDirectoryLoader,\n",
")\n",
"from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings\n",
"from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
"from langchain_community.vectorstores import BESVectorStore"
]
},
{

View File

@@ -30,8 +30,8 @@
"outputs": [],
"source": [
"import pinecone\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Pinecone\n",
"\n",
"pinecone.init(api_key=\"...\", environment=\"...\")"
]
@@ -86,7 +86,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},

View File

@@ -42,8 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.sql_database import SQLDatabase\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"CONNECTION_STRING = \"postgresql+psycopg2://postgres:test@localhost:5432/vectordb\" # Replace with your own\n",
"db = SQLDatabase.from_uri(CONNECTION_STRING)"
@@ -88,7 +88,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"\n",
"embeddings_model = OpenAIEmbeddings()"
]
@@ -267,7 +267,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",

View File

@@ -31,9 +31,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough"
]

View File

@@ -49,14 +49,14 @@
"from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS\n",
"from langchain.chains import LLMChain, RetrievalQA\n",
"from langchain.chains.base import Chain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM, OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.prompts.base import StringPromptTemplate\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.llms import BaseLLM, OpenAI\n",
"from langchain_community.vectorstores import Chroma\n",
"from pydantic import BaseModel, Field"
]
},

View File

@@ -17,8 +17,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompt_values import PromptValue"
]

View File

@@ -255,7 +255,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-4\")\n",
"res = model.predict(\n",
@@ -1083,8 +1083,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import ElasticsearchStore\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import ElasticsearchStore\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]

View File

@@ -24,10 +24,10 @@
"source": [
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.utilities import GoogleSearchAPIWrapper"
"from langchain_community.llms import OpenAI\n",
"from langchain_community.utilities import GoogleSearchAPIWrapper"
]
},
{

View File

@@ -51,8 +51,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_experimental.smart_llm import SmartLLMChain"
]
},

View File

@@ -9,8 +9,8 @@ To set it up, follow the instructions on https://database.guide/2-sample-databas
```python
from langchain.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_community.llms import OpenAI
from langchain_community.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```
@@ -200,8 +200,8 @@ result["intermediate_steps"]
How to add memory to a SQLDatabaseChain:
```python
from langchain.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_community.llms import OpenAI
from langchain_community.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
```
@@ -647,7 +647,7 @@ Sometimes you may not have the luxury of using OpenAI or other service-hosted la
import logging
import torch
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from langchain.llms import HuggingFacePipeline
from langchain_community.llms import HuggingFacePipeline
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
model_id = "google/flan-ul2"
@@ -679,7 +679,7 @@ local_llm = HuggingFacePipeline(pipeline=pipe)
```python
from langchain.utilities import SQLDatabase
from langchain_community.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chinook.db", include_tables=['Customer'])
@@ -994,9 +994,9 @@ Now that you have some examples (with manually corrected output SQL), you can do
```python
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain_community.vectorstores import Chroma
example_prompt = PromptTemplate(
input_variables=["table_info", "input", "sql_cmd", "sql_result", "answer"],

View File

@@ -23,8 +23,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda"
]
@@ -129,7 +129,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
"\n",
"search = DuckDuckGoSearchAPIWrapper(max_results=4)\n",
"\n",

View File

@@ -24,7 +24,7 @@
}
],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=1, max_tokens=512, model=\"gpt-3.5-turbo-instruct\")"
]

View File

@@ -37,8 +37,8 @@
"import getpass\n",
"import os\n",
"\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores import DeepLake\n",
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import DeepLake\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
@@ -110,7 +110,7 @@
"source": [
"import os\n",
"\n",
"from langchain.document_loaders import TextLoader\n",
"from langchain_community.document_loaders import TextLoader\n",
"\n",
"root_dir = \"./the-algorithm\"\n",
"docs = []\n",
@@ -3809,7 +3809,7 @@
"outputs": [],
"source": [
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"

View File

@@ -24,13 +24,13 @@
"source": [
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
")\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -24,11 +24,11 @@
"source": [
"from typing import Callable, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
")"
")\n",
"from langchain_community.chat_models import ChatOpenAI"
]
},
{

View File

@@ -599,7 +599,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)"
]

View File

@@ -32,7 +32,7 @@ There isn't any special setup for it.
See a [usage example](/docs/integrations/llms/INCLUDE_REAL_NAME).
```python
from langchain.llms import integration_class_REPLACE_ME
from langchain_community.llms import integration_class_REPLACE_ME
```
## Text Embedding Models
@@ -40,7 +40,7 @@ from langchain.llms import integration_class_REPLACE_ME
See a [usage example](/docs/integrations/text_embedding/INCLUDE_REAL_NAME)
```python
from langchain.embeddings import integration_class_REPLACE_ME
from langchain_community.embeddings import integration_class_REPLACE_ME
```
## Chat models
@@ -48,7 +48,7 @@ from langchain.embeddings import integration_class_REPLACE_ME
See a [usage example](/docs/integrations/chat/INCLUDE_REAL_NAME)
```python
from langchain.chat_models import integration_class_REPLACE_ME
from langchain_community.chat_models import integration_class_REPLACE_ME
```
## Document Loader
@@ -56,5 +56,5 @@ from langchain.chat_models import integration_class_REPLACE_ME
See a [usage example](/docs/integrations/document_loaders/INCLUDE_REAL_NAME).
```python
from langchain.document_loaders import integration_class_REPLACE_ME
from langchain_community.document_loaders import integration_class_REPLACE_ME
```

View File

@@ -20,7 +20,7 @@
"from langchain import hub\n",
"from langchain.agents import AgentExecutor, tool\n",
"from langchain.agents.output_parsers import XMLAgentOutputParser\n",
"from langchain.chat_models import ChatAnthropic"
"from langchain_community.chat_models import ChatAnthropic"
]
},
{

View File

@@ -17,10 +17,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
")\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_experimental.utilities import PythonREPL"
]

View File

@@ -19,10 +19,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.utils.math import cosine_similarity\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"\n",

View File

@@ -19,9 +19,9 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"\n",
"model = ChatOpenAI()\n",

View File

@@ -18,8 +18,8 @@
"outputs": [],
"source": [
"from langchain.chains import OpenAIModerationChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import ChatPromptTemplate"
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.llms import OpenAI"
]
},
{

View File

@@ -39,9 +39,9 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\"what is the city {person} is from?\")\n",
"prompt2 = ChatPromptTemplate.from_template(\n",

View File

@@ -42,8 +42,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {foo}\")\n",
"model = ChatOpenAI()\n",

View File

@@ -26,12 +26,12 @@
"from langchain.agents import AgentExecutor, load_tools\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.prompts.chat import ChatPromptValue\n",
"from langchain.tools import WikipediaQueryRun\n",
"from langchain.tools.render import format_tool_to_openai_function\n",
"from langchain.utilities import WikipediaAPIWrapper"
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
"from langchain_community.utilities import WikipediaAPIWrapper"
]
},
{

View File

@@ -38,10 +38,10 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough"
]

View File

@@ -43,7 +43,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.utilities import SQLDatabase"
"from langchain_community.utilities import SQLDatabase"
]
},
{
@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",

View File

@@ -27,9 +27,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.tools import DuckDuckGoSearchRun\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},

View File

@@ -48,8 +48,8 @@
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
@@ -209,7 +209,7 @@
}
],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")\n",
"llm.invoke(prompt_value)"
@@ -324,10 +324,10 @@
"# Requires:\n",
"# pip install langchain docarray tiktoken\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import DocArrayInMemorySearch\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n",

View File

@@ -19,9 +19,9 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.runnables import RunnablePassthrough"
]
},

View File

@@ -41,8 +41,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.runnables import ConfigurableField\n",
"\n",
"model = ChatOpenAI(temperature=0).configurable_fields(\n",
@@ -263,8 +263,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain_core.runnables import ConfigurableField"
]
},

View File

@@ -31,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic, ChatOpenAI"
"from langchain_community.chat_models import ChatAnthropic, ChatOpenAI"
]
},
{
@@ -240,8 +240,8 @@
"outputs": [],
"source": [
"# Now lets create a chain with the normal OpenAI model\n",
"from langchain.llms import OpenAI\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"prompt_template = \"\"\"Instructions: You should always include a compliment in your response.\n",
"\n",

View File

@@ -33,8 +33,8 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.runnables import RunnableLambda\n",
"\n",
"\n",

View File

@@ -32,8 +32,8 @@
"source": [
"from typing import Iterator, List\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\n",

View File

@@ -44,10 +44,10 @@
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
@@ -128,10 +128,10 @@
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
@@ -192,8 +192,8 @@
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_core.runnables import RunnableParallel\n",
"\n",
"model = ChatOpenAI()\n",

View File

@@ -131,9 +131,9 @@
"source": [
"from typing import Optional\n",
"\n",
"from langchain.chat_models import ChatAnthropic\n",
"from langchain.memory.chat_message_histories import RedisChatMessageHistory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_community.chat_message_histories import RedisChatMessageHistory\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_core.chat_history import BaseChatMessageHistory\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory"
]

View File

@@ -97,10 +97,10 @@
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",

View File

@@ -2,6 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"id": "9e45e81c-e16e-4c6c-b6a3-2362e5193827",
"metadata": {},
"source": [
"---\n",
@@ -51,8 +52,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"from langchain_core.output_parsers import StrOutputParser"
]
},

View File

@@ -57,8 +57,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\")\n",
@@ -659,8 +659,8 @@
}
],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores import FAISS\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",

View File

@@ -42,7 +42,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
@@ -389,7 +389,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain_community.llms import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")\n",
"llm_chain = (\n",
@@ -468,7 +468,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"\n",
"anthropic = ChatAnthropic(model=\"claude-2\")\n",
"anthropic_chain = (\n",
@@ -1002,8 +1002,8 @@
"source": [
"import os\n",
"\n",
"from langchain.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain.llms import OpenAI\n",
"from langchain_community.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain_community.llms import OpenAI\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",

View File

@@ -85,7 +85,7 @@ export OPENAI_API_KEY="..."
We can then initialize the model:
```python
from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatOpenAI
llm = ChatOpenAI()
```
@@ -93,7 +93,7 @@ llm = ChatOpenAI()
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
```python
from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatOpenAI
llm = ChatOpenAI(openai_api_key="...")
```
@@ -110,7 +110,7 @@ First, follow [these instructions](https://github.com/jmorganca/ollama) to set u
Then, make sure the Ollama server is running. After that, you can do:
```python
from langchain.llms import Ollama
from langchain_community.llms import Ollama
llm = Ollama(model="llama2")
```
@@ -143,6 +143,10 @@ chain = prompt | llm
We can now invoke it and ask the same question. It still won't know the answer, but it should respond in a more proper tone for a technical writer!
```python
chain.invoke({"input": "how can langsmith help with testing?"})
```
The output of a ChatModel (and therefore, of this chain) is a message. However, it's often much more convenient to work with strings. Let's add a simple output parser to convert the chat message to a string.
```python
@@ -204,7 +208,7 @@ embeddings = OpenAIEmbeddings()
```
</TabItem>
<TabItem value="local" label="Ollama">
<TabItem value="local" label="Local">
Make sure you have Ollama running (same set up as with the LLM).
@@ -284,7 +288,7 @@ We can now invoke this chain. This returns a dictionary - the response from the
response = retrieval_chain.invoke({"input": "how can langsmith help with testing?"})
print(response["answer"])
// LangSmith offers several features that can help with testing:...
# LangSmith offers several features that can help with testing:...
```
This answer should be much more accurate!
@@ -326,7 +330,7 @@ We can test this out by passing in an instance where the user is asking a follow
from langchain_core.messages import HumanMessage, AIMessage
chat_history = [HumanMessage(content="Can LangSmith help test my LLM applications?"), AIMessage(content="Yes!")]
retrieval_chain.invoke({
retriever_chain.invoke({
"chat_history": chat_history,
"input": "Tell me how"
})
@@ -412,7 +416,7 @@ pip install langchainhub
Now we can use it to get a predefined prompt
```python
from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatOpenAI
from langchain import hub
from langchain.agents import create_openai_functions_agent
from langchain.agents import AgentExecutor
@@ -476,14 +480,14 @@ from typing import List
from fastapi import FastAPI
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import DocArrayInMemorySearch
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatOpenAI
from langchain import hub
from langchain.agents import create_openai_functions_agent
from langchain.agents import AgentExecutor

View File

@@ -25,7 +25,7 @@ Let's suppose we have a simple agent, and want to visualize the actions it takes
```python
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatOpenAI
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
tools = load_tools(["ddg-search", "llm-math"], llm=llm)

View File

@@ -120,8 +120,8 @@
"from typing import Any, Optional\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.chat_models import ChatAnthropic\n",
"from langchain.evaluation import PairwiseStringEvaluator\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"\n",
"\n",
"class CustomPreferenceEvaluator(PairwiseStringEvaluator):\n",

View File

@@ -156,7 +156,7 @@
},
"outputs": [],
"source": [
"from langchain.embeddings import HuggingFaceEmbeddings\n",
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
"\n",
"embedding_model = HuggingFaceEmbeddings()\n",
"hf_evaluator = load_evaluator(\"pairwise_embedding_distance\", embeddings=embedding_model)"

View File

@@ -236,7 +236,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatAnthropic\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(temperature=0)\n",
"\n",

Some files were not shown because too many files have changed in this diff Show More