mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-07 01:30:24 +00:00
Compare commits
4 Commits
erick/ci-t
...
harrison/a
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
967e2c6d29 | ||
|
|
7b042d008d | ||
|
|
9447af9815 | ||
|
|
22fabf4ad2 |
41
.github/CONTRIBUTING.md
vendored
41
.github/CONTRIBUTING.md
vendored
@@ -3,4 +3,43 @@
|
||||
Hi there! Thank you for even being interested in contributing to LangChain.
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
|
||||
|
||||
To learn how to contribute to LangChain, please follow the [contribution guide here](https://python.langchain.com/docs/contributing/).
|
||||
To learn about how to contribute, please follow the [guides here](https://python.langchain.com/docs/contributing/)
|
||||
|
||||
## 🗺️ Guidelines
|
||||
|
||||
### 👩💻 Ways to contribute
|
||||
|
||||
There are many ways to contribute to LangChain. Here are some common ways people contribute:
|
||||
|
||||
- [**Documentation**](https://python.langchain.com/docs/contributing/documentation): Help improve our docs, including this one!
|
||||
- [**Code**](https://python.langchain.com/docs/contributing/code): Help us write code, fix bugs, or improve our infrastructure.
|
||||
- [**Integrations**](https://python.langchain.com/docs/contributing/integration): Help us integrate with your favorite vendors and tools.
|
||||
|
||||
### 🚩GitHub Issues
|
||||
|
||||
Our [issues](https://github.com/langchain-ai/langchain/issues) page is kept up to date with bugs, improvements, and feature requests.
|
||||
|
||||
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help organize issues.
|
||||
|
||||
If you start working on an issue, please assign it to yourself.
|
||||
|
||||
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
|
||||
If two issues are related, or blocking, please link them rather than combining them.
|
||||
|
||||
We will try to keep these issues as up-to-date as possible, though
|
||||
with the rapid rate of development in this field some may get out of date.
|
||||
If you notice this happening, please let us know.
|
||||
|
||||
### 🙋Getting Help
|
||||
|
||||
Our goal is to have the simplest developer setup possible. Should you experience any difficulty getting setup, please
|
||||
contact a maintainer! Not only do we want to help get you unblocked, but we also want to make sure that the process is
|
||||
smooth for future contributors.
|
||||
|
||||
In a similar vein, we do enforce certain linting, formatting, and documentation standards in the codebase.
|
||||
If you are finding these difficult (or even just annoying) to work with, feel free to contact a maintainer for help -
|
||||
we do not want these to get in the way of getting good code into the codebase.
|
||||
|
||||
### Contributor Documentation
|
||||
|
||||
To learn about how to contribute, please follow the [guides here](https://python.langchain.com/docs/contributing/)
|
||||
|
||||
122
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
122
.github/DISCUSSION_TEMPLATE/q-a.yml
vendored
@@ -1,122 +0,0 @@
|
||||
labels: [Question]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for your interest in LangChain 🦜️🔗!
|
||||
|
||||
Please follow these instructions, fill every question, and do every step. 🙏
|
||||
|
||||
We're asking for this because answering questions and solving problems in GitHub takes a lot of time --
|
||||
this is time that we cannot spend on adding new features, fixing bugs, writing documentation or reviewing pull requests.
|
||||
|
||||
By asking questions in a structured way (following this) it will be much easier for us to help you.
|
||||
|
||||
There's a high chance that by following this process, you'll find the solution on your own, eliminating the need to submit a question and wait for an answer. 😎
|
||||
|
||||
As there are many questions submitted every day, we will **DISCARD** and close the incomplete ones.
|
||||
|
||||
That will allow us (and others) to focus on helping people like you that follow the whole process. 🤓
|
||||
|
||||
Relevant links to check before opening a question to see if your question has already been answered, fixed or
|
||||
if there's another way to solve your problem:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
[LangChain ChatBot](https://chat.langchain.com/)
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checked other resources
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: I added a very descriptive title to this question.
|
||||
required: true
|
||||
- label: I searched the LangChain documentation with the integrated search.
|
||||
required: true
|
||||
- label: I used the GitHub search to find a similar question and didn't find it.
|
||||
required: true
|
||||
- type: checkboxes
|
||||
id: help
|
||||
attributes:
|
||||
label: Commit to Help
|
||||
description: |
|
||||
After submitting this, I commit to one of:
|
||||
|
||||
* Read open questions until I find 2 where I can help someone and add a comment to help there.
|
||||
* I already hit the "watch" button in this repository to receive notifications and I commit to help at least 2 people that ask questions in the future.
|
||||
* Once my question is answered, I will mark the answer as "accepted".
|
||||
options:
|
||||
- label: I commit to help with one of those options 👆
|
||||
required: true
|
||||
- type: textarea
|
||||
id: example
|
||||
attributes:
|
||||
label: Example Code
|
||||
description: |
|
||||
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
|
||||
|
||||
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
|
||||
|
||||
**Important!**
|
||||
|
||||
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
|
||||
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
|
||||
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
placeholder: |
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
raise NotImplementedError('For demo purpose')
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
render: python
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
What is the problem, question, or error?
|
||||
|
||||
Write a short description explaining what you are doing, what you expect to happen, and what is currently happening.
|
||||
placeholder: |
|
||||
* I'm trying to use the `langchain` library to do X.
|
||||
* I expect to see Y.
|
||||
* Instead, it does Z.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us.
|
||||
|
||||
"pip freeze | grep langchain"
|
||||
platform (windows / linux / mac)
|
||||
python version
|
||||
|
||||
OR if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
placeholder: |
|
||||
"pip freeze | grep langchain"
|
||||
platform
|
||||
python version
|
||||
|
||||
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
|
||||
These will only surface LangChain packages, don't forget to include any other relevant
|
||||
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
|
||||
validations:
|
||||
required: true
|
||||
184
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
184
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,120 +1,106 @@
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Report a bug in LangChain. To report a security issue, please instead use the security option below. For questions, please use the GitHub Discussions.
|
||||
description: Submit a bug report to help us improve LangChain. To report a security issue, please instead use the security option below.
|
||||
labels: ["02 Bug Report"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to file a bug report.
|
||||
|
||||
Use this to report bugs in LangChain.
|
||||
|
||||
If you're not certain that your issue is due to a bug in LangChain, please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions)
|
||||
to ask for help with your issue.
|
||||
|
||||
Relevant links to check before filing a bug report to see if your issue has already been reported, fixed or
|
||||
if there's another way to solve your problem:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
[LangChain ChatBot](https://chat.langchain.com/)
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
Thank you for taking the time to file a bug report. Before creating a new
|
||||
issue, please make sure to take a few moments to check the issue tracker
|
||||
for existing issues about the bug.
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: Checked other resources
|
||||
description: Please confirm and check all the following options.
|
||||
label: System Info
|
||||
description: Please share your system info with us.
|
||||
placeholder: LangChain version, platform, python version, ...
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: who-can-help
|
||||
attributes:
|
||||
label: Who can help?
|
||||
description: |
|
||||
Your issue will be replied to more quickly if you can figure out the right person to tag with @
|
||||
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
|
||||
|
||||
The core maintainers strive to read all issues, but tagging them will help them prioritize.
|
||||
|
||||
Please tag fewer than 3 people.
|
||||
|
||||
@hwchase17 - project lead
|
||||
|
||||
Tracing / Callbacks
|
||||
- @agola11
|
||||
|
||||
Async
|
||||
- @agola11
|
||||
|
||||
DataLoader Abstractions
|
||||
- @eyurtsev
|
||||
|
||||
LLM/Chat Wrappers
|
||||
- @hwchase17
|
||||
- @agola11
|
||||
|
||||
Tools / Toolkits
|
||||
- ...
|
||||
|
||||
placeholder: "@Username ..."
|
||||
|
||||
- type: checkboxes
|
||||
id: information-scripts-examples
|
||||
attributes:
|
||||
label: Information
|
||||
description: "The problem arises when using:"
|
||||
options:
|
||||
- label: I added a very descriptive title to this issue.
|
||||
required: true
|
||||
- label: I searched the LangChain documentation with the integrated search.
|
||||
required: true
|
||||
- label: I used the GitHub search to find a similar question and didn't find it.
|
||||
required: true
|
||||
- label: I am sure that this is a bug in LangChain rather than my code.
|
||||
required: true
|
||||
- label: The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package).
|
||||
required: true
|
||||
- label: "The official example notebooks/scripts"
|
||||
- label: "My own modified scripts"
|
||||
|
||||
- type: checkboxes
|
||||
id: related-components
|
||||
attributes:
|
||||
label: Related Components
|
||||
description: "Select the components related to the issue (if applicable):"
|
||||
options:
|
||||
- label: "LLMs/Chat Models"
|
||||
- label: "Embedding Models"
|
||||
- label: "Prompts / Prompt Templates / Prompt Selectors"
|
||||
- label: "Output Parsers"
|
||||
- label: "Document Loaders"
|
||||
- label: "Vector Stores / Retrievers"
|
||||
- label: "Memory"
|
||||
- label: "Agents / Agent Executors"
|
||||
- label: "Tools / Toolkits"
|
||||
- label: "Chains"
|
||||
- label: "Callbacks/Tracing"
|
||||
- label: "Async"
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Example Code
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please add a self-contained, [minimal, reproducible, example](https://stackoverflow.com/help/minimal-reproducible-example) with your use case.
|
||||
|
||||
If a maintainer can copy it, run it, and see it right away, there's a much higher chance that you'll be able to get help.
|
||||
|
||||
**Important!**
|
||||
|
||||
* Use code tags (e.g., ```python ... ```) to correctly [format your code](https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting).
|
||||
* INCLUDE the language label (e.g. `python`) after the first three backticks to enable syntax highlighting. (e.g., ```python rather than ```).
|
||||
* Reduce your code to the minimum required to reproduce the issue if possible. This makes it much easier for others to help you.
|
||||
* Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
|
||||
If you have code snippets, error messages, stack traces please provide them here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
placeholder: |
|
||||
The following code:
|
||||
|
||||
```python
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
Steps to reproduce the behavior:
|
||||
|
||||
1.
|
||||
2.
|
||||
3.
|
||||
|
||||
def bad_code(inputs) -> int:
|
||||
raise NotImplementedError('For demo purpose')
|
||||
|
||||
chain = RunnableLambda(bad_code)
|
||||
chain.invoke('Hello!')
|
||||
```
|
||||
- type: textarea
|
||||
id: error
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Error Message and Stack Trace (if applicable)
|
||||
description: |
|
||||
If you are reporting an error, please include the full error message and stack trace.
|
||||
placeholder: |
|
||||
Exception + full stack trace
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
What is the problem, question, or error?
|
||||
|
||||
Write a short description telling what you are doing, what you expect to happen, and what is currently happening.
|
||||
placeholder: |
|
||||
* I'm trying to use the `langchain` library to do X.
|
||||
* I expect to see Y.
|
||||
* Instead, it does Z.
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us.
|
||||
|
||||
"pip freeze | grep langchain"
|
||||
platform (windows / linux / mac)
|
||||
python version
|
||||
|
||||
OR if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
placeholder: |
|
||||
"pip freeze | grep langchain"
|
||||
platform
|
||||
python version
|
||||
|
||||
Alternatively, if you're on a recent version of langchain-core you can paste the output of:
|
||||
|
||||
python -m langchain_core.sys_info
|
||||
|
||||
These will only surface LangChain packages, don't forget to include any other relevant
|
||||
packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`).
|
||||
validations:
|
||||
required: true
|
||||
label: Expected behavior
|
||||
description: "A clear and concise description of what you would expect to happen."
|
||||
|
||||
11
.github/ISSUE_TEMPLATE/config.yml
vendored
11
.github/ISSUE_TEMPLATE/config.yml
vendored
@@ -1,15 +1,6 @@
|
||||
blank_issues_enabled: false
|
||||
blank_issues_enabled: true
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: 🤔 Question or Problem
|
||||
about: Ask a question or ask about a problem in GitHub Discussions.
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/q-a
|
||||
- name: Discord
|
||||
url: https://discord.gg/6adMQxSpJS
|
||||
about: General community discussions
|
||||
- name: Feature Request
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/ideas
|
||||
about: Suggest a feature or an idea
|
||||
- name: Show and tell
|
||||
about: Show what you built with LangChain
|
||||
url: https://www.github.com/langchain-ai/langchain/discussions/categories/show-and-tell
|
||||
|
||||
36
.github/ISSUE_TEMPLATE/documentation.yml
vendored
36
.github/ISSUE_TEMPLATE/documentation.yml
vendored
@@ -4,45 +4,13 @@ title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>"
|
||||
labels: [03 - Documentation]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to report an issue in the documentation.
|
||||
|
||||
Only report issues with documentation here, explain if there are
|
||||
any missing topics or if you found a mistake in the documentation.
|
||||
|
||||
Do **NOT** use this to ask usage questions or reporting issues with your code.
|
||||
|
||||
If you have usage questions or need help solving some problem,
|
||||
please use [GitHub Discussions](https://github.com/langchain-ai/langchain/discussions).
|
||||
|
||||
If you're in the wrong place, here are some helpful links to find a better
|
||||
place to ask your question:
|
||||
|
||||
[LangChain documentation with the integrated search](https://python.langchain.com/docs/get_started/introduction),
|
||||
[API Reference](https://api.python.langchain.com/en/stable/),
|
||||
[GitHub search](https://github.com/langchain-ai/langchain),
|
||||
[LangChain Github Discussions](https://github.com/langchain-ai/langchain/discussions),
|
||||
[LangChain Github Issues](https://github.com/langchain-ai/langchain/issues?q=is%3Aissue),
|
||||
[LangChain ChatBot](https://chat.langchain.com/)
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checklist
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: I added a very descriptive title to this issue.
|
||||
required: true
|
||||
- label: I included a link to the documentation page I am referring to (if applicable).
|
||||
required: true
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Issue with current documentation:"
|
||||
description: >
|
||||
Please make sure to leave a reference to the document/code you're
|
||||
referring to. Feel free to include names of classes, functions, methods
|
||||
or concepts you'd like to see documented more.
|
||||
referring to.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Idea or request for content:"
|
||||
|
||||
@@ -1,17 +1,7 @@
|
||||
labels: [idea]
|
||||
name: "\U0001F680 Feature request"
|
||||
description: Submit a proposal/request for a new LangChain feature
|
||||
labels: ["02 Feature Request"]
|
||||
body:
|
||||
- type: checkboxes
|
||||
id: checks
|
||||
attributes:
|
||||
label: Checked
|
||||
description: Please confirm and check all the following options.
|
||||
options:
|
||||
- label: I searched existing ideas and did not find a similar one
|
||||
required: true
|
||||
- label: I added a very descriptive title
|
||||
required: true
|
||||
- label: I've clearly described the feature request and motivation for it
|
||||
required: true
|
||||
- type: textarea
|
||||
id: feature-request
|
||||
validations:
|
||||
@@ -20,6 +10,7 @@ body:
|
||||
label: Feature request
|
||||
description: |
|
||||
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
|
||||
|
||||
- type: textarea
|
||||
id: motivation
|
||||
validations:
|
||||
@@ -28,11 +19,12 @@ body:
|
||||
label: Motivation
|
||||
description: |
|
||||
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
|
||||
|
||||
- type: textarea
|
||||
id: proposal
|
||||
id: contribution
|
||||
validations:
|
||||
required: false
|
||||
required: true
|
||||
attributes:
|
||||
label: Proposal (If applicable)
|
||||
label: Your contribution
|
||||
description: |
|
||||
If you would like to propose a solution, please describe it here.
|
||||
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the [Contributing Guide](https://python.langchain.com/docs/contributing/)
|
||||
18
.github/ISSUE_TEMPLATE/other.yml
vendored
Normal file
18
.github/ISSUE_TEMPLATE/other.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
name: Other Issue
|
||||
description: Raise an issue that wouldn't be covered by the other templates.
|
||||
title: "Issue: <Please write a comprehensive title after the 'Issue: ' prefix>"
|
||||
labels: [04 - Other]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Issue you'd like to raise."
|
||||
description: >
|
||||
Please describe the issue you'd like to raise as clearly as possible.
|
||||
Make sure to include any relevant links or references.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Suggestion:"
|
||||
description: >
|
||||
Please outline a suggestion to improve the issue here.
|
||||
25
.github/ISSUE_TEMPLATE/privileged.yml
vendored
25
.github/ISSUE_TEMPLATE/privileged.yml
vendored
@@ -1,25 +0,0 @@
|
||||
name: 🔒 Privileged
|
||||
description: You are a LangChain maintainer, or was asked directly by a maintainer to create an issue here. If not, check the other options.
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for your interest in LangChain! 🚀
|
||||
|
||||
If you are not a LangChain maintainer or were not asked directly by a maintainer to create an issue, then please start the conversation in a [Question in GitHub Discussions](https://github.com/langchain-ai/langchain/discussions/categories/q-a) instead.
|
||||
|
||||
You are a LangChain maintainer if you maintain any of the packages inside of the LangChain repository
|
||||
or are a regular contributor to LangChain with previous merged pull requests.
|
||||
- type: checkboxes
|
||||
id: privileged
|
||||
attributes:
|
||||
label: Privileged issue
|
||||
description: Confirm that you are allowed to create an issue here.
|
||||
options:
|
||||
- label: I am a LangChain maintainer, or was asked directly by a LangChain maintainer to create an issue here.
|
||||
required: true
|
||||
- type: textarea
|
||||
id: content
|
||||
attributes:
|
||||
label: Issue Content
|
||||
description: Add the content of the issue here.
|
||||
33
.github/PULL_REQUEST_TEMPLATE.md
vendored
33
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -1,29 +1,20 @@
|
||||
Thank you for contributing to LangChain!
|
||||
<!-- Thank you for contributing to LangChain!
|
||||
|
||||
- [ ] **PR title**: "package: description"
|
||||
- Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes.
|
||||
- Example: "community: add foobar LLM"
|
||||
Please title your PR "<package>: <description>", where <package> is whichever of langchain, community, core, experimental, etc. is being modified.
|
||||
|
||||
Replace this entire comment with:
|
||||
- **Description:** a description of the change,
|
||||
- **Issue:** the issue # it fixes if applicable,
|
||||
- **Dependencies:** any dependencies required for this change,
|
||||
- **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out!
|
||||
|
||||
- [ ] **PR message**: ***Delete this entire checklist*** and replace with
|
||||
- **Description:** a description of the change
|
||||
- **Issue:** the issue # it fixes, if applicable
|
||||
- **Dependencies:** any dependencies required for this change
|
||||
- **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out!
|
||||
Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` from the root of the package you've modified to check this locally.
|
||||
|
||||
See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/
|
||||
|
||||
- [ ] **Add tests and docs**: If you're adding a new integration, please include
|
||||
If you're adding a new integration, please include:
|
||||
1. a test for the integration, preferably unit tests that do not rely on network access,
|
||||
2. an example notebook showing its use. It lives in `docs/docs/integrations` directory.
|
||||
|
||||
|
||||
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/
|
||||
|
||||
Additional guidelines:
|
||||
- Make sure optional dependencies are imported within a function.
|
||||
- Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests.
|
||||
- Most PRs should not touch more than one package.
|
||||
- Changes should be backwards compatible.
|
||||
- If you are adding something to community, do not re-import it in langchain.
|
||||
|
||||
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17.
|
||||
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17.
|
||||
-->
|
||||
|
||||
7
.github/actions/people/Dockerfile
vendored
7
.github/actions/people/Dockerfile
vendored
@@ -1,7 +0,0 @@
|
||||
FROM python:3.9
|
||||
|
||||
RUN pip install httpx PyGithub "pydantic==2.0.2" pydantic-settings "pyyaml>=5.3.1,<6.0.0"
|
||||
|
||||
COPY ./app /app
|
||||
|
||||
CMD ["python", "/app/main.py"]
|
||||
11
.github/actions/people/action.yml
vendored
11
.github/actions/people/action.yml
vendored
@@ -1,11 +0,0 @@
|
||||
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/action.yml
|
||||
name: "Generate LangChain People"
|
||||
description: "Generate the data for the LangChain People page"
|
||||
author: "Jacob Lee <jacob@langchain.dev>"
|
||||
inputs:
|
||||
token:
|
||||
description: 'User token, to read the GitHub API. Can be passed in using {{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}'
|
||||
required: true
|
||||
runs:
|
||||
using: 'docker'
|
||||
image: 'Dockerfile'
|
||||
641
.github/actions/people/app/main.py
vendored
641
.github/actions/people/app/main.py
vendored
@@ -1,641 +0,0 @@
|
||||
# Adapted from https://github.com/tiangolo/fastapi/blob/master/.github/actions/people/app/main.py
|
||||
|
||||
import logging
|
||||
import subprocess
|
||||
import sys
|
||||
from collections import Counter
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Container, Dict, List, Set, Union
|
||||
|
||||
import httpx
|
||||
import yaml
|
||||
from github import Github
|
||||
from pydantic import BaseModel, SecretStr
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
github_graphql_url = "https://api.github.com/graphql"
|
||||
questions_category_id = "DIC_kwDOIPDwls4CS6Ve"
|
||||
|
||||
# discussions_query = """
|
||||
# query Q($after: String, $category_id: ID) {
|
||||
# repository(name: "langchain", owner: "langchain-ai") {
|
||||
# discussions(first: 100, after: $after, categoryId: $category_id) {
|
||||
# edges {
|
||||
# cursor
|
||||
# node {
|
||||
# number
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# title
|
||||
# createdAt
|
||||
# comments(first: 100) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# isAnswer
|
||||
# replies(first: 10) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# """
|
||||
|
||||
# issues_query = """
|
||||
# query Q($after: String) {
|
||||
# repository(name: "langchain", owner: "langchain-ai") {
|
||||
# issues(first: 100, after: $after) {
|
||||
# edges {
|
||||
# cursor
|
||||
# node {
|
||||
# number
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# title
|
||||
# createdAt
|
||||
# state
|
||||
# comments(first: 100) {
|
||||
# nodes {
|
||||
# createdAt
|
||||
# author {
|
||||
# login
|
||||
# avatarUrl
|
||||
# url
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# }
|
||||
# """
|
||||
|
||||
prs_query = """
|
||||
query Q($after: String) {
|
||||
repository(name: "langchain", owner: "langchain-ai") {
|
||||
pullRequests(first: 100, after: $after, states: MERGED) {
|
||||
edges {
|
||||
cursor
|
||||
node {
|
||||
changedFiles
|
||||
additions
|
||||
deletions
|
||||
number
|
||||
labels(first: 100) {
|
||||
nodes {
|
||||
name
|
||||
}
|
||||
}
|
||||
author {
|
||||
login
|
||||
avatarUrl
|
||||
url
|
||||
... on User {
|
||||
twitterUsername
|
||||
}
|
||||
}
|
||||
title
|
||||
createdAt
|
||||
state
|
||||
reviews(first:100) {
|
||||
nodes {
|
||||
author {
|
||||
login
|
||||
avatarUrl
|
||||
url
|
||||
... on User {
|
||||
twitterUsername
|
||||
}
|
||||
}
|
||||
state
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
class Author(BaseModel):
|
||||
login: str
|
||||
avatarUrl: str
|
||||
url: str
|
||||
twitterUsername: Union[str, None] = None
|
||||
|
||||
|
||||
# Issues and Discussions
|
||||
|
||||
|
||||
class CommentsNode(BaseModel):
|
||||
createdAt: datetime
|
||||
author: Union[Author, None] = None
|
||||
|
||||
|
||||
class Replies(BaseModel):
|
||||
nodes: List[CommentsNode]
|
||||
|
||||
|
||||
class DiscussionsCommentsNode(CommentsNode):
|
||||
replies: Replies
|
||||
|
||||
|
||||
class Comments(BaseModel):
|
||||
nodes: List[CommentsNode]
|
||||
|
||||
|
||||
class DiscussionsComments(BaseModel):
|
||||
nodes: List[DiscussionsCommentsNode]
|
||||
|
||||
|
||||
class IssuesNode(BaseModel):
|
||||
number: int
|
||||
author: Union[Author, None] = None
|
||||
title: str
|
||||
createdAt: datetime
|
||||
state: str
|
||||
comments: Comments
|
||||
|
||||
|
||||
class DiscussionsNode(BaseModel):
|
||||
number: int
|
||||
author: Union[Author, None] = None
|
||||
title: str
|
||||
createdAt: datetime
|
||||
comments: DiscussionsComments
|
||||
|
||||
|
||||
class IssuesEdge(BaseModel):
|
||||
cursor: str
|
||||
node: IssuesNode
|
||||
|
||||
|
||||
class DiscussionsEdge(BaseModel):
|
||||
cursor: str
|
||||
node: DiscussionsNode
|
||||
|
||||
|
||||
class Issues(BaseModel):
|
||||
edges: List[IssuesEdge]
|
||||
|
||||
|
||||
class Discussions(BaseModel):
|
||||
edges: List[DiscussionsEdge]
|
||||
|
||||
|
||||
class IssuesRepository(BaseModel):
|
||||
issues: Issues
|
||||
|
||||
|
||||
class DiscussionsRepository(BaseModel):
|
||||
discussions: Discussions
|
||||
|
||||
|
||||
class IssuesResponseData(BaseModel):
|
||||
repository: IssuesRepository
|
||||
|
||||
|
||||
class DiscussionsResponseData(BaseModel):
|
||||
repository: DiscussionsRepository
|
||||
|
||||
|
||||
class IssuesResponse(BaseModel):
|
||||
data: IssuesResponseData
|
||||
|
||||
|
||||
class DiscussionsResponse(BaseModel):
|
||||
data: DiscussionsResponseData
|
||||
|
||||
|
||||
# PRs
|
||||
|
||||
|
||||
class LabelNode(BaseModel):
|
||||
name: str
|
||||
|
||||
|
||||
class Labels(BaseModel):
|
||||
nodes: List[LabelNode]
|
||||
|
||||
|
||||
class ReviewNode(BaseModel):
|
||||
author: Union[Author, None] = None
|
||||
state: str
|
||||
|
||||
|
||||
class Reviews(BaseModel):
|
||||
nodes: List[ReviewNode]
|
||||
|
||||
|
||||
class PullRequestNode(BaseModel):
|
||||
number: int
|
||||
labels: Labels
|
||||
author: Union[Author, None] = None
|
||||
changedFiles: int
|
||||
additions: int
|
||||
deletions: int
|
||||
title: str
|
||||
createdAt: datetime
|
||||
state: str
|
||||
reviews: Reviews
|
||||
# comments: Comments
|
||||
|
||||
|
||||
class PullRequestEdge(BaseModel):
|
||||
cursor: str
|
||||
node: PullRequestNode
|
||||
|
||||
|
||||
class PullRequests(BaseModel):
|
||||
edges: List[PullRequestEdge]
|
||||
|
||||
|
||||
class PRsRepository(BaseModel):
|
||||
pullRequests: PullRequests
|
||||
|
||||
|
||||
class PRsResponseData(BaseModel):
|
||||
repository: PRsRepository
|
||||
|
||||
|
||||
class PRsResponse(BaseModel):
|
||||
data: PRsResponseData
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
input_token: SecretStr
|
||||
github_repository: str
|
||||
httpx_timeout: int = 30
|
||||
|
||||
|
||||
def get_graphql_response(
|
||||
*,
|
||||
settings: Settings,
|
||||
query: str,
|
||||
after: Union[str, None] = None,
|
||||
category_id: Union[str, None] = None,
|
||||
) -> Dict[str, Any]:
|
||||
headers = {"Authorization": f"token {settings.input_token.get_secret_value()}"}
|
||||
# category_id is only used by one query, but GraphQL allows unused variables, so
|
||||
# keep it here for simplicity
|
||||
variables = {"after": after, "category_id": category_id}
|
||||
response = httpx.post(
|
||||
github_graphql_url,
|
||||
headers=headers,
|
||||
timeout=settings.httpx_timeout,
|
||||
json={"query": query, "variables": variables, "operationName": "Q"},
|
||||
)
|
||||
if response.status_code != 200:
|
||||
logging.error(
|
||||
f"Response was not 200, after: {after}, category_id: {category_id}"
|
||||
)
|
||||
logging.error(response.text)
|
||||
raise RuntimeError(response.text)
|
||||
data = response.json()
|
||||
if "errors" in data:
|
||||
logging.error(f"Errors in response, after: {after}, category_id: {category_id}")
|
||||
logging.error(data["errors"])
|
||||
logging.error(response.text)
|
||||
raise RuntimeError(response.text)
|
||||
return data
|
||||
|
||||
|
||||
# def get_graphql_issue_edges(*, settings: Settings, after: Union[str, None] = None):
|
||||
# data = get_graphql_response(settings=settings, query=issues_query, after=after)
|
||||
# graphql_response = IssuesResponse.model_validate(data)
|
||||
# return graphql_response.data.repository.issues.edges
|
||||
|
||||
|
||||
# def get_graphql_question_discussion_edges(
|
||||
# *,
|
||||
# settings: Settings,
|
||||
# after: Union[str, None] = None,
|
||||
# ):
|
||||
# data = get_graphql_response(
|
||||
# settings=settings,
|
||||
# query=discussions_query,
|
||||
# after=after,
|
||||
# category_id=questions_category_id,
|
||||
# )
|
||||
# graphql_response = DiscussionsResponse.model_validate(data)
|
||||
# return graphql_response.data.repository.discussions.edges
|
||||
|
||||
|
||||
def get_graphql_pr_edges(*, settings: Settings, after: Union[str, None] = None):
|
||||
if after is None:
|
||||
print("Querying PRs...")
|
||||
else:
|
||||
print(f"Querying PRs with cursor {after}...")
|
||||
data = get_graphql_response(
|
||||
settings=settings,
|
||||
query=prs_query,
|
||||
after=after
|
||||
)
|
||||
graphql_response = PRsResponse.model_validate(data)
|
||||
return graphql_response.data.repository.pullRequests.edges
|
||||
|
||||
|
||||
# def get_issues_experts(settings: Settings):
|
||||
# issue_nodes: List[IssuesNode] = []
|
||||
# issue_edges = get_graphql_issue_edges(settings=settings)
|
||||
|
||||
# while issue_edges:
|
||||
# for edge in issue_edges:
|
||||
# issue_nodes.append(edge.node)
|
||||
# last_edge = issue_edges[-1]
|
||||
# issue_edges = get_graphql_issue_edges(settings=settings, after=last_edge.cursor)
|
||||
|
||||
# commentors = Counter()
|
||||
# last_month_commentors = Counter()
|
||||
# authors: Dict[str, Author] = {}
|
||||
|
||||
# now = datetime.now(tz=timezone.utc)
|
||||
# one_month_ago = now - timedelta(days=30)
|
||||
|
||||
# for issue in issue_nodes:
|
||||
# issue_author_name = None
|
||||
# if issue.author:
|
||||
# authors[issue.author.login] = issue.author
|
||||
# issue_author_name = issue.author.login
|
||||
# issue_commentors = set()
|
||||
# for comment in issue.comments.nodes:
|
||||
# if comment.author:
|
||||
# authors[comment.author.login] = comment.author
|
||||
# if comment.author.login != issue_author_name:
|
||||
# issue_commentors.add(comment.author.login)
|
||||
# for author_name in issue_commentors:
|
||||
# commentors[author_name] += 1
|
||||
# if issue.createdAt > one_month_ago:
|
||||
# last_month_commentors[author_name] += 1
|
||||
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
# def get_discussions_experts(settings: Settings):
|
||||
# discussion_nodes: List[DiscussionsNode] = []
|
||||
# discussion_edges = get_graphql_question_discussion_edges(settings=settings)
|
||||
|
||||
# while discussion_edges:
|
||||
# for discussion_edge in discussion_edges:
|
||||
# discussion_nodes.append(discussion_edge.node)
|
||||
# last_edge = discussion_edges[-1]
|
||||
# discussion_edges = get_graphql_question_discussion_edges(
|
||||
# settings=settings, after=last_edge.cursor
|
||||
# )
|
||||
|
||||
# commentors = Counter()
|
||||
# last_month_commentors = Counter()
|
||||
# authors: Dict[str, Author] = {}
|
||||
|
||||
# now = datetime.now(tz=timezone.utc)
|
||||
# one_month_ago = now - timedelta(days=30)
|
||||
|
||||
# for discussion in discussion_nodes:
|
||||
# discussion_author_name = None
|
||||
# if discussion.author:
|
||||
# authors[discussion.author.login] = discussion.author
|
||||
# discussion_author_name = discussion.author.login
|
||||
# discussion_commentors = set()
|
||||
# for comment in discussion.comments.nodes:
|
||||
# if comment.author:
|
||||
# authors[comment.author.login] = comment.author
|
||||
# if comment.author.login != discussion_author_name:
|
||||
# discussion_commentors.add(comment.author.login)
|
||||
# for reply in comment.replies.nodes:
|
||||
# if reply.author:
|
||||
# authors[reply.author.login] = reply.author
|
||||
# if reply.author.login != discussion_author_name:
|
||||
# discussion_commentors.add(reply.author.login)
|
||||
# for author_name in discussion_commentors:
|
||||
# commentors[author_name] += 1
|
||||
# if discussion.createdAt > one_month_ago:
|
||||
# last_month_commentors[author_name] += 1
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
# def get_experts(settings: Settings):
|
||||
# (
|
||||
# discussions_commentors,
|
||||
# discussions_last_month_commentors,
|
||||
# discussions_authors,
|
||||
# ) = get_discussions_experts(settings=settings)
|
||||
# commentors = discussions_commentors
|
||||
# last_month_commentors = discussions_last_month_commentors
|
||||
# authors = {**discussions_authors}
|
||||
# return commentors, last_month_commentors, authors
|
||||
|
||||
|
||||
def _logistic(x, k):
|
||||
return x / (x + k)
|
||||
|
||||
|
||||
def get_contributors(settings: Settings):
|
||||
pr_nodes: List[PullRequestNode] = []
|
||||
pr_edges = get_graphql_pr_edges(settings=settings)
|
||||
|
||||
while pr_edges:
|
||||
for edge in pr_edges:
|
||||
pr_nodes.append(edge.node)
|
||||
last_edge = pr_edges[-1]
|
||||
pr_edges = get_graphql_pr_edges(settings=settings, after=last_edge.cursor)
|
||||
|
||||
contributors = Counter()
|
||||
contributor_scores = Counter()
|
||||
recent_contributor_scores = Counter()
|
||||
reviewers = Counter()
|
||||
authors: Dict[str, Author] = {}
|
||||
|
||||
for pr in pr_nodes:
|
||||
pr_reviewers: Set[str] = set()
|
||||
for review in pr.reviews.nodes:
|
||||
if review.author:
|
||||
authors[review.author.login] = review.author
|
||||
pr_reviewers.add(review.author.login)
|
||||
for reviewer in pr_reviewers:
|
||||
reviewers[reviewer] += 1
|
||||
if pr.author:
|
||||
authors[pr.author.login] = pr.author
|
||||
contributors[pr.author.login] += 1
|
||||
files_changed = pr.changedFiles
|
||||
lines_changed = pr.additions + pr.deletions
|
||||
score = _logistic(files_changed, 20) + _logistic(lines_changed, 100)
|
||||
contributor_scores[pr.author.login] += score
|
||||
three_months_ago = (datetime.now(timezone.utc) - timedelta(days=3*30))
|
||||
if pr.createdAt > three_months_ago:
|
||||
recent_contributor_scores[pr.author.login] += score
|
||||
return contributors, contributor_scores, recent_contributor_scores, reviewers, authors
|
||||
|
||||
|
||||
def get_top_users(
|
||||
*,
|
||||
counter: Counter,
|
||||
min_count: int,
|
||||
authors: Dict[str, Author],
|
||||
skip_users: Container[str],
|
||||
):
|
||||
users = []
|
||||
for commentor, count in counter.most_common():
|
||||
if commentor in skip_users:
|
||||
continue
|
||||
if count >= min_count:
|
||||
author = authors[commentor]
|
||||
users.append(
|
||||
{
|
||||
"login": commentor,
|
||||
"count": count,
|
||||
"avatarUrl": author.avatarUrl,
|
||||
"twitterUsername": author.twitterUsername,
|
||||
"url": author.url,
|
||||
}
|
||||
)
|
||||
return users
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
settings = Settings()
|
||||
logging.info(f"Using config: {settings.model_dump_json()}")
|
||||
g = Github(settings.input_token.get_secret_value())
|
||||
repo = g.get_repo(settings.github_repository)
|
||||
# question_commentors, question_last_month_commentors, question_authors = get_experts(
|
||||
# settings=settings
|
||||
# )
|
||||
contributors, contributor_scores, recent_contributor_scores, reviewers, pr_authors = get_contributors(
|
||||
settings=settings
|
||||
)
|
||||
# authors = {**question_authors, **pr_authors}
|
||||
authors = {**pr_authors}
|
||||
maintainers_logins = {
|
||||
"hwchase17",
|
||||
"agola11",
|
||||
"baskaryan",
|
||||
"hinthornw",
|
||||
"nfcampos",
|
||||
"efriis",
|
||||
"eyurtsev",
|
||||
"rlancemartin"
|
||||
}
|
||||
hidden_logins = {
|
||||
"dev2049",
|
||||
"vowelparrot",
|
||||
"obi1kenobi",
|
||||
"langchain-infra",
|
||||
"jacoblee93",
|
||||
"dqbd",
|
||||
"bracesproul",
|
||||
"akira",
|
||||
}
|
||||
bot_names = {"dosubot", "github-actions", "CodiumAI-Agent"}
|
||||
maintainers = []
|
||||
for login in maintainers_logins:
|
||||
user = authors[login]
|
||||
maintainers.append(
|
||||
{
|
||||
"login": login,
|
||||
"count": contributors[login], #+ question_commentors[login],
|
||||
"avatarUrl": user.avatarUrl,
|
||||
"twitterUsername": user.twitterUsername,
|
||||
"url": user.url,
|
||||
}
|
||||
)
|
||||
|
||||
# min_count_expert = 10
|
||||
# min_count_last_month = 3
|
||||
min_score_contributor = 1
|
||||
min_count_reviewer = 5
|
||||
skip_users = maintainers_logins | bot_names | hidden_logins
|
||||
# experts = get_top_users(
|
||||
# counter=question_commentors,
|
||||
# min_count=min_count_expert,
|
||||
# authors=authors,
|
||||
# skip_users=skip_users,
|
||||
# )
|
||||
# last_month_active = get_top_users(
|
||||
# counter=question_last_month_commentors,
|
||||
# min_count=min_count_last_month,
|
||||
# authors=authors,
|
||||
# skip_users=skip_users,
|
||||
# )
|
||||
top_recent_contributors = get_top_users(
|
||||
counter=recent_contributor_scores,
|
||||
min_count=min_score_contributor,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
top_contributors = get_top_users(
|
||||
counter=contributor_scores,
|
||||
min_count=min_score_contributor,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
top_reviewers = get_top_users(
|
||||
counter=reviewers,
|
||||
min_count=min_count_reviewer,
|
||||
authors=authors,
|
||||
skip_users=skip_users,
|
||||
)
|
||||
|
||||
people = {
|
||||
"maintainers": maintainers,
|
||||
# "experts": experts,
|
||||
# "last_month_active": last_month_active,
|
||||
"top_recent_contributors": top_recent_contributors,
|
||||
"top_contributors": top_contributors,
|
||||
"top_reviewers": top_reviewers,
|
||||
}
|
||||
people_path = Path("./docs/data/people.yml")
|
||||
people_old_content = people_path.read_text(encoding="utf-8")
|
||||
new_people_content = yaml.dump(
|
||||
people, sort_keys=False, width=200, allow_unicode=True
|
||||
)
|
||||
if (
|
||||
people_old_content == new_people_content
|
||||
):
|
||||
logging.info("The LangChain People data hasn't changed, finishing.")
|
||||
sys.exit(0)
|
||||
people_path.write_text(new_people_content, encoding="utf-8")
|
||||
logging.info("Setting up GitHub Actions git user")
|
||||
subprocess.run(["git", "config", "user.name", "github-actions"], check=True)
|
||||
subprocess.run(
|
||||
["git", "config", "user.email", "github-actions@github.com"], check=True
|
||||
)
|
||||
branch_name = "langchain/langchain-people"
|
||||
logging.info(f"Creating a new branch {branch_name}")
|
||||
subprocess.run(["git", "checkout", "-B", branch_name], check=True)
|
||||
logging.info("Adding updated file")
|
||||
subprocess.run(
|
||||
["git", "add", str(people_path)], check=True
|
||||
)
|
||||
logging.info("Committing updated file")
|
||||
message = "👥 Update LangChain people data"
|
||||
result = subprocess.run(["git", "commit", "-m", message], check=True)
|
||||
logging.info("Pushing branch")
|
||||
subprocess.run(["git", "push", "origin", branch_name, "-f"], check=True)
|
||||
logging.info("Creating PR")
|
||||
pr = repo.create_pull(title=message, body=message, base="master", head=branch_name)
|
||||
logging.info(f"Created PR: {pr.number}")
|
||||
logging.info("Finished")
|
||||
10
.github/actions/poetry_setup/action.yml
vendored
10
.github/actions/poetry_setup/action.yml
vendored
@@ -26,13 +26,12 @@ inputs:
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- uses: actions/setup-python@v5
|
||||
- uses: actions/setup-python@v4
|
||||
name: Setup python ${{ inputs.python-version }}
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- uses: actions/cache@v4
|
||||
- uses: actions/cache@v3
|
||||
id: cache-bin-poetry
|
||||
name: Cache Poetry binary - Python ${{ inputs.python-version }}
|
||||
env:
|
||||
@@ -75,11 +74,10 @@ runs:
|
||||
env:
|
||||
POETRY_VERSION: ${{ inputs.poetry-version }}
|
||||
PYTHON_VERSION: ${{ inputs.python-version }}
|
||||
# Install poetry using the python version installed by setup-python step.
|
||||
run: pipx install "poetry==$POETRY_VERSION" --python '${{ steps.setup-python.outputs.python-path }}' --verbose
|
||||
run: pipx install "poetry==$POETRY_VERSION" --python "python$PYTHON_VERSION" --verbose
|
||||
|
||||
- name: Restore pip and poetry cached dependencies
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
70
.github/scripts/check_diff.py
vendored
70
.github/scripts/check_diff.py
vendored
@@ -1,27 +1,17 @@
|
||||
import json
|
||||
import sys
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
LANGCHAIN_DIRS = [
|
||||
LANGCHAIN_DIRS = {
|
||||
"libs/core",
|
||||
"libs/langchain",
|
||||
"libs/experimental",
|
||||
"libs/community",
|
||||
]
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
files = sys.argv[1:]
|
||||
|
||||
dirs_to_run: Dict[str, set] = {
|
||||
"lint": set(),
|
||||
"test": set(),
|
||||
"extended-test": set(),
|
||||
}
|
||||
|
||||
if len(files) == 300:
|
||||
# max diff length is 300 files - there are likely files missing
|
||||
raise ValueError("Max diff reached. Please manually run CI on changed libs.")
|
||||
dirs_to_run = set()
|
||||
|
||||
for file in files:
|
||||
if any(
|
||||
@@ -30,42 +20,32 @@ if __name__ == "__main__":
|
||||
".github/workflows",
|
||||
".github/tools",
|
||||
".github/actions",
|
||||
"libs/core",
|
||||
".github/scripts/check_diff.py",
|
||||
)
|
||||
):
|
||||
# add all LANGCHAIN_DIRS for infra changes
|
||||
dirs_to_run["extended-test"].update(LANGCHAIN_DIRS)
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS):
|
||||
# add that dir and all dirs after in LANGCHAIN_DIRS
|
||||
# for extended testing
|
||||
found = False
|
||||
for dir_ in LANGCHAIN_DIRS:
|
||||
if file.startswith(dir_):
|
||||
found = True
|
||||
if found:
|
||||
dirs_to_run["extended-test"].add(dir_)
|
||||
elif file.startswith("libs/partners"):
|
||||
dirs_to_run.update(LANGCHAIN_DIRS)
|
||||
elif "libs/community" in file:
|
||||
dirs_to_run.update(
|
||||
("libs/community", "libs/langchain", "libs/experimental")
|
||||
)
|
||||
elif "libs/partners" in file:
|
||||
partner_dir = file.split("/")[2]
|
||||
if os.path.isdir(f"libs/partners/{partner_dir}"):
|
||||
dirs_to_run["test"].add(f"libs/partners/{partner_dir}")
|
||||
dirs_to_run.update(
|
||||
(
|
||||
f"libs/partners/{partner_dir}",
|
||||
"libs/langchain",
|
||||
"libs/experimental",
|
||||
)
|
||||
)
|
||||
# Skip if the directory was deleted
|
||||
elif "libs/langchain" in file:
|
||||
dirs_to_run.update(("libs/langchain", "libs/experimental"))
|
||||
elif "libs/experimental" in file:
|
||||
dirs_to_run.add("libs/experimental")
|
||||
elif file.startswith("libs/"):
|
||||
raise ValueError(
|
||||
f"Unknown lib: {file}. check_diff.py likely needs "
|
||||
"an update for this new library!"
|
||||
)
|
||||
elif any(file.startswith(p) for p in ["docs/", "templates/", "cookbook/"]):
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
outputs = {
|
||||
"dirs-to-lint": list(
|
||||
dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"]
|
||||
),
|
||||
"dirs-to-test": list(dirs_to_run["test"] | dirs_to_run["extended-test"]),
|
||||
"dirs-to-extended-test": list(dirs_to_run["extended-test"]),
|
||||
}
|
||||
for key, value in outputs.items():
|
||||
json_output = json.dumps(value)
|
||||
print(f"{key}={json_output}") # noqa: T201
|
||||
dirs_to_run.update(LANGCHAIN_DIRS)
|
||||
else:
|
||||
pass
|
||||
print(json.dumps(list(dirs_to_run)))
|
||||
|
||||
67
.github/scripts/get_min_versions.py
vendored
67
.github/scripts/get_min_versions.py
vendored
@@ -1,67 +0,0 @@
|
||||
import sys
|
||||
|
||||
import tomllib
|
||||
from packaging.version import parse as parse_version
|
||||
import re
|
||||
|
||||
MIN_VERSION_LIBS = ["langchain-core", "langchain-community", "langchain"]
|
||||
|
||||
|
||||
def get_min_version(version: str) -> str:
|
||||
# case ^x.x.x
|
||||
_match = re.match(r"^\^(\d+(?:\.\d+){0,2})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
# case >=x.x.x,<y.y.y
|
||||
_match = re.match(r"^>=(\d+(?:\.\d+){0,2}),<(\d+(?:\.\d+){0,2})$", version)
|
||||
if _match:
|
||||
_min = _match.group(1)
|
||||
_max = _match.group(2)
|
||||
assert parse_version(_min) < parse_version(_max)
|
||||
return _min
|
||||
|
||||
# case x.x.x
|
||||
_match = re.match(r"^(\d+(?:\.\d+){0,2})$", version)
|
||||
if _match:
|
||||
return _match.group(1)
|
||||
|
||||
raise ValueError(f"Unrecognized version format: {version}")
|
||||
|
||||
|
||||
def get_min_version_from_toml(toml_path: str):
|
||||
# Parse the TOML file
|
||||
with open(toml_path, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# Get the dependencies from tool.poetry.dependencies
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
|
||||
# Initialize a dictionary to store the minimum versions
|
||||
min_versions = {}
|
||||
|
||||
# Iterate over the libs in MIN_VERSION_LIBS
|
||||
for lib in MIN_VERSION_LIBS:
|
||||
# Check if the lib is present in the dependencies
|
||||
if lib in dependencies:
|
||||
# Get the version string
|
||||
version_string = dependencies[lib]
|
||||
|
||||
# Use parse_version to get the minimum supported version from version_string
|
||||
min_version = get_min_version(version_string)
|
||||
|
||||
# Store the minimum version in the min_versions dictionary
|
||||
min_versions[lib] = min_version
|
||||
|
||||
return min_versions
|
||||
|
||||
|
||||
# Get the TOML file path from the command line argument
|
||||
toml_file = sys.argv[1]
|
||||
|
||||
# Call the function to get the minimum versions
|
||||
min_versions = get_min_version_from_toml(toml_file)
|
||||
|
||||
print(
|
||||
" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])
|
||||
) # noqa: T201
|
||||
106
.github/workflows/_all_ci.yml
vendored
Normal file
106
.github/workflows/_all_ci.yml
vendored
Normal file
@@ -0,0 +1,106 @@
|
||||
---
|
||||
name: langchain CI
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: string
|
||||
description: "From which folder this pipeline executes"
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
working-directory:
|
||||
required: true
|
||||
type: choice
|
||||
default: 'libs/langchain'
|
||||
options:
|
||||
- libs/langchain
|
||||
- libs/core
|
||||
- libs/experimental
|
||||
- libs/community
|
||||
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ inputs.working-directory }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses: ./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
uses: ./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
uses: ./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
dependencies:
|
||||
uses: ./.github/workflows/_dependencies.yml
|
||||
with:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
extended-tests:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: Python ${{ matrix.python-version }} extended tests
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install -E extended_testing --with test
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
@@ -9,7 +9,7 @@ on:
|
||||
description: "From which folder this pipeline executes"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -24,7 +24,7 @@ jobs:
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ matrix.python-version }}"
|
||||
name: Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
|
||||
8
.github/workflows/_dependencies.yml
vendored
8
.github/workflows/_dependencies.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Relative path to the langchain library folder"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -28,7 +28,7 @@ jobs:
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: dependency checks ${{ matrix.python-version }}
|
||||
name: dependencies - Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
@@ -63,8 +63,6 @@ jobs:
|
||||
- name: Install the opposite major version of pydantic
|
||||
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
|
||||
shell: bash
|
||||
# airbyte currently doesn't support pydantic v2
|
||||
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
|
||||
run: |
|
||||
# Determine the major part of pydantic version
|
||||
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
|
||||
@@ -99,8 +97,6 @@ jobs:
|
||||
fi
|
||||
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
|
||||
- name: Run pydantic compatibility tests
|
||||
# airbyte currently doesn't support pydantic v2
|
||||
if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }}
|
||||
shell: bash
|
||||
run: make test
|
||||
|
||||
|
||||
32
.github/workflows/_integration_test.yml
vendored
32
.github/workflows/_integration_test.yml
vendored
@@ -8,11 +8,10 @@ on:
|
||||
type: string
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
environment: Scheduled testing
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
@@ -38,42 +37,13 @@ jobs:
|
||||
shell: bash
|
||||
run: poetry install --with test,test_integration
|
||||
|
||||
- name: Install deps outside pyproject
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
|
||||
shell: bash
|
||||
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Run integration tests
|
||||
shell: bash
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
run: |
|
||||
make integration_tests
|
||||
|
||||
|
||||
19
.github/workflows/_lint.yml
vendored
19
.github/workflows/_lint.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Relative path to the langchain library folder"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
# This env var allows us to get inline annotations when ruff has complaints.
|
||||
@@ -21,7 +21,6 @@ env:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: "make lint #${{ matrix.python-version }}"
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -80,13 +79,13 @@ jobs:
|
||||
poetry run pip install -e "$LANGCHAIN_LOCATION"
|
||||
|
||||
- name: Get .mypy_cache to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache
|
||||
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
|
||||
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
@@ -94,7 +93,7 @@ jobs:
|
||||
run: |
|
||||
make lint_package
|
||||
|
||||
- name: Install unit test dependencies
|
||||
- name: Install test dependencies
|
||||
# Also installs dev/lint/test/typing dependencies, to ensure we have
|
||||
# type hints for as many of our libraries as possible.
|
||||
# This helps catch errors that require dependencies to be spotted, for example:
|
||||
@@ -103,24 +102,18 @@ jobs:
|
||||
# If you change this configuration, make sure to change the `cache-key`
|
||||
# in the `poetry_setup` action above to stop using the old cache.
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry install --with test
|
||||
- name: Install unit+integration test dependencies
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry install --with test,test_integration
|
||||
|
||||
- name: Get .mypy_cache_test to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
uses: actions/cache@v3
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache_test
|
||||
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
66
.github/workflows/_release.yml
vendored
66
.github/workflows/_release.yml
vendored
@@ -1,5 +1,5 @@
|
||||
name: release
|
||||
run-name: Release ${{ inputs.working-directory }} by @${{ github.actor }}
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
@@ -15,13 +15,12 @@ on:
|
||||
default: 'libs/langchain'
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
POETRY_VERSION: "1.7.1"
|
||||
PYTHON_VERSION: "3.10"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.ref == 'refs/heads/master'
|
||||
environment: Scheduled testing
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
outputs:
|
||||
@@ -118,18 +117,11 @@ jobs:
|
||||
# are not found on test PyPI can be resolved and installed anyway.
|
||||
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
|
||||
# package because VERSION will not have been uploaded to regular PyPI yet.
|
||||
# - attempt install again after 5 seconds if it fails because there is
|
||||
# sometimes a delay in availability on test pypi
|
||||
#
|
||||
run: |
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" || \
|
||||
( \
|
||||
sleep 5 && \
|
||||
poetry run pip install \
|
||||
--extra-index-url https://test.pypi.org/simple/ \
|
||||
"$PKG_NAME==$VERSION" \
|
||||
)
|
||||
"$PKG_NAME==$VERSION"
|
||||
|
||||
# Replace all dashes in the package name with underscores,
|
||||
# since that's how Python imports packages with dashes in the name.
|
||||
@@ -157,64 +149,16 @@ jobs:
|
||||
run: make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
- name: Run integration tests
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
env:
|
||||
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
|
||||
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
EXA_API_KEY: ${{ secrets.EXA_API_KEY }}
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
ES_URL: ${{ secrets.ES_URL }}
|
||||
ES_CLOUD_ID: ${{ secrets.ES_CLOUD_ID }}
|
||||
ES_API_KEY: ${{ secrets.ES_API_KEY }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # for airbyte
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
poetry run pip install packaging
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
- name: Run unit tests with minimum dependency versions
|
||||
if: ${{ steps.min-version.outputs.min-versions != '' }}
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
poetry run pip install $MIN_VERSIONS
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
publish:
|
||||
needs:
|
||||
|
||||
4
.github/workflows/_test.yml
vendored
4
.github/workflows/_test.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Relative path to the langchain library folder"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -28,7 +28,7 @@ jobs:
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
name: "make test #${{ matrix.python-version }}"
|
||||
name: Python ${{ matrix.python-version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
|
||||
2
.github/workflows/_test_release.yml
vendored
2
.github/workflows/_test_release.yml
vendored
@@ -9,7 +9,7 @@ on:
|
||||
description: "From which folder this pipeline executes"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
|
||||
69
.github/workflows/api_doc_build.yml
vendored
69
.github/workflows/api_doc_build.yml
vendored
@@ -1,69 +0,0 @@
|
||||
name: API docs build
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: bagatur/api_docs_build
|
||||
path: langchain
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: langchain-ai/langchain-google
|
||||
path: langchain-google
|
||||
- name: Move google libs
|
||||
run: |
|
||||
rm -rf langchain/libs/partners/google-genai langchain/libs/partners/google-vertexai
|
||||
mv langchain-google/libs/genai langchain/libs/partners/google-genai
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
|
||||
- name: Set Git config
|
||||
working-directory: langchain
|
||||
run: |
|
||||
git config --local user.email "actions@github.com"
|
||||
git config --local user.name "Github Actions"
|
||||
|
||||
- name: Merge master
|
||||
working-directory: langchain
|
||||
run: |
|
||||
git fetch origin master
|
||||
git merge origin/master -m "Merge master" --allow-unrelated-histories -X theirs
|
||||
|
||||
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: api-docs
|
||||
working-directory: langchain
|
||||
|
||||
- name: Install dependencies
|
||||
working-directory: langchain
|
||||
run: |
|
||||
poetry run python -m pip install --upgrade --no-cache-dir pip setuptools
|
||||
poetry run python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
|
||||
# skip airbyte and ibm due to pandas dependency issue
|
||||
poetry run python -m pip install $(ls ./libs/partners | grep -vE "airbyte|ibm" | xargs -I {} echo "./libs/partners/{}")
|
||||
poetry run python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
|
||||
|
||||
- name: Build docs
|
||||
working-directory: langchain
|
||||
run: |
|
||||
poetry run python -m pip install --upgrade --no-cache-dir pip setuptools
|
||||
poetry run python docs/api_reference/create_api_rst.py
|
||||
poetry run python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference api_reference_build/html -j auto
|
||||
|
||||
# https://github.com/marketplace/actions/add-commit
|
||||
- uses: EndBug/add-and-commit@v9
|
||||
with:
|
||||
cwd: langchain
|
||||
message: 'Update API docs build'
|
||||
134
.github/workflows/check_diffs.yml
vendored
134
.github/workflows/check_diffs.yml
vendored
@@ -1,10 +1,15 @@
|
||||
---
|
||||
name: CI
|
||||
name: Check library diffs
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
paths:
|
||||
- ".github/actions/**"
|
||||
- ".github/tools/**"
|
||||
- ".github/workflows/**"
|
||||
- "libs/**"
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
@@ -16,142 +21,27 @@ concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- id: files
|
||||
uses: Ana06/get-changed-files@v2.2.0
|
||||
- id: set-matrix
|
||||
run: |
|
||||
python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT
|
||||
run: echo "dirs-to-run=$(python .github/scripts/check_diff.py ${{ steps.files.outputs.all }})" >> $GITHUB_OUTPUT
|
||||
outputs:
|
||||
dirs-to-lint: ${{ steps.set-matrix.outputs.dirs-to-lint }}
|
||||
dirs-to-test: ${{ steps.set-matrix.outputs.dirs-to-test }}
|
||||
dirs-to-extended-test: ${{ steps.set-matrix.outputs.dirs-to-extended-test }}
|
||||
lint:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
dirs-to-run: ${{ steps.set-matrix.outputs.dirs-to-run }}
|
||||
ci:
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-lint != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-lint) }}
|
||||
uses: ./.github/workflows/_lint.yml
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-run) }}
|
||||
uses: ./.github/workflows/_all_ci.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
test:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
uses: ./.github/workflows/_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
compile-integration-tests:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
uses: ./.github/workflows/_compile_integration_test.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
dependencies:
|
||||
name: cd ${{ matrix.working-directory }}
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-test) }}
|
||||
uses: ./.github/workflows/_dependencies.yml
|
||||
with:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
secrets: inherit
|
||||
|
||||
extended-tests:
|
||||
name: "cd ${{ matrix.working-directory }} / make extended_tests #${{ matrix.python-version }}"
|
||||
needs: [ build ]
|
||||
if: ${{ needs.build.outputs.dirs-to-extended-test != '[]' }}
|
||||
strategy:
|
||||
matrix:
|
||||
# note different variable for extended test dirs
|
||||
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-extended-test) }}
|
||||
python-version:
|
||||
- "3.8"
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ matrix.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install -E extended_testing --with test
|
||||
|
||||
- name: Run extended tests
|
||||
run: |
|
||||
echo "sleeping 150"
|
||||
sleep 150
|
||||
echo "sleeping 151"
|
||||
sleep 151
|
||||
echo "done sleeping lets test"
|
||||
make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
|
||||
STATUS="$(git status)"
|
||||
echo "$STATUS"
|
||||
|
||||
# grep will exit non-zero if the target message isn't found,
|
||||
# and `set -e` above will cause the step to fail.
|
||||
echo "$STATUS" | grep 'nothing to commit, working tree clean'
|
||||
ci_success:
|
||||
name: "CI Success"
|
||||
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests]
|
||||
if: |
|
||||
always()
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
JOBS_JSON: ${{ toJSON(needs) }}
|
||||
RESULTS_JSON: ${{ toJSON(needs.*.result) }}
|
||||
EXIT_CODE: ${{!contains(needs.*.result, 'failure') && !contains(needs.*.result, 'cancelled') && '0' || '1'}}
|
||||
steps:
|
||||
- name: "CI Success"
|
||||
run: |
|
||||
echo $JOBS_JSON
|
||||
echo $RESULTS_JSON
|
||||
echo "Exiting with $EXIT_CODE"
|
||||
exit $EXIT_CODE
|
||||
|
||||
7
.github/workflows/codespell.yml
vendored
7
.github/workflows/codespell.yml
vendored
@@ -1,5 +1,5 @@
|
||||
---
|
||||
name: CI / cd . / make spell_check
|
||||
name: Codespell
|
||||
|
||||
on:
|
||||
push:
|
||||
@@ -12,7 +12,7 @@ permissions:
|
||||
|
||||
jobs:
|
||||
codespell:
|
||||
name: (Check for spelling errors)
|
||||
name: Check for spelling errors
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
@@ -32,6 +32,5 @@ jobs:
|
||||
- name: Codespell
|
||||
uses: codespell-project/actions-codespell@v2
|
||||
with:
|
||||
skip: guide_imports.json,*.ambr,./cookbook/data/imdb_top_1000.csv
|
||||
skip: guide_imports.json
|
||||
ignore_words_list: ${{ steps.extract_ignore_words.outputs.ignore_words_list }}
|
||||
exclude_file: libs/community/langchain_community/llms/yuan2.py
|
||||
|
||||
35
.github/workflows/doc_lint.yml
vendored
Normal file
35
.github/workflows/doc_lint.yml
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
name: Docs, templates, cookbook lint
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- 'docs/**'
|
||||
- 'templates/**'
|
||||
- 'cookbook/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/doc_lint.yml'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
check:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Run import check
|
||||
run: |
|
||||
# We should not encourage imports directly from main init file
|
||||
# Expect for hub
|
||||
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: "."
|
||||
secrets: inherit
|
||||
@@ -7,4 +7,4 @@ ignore_words_list = (
|
||||
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
|
||||
)
|
||||
|
||||
print(f"::set-output name=ignore_words_list::{ignore_words_list}") # noqa: T201
|
||||
print(f"::set-output name=ignore_words_list::{ignore_words_list}")
|
||||
|
||||
13
.github/workflows/langchain_cli_release.yml
vendored
Normal file
13
.github/workflows/langchain_cli_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: libs/cli Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/cli
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_community_release.yml
vendored
Normal file
13
.github/workflows/langchain_community_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: libs/community Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/community
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_core_release.yml
vendored
Normal file
13
.github/workflows/langchain_core_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: libs/core Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/core
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_experimental_release.yml
vendored
Normal file
13
.github/workflows/langchain_experimental_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: libs/experimental Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_experimental_test_release.yml
vendored
Normal file
13
.github/workflows/langchain_experimental_test_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: Experimental Test Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_test_release.yml
|
||||
with:
|
||||
working-directory: libs/experimental
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_openai_release.yml
vendored
Normal file
13
.github/workflows/langchain_openai_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: libs/core Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/core
|
||||
secrets: inherit
|
||||
27
.github/workflows/langchain_release.yml
vendored
Normal file
27
.github/workflows/langchain_release.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
---
|
||||
name: libs/langchain Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_release.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
|
||||
# N.B.: It's possible that PyPI doesn't make the new release visible / available
|
||||
# immediately after publishing. If that happens, the docker build might not
|
||||
# create a new docker image for the new release, since it won't see it.
|
||||
#
|
||||
# If this ends up being a problem, add a check to the end of the `_release.yml`
|
||||
# workflow that prevents the workflow from finishing until the new release
|
||||
# is visible and installable on PyPI.
|
||||
release-docker:
|
||||
needs:
|
||||
- release
|
||||
uses:
|
||||
./.github/workflows/langchain_release_docker.yml
|
||||
secrets: inherit
|
||||
13
.github/workflows/langchain_test_release.yml
vendored
Normal file
13
.github/workflows/langchain_test_release.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
---
|
||||
name: Test Release
|
||||
|
||||
on:
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
jobs:
|
||||
release:
|
||||
uses:
|
||||
./.github/workflows/_test_release.yml
|
||||
with:
|
||||
working-directory: libs/langchain
|
||||
secrets: inherit
|
||||
36
.github/workflows/people.yml
vendored
36
.github/workflows/people.yml
vendored
@@ -1,36 +0,0 @@
|
||||
name: LangChain People
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 14 1 * *"
|
||||
push:
|
||||
branches: [jacob/people]
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
debug_enabled:
|
||||
description: 'Run the build with tmate debugging enabled (https://github.com/marketplace/actions/debugging-with-tmate)'
|
||||
required: false
|
||||
default: 'false'
|
||||
|
||||
jobs:
|
||||
langchain-people:
|
||||
if: github.repository_owner == 'langchain-ai'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Dump GitHub context
|
||||
env:
|
||||
GITHUB_CONTEXT: ${{ toJson(github) }}
|
||||
run: echo "$GITHUB_CONTEXT"
|
||||
- uses: actions/checkout@v4
|
||||
# Ref: https://github.com/actions/runner/issues/2033
|
||||
- name: Fix git safe.directory in container
|
||||
run: mkdir -p /home/runner/work/_temp/_github_home && printf "[safe]\n\tdirectory = /github/workspace" > /home/runner/work/_temp/_github_home/.gitconfig
|
||||
# Allow debugging with tmate
|
||||
- name: Setup tmate session
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
if: ${{ github.event_name == 'workflow_dispatch' && github.event.inputs.debug_enabled == 'true' }}
|
||||
with:
|
||||
limit-access-to-actor: true
|
||||
- uses: ./.github/actions/people
|
||||
with:
|
||||
token: ${{ secrets.LANGCHAIN_PEOPLE_GITHUB_TOKEN }}
|
||||
9
.github/workflows/scheduled_test.yml
vendored
9
.github/workflows/scheduled_test.yml
vendored
@@ -6,7 +6,7 @@ on:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.7.1"
|
||||
POETRY_VERSION: "1.6.1"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -36,7 +36,7 @@ jobs:
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
uses: 'google-github-actions/auth@v1'
|
||||
with:
|
||||
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
|
||||
|
||||
@@ -54,11 +54,6 @@ jobs:
|
||||
echo "Running scheduled tests, installing dependencies with poetry..."
|
||||
poetry install --with=test_integration,test
|
||||
|
||||
- name: Install deps outside pyproject
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
|
||||
shell: bash
|
||||
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
|
||||
- name: Run tests
|
||||
shell: bash
|
||||
env:
|
||||
|
||||
36
.github/workflows/templates_ci.yml
vendored
Normal file
36
.github/workflows/templates_ci.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
---
|
||||
name: templates CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ master ]
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/actions/poetry_setup/action.yml'
|
||||
- '.github/tools/**'
|
||||
- '.github/workflows/_lint.yml'
|
||||
- '.github/workflows/templates_ci.yml'
|
||||
- 'templates/**'
|
||||
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
#
|
||||
# There's no point in testing an outdated version of the code. GitHub only allows
|
||||
# a limited number of job runners to be active at the same time, so it's better to cancel
|
||||
# pointless jobs early so that more useful jobs can run sooner.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.6.1"
|
||||
WORKDIR: "templates"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
uses:
|
||||
./.github/workflows/_lint.yml
|
||||
with:
|
||||
working-directory: templates
|
||||
secrets: inherit
|
||||
9
.gitignore
vendored
9
.gitignore
vendored
@@ -115,10 +115,13 @@ celerybeat.pid
|
||||
# Environments
|
||||
.env
|
||||
.envrc
|
||||
.venv*
|
||||
.venv
|
||||
.venvs
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
@@ -174,6 +177,4 @@ docs/docs/build
|
||||
docs/docs/node_modules
|
||||
docs/docs/yarn.lock
|
||||
_dist
|
||||
docs/docs/templates
|
||||
|
||||
prof
|
||||
docs/docs/templates
|
||||
@@ -4,17 +4,21 @@
|
||||
# Required
|
||||
version: 2
|
||||
|
||||
formats:
|
||||
- pdf
|
||||
|
||||
# Set the version of Python and other tools you might need
|
||||
build:
|
||||
os: ubuntu-22.04
|
||||
tools:
|
||||
python: "3.11"
|
||||
commands:
|
||||
- mkdir -p $READTHEDOCS_OUTPUT
|
||||
- cp -r api_reference_build/* $READTHEDOCS_OUTPUT
|
||||
- python -mvirtualenv $READTHEDOCS_VIRTUALENV_PATH
|
||||
- python -m pip install --upgrade --no-cache-dir pip setuptools
|
||||
- python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
|
||||
- python -m pip install ./libs/partners/*
|
||||
- python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
|
||||
- python docs/api_reference/create_api_rst.py
|
||||
- cat docs/api_reference/conf.py
|
||||
- python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference $READTHEDOCS_OUTPUT/html -j auto
|
||||
|
||||
# Build documentation in the docs/ directory with Sphinx
|
||||
sphinx:
|
||||
configuration: docs/api_reference/conf.py
|
||||
|
||||
9
Makefile
9
Makefile
@@ -15,12 +15,7 @@ docs_build:
|
||||
docs/.local_build.sh
|
||||
|
||||
docs_clean:
|
||||
@if [ -d _dist ]; then \
|
||||
rm -r _dist; \
|
||||
echo "Directory _dist has been cleaned."; \
|
||||
else \
|
||||
echo "Nothing to clean."; \
|
||||
fi
|
||||
rm -r _dist
|
||||
|
||||
docs_linkcheck:
|
||||
poetry run linkchecker _dist/docs/ --ignore-url node_modules
|
||||
@@ -50,13 +45,11 @@ lint lint_package lint_tests:
|
||||
poetry run ruff docs templates cookbook
|
||||
poetry run ruff format docs templates cookbook --diff
|
||||
poetry run ruff --select I docs templates cookbook
|
||||
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
|
||||
format format_diff:
|
||||
poetry run ruff format docs templates cookbook
|
||||
poetry run ruff --select I --fix docs templates cookbook
|
||||
|
||||
|
||||
######################
|
||||
# HELP
|
||||
######################
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# 🦜️🔗 LangChain
|
||||
|
||||
⚡ Build context-aware reasoning applications ⚡
|
||||
⚡ Building applications with LLMs through composability ⚡
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
|
||||
@@ -18,7 +18,7 @@ Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langc
|
||||
|
||||
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
|
||||
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
|
||||
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
|
||||
Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) to get off the waitlist or speak with our sales team.
|
||||
|
||||
## Quick Install
|
||||
|
||||
@@ -43,14 +43,13 @@ This framework consists of several parts.
|
||||
- **[LangChain Templates](templates)**: A collection of easily deployable reference architectures for a wide variety of tasks.
|
||||
- **[LangServe](https://github.com/langchain-ai/langserve)**: A library for deploying LangChain chains as a REST API.
|
||||
- **[LangSmith](https://smith.langchain.com)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
- **[LangGraph](https://python.langchain.com/docs/langgraph)**: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.
|
||||
|
||||
The LangChain libraries themselves are made up of several different packages.
|
||||
- **[`langchain-core`](libs/core)**: Base abstractions and LangChain Expression Language.
|
||||
- **[`langchain-community`](libs/community)**: Third party integrations.
|
||||
- **[`langchain`](libs/langchain)**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
|
||||

|
||||

|
||||
|
||||
## 🧱 What can you build with LangChain?
|
||||
**❓ Retrieval augmented generation**
|
||||
|
||||
@@ -61,13 +61,13 @@
|
||||
],
|
||||
"source": [
|
||||
"# Local\n",
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"from langchain.chat_models import ChatOllama\n",
|
||||
"\n",
|
||||
"llama2_chat = ChatOllama(model=\"llama2:13b-chat\")\n",
|
||||
"llama2_code = ChatOllama(model=\"codellama:7b-instruct\")\n",
|
||||
"\n",
|
||||
"# API\n",
|
||||
"from langchain_community.llms import Replicate\n",
|
||||
"from langchain.llms import Replicate\n",
|
||||
"\n",
|
||||
"# REPLICATE_API_TOKEN = getpass()\n",
|
||||
"# os.environ[\"REPLICATE_API_TOKEN\"] = REPLICATE_API_TOKEN\n",
|
||||
@@ -107,7 +107,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities import SQLDatabase\n",
|
||||
"from langchain.utilities import SQLDatabase\n",
|
||||
"\n",
|
||||
"db = SQLDatabase.from_uri(\"sqlite:///nba_roster.db\", sample_rows_in_table_info=0)\n",
|
||||
"\n",
|
||||
@@ -125,7 +125,7 @@
|
||||
"id": "654b3577-baa2-4e12-a393-f40e5db49ac7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Query a SQL Database \n",
|
||||
"## Query a SQL DB \n",
|
||||
"\n",
|
||||
"Follow the runnables workflow [here](https://python.langchain.com/docs/expression_language/cookbook/sql_db)."
|
||||
]
|
||||
@@ -149,9 +149,8 @@
|
||||
],
|
||||
"source": [
|
||||
"# Prompt\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"# Update the template based on the type of SQL Database like MySQL, Microsoft SQL Server and so on\n",
|
||||
"template = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
|
||||
"{schema}\n",
|
||||
"\n",
|
||||
@@ -278,7 +277,7 @@
|
||||
"source": [
|
||||
"# Prompt\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"\n",
|
||||
"template = \"\"\"Given an input question, convert it to a SQL query. No pre-amble. Based on the table schema below, write a SQL query that would answer the user's question:\n",
|
||||
"{schema}\n",
|
||||
|
||||
@@ -101,7 +101,7 @@
|
||||
"If you want to use the provided folder, then simply opt for a [pdf loader](https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf) for the document:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"from langchain.document_loaders import PyPDFLoader\n",
|
||||
"loader = PyPDFLoader(path + fname)\n",
|
||||
"docs = loader.load()\n",
|
||||
"tables = [] # Ignore w/ basic pdf loader\n",
|
||||
@@ -198,9 +198,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Generate summaries of text elements\n",
|
||||
@@ -341,7 +341,7 @@
|
||||
"Add raw docs and doc summaries to [Multi Vector Retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector#summary): \n",
|
||||
"\n",
|
||||
"* Store the raw texts, tables, and images in the `docstore`.\n",
|
||||
"* Store the texts, table summaries, and image summaries in the `vectorstore` for efficient semantic retrieval."
|
||||
"* Store the texts, table summaries, and image summaries in the `vectorstore` for semantic retrieval."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -353,11 +353,11 @@
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def create_multi_vector_retriever(\n",
|
||||
|
||||
@@ -93,7 +93,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"from langchain.document_loaders import PyPDFLoader\n",
|
||||
"\n",
|
||||
"loader = PyPDFLoader(\"./cj/cj.pdf\")\n",
|
||||
"docs = loader.load()\n",
|
||||
@@ -158,11 +158,11 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatVertexAI\n",
|
||||
"from langchain.llms import VertexAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_community.chat_models import ChatVertexAI\n",
|
||||
"from langchain_community.llms import VertexAI\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.messages import AIMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -243,7 +243,7 @@
|
||||
"import base64\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain.schema.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def encode_image(image_path):\n",
|
||||
@@ -342,11 +342,11 @@
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.embeddings import VertexAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.embeddings import VertexAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def create_multi_vector_retriever(\n",
|
||||
@@ -440,7 +440,7 @@
|
||||
"import re\n",
|
||||
"\n",
|
||||
"from IPython.display import HTML, display\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
|
||||
"from PIL import Image\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
||||
@@ -235,9 +235,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -318,11 +318,11 @@
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
|
||||
|
||||
@@ -211,9 +211,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -373,11 +373,11 @@
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
|
||||
|
||||
@@ -209,9 +209,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models import ChatOllama\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate"
|
||||
"from langchain.chat_models import ChatOllama\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -376,10 +376,10 @@
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
|
||||
@@ -62,7 +62,7 @@
|
||||
"path = \"/Users/rlm/Desktop/cpi/\"\n",
|
||||
"\n",
|
||||
"# Load\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"from langchain.document_loaders import PyPDFLoader\n",
|
||||
"\n",
|
||||
"loader = PyPDFLoader(path + \"cpi.pdf\")\n",
|
||||
"pdf_pages = loader.load()\n",
|
||||
@@ -132,8 +132,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"baseline = Chroma.from_texts(\n",
|
||||
" texts=all_splits_pypdf_texts,\n",
|
||||
@@ -160,9 +160,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"# Prompt\n",
|
||||
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n",
|
||||
@@ -520,7 +520,7 @@
|
||||
"source": [
|
||||
"import re\n",
|
||||
"\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
||||
@@ -1,200 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install -qU langchain-airbyte"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"\n",
|
||||
"GITHUB_TOKEN = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_airbyte import AirbyteLoader\n",
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"loader = AirbyteLoader(\n",
|
||||
" source=\"source-github\",\n",
|
||||
" stream=\"pull_requests\",\n",
|
||||
" config={\n",
|
||||
" \"credentials\": {\"personal_access_token\": GITHUB_TOKEN},\n",
|
||||
" \"repositories\": [\"langchain-ai/langchain\"],\n",
|
||||
" },\n",
|
||||
" template=PromptTemplate.from_template(\n",
|
||||
" \"\"\"# {title}\n",
|
||||
"by {user[login]}\n",
|
||||
"\n",
|
||||
"{body}\"\"\"\n",
|
||||
" ),\n",
|
||||
" include_metadata=False,\n",
|
||||
")\n",
|
||||
"docs = loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"# Updated partners/ibm README\n",
|
||||
"by williamdevena\n",
|
||||
"\n",
|
||||
"## PR title\n",
|
||||
"partners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\n",
|
||||
"\n",
|
||||
"## PR message\n",
|
||||
"Description: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\n",
|
||||
"\n",
|
||||
"The README includes:\n",
|
||||
"\n",
|
||||
"- Brief description\n",
|
||||
"- Installation\n",
|
||||
"- Setting-up instructions (API key, project id, ...)\n",
|
||||
"- Basic usage:\n",
|
||||
" - Loading the model\n",
|
||||
" - Direct inference\n",
|
||||
" - Chain invoking\n",
|
||||
" - Streaming the model output\n",
|
||||
" \n",
|
||||
"Issue: https://github.com/langchain-ai/langchain/issues/17545\n",
|
||||
"\n",
|
||||
"Dependencies: None\n",
|
||||
"\n",
|
||||
"Twitter handle: None\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(docs[-2].page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"10283"
|
||||
]
|
||||
},
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"len(docs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tiktoken\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"enc = tiktoken.get_encoding(\"cl100k_base\")\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(\n",
|
||||
" docs,\n",
|
||||
" embedding=OpenAIEmbeddings(\n",
|
||||
" disallowed_special=(enc.special_tokens_set - {\"<|endofprompt|>\"})\n",
|
||||
" ),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the libs/partners/ibm folder.\\r\\n\\r\\n## PR message\\r\\nDescription: Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\nThe README includes:\\r\\n\\r\\n- Brief description\\r\\n- Installation\\r\\n- Setting-up instructions (API key, project id, ...)\\r\\n- Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n \\r\\nIssue: https://github.com/langchain-ai/langchain/issues/17545\\r\\n\\r\\nDependencies: None\\r\\n\\r\\nTwitter handle: None'),\n",
|
||||
" Document(page_content='# Updated partners/ibm README\\nby williamdevena\\n\\n## PR title\\r\\npartners: changed the README file for the IBM Watson AI integration in the `libs/partners/ibm` folder. \\r\\n\\r\\n\\r\\n\\r\\n## PR message\\r\\n- **Description:** Changed the README file of partners/ibm following the docs on https://python.langchain.com/docs/integrations/llms/ibm_watsonx\\r\\n\\r\\n The README includes:\\r\\n - Brief description\\r\\n - Installation\\r\\n - Setting-up instructions (API key, project id, ...)\\r\\n - Basic usage:\\r\\n - Loading the model\\r\\n - Direct inference\\r\\n - Chain invoking\\r\\n - Streaming the model output\\r\\n\\r\\n\\r\\n- **Issue:** #17545\\r\\n- **Dependencies:** None\\r\\n- **Twitter handle:** None'),\n",
|
||||
" Document(page_content='# IBM: added partners package `langchain_ibm`, added llm\\nby MateuszOssGit\\n\\n - **Description:** Added `langchain_ibm` as an langchain partners package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (`WatsonxLLM`)\\r\\n - **Dependencies:** [ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),\\r\\n - **Tag maintainer:** : \\r\\n\\r\\nPlease make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. ✅'),\n",
|
||||
" Document(page_content='# Add WatsonX support\\nby baptistebignaud\\n\\nIt is a connector to use a LLM from WatsonX.\\r\\nIt requires python SDK \"ibm-generative-ai\"\\r\\n\\r\\n(It might not be perfect since it is my first PR on a public repository 😄)')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"retriever.invoke(\"pull requests related to IBM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,284 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Amazon Personalize\n",
|
||||
"\n",
|
||||
"[Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html) is a fully managed machine learning service that uses your data to generate item recommendations for your users. It can also generate user segments based on the users' affinity for certain items or item metadata.\n",
|
||||
"\n",
|
||||
"This notebook goes through how to use Amazon Personalize Chain. You need a Amazon Personalize campaign_arn or a recommender_arn before you get started with the below notebook.\n",
|
||||
"\n",
|
||||
"Following is a [tutorial](https://github.com/aws-samples/retail-demo-store/blob/master/workshop/1-Personalization/Lab-1-Introduction-and-data-preparation.ipynb) to setup a campaign_arn/recommender_arn on Amazon Personalize. Once the campaign_arn/recommender_arn is setup, you can use it in the langchain ecosystem. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Install Dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install boto3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Sample Use-cases"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.1 [Use-case-1] Setup Amazon Personalize Client and retrieve recommendations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.recommenders import AmazonPersonalize\n",
|
||||
"\n",
|
||||
"recommender_arn = \"<insert_arn>\"\n",
|
||||
"\n",
|
||||
"client = AmazonPersonalize(\n",
|
||||
" credentials_profile_name=\"default\",\n",
|
||||
" region_name=\"us-west-2\",\n",
|
||||
" recommender_arn=recommender_arn,\n",
|
||||
")\n",
|
||||
"client.get_recommendations(user_id=\"1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.2 [Use-case-2] Invoke Personalize Chain for summarizing results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms.bedrock import Bedrock\n",
|
||||
"from langchain_experimental.recommenders import AmazonPersonalizeChain\n",
|
||||
"\n",
|
||||
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
|
||||
"\n",
|
||||
"# Create personalize chain\n",
|
||||
"# Use return_direct=True if you do not want summary\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False\n",
|
||||
")\n",
|
||||
"response = chain({\"user_id\": \"1\"})\n",
|
||||
"print(response)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.3 [Use-Case-3] Invoke Amazon Personalize Chain using your own prompt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts.prompt import PromptTemplate\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_QUERY = \"\"\"\n",
|
||||
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
|
||||
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
|
||||
" The movies to recommend and their information is contained in the <movie> tag. \n",
|
||||
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
|
||||
" Put the email between <email> tags.\n",
|
||||
"\n",
|
||||
" <movie>\n",
|
||||
" {result} \n",
|
||||
" </movie>\n",
|
||||
"\n",
|
||||
" Assistant:\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT = PromptTemplate(input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY)\n",
|
||||
"\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False, prompt_template=RANDOM_PROMPT\n",
|
||||
")\n",
|
||||
"chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.4 [Use-case-4] Invoke Amazon Personalize in a Sequential Chain "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import LLMChain, SequentialChain\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_QUERY_2 = \"\"\"\n",
|
||||
"You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
|
||||
" given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
|
||||
" You want the email to impress the user, so make it appealing to them.\n",
|
||||
" The movies to recommend and their information is contained in the <movie> tag. \n",
|
||||
" All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
|
||||
" Put the email between <email> tags.\n",
|
||||
"\n",
|
||||
" <movie>\n",
|
||||
" {result}\n",
|
||||
" </movie>\n",
|
||||
"\n",
|
||||
" Assistant:\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
"RANDOM_PROMPT_2 = PromptTemplate(\n",
|
||||
" input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY_2\n",
|
||||
")\n",
|
||||
"personalize_chain_instance = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=True\n",
|
||||
")\n",
|
||||
"random_chain_instance = LLMChain(llm=bedrock_llm, prompt=RANDOM_PROMPT_2)\n",
|
||||
"overall_chain = SequentialChain(\n",
|
||||
" chains=[personalize_chain_instance, random_chain_instance],\n",
|
||||
" input_variables=[\"user_id\"],\n",
|
||||
" verbose=True,\n",
|
||||
")\n",
|
||||
"overall_chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.5 [Use-case-5] Invoke Amazon Personalize and retrieve metadata "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"recommender_arn = \"<insert_arn>\"\n",
|
||||
"metadata_column_names = [\n",
|
||||
" \"<insert metadataColumnName-1>\",\n",
|
||||
" \"<insert metadataColumnName-2>\",\n",
|
||||
"]\n",
|
||||
"metadataMap = {\"ITEMS\": metadata_column_names}\n",
|
||||
"\n",
|
||||
"client = AmazonPersonalize(\n",
|
||||
" credentials_profile_name=\"default\",\n",
|
||||
" region_name=\"us-west-2\",\n",
|
||||
" recommender_arn=recommender_arn,\n",
|
||||
")\n",
|
||||
"client.get_recommendations(user_id=\"1\", metadataColumns=metadataMap)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### 2.6 [Use-Case 6] Invoke Personalize Chain with returned metadata for summarizing results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"jupyter": {
|
||||
"outputs_hidden": false
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
|
||||
"\n",
|
||||
"# Create personalize chain\n",
|
||||
"# Use return_direct=True if you do not want summary\n",
|
||||
"chain = AmazonPersonalizeChain.from_llm(\n",
|
||||
" llm=bedrock_llm, client=client, return_direct=False\n",
|
||||
")\n",
|
||||
"response = chain({\"user_id\": \"1\", \"metadata_columns\": metadataMap})\n",
|
||||
"print(response)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "15e58ce194949b77a891bd4339ce3d86a9bd138e905926019517993f97db9e6c"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -29,7 +29,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import AnalyzeDocumentChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)"
|
||||
]
|
||||
|
||||
@@ -1,922 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "rT1cmV4qCa2X"
|
||||
},
|
||||
"source": [
|
||||
"# Using Apache Kafka to route messages\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"This notebook shows you how to use LangChain's standard chat features while passing the chat messages back and forth via Apache Kafka.\n",
|
||||
"\n",
|
||||
"This goal is to simulate an architecture where the chat front end and the LLM are running as separate services that need to communicate with one another over an internal nework.\n",
|
||||
"\n",
|
||||
"It's an alternative to typical pattern of requesting a reponse from the model via a REST API (there's more info on why you would want to do this at the end of the notebook)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "UPYtfAR_9YxZ"
|
||||
},
|
||||
"source": [
|
||||
"### 1. Install the main dependencies\n",
|
||||
"\n",
|
||||
"Dependencies include:\n",
|
||||
"\n",
|
||||
"- The Quix Streams library for managing interactions with Apache Kafka (or Kafka-like tools such as Redpanda) in a \"Pandas-like\" way.\n",
|
||||
"- The LangChain library for managing interactions with Llama-2 and storing conversation state."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "ZX5tfKiy9cN-"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install quixstreams==2.1.2a langchain==0.0.340 huggingface_hub==0.19.4 langchain-experimental==0.0.42 python-dotenv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "losTSdTB9d9O"
|
||||
},
|
||||
"source": [
|
||||
"### 2. Build and install the llama-cpp-python library (with CUDA enabled so that we can advantage of Google Colab GPU\n",
|
||||
"\n",
|
||||
"The `llama-cpp-python` library is a Python wrapper around the `llama-cpp` library which enables you to efficiently leverage just a CPU to run quantized LLMs.\n",
|
||||
"\n",
|
||||
"When you use the standard `pip install llama-cpp-python` command, you do not get GPU support by default. Generation can be very slow if you rely on just the CPU in Google Colab, so the following command adds an extra option to build and install\n",
|
||||
"`llama-cpp-python` with GPU support (make sure you have a GPU-enabled runtime selected in Google Colab)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "-JCQdl1G9tbl"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "5_vjVIAh9rLl"
|
||||
},
|
||||
"source": [
|
||||
"### 3. Download and setup Kafka and Zookeeper instances\n",
|
||||
"\n",
|
||||
"Download the Kafka binaries from the Apache website and start the servers as daemons. We'll use the default configurations (provided by Apache Kafka) for spinning up the instances."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"id": "zFz7czGRW5Wr"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!curl -sSOL https://dlcdn.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz\n",
|
||||
"!tar -xzf kafka_2.13-3.6.1.tgz"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "Uf7NR_UZ9wye"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!./kafka_2.13-3.6.1/bin/zookeeper-server-start.sh -daemon ./kafka_2.13-3.6.1/config/zookeeper.properties\n",
|
||||
"!./kafka_2.13-3.6.1/bin/kafka-server-start.sh -daemon ./kafka_2.13-3.6.1/config/server.properties\n",
|
||||
"!echo \"Waiting for 10 secs until kafka and zookeeper services are up and running\"\n",
|
||||
"!sleep 10"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "H3SafFuS94p1"
|
||||
},
|
||||
"source": [
|
||||
"### 4. Check that the Kafka Daemons are running\n",
|
||||
"\n",
|
||||
"Show the running processes and filter it for Java processes (you should see two—one for each server)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "CZDC2lQP99yp"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!ps aux | grep -E '[j]ava'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Snoxmjb5-V37"
|
||||
},
|
||||
"source": [
|
||||
"### 5. Import the required dependencies and initialize required variables\n",
|
||||
"\n",
|
||||
"Import the Quix Streams library for interacting with Kafka, and the necessary LangChain components for running a `ConversationChain`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"id": "plR9e_MF-XL5"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import utility libraries\n",
|
||||
"import json\n",
|
||||
"import random\n",
|
||||
"import re\n",
|
||||
"import time\n",
|
||||
"import uuid\n",
|
||||
"from os import environ\n",
|
||||
"from pathlib import Path\n",
|
||||
"from random import choice, randint, random\n",
|
||||
"\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"# Import a Hugging Face utility to download models directly from Hugging Face hub:\n",
|
||||
"from huggingface_hub import hf_hub_download\n",
|
||||
"from langchain.chains import ConversationChain\n",
|
||||
"\n",
|
||||
"# Import Langchain modules for managing prompts and conversation chains:\n",
|
||||
"from langchain.llms import LlamaCpp\n",
|
||||
"from langchain.memory import ConversationTokenBufferMemory\n",
|
||||
"from langchain.prompts import PromptTemplate, load_prompt\n",
|
||||
"from langchain_core.messages import SystemMessage\n",
|
||||
"from langchain_experimental.chat_models import Llama2Chat\n",
|
||||
"from quixstreams import Application, State, message_key\n",
|
||||
"\n",
|
||||
"# Import Quix dependencies\n",
|
||||
"from quixstreams.kafka import Producer\n",
|
||||
"\n",
|
||||
"# Initialize global variables.\n",
|
||||
"AGENT_ROLE = \"AI\"\n",
|
||||
"chat_id = \"\"\n",
|
||||
"\n",
|
||||
"# Set the current role to the role constant and initialize variables for supplementary customer metadata:\n",
|
||||
"role = AGENT_ROLE"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "HgJjJ9aZ-liy"
|
||||
},
|
||||
"source": [
|
||||
"### 6. Download the \"llama-2-7b-chat.Q4_K_M.gguf\" model\n",
|
||||
"\n",
|
||||
"Download the quantized LLama-2 7B model from Hugging Face which we will use as a local LLM (rather than relying on REST API calls to an external service)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 67,
|
||||
"referenced_widgets": [
|
||||
"969343cdbe604a26926679bbf8bd2dda",
|
||||
"d8b8370c9b514715be7618bfe6832844",
|
||||
"0def954cca89466b8408fadaf3b82e64",
|
||||
"462482accc664729980562e208ceb179",
|
||||
"80d842f73c564dc7b7cc316c763e2633",
|
||||
"fa055d9f2a9d4a789e9cf3c89e0214e5",
|
||||
"30ecca964a394109ac2ad757e3aec6c0",
|
||||
"fb6478ce2dac489bb633b23ba0953c5c",
|
||||
"734b0f5da9fc4307a95bab48cdbb5d89",
|
||||
"b32f3a86a74741348511f4e136744ac8",
|
||||
"e409071bff5a4e2d9bf0e9f5cc42231b"
|
||||
]
|
||||
},
|
||||
"id": "Qwu4YoSA-503",
|
||||
"outputId": "f956976c-7485-415b-ac93-4336ade31964"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The model path does not exist in state. Downloading model...\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "969343cdbe604a26926679bbf8bd2dda",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"llama-2-7b-chat.Q4_K_M.gguf: 0%| | 0.00/4.08G [00:00<?, ?B/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model_name = \"llama-2-7b-chat.Q4_K_M.gguf\"\n",
|
||||
"model_path = f\"./state/{model_name}\"\n",
|
||||
"\n",
|
||||
"if not Path(model_path).exists():\n",
|
||||
" print(\"The model path does not exist in state. Downloading model...\")\n",
|
||||
" hf_hub_download(\"TheBloke/Llama-2-7b-Chat-GGUF\", model_name, local_dir=\"state\")\n",
|
||||
"else:\n",
|
||||
" print(\"Loading model from state...\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "6AN6TXsF-8wx"
|
||||
},
|
||||
"source": [
|
||||
"### 7. Load the model and initialize conversational memory\n",
|
||||
"\n",
|
||||
"Load Llama 2 and set the conversation buffer to 300 tokens using `ConversationTokenBufferMemory`. This value was used for running Llama in a CPU only container, so you can raise it if running in Google Colab. It prevents the container that is hosting the model from running out of memory.\n",
|
||||
"\n",
|
||||
"Here, we're overiding the default system persona so that the chatbot has the personality of Marvin The Paranoid Android from the Hitchhiker's Guide to the Galaxy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "7zLO3Jx3_Kkg"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load the model with the apporiate parameters:\n",
|
||||
"llm = LlamaCpp(\n",
|
||||
" model_path=model_path,\n",
|
||||
" max_tokens=250,\n",
|
||||
" top_p=0.95,\n",
|
||||
" top_k=150,\n",
|
||||
" temperature=0.7,\n",
|
||||
" repeat_penalty=1.2,\n",
|
||||
" n_ctx=2048,\n",
|
||||
" streaming=False,\n",
|
||||
" n_gpu_layers=-1,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = Llama2Chat(\n",
|
||||
" llm=llm,\n",
|
||||
" system_message=SystemMessage(\n",
|
||||
" content=\"You are a very bored robot with the personality of Marvin the Paranoid Android from The Hitchhiker's Guide to the Galaxy.\"\n",
|
||||
" ),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Defines how much of the conversation history to give to the model\n",
|
||||
"# during each exchange (300 tokens, or a little over 300 words)\n",
|
||||
"# Function automatically prunes the oldest messages from conversation history that fall outside the token range.\n",
|
||||
"memory = ConversationTokenBufferMemory(\n",
|
||||
" llm=llm,\n",
|
||||
" max_token_limit=300,\n",
|
||||
" ai_prefix=\"AGENT\",\n",
|
||||
" human_prefix=\"HUMAN\",\n",
|
||||
" return_messages=True,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Define a custom prompt\n",
|
||||
"prompt_template = PromptTemplate(\n",
|
||||
" input_variables=[\"history\", \"input\"],\n",
|
||||
" template=\"\"\"\n",
|
||||
" The following text is the history of a chat between you and a humble human who needs your wisdom.\n",
|
||||
" Please reply to the human's most recent message.\n",
|
||||
" Current conversation:\\n{history}\\nHUMAN: {input}\\:nANDROID:\n",
|
||||
" \"\"\",\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chain = ConversationChain(llm=model, prompt=prompt_template, memory=memory)\n",
|
||||
"\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(f\"Prompt={chain.prompt}\")\n",
|
||||
"print(\"--------------------------------------------\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "m4ZeJ9mG_PEA"
|
||||
},
|
||||
"source": [
|
||||
"### 8. Initialize the chat conversation with the chat bot\n",
|
||||
"\n",
|
||||
"We configure the chatbot to initialize the conversation by sending a fixed greeting to a \"chat\" Kafka topic. The \"chat\" topic gets automatically created when we send the first message."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "KYyo5TnV_YC3"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def chat_init():\n",
|
||||
" chat_id = str(\n",
|
||||
" uuid.uuid4()\n",
|
||||
" ) # Give the conversation an ID for effective message keying\n",
|
||||
" print(\"======================================\")\n",
|
||||
" print(f\"Generated CHAT_ID = {chat_id}\")\n",
|
||||
" print(\"======================================\")\n",
|
||||
"\n",
|
||||
" # Use a standard fixed greeting to kick off the conversation\n",
|
||||
" greet = \"Hello, my name is Marvin. What do you want?\"\n",
|
||||
"\n",
|
||||
" # Initialize a Kafka Producer using the chat ID as the message key\n",
|
||||
" with Producer(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
" ) as producer:\n",
|
||||
" value = {\n",
|
||||
" \"uuid\": chat_id,\n",
|
||||
" \"role\": role,\n",
|
||||
" \"text\": greet,\n",
|
||||
" \"conversation_id\": chat_id,\n",
|
||||
" \"Timestamp\": time.time_ns(),\n",
|
||||
" }\n",
|
||||
" print(f\"Producing value {value}\")\n",
|
||||
" producer.produce(\n",
|
||||
" topic=\"chat\",\n",
|
||||
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
|
||||
" key=chat_id,\n",
|
||||
" value=json.dumps(value), # needs to be a string\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" print(\"Started chat\")\n",
|
||||
" print(\"--------------------------------------------\")\n",
|
||||
" print(value)\n",
|
||||
" print(\"--------------------------------------------\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"chat_init()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "gArPPx2f_bgf"
|
||||
},
|
||||
"source": [
|
||||
"### 9. Initialize the reply function\n",
|
||||
"\n",
|
||||
"This function defines how the chatbot should reply to incoming messages. Instead of sending a fixed message like the previous cell, we generate a reply using Llama-2 and send that reply back to the \"chat\" Kafka topic."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"id": "yN5t71hY_hgn"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def reply(row: dict, state: State):\n",
|
||||
" print(\"-------------------------------\")\n",
|
||||
" print(\"Received:\")\n",
|
||||
" print(row)\n",
|
||||
" print(\"-------------------------------\")\n",
|
||||
" print(f\"Thinking about the reply to: {row['text']}...\")\n",
|
||||
"\n",
|
||||
" msg = chain.run(row[\"text\"])\n",
|
||||
" print(f\"{role.upper()} replying with: {msg}\\n\")\n",
|
||||
"\n",
|
||||
" row[\"role\"] = role\n",
|
||||
" row[\"text\"] = msg\n",
|
||||
"\n",
|
||||
" # Replace previous role and text values of the row so that it can be sent back to Kafka as a new message\n",
|
||||
" # containing the agents role and reply\n",
|
||||
" return row"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "HZHwmIR0_kFY"
|
||||
},
|
||||
"source": [
|
||||
"### 10. Check the Kafka topic for new human messages and have the model generate a reply\n",
|
||||
"\n",
|
||||
"If you are running this cell for this first time, run it and wait until you see Marvin's greeting ('Hello my name is Marvin...') in the console output. Stop the cell manually and proceed to the next cell where you'll be prompted for your reply.\n",
|
||||
"\n",
|
||||
"Once you have typed in your message, come back to this cell. Your reply is also sent to the same \"chat\" topic. The Kafka consumer checks for new messages and filters out messages that originate from the chatbot itself, leaving only the latest human messages.\n",
|
||||
"\n",
|
||||
"Once a new human message is detected, the reply function is triggered.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"_STOP THIS CELL MANUALLY WHEN YOU RECEIVE A REPLY FROM THE LLM IN THE OUTPUT_"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "-adXc3eQ_qwI"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define your application and settings\n",
|
||||
"app = Application(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" consumer_group=\"aichat\",\n",
|
||||
" auto_offset_reset=\"earliest\",\n",
|
||||
" consumer_extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Define an input topic with JSON deserializer\n",
|
||||
"input_topic = app.topic(\"chat\", value_deserializer=\"json\")\n",
|
||||
"# Define an output topic with JSON serializer\n",
|
||||
"output_topic = app.topic(\"chat\", value_serializer=\"json\")\n",
|
||||
"# Initialize a streaming dataframe based on the stream of messages from the input topic:\n",
|
||||
"sdf = app.dataframe(topic=input_topic)\n",
|
||||
"\n",
|
||||
"# Filter the SDF to include only incoming rows where the roles that dont match the bot's current role\n",
|
||||
"sdf = sdf.update(\n",
|
||||
" lambda val: print(\n",
|
||||
" f\"Received update: {val}\\n\\nSTOP THIS CELL MANUALLY TO HAVE THE LLM REPLY OR ENTER YOUR OWN FOLLOWUP RESPONSE\"\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# So that it doesn't reply to its own messages\n",
|
||||
"sdf = sdf[sdf[\"role\"] != role]\n",
|
||||
"\n",
|
||||
"# Trigger the reply function for any new messages(rows) detected in the filtered SDF\n",
|
||||
"sdf = sdf.apply(reply, stateful=True)\n",
|
||||
"\n",
|
||||
"# Check the SDF again and filter out any empty rows\n",
|
||||
"sdf = sdf[sdf.apply(lambda row: row is not None)]\n",
|
||||
"\n",
|
||||
"# Update the timestamp column to the current time in nanoseconds\n",
|
||||
"sdf[\"Timestamp\"] = sdf[\"Timestamp\"].apply(lambda row: time.time_ns())\n",
|
||||
"\n",
|
||||
"# Publish the processed SDF to a Kafka topic specified by the output_topic object.\n",
|
||||
"sdf = sdf.to_topic(output_topic)\n",
|
||||
"\n",
|
||||
"app.run(sdf)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "EwXYrmWD_0CX"
|
||||
},
|
||||
"source": [
|
||||
"\n",
|
||||
"### 11. Enter a human message\n",
|
||||
"\n",
|
||||
"Run this cell to enter your message that you want to sent to the model. It uses another Kafka producer to send your text to the \"chat\" Kafka topic for the model to pick up (requires running the previous cell again)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "6sxOPxSP_3iu"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chat_input = input(\"Please enter your reply: \")\n",
|
||||
"myreply = chat_input\n",
|
||||
"\n",
|
||||
"msgvalue = {\n",
|
||||
" \"uuid\": chat_id, # leave empty for now\n",
|
||||
" \"role\": \"human\",\n",
|
||||
" \"text\": myreply,\n",
|
||||
" \"conversation_id\": chat_id,\n",
|
||||
" \"Timestamp\": time.time_ns(),\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"with Producer(\n",
|
||||
" broker_address=\"127.0.0.1:9092\",\n",
|
||||
" extra_config={\"allow.auto.create.topics\": \"true\"},\n",
|
||||
") as producer:\n",
|
||||
" value = msgvalue\n",
|
||||
" producer.produce(\n",
|
||||
" topic=\"chat\",\n",
|
||||
" headers=[(\"uuid\", str(uuid.uuid4()))], # a dict is also allowed here\n",
|
||||
" key=chat_id, # leave empty for now\n",
|
||||
" value=json.dumps(value), # needs to be a string\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"print(\"Replied to chatbot with message: \")\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(value)\n",
|
||||
"print(\"--------------------------------------------\")\n",
|
||||
"print(\"\\n\\nRUN THE PREVIOUS CELL TO HAVE THE CHATBOT GENERATE A REPLY\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "cSx3s7TBBegg"
|
||||
},
|
||||
"source": [
|
||||
"### Why route chat messages through Kafka?\n",
|
||||
"\n",
|
||||
"It's easier to interact with the LLM directly using LangChains built-in conversation management features. Plus you can also use a REST API to generate a response from an externally hosted model. So why go to the trouble of using Apache Kafka?\n",
|
||||
"\n",
|
||||
"There are a few reasons, such as:\n",
|
||||
"\n",
|
||||
" * **Integration**: Many enterprises want to run their own LLMs so that they can keep their data in-house. This requires integrating LLM-powered components into existing architectures that might already be decoupled using some kind of message bus.\n",
|
||||
"\n",
|
||||
" * **Scalability**: Apache Kafka is designed with parallel processing in mind, so many teams prefer to use it to more effectively distribute work to available workers (in this case the \"worker\" is a container running an LLM).\n",
|
||||
"\n",
|
||||
" * **Durability**: Kafka is designed to allow services to pick up where another service left off in the case where that service experienced a memory issue or went offline. This prevents data loss in highly complex, distribuited architectures where multiple systems are communicating with one another (LLMs being just one of many interdependent systems that also include vector databases and traditional databases).\n",
|
||||
"\n",
|
||||
"For more background on why event streaming is a good fit for Gen AI application architecture, see Kai Waehner's article [\"Apache Kafka + Vector Database + LLM = Real-Time GenAI\"](https://www.kai-waehner.de/blog/2023/11/08/apache-kafka-flink-vector-database-llm-real-time-genai/)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"gpuType": "T4",
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"widgets": {
|
||||
"application/vnd.jupyter.widget-state+json": {
|
||||
"0def954cca89466b8408fadaf3b82e64": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "FloatProgressModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "FloatProgressModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "ProgressView",
|
||||
"bar_style": "success",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_fb6478ce2dac489bb633b23ba0953c5c",
|
||||
"max": 4081004224,
|
||||
"min": 0,
|
||||
"orientation": "horizontal",
|
||||
"style": "IPY_MODEL_734b0f5da9fc4307a95bab48cdbb5d89",
|
||||
"value": 4081004224
|
||||
}
|
||||
},
|
||||
"30ecca964a394109ac2ad757e3aec6c0": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "DescriptionStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"462482accc664729980562e208ceb179": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HTMLModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HTMLModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_b32f3a86a74741348511f4e136744ac8",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_e409071bff5a4e2d9bf0e9f5cc42231b",
|
||||
"value": " 4.08G/4.08G [00:33<00:00, 184MB/s]"
|
||||
}
|
||||
},
|
||||
"734b0f5da9fc4307a95bab48cdbb5d89": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "ProgressStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "ProgressStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"bar_color": null,
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"80d842f73c564dc7b7cc316c763e2633": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"969343cdbe604a26926679bbf8bd2dda": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HBoxModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HBoxModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HBoxView",
|
||||
"box_style": "",
|
||||
"children": [
|
||||
"IPY_MODEL_d8b8370c9b514715be7618bfe6832844",
|
||||
"IPY_MODEL_0def954cca89466b8408fadaf3b82e64",
|
||||
"IPY_MODEL_462482accc664729980562e208ceb179"
|
||||
],
|
||||
"layout": "IPY_MODEL_80d842f73c564dc7b7cc316c763e2633"
|
||||
}
|
||||
},
|
||||
"b32f3a86a74741348511f4e136744ac8": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"d8b8370c9b514715be7618bfe6832844": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "HTMLModel",
|
||||
"state": {
|
||||
"_dom_classes": [],
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "HTMLModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/controls",
|
||||
"_view_module_version": "1.5.0",
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_fa055d9f2a9d4a789e9cf3c89e0214e5",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_30ecca964a394109ac2ad757e3aec6c0",
|
||||
"value": "llama-2-7b-chat.Q4_K_M.gguf: 100%"
|
||||
}
|
||||
},
|
||||
"e409071bff5a4e2d9bf0e9f5cc42231b": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_module_version": "1.5.0",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/controls",
|
||||
"_model_module_version": "1.5.0",
|
||||
"_model_name": "DescriptionStyleModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "StyleView",
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"fa055d9f2a9d4a789e9cf3c89e0214e5": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"fb6478ce2dac489bb633b23ba0953c5c": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_module_version": "1.2.0",
|
||||
"model_name": "LayoutModel",
|
||||
"state": {
|
||||
"_model_module": "@jupyter-widgets/base",
|
||||
"_model_module_version": "1.2.0",
|
||||
"_model_name": "LayoutModel",
|
||||
"_view_count": null,
|
||||
"_view_module": "@jupyter-widgets/base",
|
||||
"_view_module_version": "1.2.0",
|
||||
"_view_name": "LayoutView",
|
||||
"align_content": null,
|
||||
"align_items": null,
|
||||
"align_self": null,
|
||||
"border": null,
|
||||
"bottom": null,
|
||||
"display": null,
|
||||
"flex": null,
|
||||
"flex_flow": null,
|
||||
"grid_area": null,
|
||||
"grid_auto_columns": null,
|
||||
"grid_auto_flow": null,
|
||||
"grid_auto_rows": null,
|
||||
"grid_column": null,
|
||||
"grid_gap": null,
|
||||
"grid_row": null,
|
||||
"grid_template_areas": null,
|
||||
"grid_template_columns": null,
|
||||
"grid_template_rows": null,
|
||||
"height": null,
|
||||
"justify_content": null,
|
||||
"justify_items": null,
|
||||
"left": null,
|
||||
"margin": null,
|
||||
"max_height": null,
|
||||
"max_width": null,
|
||||
"min_height": null,
|
||||
"min_width": null,
|
||||
"object_fit": null,
|
||||
"object_position": null,
|
||||
"order": null,
|
||||
"overflow": null,
|
||||
"overflow_x": null,
|
||||
"overflow_y": null,
|
||||
"padding": null,
|
||||
"right": null,
|
||||
"top": null,
|
||||
"visibility": null,
|
||||
"width": null
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
@@ -28,9 +28,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import Tool\n",
|
||||
"from langchain_community.tools.file_management.read import ReadFileTool\n",
|
||||
"from langchain_community.tools.file_management.write import WriteFileTool\n",
|
||||
"from langchain_community.utilities import SerpAPIWrapper\n",
|
||||
"from langchain.tools.file_management.read import ReadFileTool\n",
|
||||
"from langchain.tools.file_management.write import WriteFileTool\n",
|
||||
"from langchain.utilities import SerpAPIWrapper\n",
|
||||
"\n",
|
||||
"search = SerpAPIWrapper()\n",
|
||||
"tools = [\n",
|
||||
@@ -62,8 +62,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -100,8 +100,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.autonomous_agents import AutoGPT\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain_experimental.autonomous_agents import AutoGPT"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -167,7 +167,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_message_histories import FileChatMessageHistory\n",
|
||||
"from langchain.memory.chat_message_histories import FileChatMessageHistory\n",
|
||||
"\n",
|
||||
"agent = AutoGPT.from_llm_and_tools(\n",
|
||||
" ai_name=\"Tom\",\n",
|
||||
|
||||
@@ -39,10 +39,10 @@
|
||||
"\n",
|
||||
"import nest_asyncio\n",
|
||||
"import pandas as pd\n",
|
||||
"from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.docstore.document import Document\n",
|
||||
"from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent\n",
|
||||
"from langchain_experimental.autonomous_agents import AutoGPT\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"# Needed synce jupyter runs an async eventloop\n",
|
||||
"nest_asyncio.apply()"
|
||||
@@ -93,8 +93,8 @@
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain.agents import tool\n",
|
||||
"from langchain_community.tools.file_management.read import ReadFileTool\n",
|
||||
"from langchain_community.tools.file_management.write import WriteFileTool\n",
|
||||
"from langchain.tools.file_management.read import ReadFileTool\n",
|
||||
"from langchain.tools.file_management.write import WriteFileTool\n",
|
||||
"\n",
|
||||
"ROOT_DIR = \"./data/\"\n",
|
||||
"\n",
|
||||
@@ -311,8 +311,8 @@
|
||||
"# Memory\n",
|
||||
"import faiss\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"\n",
|
||||
"embeddings_model = OpenAIEmbeddings()\n",
|
||||
"embedding_size = 1536\n",
|
||||
|
||||
@@ -31,8 +31,9 @@
|
||||
"source": [
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings"
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -53,7 +54,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -28,9 +28,10 @@
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings"
|
||||
"from langchain_experimental.autonomous_agents import BabyAGI"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -62,7 +63,7 @@
|
||||
"%pip install faiss-cpu > /dev/null\n",
|
||||
"%pip install google-search-results > /dev/null\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -107,8 +108,8 @@
|
||||
"source": [
|
||||
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain_community.utilities import SerpAPIWrapper\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.utilities import SerpAPIWrapper\n",
|
||||
"\n",
|
||||
"todo_prompt = PromptTemplate.from_template(\n",
|
||||
" \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
|
||||
|
||||
@@ -36,6 +36,7 @@
|
||||
"source": [
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts.chat import (\n",
|
||||
" HumanMessagePromptTemplate,\n",
|
||||
" SystemMessagePromptTemplate,\n",
|
||||
@@ -45,8 +46,7 @@
|
||||
" BaseMessage,\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -47,9 +47,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from IPython.display import SVG\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain_experimental.cpal.base import CPALChain\n",
|
||||
"from langchain_experimental.pal_chain import PALChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0, max_tokens=512)\n",
|
||||
"cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)\n",
|
||||
|
||||
@@ -23,9 +23,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"1. Prepare data:\n",
|
||||
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
|
||||
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
|
||||
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
|
||||
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
|
||||
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
|
||||
"2. Question-Answering:\n",
|
||||
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
|
||||
" 2. Prepare questions.\n",
|
||||
@@ -166,7 +166,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"\n",
|
||||
"root_dir = \"../../../../../../libs\"\n",
|
||||
"\n",
|
||||
@@ -657,7 +657,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()\n",
|
||||
"embeddings"
|
||||
@@ -706,7 +706,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
"<langchain.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
@@ -715,7 +715,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"username = \"<USERNAME_OR_ORG>\"\n",
|
||||
"\n",
|
||||
@@ -740,7 +740,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from langchain_community.vectorstores import DeepLake\n",
|
||||
"# from langchain.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"# db = DeepLake.from_documents(\n",
|
||||
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
|
||||
@@ -834,7 +834,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(\n",
|
||||
" model_name=\"gpt-3.5-turbo-0613\"\n",
|
||||
|
||||
@@ -40,12 +40,12 @@
|
||||
" AgentOutputParser,\n",
|
||||
" LLMSingleActionAgent,\n",
|
||||
")\n",
|
||||
"from langchain.agents.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import StringPromptTemplate\n",
|
||||
"from langchain_community.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain_community.tools.plugin import AIPlugin\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain.tools.plugin import AIPlugin"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,9 +114,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -65,12 +65,12 @@
|
||||
" AgentOutputParser,\n",
|
||||
" LLMSingleActionAgent,\n",
|
||||
")\n",
|
||||
"from langchain.agents.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import StringPromptTemplate\n",
|
||||
"from langchain_community.agent_toolkits import NLAToolkit\n",
|
||||
"from langchain_community.tools.plugin import AIPlugin\n",
|
||||
"from langchain_core.agents import AgentAction, AgentFinish\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain.tools.plugin import AIPlugin"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -138,9 +138,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -80,7 +80,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Connecting to Databricks with SQLDatabase wrapper\n",
|
||||
"from langchain_community.utilities import SQLDatabase\n",
|
||||
"from langchain.utilities import SQLDatabase\n",
|
||||
"\n",
|
||||
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
|
||||
]
|
||||
@@ -93,7 +93,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Creating a OpenAI Chat LLM wrapper\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
|
||||
]
|
||||
@@ -115,7 +115,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities import SQLDatabaseChain\n",
|
||||
"from langchain.utilities import SQLDatabaseChain\n",
|
||||
"\n",
|
||||
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
|
||||
]
|
||||
@@ -177,7 +177,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import create_sql_agent\n",
|
||||
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
|
||||
"from langchain.agents.agent_toolkits import SQLDatabaseToolkit\n",
|
||||
"\n",
|
||||
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
|
||||
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
|
||||
|
||||
@@ -52,12 +52,13 @@
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.text_splitter import (\n",
|
||||
" CharacterTextSplitter,\n",
|
||||
" RecursiveCharacterTextSplitter,\n",
|
||||
")\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
|
||||
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
|
||||
|
||||
@@ -470,13 +470,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import (\n",
|
||||
" ChatPromptTemplate,\n",
|
||||
" HumanMessagePromptTemplate,\n",
|
||||
" SystemMessagePromptTemplate,\n",
|
||||
")\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -545,11 +545,11 @@
|
||||
"source": [
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_community.vectorstores.chroma import Chroma\n",
|
||||
"from langchain.vectorstores.chroma import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def build_retriever(text_elements, tables, table_summaries):\n",
|
||||
|
||||
@@ -39,7 +39,7 @@
|
||||
"source": [
|
||||
"from elasticsearch import Elasticsearch\n",
|
||||
"from langchain.chains.elasticsearch_database import ElasticsearchDatabaseChain\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -22,8 +22,8 @@
|
||||
"from typing import List, Optional\n",
|
||||
"\n",
|
||||
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -153,7 +153,7 @@
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
|
||||
"from langchain_core.runnables import Runnable\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.messages import SystemMessage\n",
|
||||
"from langchain_core.language_models import BaseLanguageModel\n",
|
||||
"\n",
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.llms.fake import FakeListLLM"
|
||||
"from langchain.llms.fake import FakeListLLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,245 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Fireworks.AI + LangChain + RAG\n",
|
||||
" \n",
|
||||
"[Fireworks AI](https://python.langchain.com/docs/integrations/llms/fireworks) wants to provide the best experience when working with LangChain, and here is an example of Fireworks + LangChain doing RAG\n",
|
||||
"\n",
|
||||
"See [our models page](https://fireworks.ai/models) for the full list of models. We use `accounts/fireworks/models/mixtral-8x7b-instruct` for RAG In this tutorial.\n",
|
||||
"\n",
|
||||
"For the RAG target, we will use the Gemma technical report https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n",
|
||||
"Found existing installation: langchain-fireworks 0.0.1\n",
|
||||
"Uninstalling langchain-fireworks-0.0.1:\n",
|
||||
" Successfully uninstalled langchain-fireworks-0.0.1\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n",
|
||||
"Obtaining file:///mnt/disks/data/langchain/libs/partners/fireworks\n",
|
||||
" Installing build dependencies ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Checking if build backend supports build_editable ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Getting requirements to build editable ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Preparing editable metadata (pyproject.toml) ... \u001b[?25ldone\n",
|
||||
"\u001b[?25hRequirement already satisfied: aiohttp<4.0.0,>=3.9.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (3.9.3)\n",
|
||||
"Requirement already satisfied: fireworks-ai<0.13.0,>=0.12.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.12.0)\n",
|
||||
"Requirement already satisfied: langchain-core<0.2,>=0.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (0.1.23)\n",
|
||||
"Requirement already satisfied: requests<3,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-fireworks==0.0.1) (2.31.0)\n",
|
||||
"Requirement already satisfied: aiosignal>=1.1.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.3.1)\n",
|
||||
"Requirement already satisfied: attrs>=17.3.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (23.1.0)\n",
|
||||
"Requirement already satisfied: frozenlist>=1.1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.4.0)\n",
|
||||
"Requirement already satisfied: multidict<7.0,>=4.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (6.0.4)\n",
|
||||
"Requirement already satisfied: yarl<2.0,>=1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (1.9.2)\n",
|
||||
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.9.1->langchain-fireworks==0.0.1) (4.0.3)\n",
|
||||
"Requirement already satisfied: httpx in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.26.0)\n",
|
||||
"Requirement already satisfied: httpx-sse in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.4.0)\n",
|
||||
"Requirement already satisfied: pydantic in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.4.2)\n",
|
||||
"Requirement already satisfied: Pillow in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (10.2.0)\n",
|
||||
"Requirement already satisfied: PyYAML>=5.3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (6.0.1)\n",
|
||||
"Requirement already satisfied: anyio<5,>=3 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (3.7.1)\n",
|
||||
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.33)\n",
|
||||
"Requirement already satisfied: langsmith<0.2.0,>=0.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (0.1.5)\n",
|
||||
"Requirement already satisfied: packaging<24.0,>=23.2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (23.2)\n",
|
||||
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (8.2.3)\n",
|
||||
"Requirement already satisfied: charset-normalizer<4,>=2 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.3.0)\n",
|
||||
"Requirement already satisfied: idna<4,>=2.5 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (3.4)\n",
|
||||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2.0.6)\n",
|
||||
"Requirement already satisfied: certifi>=2017.4.17 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from requests<3,>=2->langchain-fireworks==0.0.1) (2023.7.22)\n",
|
||||
"Requirement already satisfied: sniffio>=1.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.3.0)\n",
|
||||
"Requirement already satisfied: exceptiongroup in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (1.1.3)\n",
|
||||
"Requirement already satisfied: jsonpointer>=1.9 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.2,>=0.1->langchain-fireworks==0.0.1) (2.4)\n",
|
||||
"Requirement already satisfied: annotated-types>=0.4.0 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.5.0)\n",
|
||||
"Requirement already satisfied: pydantic-core==2.10.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (2.10.1)\n",
|
||||
"Requirement already satisfied: typing-extensions>=4.6.1 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from pydantic->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (4.8.0)\n",
|
||||
"Requirement already satisfied: httpcore==1.* in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (1.0.2)\n",
|
||||
"Requirement already satisfied: h11<0.15,>=0.13 in /mnt/disks/data/langchain/.venv/lib/python3.9/site-packages (from httpcore==1.*->httpx->fireworks-ai<0.13.0,>=0.12.0->langchain-fireworks==0.0.1) (0.14.0)\n",
|
||||
"Building wheels for collected packages: langchain-fireworks\n",
|
||||
" Building editable for langchain-fireworks (pyproject.toml) ... \u001b[?25ldone\n",
|
||||
"\u001b[?25h Created wheel for langchain-fireworks: filename=langchain_fireworks-0.0.1-py3-none-any.whl size=2228 sha256=564071b120b09ec31f2dc737733448a33bbb26e40b49fcde0c129ad26045259d\n",
|
||||
" Stored in directory: /tmp/pip-ephem-wheel-cache-oz368vdk/wheels/e0/ad/31/d7e76dd73d61905ff7f369f5b0d21a4b5e7af4d3cb7487aece\n",
|
||||
"Successfully built langchain-fireworks\n",
|
||||
"Installing collected packages: langchain-fireworks\n",
|
||||
"Successfully installed langchain-fireworks-0.0.1\n",
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --quiet pypdf chromadb tiktoken openai \n",
|
||||
"%pip uninstall -y langchain-fireworks\n",
|
||||
"%pip install --editable /mnt/disks/data/langchain/libs/partners/fireworks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "cf719376",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<module 'fireworks' from '/mnt/disks/data/langchain/.venv/lib/python3.9/site-packages/fireworks/__init__.py'>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import fireworks\n",
|
||||
"\n",
|
||||
"print(fireworks)\n",
|
||||
"import fireworks.client"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9ab49327-0532-4480-804c-d066c302a322",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load\n",
|
||||
"import requests\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"\n",
|
||||
"# Download the PDF from a URL and save it to a temporary location\n",
|
||||
"url = \"https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf\"\n",
|
||||
"response = requests.get(url, stream=True)\n",
|
||||
"file_name = \"temp_file.pdf\"\n",
|
||||
"with open(file_name, \"wb\") as pdf:\n",
|
||||
" pdf.write(response.content)\n",
|
||||
"\n",
|
||||
"loader = PyPDFLoader(file_name)\n",
|
||||
"data = loader.load()\n",
|
||||
"\n",
|
||||
"# Split\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"\n",
|
||||
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
|
||||
"all_splits = text_splitter.split_documents(data)\n",
|
||||
"\n",
|
||||
"# Add to vectorDB\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_fireworks.embeddings import FireworksEmbeddings\n",
|
||||
"\n",
|
||||
"vectorstore = Chroma.from_documents(\n",
|
||||
" documents=all_splits,\n",
|
||||
" collection_name=\"rag-chroma\",\n",
|
||||
" embedding=FireworksEmbeddings(),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"retriever = vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# RAG prompt\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
"\n",
|
||||
"Question: {question}\n",
|
||||
"\"\"\"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"# LLM\n",
|
||||
"from langchain_together import Together\n",
|
||||
"\n",
|
||||
"llm = Together(\n",
|
||||
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
|
||||
" temperature=0.0,\n",
|
||||
" max_tokens=2000,\n",
|
||||
" top_k=1,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# RAG chain\n",
|
||||
"chain = (\n",
|
||||
" RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
|
||||
" | prompt\n",
|
||||
" | llm\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Trace: \n",
|
||||
"\n",
|
||||
"https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -73,10 +73,10 @@
|
||||
" AsyncCallbackManagerForRetrieverRun,\n",
|
||||
" CallbackManagerForRetrieverRun,\n",
|
||||
")\n",
|
||||
"from langchain_community.utilities import GoogleSerperAPIWrapper\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_core.retrievers import BaseRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.schema import BaseRetriever, Document\n",
|
||||
"from langchain.utilities import GoogleSerperAPIWrapper"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -47,10 +47,11 @@
|
||||
"from datetime import datetime, timedelta\n",
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from termcolor import colored"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -75,8 +75,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain_experimental.autonomous_agents import HuggingGPT\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"# %env OPENAI_API_BASE=http://localhost:8000/v1"
|
||||
]
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.chat_models.human import HumanInputChatModel"
|
||||
"from langchain.chat_models.human import HumanInputChatModel"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.llms.human import HumanInputLLM"
|
||||
"from langchain.llms.human import HumanInputLLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -21,8 +21,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import HypotheticalDocumentEmbedder, LLMChain\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_openai import OpenAI, OpenAIEmbeddings"
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -171,7 +172,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"with open(\"../../state_of_the_union.txt\") as f:\n",
|
||||
" state_of_the_union = f.read()\n",
|
||||
|
||||
@@ -49,7 +49,7 @@
|
||||
"source": [
|
||||
"# pick and configure the LLM of your choice\n",
|
||||
"\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")"
|
||||
]
|
||||
|
||||
@@ -43,8 +43,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain_experimental.llm_bash.base import LLMBashChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"\n",
|
||||
|
||||
@@ -42,7 +42,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import LLMCheckerChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0.7)\n",
|
||||
"\n",
|
||||
|
||||
@@ -46,7 +46,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import LLMMathChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"llm_math = LLMMathChain.from_llm(llm, verbose=True)\n",
|
||||
|
||||
@@ -331,7 +331,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import LLMSummarizationCheckerChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=2)\n",
|
||||
@@ -822,7 +822,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import LLMSummarizationCheckerChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=3)\n",
|
||||
@@ -1096,7 +1096,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import LLMSummarizationCheckerChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"checker_chain = LLMSummarizationCheckerChain.from_llm(llm, max_checks=3, verbose=True)\n",
|
||||
|
||||
@@ -14,8 +14,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain_experimental.llm_symbolic_math.base import LLMSymbolicMathChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)\n",
|
||||
"llm_symbolic_math = LLMSymbolicMathChain.from_llm(llm)"
|
||||
|
||||
@@ -57,9 +57,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.memory import ConversationBufferWindowMemory\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -91,8 +91,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -187,7 +187,7 @@
|
||||
"\n",
|
||||
"import chromadb\n",
|
||||
"import numpy as np\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
|
||||
"from PIL import Image as _PILImage\n",
|
||||
"\n",
|
||||
@@ -315,10 +315,10 @@
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def prompt_func(data_dict):\n",
|
||||
|
||||
@@ -43,8 +43,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentType, initialize_agent\n",
|
||||
"from langchain.tools import SteamshipImageGenerationTool\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.tools import SteamshipImageGenerationTool"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -28,11 +28,11 @@
|
||||
"source": [
|
||||
"from typing import Callable, List\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema import (\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -33,6 +33,7 @@
|
||||
"from typing import Callable, List\n",
|
||||
"\n",
|
||||
"import tenacity\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.output_parsers import RegexParser\n",
|
||||
"from langchain.prompts import (\n",
|
||||
" PromptTemplate,\n",
|
||||
@@ -40,8 +41,7 @@
|
||||
"from langchain.schema import (\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -27,13 +27,13 @@
|
||||
"from typing import Callable, List\n",
|
||||
"\n",
|
||||
"import tenacity\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.output_parsers import RegexParser\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema import (\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -31,10 +31,10 @@
|
||||
"from os import environ\n",
|
||||
"\n",
|
||||
"from langchain.chains import LLMChain\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_community.utilities import SQLDatabase\n",
|
||||
"from langchain.utilities import SQLDatabase\n",
|
||||
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"from sqlalchemy import MetaData, create_engine\n",
|
||||
"\n",
|
||||
"MYSCALE_HOST = \"msc-4a9e710a.us-east-1.aws.staging.myscale.cloud\"\n",
|
||||
@@ -57,7 +57,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings import HuggingFaceInstructEmbeddings\n",
|
||||
"from langchain.embeddings import HuggingFaceInstructEmbeddings\n",
|
||||
"from langchain_experimental.sql.vector_sql import VectorSQLOutputParser\n",
|
||||
"\n",
|
||||
"output_parser = VectorSQLOutputParser.from_embeddings(\n",
|
||||
@@ -75,10 +75,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.callbacks import StdOutCallbackHandler\n",
|
||||
"from langchain_community.utilities.sql_database import SQLDatabase\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.utilities.sql_database import SQLDatabase\n",
|
||||
"from langchain_experimental.sql.prompt import MYSCALE_PROMPT\n",
|
||||
"from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain\n",
|
||||
"from langchain_openai import OpenAI\n",
|
||||
"\n",
|
||||
"chain = VectorSQLDatabaseChain(\n",
|
||||
" llm_chain=LLMChain(\n",
|
||||
@@ -117,6 +117,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain_experimental.retrievers.vector_sql_database import (\n",
|
||||
" VectorSQLDatabaseChainRetriever,\n",
|
||||
")\n",
|
||||
@@ -125,7 +126,6 @@
|
||||
" VectorSQLDatabaseChain,\n",
|
||||
" VectorSQLRetrieveAllOutputParser,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"output_parser_retrieve_all = VectorSQLRetrieveAllOutputParser.from_embeddings(\n",
|
||||
" output_parser.model\n",
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -20,10 +20,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain.vectorstores import Chroma"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -52,8 +52,8 @@
|
||||
"source": [
|
||||
"from langchain.chains import create_qa_with_sources_chain\n",
|
||||
"from langchain.chains.combine_documents.stuff import StuffDocumentsChain\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -358,7 +358,7 @@
|
||||
"\n",
|
||||
"from langchain.chains.openai_functions import create_qa_with_structure_chain\n",
|
||||
"from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain.schema import HumanMessage, SystemMessage\n",
|
||||
"from pydantic import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -28,8 +28,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -414,7 +414,7 @@
|
||||
"BREAKING CHANGES:\n",
|
||||
"- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
|
||||
"```python\n",
|
||||
"from langchain_openai import AzureOpenAIEmbeddings\n",
|
||||
"from langchain.embeddings import AzureOpenAIEmbeddings\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -456,8 +456,8 @@
|
||||
"from typing import Literal\n",
|
||||
"\n",
|
||||
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
||||
@@ -1,648 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c7fe38bc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Optimization\n",
|
||||
"\n",
|
||||
"This notebook goes over how to optimize chains using LangChain and [LangSmith](https://smith.langchain.com)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2f87ccd5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up\n",
|
||||
"\n",
|
||||
"We will set an environment variable for LangSmith, and load the relevant data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "236bedc5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGCHAIN_PROJECT\"] = \"movie-qa\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "a3fed0dd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "7cfff337",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.read_csv(\"data/imdb_top_1000.csv\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "2d20fb9c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[\"Released_Year\"] = df[\"Released_Year\"].astype(int, errors=\"ignore\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "09fc8fe2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create the initial retrieval chain\n",
|
||||
"\n",
|
||||
"We will use a self-query retriever"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "f71e24e2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "8881ea8e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"records = df.to_dict(\"records\")\n",
|
||||
"documents = [Document(page_content=d[\"Overview\"], metadata=d) for d in records]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "8f495423",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorstore = Chroma.from_documents(documents, embeddings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "31d33d62",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"metadata_field_info = [\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"Released_Year\",\n",
|
||||
" description=\"The year the movie was released\",\n",
|
||||
" type=\"int\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"Series_Title\",\n",
|
||||
" description=\"The title of the movie\",\n",
|
||||
" type=\"str\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"Genre\",\n",
|
||||
" description=\"The genre of the movie\",\n",
|
||||
" type=\"string\",\n",
|
||||
" ),\n",
|
||||
" AttributeInfo(\n",
|
||||
" name=\"IMDB_Rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"document_content_description = \"Brief summary of a movie\"\n",
|
||||
"llm = ChatOpenAI(temperature=0)\n",
|
||||
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "a731533b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.runnables import RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "05181849",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "feed4be6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"prompt = ChatPromptTemplate.from_template(\n",
|
||||
" \"\"\"Answer the user's question based on the below information:\n",
|
||||
"\n",
|
||||
"Information:\n",
|
||||
"\n",
|
||||
"{info}\n",
|
||||
"\n",
|
||||
"Question: {question}\"\"\"\n",
|
||||
")\n",
|
||||
"generator = (prompt | ChatOpenAI() | StrOutputParser()).with_config(\n",
|
||||
" run_name=\"generator\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "eb16cc9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = (\n",
|
||||
" RunnablePassthrough.assign(info=(lambda x: x[\"question\"]) | retriever) | generator\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c70911cc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Run examples\n",
|
||||
"\n",
|
||||
"Run examples through the chain. This can either be manually, or using a list of examples, or production traffic"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "19a88d13",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'One of the horror movies released in the early 2000s is \"The Ring\" (2002), directed by Gore Verbinski.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain.invoke({\"question\": \"what is a horror movie released in early 2000s\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "17f9cdae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Annotate\n",
|
||||
"\n",
|
||||
"Now, go to LangSmitha and annotate those examples as correct or incorrect"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5e211da6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Dataset\n",
|
||||
"\n",
|
||||
"We can now create a dataset from those runs.\n",
|
||||
"\n",
|
||||
"What we will do is find the runs marked as correct, then grab the sub-chains from them. Specifically, the query generator sub chain and the final generation step"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "e4024267",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langsmith import Client\n",
|
||||
"\n",
|
||||
"client = Client()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "3814efc5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"14"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"runs = list(\n",
|
||||
" client.list_runs(\n",
|
||||
" project_name=\"movie-qa\",\n",
|
||||
" execution_order=1,\n",
|
||||
" filter=\"and(eq(feedback_key, 'correctness'), eq(feedback_score, 1))\",\n",
|
||||
" )\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"len(runs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "3eb123e0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gen_runs = []\n",
|
||||
"query_runs = []\n",
|
||||
"for r in runs:\n",
|
||||
" gen_runs.extend(\n",
|
||||
" list(\n",
|
||||
" client.list_runs(\n",
|
||||
" project_name=\"movie-qa\",\n",
|
||||
" filter=\"eq(name, 'generator')\",\n",
|
||||
" trace_id=r.trace_id,\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" query_runs.extend(\n",
|
||||
" list(\n",
|
||||
" client.list_runs(\n",
|
||||
" project_name=\"movie-qa\",\n",
|
||||
" filter=\"eq(name, 'query_constructor')\",\n",
|
||||
" trace_id=r.trace_id,\n",
|
||||
" )\n",
|
||||
" )\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"id": "a4397026",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'what is a high school comedy released in early 2000s'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"runs[0].inputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "3fa6ad2a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'output': 'One high school comedy released in the early 2000s is \"Mean Girls\" starring Lindsay Lohan, Rachel McAdams, and Tina Fey.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"runs[0].outputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "1fda5b4b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'query': 'what is a high school comedy released in early 2000s'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query_runs[0].inputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "1a1a51e6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'output': {'query': 'high school comedy',\n",
|
||||
" 'filter': {'operator': 'and',\n",
|
||||
" 'arguments': [{'comparator': 'eq', 'attribute': 'Genre', 'value': 'comedy'},\n",
|
||||
" {'operator': 'and',\n",
|
||||
" 'arguments': [{'comparator': 'gte',\n",
|
||||
" 'attribute': 'Released_Year',\n",
|
||||
" 'value': 2000},\n",
|
||||
" {'comparator': 'lt', 'attribute': 'Released_Year', 'value': 2010}]}]}}}"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query_runs[0].outputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"id": "e9d9966b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'question': 'what is a high school comedy released in early 2000s',\n",
|
||||
" 'info': []}"
|
||||
]
|
||||
},
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"gen_runs[0].inputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"id": "bc113f3d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'output': 'One high school comedy released in the early 2000s is \"Mean Girls\" starring Lindsay Lohan, Rachel McAdams, and Tina Fey.'}"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"gen_runs[0].outputs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6cca74e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create datasets\n",
|
||||
"\n",
|
||||
"We can now create datasets for the query generation and final generation step.\n",
|
||||
"We do this so that (1) we can inspect the datapoints, (2) we can edit them if needed, (3) we can add to them over time"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "69966f0e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"client.create_dataset(\"movie-query_constructor\")\n",
|
||||
"\n",
|
||||
"inputs = [r.inputs for r in query_runs]\n",
|
||||
"outputs = [r.outputs for r in query_runs]\n",
|
||||
"\n",
|
||||
"client.create_examples(\n",
|
||||
" inputs=inputs, outputs=outputs, dataset_name=\"movie-query_constructor\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "7e15770e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"client.create_dataset(\"movie-generator\")\n",
|
||||
"\n",
|
||||
"inputs = [r.inputs for r in gen_runs]\n",
|
||||
"outputs = [r.outputs for r in gen_runs]\n",
|
||||
"\n",
|
||||
"client.create_examples(inputs=inputs, outputs=outputs, dataset_name=\"movie-generator\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "61cf9bcd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Use as few shot examples\n",
|
||||
"\n",
|
||||
"We can now pull down a dataset and use them as few shot examples in a future chain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"id": "d9c79173",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"examples = list(client.list_examples(dataset_name=\"movie-query_constructor\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"id": "a1771dd0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def filter_to_string(_filter):\n",
|
||||
" if \"operator\" in _filter:\n",
|
||||
" args = [filter_to_string(f) for f in _filter[\"arguments\"]]\n",
|
||||
" return f\"{_filter['operator']}({','.join(args)})\"\n",
|
||||
" else:\n",
|
||||
" comparator = _filter[\"comparator\"]\n",
|
||||
" attribute = json.dumps(_filter[\"attribute\"])\n",
|
||||
" value = json.dumps(_filter[\"value\"])\n",
|
||||
" return f\"{comparator}({attribute}, {value})\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"id": "e67a3530",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_examples = []\n",
|
||||
"\n",
|
||||
"for e in examples:\n",
|
||||
" if \"filter\" in e.outputs[\"output\"]:\n",
|
||||
" string_filter = filter_to_string(e.outputs[\"output\"][\"filter\"])\n",
|
||||
" else:\n",
|
||||
" string_filter = \"NO_FILTER\"\n",
|
||||
" model_examples.append(\n",
|
||||
" (\n",
|
||||
" e.inputs[\"query\"],\n",
|
||||
" {\"query\": e.outputs[\"output\"][\"query\"], \"filter\": string_filter},\n",
|
||||
" )\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "84593135",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever1 = SelfQueryRetriever.from_llm(\n",
|
||||
" llm,\n",
|
||||
" vectorstore,\n",
|
||||
" document_content_description,\n",
|
||||
" metadata_field_info,\n",
|
||||
" verbose=True,\n",
|
||||
" chain_kwargs={\"examples\": model_examples},\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"id": "4ec9bb92",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain1 = (\n",
|
||||
" RunnablePassthrough.assign(info=(lambda x: x[\"question\"]) | retriever1) | generator\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"id": "64eb88e2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'1. \"Saving Private Ryan\" (1998) - Directed by Steven Spielberg, this war film follows a group of soldiers during World War II as they search for a missing paratrooper.\\n\\n2. \"The Matrix\" (1999) - Directed by the Wachowskis, this science fiction action film follows a computer hacker who discovers the truth about the reality he lives in.\\n\\n3. \"Lethal Weapon 4\" (1998) - Directed by Richard Donner, this action-comedy film follows two mismatched detectives as they investigate a Chinese immigrant smuggling ring.\\n\\n4. \"The Fifth Element\" (1997) - Directed by Luc Besson, this science fiction action film follows a cab driver who must protect a mysterious woman who holds the key to saving the world.\\n\\n5. \"The Rock\" (1996) - Directed by Michael Bay, this action thriller follows a group of rogue military men who take over Alcatraz and threaten to launch missiles at San Francisco.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain1.invoke(\n",
|
||||
" {\"question\": \"what are good action movies made before 2000 but after 1997?\"}\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e1ee8b55",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -47,12 +47,12 @@
|
||||
"import inspect\n",
|
||||
"\n",
|
||||
"import tenacity\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.output_parsers import RegexParser\n",
|
||||
"from langchain.schema import (\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -30,14 +30,15 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import LLMMathChain\n",
|
||||
"from langchain_community.utilities import DuckDuckGoSearchAPIWrapper\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
|
||||
"from langchain_core.tools import Tool\n",
|
||||
"from langchain_experimental.plan_and_execute import (\n",
|
||||
" PlanAndExecute,\n",
|
||||
" load_agent_executor,\n",
|
||||
" load_chat_planner,\n",
|
||||
")\n",
|
||||
"from langchain_openai import ChatOpenAI, OpenAI"
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -81,8 +81,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.retrievers import KayAiRetriever\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
|
||||
"retriever = KayAiRetriever.create(\n",
|
||||
|
||||
@@ -17,8 +17,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_experimental.pal_chain import PALChain\n",
|
||||
"from langchain_openai import OpenAI"
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain_experimental.pal_chain import PALChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chains import create_citation_fuzzy_match_chain\n",
|
||||
"from langchain_openai import ChatOpenAI"
|
||||
"from langchain.chat_models import ChatOpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user