Compare commits

..

2 Commits

Author SHA1 Message Date
William Fu-Hinthorn
d180208915 nhp 2023-09-08 14:07:49 -07:00
William Fu-Hinthorn
625e598111 . 2023-09-08 10:42:55 -07:00
5956 changed files with 239051 additions and 611066 deletions

View File

@@ -5,10 +5,10 @@ This project includes a [dev container](https://containers.dev/), which lets you
You can use the dev container configuration in this folder to build and run the app without needing to install any of its tools locally! You can use it in [GitHub Codespaces](https://github.com/features/codespaces) or the [VS Code Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers).
## GitHub Codespaces
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langchain-ai/langchain)
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/hwchase17/langchain)
You may use the button above, or follow these steps to open this repo in a Codespace:
1. Click the **Code** drop-down menu at the top of https://github.com/langchain-ai/langchain.
1. Click the **Code** drop-down menu at the top of https://github.com/hwchase17/langchain.
1. Click on the **Codespaces** tab.
1. Click **Create codespace on master** .
@@ -17,16 +17,13 @@ For more info, check out the [GitHub documentation](https://docs.github.com/en/f
## VS Code Dev Containers
[![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain)
Note: If you click the link above you will open the main repo (langchain-ai/langchain) and not your local cloned repo. This is fine if you only want to run and test the library, but if you want to contribute you can use the link below and replace with your username and cloned repo name:
```
Note: If you click this link you will open the main repo and not your local cloned repo, you can use this link and replace with your username and cloned repo name:
https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/<yourusername>/<yourclonedreponame>
```
Then you will have a local cloned repo where you can contribute and then create pull requests.
If you already have VS Code and Docker installed, you can use the button above to get started. This will cause VS Code to automatically install the Dev Containers extension if needed, clone the source code into a container volume, and spin up a dev container for use.
Alternatively you can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
You can also follow these steps to open this repo in a container using the VS Code Dev Containers extension:
1. If this is your first time using a development container, please ensure your system meets the pre-reqs (i.e. have Docker installed) in the [getting started steps](https://aka.ms/vscode-remote/containers/getting-started).

View File

@@ -1,132 +0,0 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
conduct@langchain.dev.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.1, available at
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
For answers to common questions about this code of conduct, see the FAQ at
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
[https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

View File

@@ -1,46 +1,49 @@
# Contributing to LangChain
Hi there! Thank you for even being interested in contributing to LangChain.
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes.
As an open source project in a rapidly developing field, we are extremely open
to contributions, whether they be in the form of new features, improved infra, better documentation, or bug fixes.
## 🗺️ Guidelines
### 👩‍💻 Contributing Code
To contribute to this project, please follow the ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are a maintainer.
To contribute to this project, please follow a ["fork and pull request"](https://docs.github.com/en/get-started/quickstart/contributing-to-projects) workflow.
Please do not try to push directly to this repo unless you are maintainer.
Please follow the checked-in pull request template when opening pull requests. Note related issues and tag relevant
maintainers.
Pull requests cannot land without passing the formatting, linting, and testing checks first. See [Testing](#testing) and
[Formatting and Linting](#formatting-and-linting) for how to run these checks locally.
Pull requests cannot land without passing the formatting, linting and testing checks first. See
[Common Tasks](#-common-tasks) for how to run these checks locally.
It's essential that we maintain great documentation and testing. If you:
- Fix a bug
- Add a relevant unit or integration test when possible. These live in `tests/unit_tests` and `tests/integration_tests`.
- Make an improvement
- Update any affected example notebooks and documentation. These live in `docs`.
- Update any affected example notebooks and documentation. These lives in `docs`.
- Update unit and integration tests when relevant.
- Add a feature
- Add a demo notebook in `docs/docs/`.
- Add a demo notebook in `docs/modules`.
- Add unit and integration tests.
We are a small, progress-oriented team. If there's something you'd like to add or change, opening a pull request is the
We're a small, building-oriented team. If there's something you'd like to add or change, opening a pull request is the
best way to get our attention.
### 🚩GitHub Issues
Our [issues](https://github.com/langchain-ai/langchain/issues) page is kept up to date with bugs, improvements, and feature requests.
Our [issues](https://github.com/hwchase17/langchain/issues) page is kept up to date
with bugs, improvements, and feature requests.
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help organize issues.
There is a taxonomy of labels to help with sorting and discovery of issues of interest. Please use these to help
organize issues.
If you start working on an issue, please assign it to yourself.
If you are adding an issue, please try to keep it focused on a single, modular bug/improvement/feature.
If two issues are related, or blocking, please link them rather than combining them.
We will try to keep these issues as up-to-date as possible, though
We will try to keep these issues as up to date as possible, though
with the rapid rate of development in this field some may get out of date.
If you notice this happening, please let us know.
@@ -56,116 +59,47 @@ we do not want these to get in the way of getting good code into the codebase.
## 🚀 Quick Start
This quick start guide explains how to run the repository locally.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
> **Note:** You can run this repository locally (which is described below) or in a [development container](https://containers.dev/) (which is described in the [.devcontainer folder](https://github.com/hwchase17/langchain/tree/master/.devcontainer)).
### Dependency Management: Poetry and other env/dependency managers
This project uses [Poetry](https://python-poetry.org/) v1.5.1 as a dependency manager. Check out Poetry's [documentation on how to install it](https://python-poetry.org/docs/#installation) on your system before proceeding.
This project utilizes [Poetry](https://python-poetry.org/) v1.6.1+ as a dependency manager.
❗Note: If you use `Conda` or `Pyenv` as your environment / package manager, avoid dependency conflicts by doing the following first:
1. *Before installing Poetry*, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
2. Install Poetry v1.5.1 (see above)
3. Tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
4. Continue with the following steps.
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
There are two separate projects in this repository:
- `langchain`: core langchain code, abstractions, and use cases
- `langchain.experimental`: more experimental code
Install Poetry: **[documentation on how to install it](https://python-poetry.org/docs/#installation)**.
Each of these has their OWN development environment.
In order to run any of the commands below, please move into their respective directories.
For example, to contribute to `langchain` run `cd libs/langchain` before getting started with the below.
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
### Different packages
This repository contains multiple packages:
- `langchain-core`: Base interfaces for key abstractions as well as logic for combining them in chains (LangChain Expression Language).
- `langchain-community`: Third-party integrations of various components.
- `langchain`: Chains, agents, and retrieval logic that makes up the cognitive architecture of your applications.
- `langchain-experimental`: Components and chains that are experimental, either in the sense that the techniques are novel and still being tested, or they require giving the LLM more access than would be possible in most production systems.
Each of these has its own development environment. Docs are run from the top-level makefile, but development
is split across separate test & release flows.
For this quickstart, start with langchain:
```bash
cd libs/langchain
```
### Local Development Dependencies
Install langchain development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
To install requirements:
```bash
poetry install --with test
```
Then verify dependency installation:
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage.
❗Note: If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running Poetry v1.5.1. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases. If you are still seeing this bug on v1.5.1, you may also try disabling "modern installation" (`poetry config installer.modern-installation false`) and re-installing requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
Now assuming `make` and `pytest` are installed, you should be able to run the common tasks in the following section. To double check, run `make test` under `libs/langchain`, all tests should pass. If they don't, you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
## ✅ Common Tasks
Type `make` for a list of common tasks.
### Code Formatting
Formatting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/) and [isort](https://pycqa.github.io/isort/).
To run formatting for this project:
```bash
make test
```
If the tests don't pass, you may need to pip install additional dependencies, such as `numexpr` and `openapi_schema_pydantic`.
If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running
Poetry v1.6.1+. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases.
If you are still seeing this bug on v1.6.1, you may also try disabling "modern installation"
(`poetry config installer.modern-installation false`) and re-installing requirements.
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
### Testing
_some test dependencies are optional; see section about optional dependencies_.
Unit tests cover modular logic that does not require calls to outside APIs.
If you add new logic, please add a unit test.
To run unit tests:
```bash
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
There are also [integration tests and code-coverage](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests/README.md) available.
### Only develop langchain_core or langchain_experimental
If you are only developing `langchain_core` or `langchain_experimental`, you can simply install the dependencies for the respective projects and run tests:
```bash
cd libs/core
poetry install --with test
make test
```
Or:
```bash
cd libs/experimental
poetry install --with test
make test
```
### Formatting and Linting
Run these locally before submitting a PR; the CI system will check also.
#### Code Formatting
Formatting for this project is done via [ruff](https://docs.astral.sh/ruff/rules/).
To run formatting for docs, cookbook and templates:
```bash
make format
```
To run formatting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make format
```
@@ -177,23 +111,16 @@ make format_diff
This is especially useful when you have made changes to a subset of the project and want to ensure your changes are properly formatted without affecting the rest of the codebase.
#### Linting
### Linting
Linting for this project is done via a combination of [ruff](https://docs.astral.sh/ruff/rules/) and [mypy](http://mypy-lang.org/).
Linting for this project is done via a combination of [Black](https://black.readthedocs.io/en/stable/), [isort](https://pycqa.github.io/isort/), [flake8](https://flake8.pycqa.org/en/latest/), and [mypy](http://mypy-lang.org/).
To run linting for docs, cookbook and templates:
To run linting for this project:
```bash
make lint
```
To run linting for a library, run the same command from the relevant library directory:
```bash
cd libs/{LIBRARY}
make lint
```
In addition, you can run the linter only on the files that have been modified in your current branch as compared to the master branch using the lint_diff command:
```bash
@@ -204,7 +131,7 @@ This can be very helpful when you've made changes to only certain parts of the p
We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer, and they can help you with it. We do not want this to be a blocker for good code getting contributed.
#### Spellcheck
### Spellcheck
Spellchecking for this project is done via [codespell](https://github.com/codespell-project/codespell).
Note that `codespell` finds common typos, so it could have false-positive (correctly spelled but rarely used) and false-negatives (not finding misspelled) words.
@@ -230,18 +157,24 @@ If codespell is incorrectly flagging a word, you can skip spellcheck for that wo
ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure'
```
## Working with Optional Dependencies
### Coverage
Code coverage (i.e. the amount of code that is covered by unit tests) helps identify areas of the code that are potentially more or less brittle.
To get a report of current coverage, run the following:
```bash
make coverage
```
### Working with Optional Dependencies
Langchain relies heavily on optional dependencies to keep the Langchain package lightweight.
You only need to add a new dependency if a **unit test** relies on the package.
If your package is only required for **integration tests**, then you can skip these
steps and leave all pyproject.toml and poetry.lock files alone.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.
Users who do not have the dependency installed should be able to **import** your code without
Users that do not have the dependency installed should be able to **import** your code without
any side effects (no warnings, no errors, no exceptions).
To introduce the dependency to the pyproject.toml file correctly, please do the following:
@@ -255,13 +188,57 @@ To introduce the dependency to the pyproject.toml file correctly, please do the
```bash
poetry lock --no-update
```
4. Add a unit test that the very least attempts to import the new code. Ideally, the unit
4. Add a unit test that the very least attempts to import the new code. Ideally the unit
test makes use of lightweight fixtures to test the logic of the code.
5. Please use the `@pytest.mark.requires(package_name)` decorator for any tests that require the dependency.
## Adding a Jupyter Notebook
### Testing
If you are adding a Jupyter Notebook example, you'll want to install the optional `dev` dependencies.
See section about optional dependencies.
#### Unit Tests
Unit tests cover modular logic that does not require calls to outside APIs.
To run unit tests:
```bash
make test
```
To run unit tests in Docker:
```bash
make docker_tests
```
If you add new logic, please add a unit test.
#### Integration Tests
Integration tests cover logic that requires making calls to outside APIs (often integration with other services).
**warning** Almost no tests should be integration tests.
Tests that require making network connections make it difficult for other
developers to test the code.
Instead favor relying on `responses` library and/or mock.patch to mock
requests using small fixtures.
To run integration tests:
```bash
make integration_tests
```
If you add support for a new external API, please add a new integration test.
### Adding a Jupyter Notebook
If you are adding a Jupyter notebook example, you'll want to install the optional `dev` dependencies.
To install dev dependencies:
@@ -282,12 +259,6 @@ When you run `poetry install`, the `langchain` package is installed as editable
While the code is split between `langchain` and `langchain.experimental`, the documentation is one holistic thing.
This covers how to get started contributing to documentation.
From the top-level of this repo, install documentation dependencies:
```bash
poetry install
```
### Contribute Documentation
The docs directory contains Documentation and API Reference.
@@ -317,64 +288,22 @@ make docs_build
make api_docs_build
```
Finally, run the link checker to ensure all links are valid:
Finally, you can run the linkchecker to make sure all links are valid:
```bash
make docs_linkcheck
make api_docs_linkcheck
```
### Verify Documentation changes
After pushing documentation changes to the repository, you can preview and verify that the changes are
what you wanted by clicking the `View deployment` or `Visit Preview` buttons on the pull request `Conversation` page.
This will take you to a preview of the documentation changes.
This preview is created by [Vercel](https://vercel.com/docs/getting-started-with-vercel).
## 📕 Releases & Versioning
## 🏭 Release Process
As of now, LangChain has an ad hoc release process: releases are cut with high frequency by
a maintainer and published to [PyPI](https://pypi.org/).
The different packages are versioned slightly differently.
a developer and published to [PyPI](https://pypi.org/project/langchain/).
### `langchain-core`
LangChain follows the [semver](https://semver.org/) versioning standard. However, as pre-1.0 software,
even patch releases may contain [non-backwards-compatible changes](https://semver.org/#spec-item-4).
`langchain-core` is currently on version `0.1.x`.
As `langchain-core` contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in `langchain_core.beta`. The reason for `langchain_core.beta` is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so.
Minor version increases will occur for:
- Breaking changes for any public interfaces NOT in `langchain_core.beta`
Patch version increases will occur for:
- Bug fixes
- New features
- Any changes to private interfaces
- Any changes to `langchain_core.beta`
### `langchain`
`langchain` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase. Any changes to public interfaces are nearly always done in a backwards compatible way and will be communicated ahead of time when they are not backwards compatible.
We are targeting January 2024 for a release of `langchain` v0.1, at which point `langchain` will adopt the same versioning policy as `langchain-core`.
### `langchain-community`
`langchain-community` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
### `langchain-experimental`
`langchain-experimental` is currently on version `0.0.x`
All changes will be accompanied by a patch version increase.
## 🌟 Recognition
### 🌟 Recognition
If your contribution has made its way into a release, we will want to give you credit on Twitter (only if you want though)!
If you have a Twitter account you would like us to mention, please let us know in the PR or through another means.
If you have a Twitter account you would like us to mention, please let us know in the PR or in another manner.

View File

@@ -27,4 +27,4 @@ body:
attributes:
label: Your contribution
description: |
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md)
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md)

View File

@@ -1,20 +1,20 @@
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out!
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer (see below),
- Twitter handle: we announce bigger features on Twitter. If your PR gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally.
See contribution guidelines for more information on how to write/run tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on network access,
2. an example notebook showing its use. It lives in `docs/extras` directory.
2. an example notebook showing its use. These live is docs/extras directory.
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17.
If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->

View File

@@ -1,46 +0,0 @@
import json
import sys
ALL_DIRS = {
"libs/core",
"libs/langchain",
"libs/experimental",
"libs/community",
}
if __name__ == "__main__":
files = sys.argv[1:]
dirs_to_run = set()
for file in files:
if any(
file.startswith(dir_)
for dir_ in (
".github/workflows",
".github/tools",
".github/actions",
"libs/core",
".github/scripts/check_diff.py",
)
):
dirs_to_run = ALL_DIRS
break
elif "libs/community" in file:
dirs_to_run.update(
("libs/community", "libs/langchain", "libs/experimental")
)
elif "libs/partners" in file:
partner_dir = file.split("/")[2]
dirs_to_run.update(
(f"libs/partners/{partner_dir}", "libs/langchain", "libs/experimental")
)
elif "libs/langchain" in file:
dirs_to_run.update(("libs/langchain", "libs/experimental"))
elif "libs/experimental" in file:
dirs_to_run.add("libs/experimental")
elif file.startswith("libs/"):
dirs_to_run = ALL_DIRS
break
else:
pass
print(json.dumps(list(dirs_to_run)))

View File

@@ -1,105 +0,0 @@
---
name: langchain CI
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
workflow_dispatch:
inputs:
working-directory:
required: true
type: choice
default: 'libs/langchain'
options:
- libs/langchain
- libs/core
- libs/experimental
- libs/community
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ inputs.working-directory }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
jobs:
lint:
uses: ./.github/workflows/_lint.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
test:
uses: ./.github/workflows/_test.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
compile-integration-tests:
uses: ./.github/workflows/_compile_integration_test.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
dependencies:
uses: ./.github/workflows/_dependencies.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
extended-tests:
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing --with test
- name: Run extended tests
run: make extended_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,57 +0,0 @@
name: compile-integration-test
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.6.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: compile-integration
- name: Install integration dependencies
shell: bash
run: poetry install --with=test_integration,test
- name: Check integration tests compile
shell: bash
run: poetry run pytest -m compile tests/integration_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,113 +0,0 @@
name: dependencies
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
env:
POETRY_VERSION: "1.6.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: dependencies - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: pydantic-cross-compat
- name: Install dependencies
shell: bash
run: poetry install
- name: Check imports with base dependencies
shell: bash
run: poetry run make check_imports
- name: Install test dependencies
shell: bash
run: poetry install --with test
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash
run: |
# Determine the major part of pydantic version
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
if [[ "$REGULAR_VERSION" == "1" ]]; then
PYDANTIC_DEP=">=2.1,<3"
TEST_WITH_VERSION="2"
elif [[ "$REGULAR_VERSION" == "2" ]]; then
PYDANTIC_DEP="<2"
TEST_WITH_VERSION="1"
else
echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test."
exit 1
fi
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
# which would prevent caching from working: the cache would get saved
# to a different key than where it gets loaded from.
poetry run pip install "pydantic${PYDANTIC_DEP}"
# Ensure that the correct pydantic is installed now.
echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}"
# Determine the major part of pydantic version
CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
# Check that the major part of pydantic version is as expected, if not
# raise an error
if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then
echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}"
exit 1
fi
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
- name: Run pydantic compatibility tests
shell: bash
run: make test
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -7,21 +7,20 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
env:
POETRY_VERSION: "1.6.1"
POETRY_VERSION: "1.5.1"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
# This env var allows us to get inline annotations when ruff has complaints.
RUFF_OUTPUT_FORMAT: github
jobs:
build:
runs-on: ubuntu-latest
env:
# This number is set "by eye": we want it to be big enough
# so that it's bigger than the number of commits in any reasonable PR,
# and also as small as possible since increasing the number makes
# the initial `git fetch` slower.
FETCH_DEPTH: 50
strategy:
matrix:
# Only lint on the min and max supported Python versions.
@@ -35,7 +34,52 @@ jobs:
- "3.8"
- "3.11"
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
# Fetch the last FETCH_DEPTH commits, so the mtime-changing script
# can accurately set the mtimes of files modified in the last FETCH_DEPTH commits.
fetch-depth: ${{ env.FETCH_DEPTH }}
- name: Restore workdir file mtimes to last-edited commit date
id: restore-mtimes
# This is needed to make black caching work.
# Black's cache uses file (mtime, size) to check whether a lookup is a cache hit.
# Without this command, files in the repo would have the current time as the modified time,
# since the previous action step just created them.
# This command resets the mtime to the last time the files were modified in git instead,
# which is a high-quality and stable representation of the last modification date.
run: |
# Important considerations:
# - These commands run at base of the repo, since we never `cd` to the `WORKDIR`.
# - We only want to alter mtimes for Python files, since that's all black checks.
# - We don't need to alter mtimes for directories, since black doesn't look at those.
# - We also only alter mtimes inside the `WORKDIR` since that's all we'll lint.
# - This should run before `poetry install`, because poetry's venv also contains
# Python files, and we don't want to alter their mtimes since they aren't linted.
# Ensure we fail on non-zero exits and on undefined variables.
# Also print executed commands, for easier debugging.
set -eux
# Restore the mtimes of Python files in the workdir based on git history.
.github/tools/git-restore-mtime --no-directories "$WORKDIR/**/*.py"
# Since CI only does a partial fetch (to `FETCH_DEPTH`) for efficiency,
# the local git repo doesn't have full history. There are probably files
# that were last modified in a commit *older than* the oldest fetched commit.
# After `git-restore-mtime`, such files have a mtime set to the oldest fetched commit.
#
# As new commits get added, that timestamp will keep moving forward.
# If left unchanged, this will make `black` think that the files were edited
# more recently than its cache suggests. Instead, we can set their mtime
# to a fixed date in the far past that won't change and won't cause cache misses in black.
#
# For all workdir Python files modified in or before the oldest few fetched commits,
# make their mtime be 2000-01-01 00:00:00.
OLDEST_COMMIT="$(git log --reverse '--pretty=format:%H' | head -1)"
OLDEST_COMMIT_TIME="$(git show -s '--format=%ai' "$OLDEST_COMMIT")"
find "$WORKDIR" -name '*.py' -type f -not -newermt "$OLDEST_COMMIT_TIME" -exec touch -c -m -t '200001010000' '{}' '+'
echo "oldest-commit=$OLDEST_COMMIT" >> "$GITHUB_OUTPUT"
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
@@ -68,15 +112,26 @@ jobs:
# It doesn't matter how you change it, any change will cause a cache-bust.
working-directory: ${{ inputs.working-directory }}
run: |
poetry install --with lint,typing
poetry install --with dev,lint,test,typing
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
if: ${{ inputs.working-directory != 'libs/langchain' }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
pip install -e ../langchain
- name: Restore black cache
uses: actions/cache@v3
env:
CACHE_BASE: black-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
${{ env.WORKDIR }}/.black_cache
key: ${{ env.CACHE_BASE }}-${{ steps.restore-mtimes.outputs.oldest-commit }}
restore-keys:
# If we can't find an exact match for our cache key, accept any with this prefix.
${{ env.CACHE_BASE }}-
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v3
@@ -85,37 +140,11 @@ jobs:
with:
path: |
${{ env.WORKDIR }}/.mypy_cache
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
key: mypy-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
run: |
make lint_package
- name: Install test dependencies
# Also installs dev/lint/test/typing dependencies, to ensure we have
# type hints for as many of our libraries as possible.
# This helps catch errors that require dependencies to be spotted, for example:
# https://github.com/langchain-ai/langchain/pull/10249/files#diff-935185cd488d015f026dcd9e19616ff62863e8cde8c0bee70318d3ccbca98341
#
# If you change this configuration, make sure to change the `cache-key`
# in the `poetry_setup` action above to stop using the old cache.
# It doesn't matter how you change it, any change will cause a cache-bust.
working-directory: ${{ inputs.working-directory }}
run: |
poetry install --with test
- name: Get .mypy_cache_test to speed up mypy
uses: actions/cache@v3
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache_test
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}
BLACK_CACHE_DIR: .black_cache
run: |
make lint_tests
make lint

View File

@@ -0,0 +1,93 @@
name: pydantic v1/v2 compatibility
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.5.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Pydantic v1/v2 compatibility - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: pydantic-cross-compat
- name: Install dependencies
shell: bash
run: poetry install
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash
run: |
# Determine the major part of pydantic version
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
if [[ "$REGULAR_VERSION" == "1" ]]; then
PYDANTIC_DEP=">=2.1,<3"
TEST_WITH_VERSION="2"
elif [[ "$REGULAR_VERSION" == "2" ]]; then
PYDANTIC_DEP="<2"
TEST_WITH_VERSION="1"
else
echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test."
exit 1
fi
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
# which would prevent caching from working: the cache would get saved
# to a different key than where it gets loaded from.
poetry run pip install "pydantic${PYDANTIC_DEP}"
# Ensure that the correct pydantic is installed now.
echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}"
# Determine the major part of pydantic version
CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
# Check that the major part of pydantic version is as expected, if not
# raise an error
if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then
echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}"
exit 1
fi
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
- name: Run pydantic compatibility tests
shell: bash
run: make test
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -7,133 +7,15 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
workflow_dispatch:
inputs:
working-directory:
required: true
type: choice
default: 'libs/langchain'
options:
- libs/langchain
- libs/core
- libs/experimental
- libs/community
env:
PYTHON_VERSION: "3.10"
POETRY_VERSION: "1.6.1"
POETRY_VERSION: "1.5.1"
jobs:
build:
if_release:
# Disallow publishing from branches that aren't `master`.
if: github.ref == 'refs/heads/master'
runs-on: ubuntu-latest
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# The release stage has trusted publishing and GitHub repo contents write access,
# and we want to keep the scope of that access limited just to the release job.
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
# Per the trusted publishing GitHub Action:
# > It is strongly advised to separate jobs for building [...]
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v3
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Check Version
id: check-version
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
test-pypi-publish:
needs:
- build
uses:
./.github/workflows/_test_release.yml
with:
working-directory: ${{ inputs.working-directory }}
secrets: inherit
pre-release-checks:
needs:
- build
- test-pypi-publish
runs-on: ubuntu-latest
steps:
# We explicitly *don't* set up caching here. This ensures our tests are
# maximally sensitive to catching breakage.
#
# For example, here's a way that caching can cause a falsely-passing test:
# - Make the langchain package manifest no longer list a dependency package
# as a requirement. This means it won't be installed by `pip install`,
# and attempting to use it would cause a crash.
# - That dependency used to be required, so it may have been cached.
# When restoring the venv packages from cache, that dependency gets included.
# - Tests pass, because the dependency is present even though it wasn't specified.
# - The package is published, and it breaks on the missing dependency when
# used in the real world.
- uses: actions/setup-python@v4
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: Test published package
shell: bash
env:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
# Here we use:
# - The default regular PyPI index as the *primary* index, meaning
# that it takes priority (https://pypi.org/simple)
# - The test PyPI index as an extra index, so that any dependencies that
# are not found on test PyPI can be resolved and installed anyway.
# (https://test.pypi.org/simple). This will include the PKG_NAME==VERSION
# package because VERSION will not have been uploaded to regular PyPI yet.
#
# TODO: add more in-depth pre-publish tests after testing that importing works
run: |
pip install \
--extra-index-url https://test.pypi.org/simple/ \
"$PKG_NAME==$VERSION"
# Replace all dashes in the package name with underscores,
# since that's how Python imports packages with dashes in the name.
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g)"
python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
publish:
needs:
- build
- test-pypi-publish
- pre-release-checks
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
@@ -142,65 +24,28 @@ jobs:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v3
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
mark-release:
needs:
- build
- test-pypi-publish
- pre-release-checks
- publish
runs-on: ubuntu-latest
permissions:
# This permission is needed by `ncipollo/release-action` to
# create the GitHub release.
# This permission is needed by `ncipollo/release-action` to create the GitHub release.
contents: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
python-version: "3.10"
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
- uses: actions/download-artifact@v3
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Build project for distribution
run: poetry build
- name: Check Version
id: check-version
run: |
echo version=$(poetry version --short) >> $GITHUB_OUTPUT
- name: Create Release
uses: ncipollo/release-action@v1
if: ${{ inputs.working-directory == 'libs/langchain' }}
@@ -209,5 +54,11 @@ jobs:
token: ${{ secrets.GITHUB_TOKEN }}
draft: false
generateReleaseNotes: true
tag: v${{ needs.build.outputs.version }}
tag: v${{ steps.check-version.outputs.version }}
commit: master
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true

View File

@@ -1,62 +0,0 @@
name: release_docker
on:
workflow_call:
inputs:
dockerfile:
required: true
type: string
description: "Path to the Dockerfile to build"
image:
required: true
type: string
description: "Name of the image to build"
env:
TEST_TAG: ${{ inputs.image }}:test
LATEST_TAG: ${{ inputs.image }}:latest
jobs:
docker:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Get git tag
uses: actions-ecosystem/action-get-latest-tag@v1
id: get-latest-tag
- name: Set docker tag
env:
VERSION: ${{ steps.get-latest-tag.outputs.tag }}
run: |
echo "VERSION_TAG=${{ inputs.image }}:${VERSION#v}" >> $GITHUB_ENV
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build for Test
uses: docker/build-push-action@v5
with:
context: .
file: ${{ inputs.dockerfile }}
load: true
tags: ${{ env.TEST_TAG }}
- name: Test
run: |
docker run --rm ${{ env.TEST_TAG }} python -c "import langchain"
- name: Build and Push to Docker Hub
uses: docker/build-push-action@v5
with:
context: .
file: ${{ inputs.dockerfile }}
# We can only build for the intersection of platforms supported by
# QEMU and base python image, for now build only for
# linux/amd64 and linux/arm64
platforms: linux/amd64,linux/arm64
tags: ${{ env.LATEST_TAG }},${{ env.VERSION_TAG }}
push: true

View File

@@ -7,13 +7,9 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
langchain-location:
required: false
type: string
description: "Relative path to the langchain library folder"
env:
POETRY_VERSION: "1.6.1"
POETRY_VERSION: "1.5.1"
jobs:
build:
@@ -30,7 +26,7 @@ jobs:
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
@@ -42,20 +38,11 @@ jobs:
- name: Install dependencies
shell: bash
run: poetry install --with test
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.langchain-location }}
env:
LANGCHAIN_LOCATION: ${{ inputs.langchain-location }}
run: |
poetry run pip install -e "$LANGCHAIN_LOCATION"
run: poetry install
- name: Run core tests
shell: bash
run: |
make test
run: make test
- name: Ensure the tests did not create any additional files
shell: bash

View File

@@ -1,95 +0,0 @@
name: test-release
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.6.1"
PYTHON_VERSION: "3.10"
jobs:
build:
if: github.ref == 'refs/heads/master'
runs-on: ubuntu-latest
outputs:
pkg-name: ${{ steps.check-version.outputs.pkg-name }}
version: ${{ steps.check-version.outputs.version }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: release
# We want to keep this build stage *separate* from the release stage,
# so that there's no sharing of permissions between them.
# The release stage has trusted publishing and GitHub repo contents write access,
# and we want to keep the scope of that access limited just to the release job.
# Otherwise, a malicious `build` step (e.g. via a compromised dependency)
# could get access to our GitHub or PyPI credentials.
#
# Per the trusted publishing GitHub Action:
# > It is strongly advised to separate jobs for building [...]
# > from the publish job.
# https://github.com/pypa/gh-action-pypi-publish#non-goals
- name: Build project for distribution
run: poetry build
working-directory: ${{ inputs.working-directory }}
- name: Upload build
uses: actions/upload-artifact@v3
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: Check Version
id: check-version
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
publish:
needs:
- build
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:
# https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
#
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v3
with:
name: test-dist
path: ${{ inputs.working-directory }}/dist/
- name: Publish to test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: ${{ inputs.working-directory }}/dist/
verbose: true
print-hash: true
repository-url: https://test.pypi.org/legacy/
# We overwrite any existing distributions with the same name and version.
# This is *only for CI use* and is *extremely dangerous* otherwise!
# https://github.com/pypa/gh-action-pypi-publish#tolerating-release-package-file-duplicates
skip-existing: true

View File

@@ -1,47 +0,0 @@
---
name: Check library diffs
on:
push:
branches: [master]
pull_request:
paths:
- ".github/actions/**"
- ".github/tools/**"
- ".github/workflows/**"
- "libs/**"
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- id: files
uses: Ana06/get-changed-files@v2.2.0
- id: set-matrix
run: echo "dirs-to-run=$(python .github/scripts/check_diff.py ${{ steps.files.outputs.all }})" >> $GITHUB_OUTPUT
outputs:
dirs-to-run: ${{ steps.set-matrix.outputs.dirs-to-run }}
ci:
needs: [ build ]
strategy:
matrix:
working-directory: ${{ fromJson(needs.build.outputs.dirs-to-run) }}
uses: ./.github/workflows/_all_ci.yml
with:
working-directory: ${{ matrix.working-directory }}

View File

@@ -17,20 +17,8 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Dependencies
run: |
pip install toml
- name: Extract Ignore Words List
run: |
# Use a Python script to extract the ignore words list from pyproject.toml
python .github/workflows/extract_ignored_words_list.py
id: extract_ignore_words
uses: actions/checkout@v3
- name: Codespell
uses: codespell-project/actions-codespell@v2
with:
skip: guide_imports.json
ignore_words_list: ${{ steps.extract_ignore_words.outputs.ignore_words_list }}

View File

@@ -1,35 +0,0 @@
---
name: Docs, templates, cookbook lint
on:
push:
branches: [ master ]
pull_request:
paths:
- 'docs/**'
- 'templates/**'
- 'cookbook/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/doc_lint.yml'
workflow_dispatch:
jobs:
check:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Run import check
run: |
# We should not encourage imports directly from main init file
# Expect for hub
git grep 'from langchain import' {docs/docs,templates,cookbook} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: "."
secrets: inherit

View File

@@ -1,10 +0,0 @@
import toml
pyproject_toml = toml.load("pyproject.toml")
# Extract the ignore words list (adjust the key as per your TOML structure)
ignore_words_list = (
pyproject_toml.get("tool", {}).get("codespell", {}).get("ignore-words-list")
)
print(f"::set-output name=ignore_words_list::{ignore_words_list}")

97
.github/workflows/langchain_ci.yml vendored Normal file
View File

@@ -0,0 +1,97 @@
---
name: libs/langchain CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/langchain/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.5.1"
WORKDIR: "libs/langchain"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/langchain
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
with:
working-directory: libs/langchain
secrets: inherit
extended-tests:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/langchain
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
- name: Run extended tests
run: make extended_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,13 +0,0 @@
---
name: libs/cli Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/cli
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/community Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/community
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -0,0 +1,129 @@
---
name: libs/experimental CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/langchain_experimental_ci.yml'
- 'libs/langchain/**'
- 'libs/experimental/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.5.1"
WORKDIR: "libs/experimental"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: libs/experimental
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/experimental
secrets: inherit
# It's possible that langchain-experimental works fine with the latest *published* langchain,
# but is broken with the langchain on `master`.
#
# We want to catch situations like that *before* releasing a new langchain, hence this test.
test-with-latest-langchain:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: test with unpublished langchain - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ env.WORKDIR }}
cache-key: unpublished-langchain
- name: Install dependencies
shell: bash
run: |
echo "Running tests with unpublished langchain, installing dependencies with poetry..."
poetry install
echo "Editably installing langchain outside of poetry, to avoid messing up lockfile..."
poetry run pip install -e ../langchain
- name: Run tests
run: make test
extended-tests:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/experimental
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
- name: Run extended tests
run: make extended_tests
- name: Ensure the tests did not create any additional files
shell: bash
run: |
set -eu
STATUS="$(git status)"
echo "$STATUS"
# grep will exit non-zero if the target message isn't found,
# and `set -e` above will cause the step to fail.
echo "$STATUS" | grep 'nothing to commit, working tree clean'

View File

@@ -1,13 +0,0 @@
---
name: Experimental Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/experimental
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: libs/core Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_release.yml
with:
working-directory: libs/core
secrets: inherit

View File

@@ -11,17 +11,3 @@ jobs:
with:
working-directory: libs/langchain
secrets: inherit
# N.B.: It's possible that PyPI doesn't make the new release visible / available
# immediately after publishing. If that happens, the docker build might not
# create a new docker image for the new release, since it won't see it.
#
# If this ends up being a problem, add a check to the end of the `_release.yml`
# workflow that prevents the workflow from finishing until the new release
# is visible and installable on PyPI.
release-docker:
needs:
- release
uses:
./.github/workflows/langchain_release_docker.yml
secrets: inherit

View File

@@ -1,14 +0,0 @@
---
name: docker/langchain/langchain Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
workflow_call: # Allows triggering from another workflow
jobs:
release:
uses: ./.github/workflows/_release_docker.yml
with:
dockerfile: docker/Dockerfile.base
image: langchain/langchain
secrets: inherit

View File

@@ -1,13 +0,0 @@
---
name: Test Release
on:
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
jobs:
release:
uses:
./.github/workflows/_test_release.yml
with:
working-directory: libs/langchain
secrets: inherit

View File

@@ -6,7 +6,7 @@ on:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.6.1"
POETRY_VERSION: "1.5.1"
jobs:
build:
@@ -24,7 +24,7 @@ jobs:
- "3.11"
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: "./.github/actions/poetry_setup"
@@ -34,38 +34,17 @@ jobs:
working-directory: libs/langchain
cache-key: scheduled
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: 'google-github-actions/auth@v1'
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: Configure AWS Credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ vars.AWS_REGION }}
- name: Install dependencies
working-directory: libs/langchain
shell: bash
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration,test
poetry install --with=test_integration
- name: Run tests
shell: bash
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
run: |
make scheduled_tests

View File

@@ -1,36 +0,0 @@
---
name: templates CI
on:
push:
branches: [ master ]
pull_request:
paths:
- '.github/actions/poetry_setup/action.yml'
- '.github/tools/**'
- '.github/workflows/_lint.yml'
- '.github/workflows/templates_ci.yml'
- 'templates/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.6.1"
WORKDIR: "templates"
jobs:
lint:
uses:
./.github/workflows/_lint.yml
with:
working-directory: templates
secrets: inherit

17
.gitignore vendored
View File

@@ -30,12 +30,6 @@ share/python-wheels/
*.egg
MANIFEST
# Google GitHub Actions credentials files created by:
# https://github.com/google-github-actions/auth
#
# That action recommends adding this gitignore to prevent accidentally committing keys.
gha-creds-*.json
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
@@ -167,14 +161,13 @@ docs/node_modules/
docs/.docusaurus/
docs/.cache-loader/
docs/_dist
docs/api_reference/*api_reference.rst
docs/api_reference/api_reference.rst
docs/api_reference/experimental_api_reference.rst
docs/api_reference/_build
docs/api_reference/*/
!docs/api_reference/_static/
!docs/api_reference/templates/
!docs/api_reference/themes/
docs/docs/build
docs/docs/node_modules
docs/docs/yarn.lock
_dist
docs/docs/templates
docs/docs_skeleton/build
docs/docs_skeleton/node_modules
docs/docs_skeleton/yarn.lock

4
.gitmodules vendored Normal file
View File

@@ -0,0 +1,4 @@
[submodule "docs/_docs_skeleton"]
path = docs/_docs_skeleton
url = https://github.com/langchain-ai/langchain-shared-docs
branch = main

View File

@@ -9,14 +9,9 @@ build:
os: ubuntu-22.04
tools:
python: "3.11"
commands:
- python -mvirtualenv $READTHEDOCS_VIRTUALENV_PATH
- python -m pip install --upgrade --no-cache-dir pip setuptools
- python -m pip install --upgrade --no-cache-dir sphinx readthedocs-sphinx-ext
- python -m pip install --exists-action=w --no-cache-dir -r docs/api_reference/requirements.txt
jobs:
pre_build:
- python docs/api_reference/create_api_rst.py
- cat docs/api_reference/conf.py
- python -m sphinx -T -E -b html -d _build/doctrees -c docs/api_reference docs/api_reference $READTHEDOCS_OUTPUT/html -j auto
# Build documentation in the docs/ directory with Sphinx
sphinx:
@@ -30,3 +25,5 @@ sphinx:
python:
install:
- requirements: docs/api_reference/requirements.txt
- method: pip
path: .

View File

@@ -1,9 +0,0 @@
"""Main entrypoint into package."""
from importlib import metadata
try:
__version__ = metadata.version(__package__)
except metadata.PackageNotFoundError:
# Case where package metadata is not available.
__version__ = ""
del metadata # optional, avoids polluting the results of dir(__package__)

View File

@@ -1,79 +0,0 @@
"""Agent toolkits contain integrations with various resources and services.
LangChain has a large ecosystem of integrations with various external resources
like local and remote file systems, APIs and databases.
These integrations allow developers to create versatile applications that combine the
power of LLMs with the ability to access, interact with and manipulate external
resources.
When developing an application, developers should inspect the capabilities and
permissions of the tools that underlie the given agent toolkit, and determine
whether permissions of the given toolkit are appropriate for the application.
See [Security](https://python.langchain.com/docs/security) for more information.
"""
from langchain_community.agent_toolkits.ainetwork.toolkit import AINetworkToolkit
from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit
from langchain_community.agent_toolkits.azure_cognitive_services import (
AzureCognitiveServicesToolkit,
)
from langchain_community.agent_toolkits.conversational_retrieval.openai_functions import ( # noqa: E501
create_conversational_retrieval_agent,
)
from langchain_community.agent_toolkits.file_management.toolkit import (
FileManagementToolkit,
)
from langchain_community.agent_toolkits.gmail.toolkit import GmailToolkit
from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit
from langchain_community.agent_toolkits.json.base import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.agent_toolkits.multion.toolkit import MultionToolkit
from langchain_community.agent_toolkits.nasa.toolkit import NasaToolkit
from langchain_community.agent_toolkits.nla.toolkit import NLAToolkit
from langchain_community.agent_toolkits.office365.toolkit import O365Toolkit
from langchain_community.agent_toolkits.openapi.base import create_openapi_agent
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain_community.agent_toolkits.playwright.toolkit import (
PlayWrightBrowserToolkit,
)
from langchain_community.agent_toolkits.powerbi.base import create_pbi_agent
from langchain_community.agent_toolkits.powerbi.chat_base import create_pbi_chat_agent
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.agent_toolkits.slack.toolkit import SlackToolkit
from langchain_community.agent_toolkits.spark_sql.base import create_spark_sql_agent
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.agent_toolkits.steam.toolkit import SteamToolkit
from langchain_community.agent_toolkits.zapier.toolkit import ZapierToolkit
__all__ = [
"AINetworkToolkit",
"AmadeusToolkit",
"AzureCognitiveServicesToolkit",
"FileManagementToolkit",
"GmailToolkit",
"JiraToolkit",
"JsonToolkit",
"MultionToolkit",
"NasaToolkit",
"NLAToolkit",
"O365Toolkit",
"OpenAPIToolkit",
"PlayWrightBrowserToolkit",
"PowerBIToolkit",
"SlackToolkit",
"SteamToolkit",
"SQLDatabaseToolkit",
"SparkSQLToolkit",
"ZapierToolkit",
"create_json_agent",
"create_openapi_agent",
"create_pbi_agent",
"create_pbi_chat_agent",
"create_spark_sql_agent",
"create_sql_agent",
"create_conversational_retrieval_agent",
]

View File

@@ -1,53 +0,0 @@
"""Json agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_json_agent(
llm: BaseLanguageModel,
toolkit: JsonToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = JSON_PREFIX,
suffix: str = JSON_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -1,57 +0,0 @@
"""Tool for interacting with a single API with natural language definition."""
from __future__ import annotations
from typing import Any, Optional, TYPE_CHECKING
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import Tool
from langchain_community.tools.openapi.utils.api_models import APIOperation
from langchain_community.tools.openapi.utils.openapi_utils import OpenAPISpec
from langchain_community.utilities.requests import Requests
if TYPE_CHECKING:
from langchain.chains.api.openapi.chain import OpenAPIEndpointChain
class NLATool(Tool):
"""Natural Language API Tool."""
@classmethod
def from_open_api_endpoint_chain(
cls, chain: OpenAPIEndpointChain, api_title: str
) -> "NLATool":
"""Convert an endpoint chain to an API endpoint tool."""
expanded_name = (
f'{api_title.replace(" ", "_")}.{chain.api_operation.operation_id}'
)
description = (
f"I'm an AI from {api_title}. Instruct what you want,"
" and I'll assist via an API with description:"
f" {chain.api_operation.description}"
)
return cls(name=expanded_name, func=chain.run, description=description)
@classmethod
def from_llm_and_method(
cls,
llm: BaseLanguageModel,
path: str,
method: str,
spec: OpenAPISpec,
requests: Optional[Requests] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
**kwargs: Any,
) -> "NLATool":
"""Instantiate the tool from the specified path and method."""
api_operation = APIOperation.from_openapi_spec(spec, path, method)
chain = OpenAPIEndpointChain.from_api_operation(
api_operation,
llm,
requests=requests,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
**kwargs,
)
return cls.from_open_api_endpoint_chain(chain, spec.info.title)

View File

@@ -1,77 +0,0 @@
"""OpenAPI spec agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.openapi.prompt import (
OPENAPI_PREFIX,
OPENAPI_SUFFIX,
)
from langchain_community.agent_toolkits.openapi.toolkit import OpenAPIToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_openapi_agent(
llm: BaseLanguageModel,
toolkit: OpenAPIToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = OPENAPI_PREFIX,
suffix: str = OPENAPI_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
return_intermediate_steps: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct an OpenAPI agent from an LLM and tools.
*Security Note*: When creating an OpenAPI agent, check the permissions
and capabilities of the underlying toolkit.
For example, if the default implementation of OpenAPIToolkit
uses the RequestsToolkit which contains tools to make arbitrary
network requests against any URL (e.g., GET, POST, PATCH, PUT, DELETE),
Control access to who can submit issue requests using this toolkit and
what network access it has.
See https://python.langchain.com/docs/security for more information.
"""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -1,370 +0,0 @@
"""Agent that interacts with OpenAPI APIs via a hierarchical planning approach."""
import json
import re
from functools import partial
from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING
import yaml
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool, Tool
from langchain_community.llms import OpenAI
from langchain_community.agent_toolkits.openapi.planner_prompt import (
API_CONTROLLER_PROMPT,
API_CONTROLLER_TOOL_DESCRIPTION,
API_CONTROLLER_TOOL_NAME,
API_ORCHESTRATOR_PROMPT,
API_PLANNER_PROMPT,
API_PLANNER_TOOL_DESCRIPTION,
API_PLANNER_TOOL_NAME,
PARSING_DELETE_PROMPT,
PARSING_GET_PROMPT,
PARSING_PATCH_PROMPT,
PARSING_POST_PROMPT,
PARSING_PUT_PROMPT,
REQUESTS_DELETE_TOOL_DESCRIPTION,
REQUESTS_GET_TOOL_DESCRIPTION,
REQUESTS_PATCH_TOOL_DESCRIPTION,
REQUESTS_POST_TOOL_DESCRIPTION,
REQUESTS_PUT_TOOL_DESCRIPTION,
)
from langchain_community.agent_toolkits.openapi.spec import ReducedOpenAPISpec
from langchain_community.tools.requests.tool import BaseRequestsTool
from langchain_community.utilities.requests import RequestsWrapper
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
from langchain.memory import ReadOnlySharedMemory
#
# Requests tools with LLM-instructed extraction of truncated responses.
#
# Of course, truncating so bluntly may lose a lot of valuable
# information in the response.
# However, the goal for now is to have only a single inference step.
MAX_RESPONSE_LENGTH = 5000
"""Maximum length of the response to be returned."""
def _get_default_llm_chain(prompt: BasePromptTemplate) -> LLMChain:
from langchain.chains.llm import LLMChain
return LLMChain(
llm=OpenAI(),
prompt=prompt,
)
def _get_default_llm_chain_factory(
prompt: BasePromptTemplate,
) -> Callable[[], LLMChain]:
"""Returns a default LLMChain factory."""
return partial(_get_default_llm_chain, prompt)
class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests GET tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_get"
"""Tool name."""
description = REQUESTS_GET_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_GET_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
data_params = data.get("params")
response = self.requests_wrapper.get(data["url"], params=data_params)
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPostToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests POST tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_post"
"""Tool name."""
description = REQUESTS_POST_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_POST_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.post(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPatchToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PATCH tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_patch"
"""Tool name."""
description = REQUESTS_PATCH_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PATCH_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.patch(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsPutToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests PUT tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_put"
"""Tool name."""
description = REQUESTS_PUT_TOOL_DESCRIPTION
"""Tool description."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""Maximum length of the response to be returned."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_PUT_PROMPT)
)
"""LLMChain used to extract the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.put(data["url"], data["data"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
class RequestsDeleteToolWithParsing(BaseRequestsTool, BaseTool):
"""A tool that sends a DELETE request and parses the response."""
name: str = "requests_delete"
"""The name of the tool."""
description = REQUESTS_DELETE_TOOL_DESCRIPTION
"""The description of the tool."""
response_length: Optional[int] = MAX_RESPONSE_LENGTH
"""The maximum length of the response."""
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_DELETE_PROMPT)
)
"""The LLM chain used to parse the response."""
def _run(self, text: str) -> str:
from langchain.output_parsers.json import parse_json_markdown
try:
data = parse_json_markdown(text)
except json.JSONDecodeError as e:
raise e
response = self.requests_wrapper.delete(data["url"])
response = response[: self.response_length]
return self.llm_chain.predict(
response=response, instructions=data["output_instructions"]
).strip()
async def _arun(self, text: str) -> str:
raise NotImplementedError()
#
# Orchestrator, planner, controller.
#
def _create_api_planner_tool(
api_spec: ReducedOpenAPISpec, llm: BaseLanguageModel
) -> Tool:
from langchain.chains.llm import LLMChain
endpoint_descriptions = [
f"{name} {description}" for name, description, _ in api_spec.endpoints
]
prompt = PromptTemplate(
template=API_PLANNER_PROMPT,
input_variables=["query"],
partial_variables={"endpoints": "- " + "- ".join(endpoint_descriptions)},
)
chain = LLMChain(llm=llm, prompt=prompt)
tool = Tool(
name=API_PLANNER_TOOL_NAME,
description=API_PLANNER_TOOL_DESCRIPTION,
func=chain.run,
)
return tool
def _create_api_controller_agent(
api_url: str,
api_docs: str,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> AgentExecutor:
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
get_llm_chain = LLMChain(llm=llm, prompt=PARSING_GET_PROMPT)
post_llm_chain = LLMChain(llm=llm, prompt=PARSING_POST_PROMPT)
tools: List[BaseTool] = [
RequestsGetToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=get_llm_chain
),
RequestsPostToolWithParsing(
requests_wrapper=requests_wrapper, llm_chain=post_llm_chain
),
]
prompt = PromptTemplate(
template=API_CONTROLLER_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"api_url": api_url,
"api_docs": api_docs,
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt),
allowed_tools=[tool.name for tool in tools],
)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
def _create_api_controller_tool(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
) -> Tool:
"""Expose controller as a tool.
The tool is invoked with a plan from the planner, and dynamically
creates a controller agent with relevant documentation only to
constrain the context.
"""
base_url = api_spec.servers[0]["url"] # TODO: do better.
def _create_and_run_api_controller_agent(plan_str: str) -> str:
pattern = r"\b(GET|POST|PATCH|DELETE)\s+(/\S+)*"
matches = re.findall(pattern, plan_str)
endpoint_names = [
"{method} {route}".format(method=method, route=route.split("?")[0])
for method, route in matches
]
docs_str = ""
for endpoint_name in endpoint_names:
found_match = False
for name, _, docs in api_spec.endpoints:
regex_name = re.compile(re.sub("\{.*?\}", ".*", name))
if regex_name.match(endpoint_name):
found_match = True
docs_str += f"== Docs for {endpoint_name} == \n{yaml.dump(docs)}\n"
if not found_match:
raise ValueError(f"{endpoint_name} endpoint does not exist.")
agent = _create_api_controller_agent(base_url, docs_str, requests_wrapper, llm)
return agent.run(plan_str)
return Tool(
name=API_CONTROLLER_TOOL_NAME,
func=_create_and_run_api_controller_agent,
description=API_CONTROLLER_TOOL_DESCRIPTION,
)
def create_openapi_agent(
api_spec: ReducedOpenAPISpec,
requests_wrapper: RequestsWrapper,
llm: BaseLanguageModel,
shared_memory: Optional[ReadOnlySharedMemory] = None,
callback_manager: Optional[BaseCallbackManager] = None,
verbose: bool = True,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Instantiate OpenAI API planner and controller for a given spec.
Inject credentials via requests_wrapper.
We use a top-level "orchestrator" agent to invoke the planner and controller,
rather than a top-level planner
that invokes a controller with its plan. This is to keep the planner simple.
"""
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.agent import AgentExecutor
from langchain.chains.llm import LLMChain
tools = [
_create_api_planner_tool(api_spec, llm),
_create_api_controller_tool(api_spec, requests_wrapper, llm),
]
prompt = PromptTemplate(
template=API_ORCHESTRATOR_PROMPT,
input_variables=["input", "agent_scratchpad"],
partial_variables={
"tool_names": ", ".join([tool.name for tool in tools]),
"tool_descriptions": "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
),
},
)
agent = ZeroShotAgent(
llm_chain=LLMChain(llm=llm, prompt=prompt, memory=shared_memory),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -1,90 +0,0 @@
"""Requests toolkit."""
from __future__ import annotations
from typing import Any, List
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import Tool
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.agent_toolkits.json.base import create_json_agent
from langchain_community.agent_toolkits.json.toolkit import JsonToolkit
from langchain_community.agent_toolkits.openapi.prompt import DESCRIPTION
from langchain_community.tools import BaseTool
from langchain_community.tools.json.tool import JsonSpec
from langchain_community.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain_community.utilities.requests import TextRequestsWrapper
class RequestsToolkit(BaseToolkit):
"""Toolkit for making REST requests.
*Security Note*: This toolkit contains tools to make GET, POST, PATCH, PUT,
and DELETE requests to an API.
Exercise care in who is allowed to use this toolkit. If exposing
to end users, consider that users will be able to make arbitrary
requests on behalf of the server hosting the code. For example,
users could ask the server to make a request to a private API
that is only accessible from the server.
Control access to who can submit issue requests using this toolkit and
what network access it has.
See https://python.langchain.com/docs/security for more information.
"""
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Return a list of tools."""
return [
RequestsGetTool(requests_wrapper=self.requests_wrapper),
RequestsPostTool(requests_wrapper=self.requests_wrapper),
RequestsPatchTool(requests_wrapper=self.requests_wrapper),
RequestsPutTool(requests_wrapper=self.requests_wrapper),
RequestsDeleteTool(requests_wrapper=self.requests_wrapper),
]
class OpenAPIToolkit(BaseToolkit):
"""Toolkit for interacting with an OpenAPI API.
*Security Note*: This toolkit contains tools that can read and modify
the state of a service; e.g., by creating, deleting, or updating,
reading underlying data.
For example, this toolkit can be used to delete data exposed via
an OpenAPI compliant API.
"""
json_agent: Any
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
json_agent_tool = Tool(
name="json_explorer",
func=self.json_agent.run,
description=DESCRIPTION,
)
request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper)
return [*request_toolkit.get_tools(), json_agent_tool]
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
json_spec: JsonSpec,
requests_wrapper: TextRequestsWrapper,
**kwargs: Any,
) -> OpenAPIToolkit:
"""Create json agent from llm, then initialize."""
json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs)
return cls(json_agent=json_agent, requests_wrapper=requests_wrapper)

View File

@@ -1,68 +0,0 @@
"""Power BI agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_PREFIX,
POWERBI_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
def create_pbi_agent(
llm: BaseLanguageModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = POWERBI_PREFIX,
suffix: str = POWERBI_SUFFIX,
format_instructions: Optional[str] = None,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Power BI agent from an LLM and tools."""
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents import AgentExecutor
from langchain.chains.llm import LLMChain
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
agent = ZeroShotAgent(
llm_chain=LLMChain(
llm=llm,
prompt=ZeroShotAgent.create_prompt(
tools,
prefix=prefix.format(top_k=top_k).format(tables=tables),
suffix=suffix,
input_variables=input_variables,
**prompt_params,
),
callback_manager=callback_manager, # type: ignore
verbose=verbose,
),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -1,69 +0,0 @@
"""Power BI agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_CHAT_PREFIX,
POWERBI_CHAT_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
from langchain.agents.agent import AgentOutputParser
from langchain.memory.chat_memory import BaseChatMemory
def create_pbi_chat_agent(
llm: BaseChatModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = POWERBI_CHAT_PREFIX,
suffix: str = POWERBI_CHAT_SUFFIX,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
memory: Optional[BaseChatMemory] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Power BI agent from a Chat LLM and tools.
If you supply only a toolkit and no Power BI dataset, the same LLM is used for both.
"""
from langchain.agents import AgentExecutor
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.memory import ConversationBufferMemory
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
agent = ConversationalChatAgent.from_llm_and_tools(
llm=llm,
tools=tools,
system_message=prefix.format(top_k=top_k).format(tables=tables),
human_message=suffix,
input_variables=input_variables,
callback_manager=callback_manager,
output_parser=output_parser,
verbose=verbose,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
memory=memory
or ConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=verbose,
**(agent_executor_kwargs or {}),
)

View File

@@ -1,106 +0,0 @@
"""Toolkit for interacting with a Power BI dataset."""
from __future__ import annotations
from typing import List, Optional, Union, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.prompts import PromptTemplate
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_core.pydantic_v1 import Field
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools import BaseTool
from langchain_community.tools.powerbi.prompt import (
QUESTION_TO_QUERY_BASE,
SINGLE_QUESTION_TO_QUERY,
USER_INPUT,
)
from langchain_community.tools.powerbi.tool import (
InfoPowerBITool,
ListPowerBITool,
QueryPowerBITool,
)
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.chains.llm import LLMChain
class PowerBIToolkit(BaseToolkit):
"""Toolkit for interacting with Power BI dataset.
*Security Note*: This toolkit interacts with an external service.
Control access to who can use this toolkit.
Make sure that the capabilities given by this toolkit to the calling
code are appropriately scoped to the application.
See https://python.langchain.com/docs/security for more information.
"""
powerbi: PowerBIDataset = Field(exclude=True)
llm: Union[BaseLanguageModel, BaseChatModel] = Field(exclude=True)
examples: Optional[str] = None
max_iterations: int = 5
callback_manager: Optional[BaseCallbackManager] = None
output_token_limit: Optional[int] = None
tiktoken_model_name: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
QueryPowerBITool(
llm_chain=self._get_chain(),
powerbi=self.powerbi,
examples=self.examples,
max_iterations=self.max_iterations,
output_token_limit=self.output_token_limit,
tiktoken_model_name=self.tiktoken_model_name,
),
InfoPowerBITool(powerbi=self.powerbi),
ListPowerBITool(powerbi=self.powerbi),
]
def _get_chain(self) -> LLMChain:
"""Construct the chain based on the callback manager and model type."""
from langchain.chains.llm import LLMChain
if isinstance(self.llm, BaseLanguageModel):
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager
if self.callback_manager
else None,
prompt=PromptTemplate(
template=SINGLE_QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
system_prompt = SystemMessagePromptTemplate(
prompt=PromptTemplate(
template=QUESTION_TO_QUERY_BASE,
input_variables=["tables", "schemas", "examples"],
)
)
human_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(
template=USER_INPUT,
input_variables=["tool_input"],
)
)
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager if self.callback_manager else None,
prompt=ChatPromptTemplate.from_messages([system_prompt, human_prompt]),
)

View File

@@ -1,64 +0,0 @@
"""Spark SQL agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager, Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX
from langchain_community.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
def create_spark_sql_agent(
llm: BaseLanguageModel,
toolkit: SparkSQLToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
callbacks: Callbacks = None,
prefix: str = SQL_PREFIX,
suffix: str = SQL_SUFFIX,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Spark SQL agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
tools = toolkit.get_tools()
prefix = prefix.format(top_k=top_k)
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
callbacks=callbacks,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
callbacks=callbacks,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -1,102 +0,0 @@
"""SQL agent."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, TYPE_CHECKING
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import AIMessage, SystemMessage
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain_community.agent_toolkits.sql.prompt import (
SQL_FUNCTIONS_SUFFIX,
SQL_PREFIX,
SQL_SUFFIX,
)
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.tools import BaseTool
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_types import AgentType
def create_sql_agent(
llm: BaseLanguageModel,
toolkit: SQLDatabaseToolkit,
agent_type: Optional[AgentType] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = SQL_PREFIX,
suffix: Optional[str] = None,
format_instructions: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
extra_tools: Sequence[BaseTool] = (),
**kwargs: Any,
) -> AgentExecutor:
"""Construct an SQL agent from an LLM and tools."""
from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent
from langchain.agents.agent_types import AgentType
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.chains.llm import LLMChain
agent_type = agent_type or AgentType.ZERO_SHOT_REACT_DESCRIPTION
tools = toolkit.get_tools() + list(extra_tools)
prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k)
agent: BaseSingleActionAgent
if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION:
prompt_params = {"format_instructions": format_instructions} if format_instructions is not None else {}
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix or SQL_SUFFIX,
input_variables=input_variables,
**prompt_params,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
elif agent_type == AgentType.OPENAI_FUNCTIONS:
messages = [
SystemMessage(content=prefix),
HumanMessagePromptTemplate.from_template("{input}"),
AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
input_variables = ["input", "agent_scratchpad"]
_prompt = ChatPromptTemplate(input_variables=input_variables, messages=messages)
agent = OpenAIFunctionsAgent(
llm=llm,
prompt=_prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)
else:
raise ValueError(f"Agent type {agent_type} not supported at the moment.")
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)

View File

@@ -1,66 +0,0 @@
"""**Callback handlers** allow listening to events in LangChain.
**Class hierarchy:**
.. code-block::
BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler
"""
from langchain_community.callbacks.aim_callback import AimCallbackHandler
from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain_community.callbacks.arize_callback import ArizeCallbackHandler
from langchain_community.callbacks.arthur_callback import ArthurCallbackHandler
from langchain_community.callbacks.clearml_callback import ClearMLCallbackHandler
from langchain_community.callbacks.comet_ml_callback import CometCallbackHandler
from langchain_community.callbacks.context_callback import ContextCallbackHandler
from langchain_community.callbacks.flyte_callback import FlyteCallbackHandler
from langchain_community.callbacks.human import HumanApprovalCallbackHandler
from langchain_community.callbacks.infino_callback import InfinoCallbackHandler
from langchain_community.callbacks.labelstudio_callback import (
LabelStudioCallbackHandler,
)
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain_community.callbacks.manager import (
get_openai_callback,
wandb_tracing_enabled,
)
from langchain_community.callbacks.mlflow_callback import MlflowCallbackHandler
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.promptlayer_callback import (
PromptLayerCallbackHandler,
)
from langchain_community.callbacks.sagemaker_callback import SageMakerCallbackHandler
from langchain_community.callbacks.streamlit import (
LLMThoughtLabeler,
StreamlitCallbackHandler,
)
from langchain_community.callbacks.trubrics_callback import TrubricsCallbackHandler
from langchain_community.callbacks.wandb_callback import WandbCallbackHandler
from langchain_community.callbacks.whylabs_callback import WhyLabsCallbackHandler
__all__ = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"LLMThoughtLabeler",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]

View File

@@ -1,69 +0,0 @@
from __future__ import annotations
import logging
from contextlib import contextmanager
from contextvars import ContextVar
from typing import (
Generator,
Optional,
)
from langchain_core.tracers.context import register_configure_hook
from langchain_community.callbacks.openai_info import OpenAICallbackHandler
from langchain_community.callbacks.tracers.wandb import WandbTracer
logger = logging.getLogger(__name__)
openai_callback_var: ContextVar[Optional[OpenAICallbackHandler]] = ContextVar(
"openai_callback", default=None
)
wandb_tracing_callback_var: ContextVar[Optional[WandbTracer]] = ContextVar( # noqa: E501
"tracing_wandb_callback", default=None
)
register_configure_hook(openai_callback_var, True)
register_configure_hook(
wandb_tracing_callback_var, True, WandbTracer, "LANGCHAIN_WANDB_TRACING"
)
@contextmanager
def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]:
"""Get the OpenAI callback handler in a context manager.
which conveniently exposes token and cost information.
Returns:
OpenAICallbackHandler: The OpenAI callback handler.
Example:
>>> with get_openai_callback() as cb:
... # Use the OpenAI callback handler
"""
cb = OpenAICallbackHandler()
openai_callback_var.set(cb)
yield cb
openai_callback_var.set(None)
@contextmanager
def wandb_tracing_enabled(
session_name: str = "default",
) -> Generator[None, None, None]:
"""Get the WandbTracer in a context manager.
Args:
session_name (str, optional): The name of the session.
Defaults to "default".
Returns:
None
Example:
>>> with wandb_tracing_enabled() as session:
... # Use the WandbTracer session
"""
cb = WandbTracer()
wandb_tracing_callback_var.set(cb)
yield None
wandb_tracing_callback_var.set(None)

View File

@@ -1,18 +0,0 @@
"""Tracers that record execution of LangChain runs."""
from langchain_core.tracers.langchain import LangChainTracer
from langchain_core.tracers.langchain_v1 import LangChainTracerV1
from langchain_core.tracers.stdout import (
ConsoleCallbackHandler,
FunctionCallbackHandler,
)
from langchain_community.callbacks.tracers.wandb import WandbTracer
__all__ = [
"ConsoleCallbackHandler",
"FunctionCallbackHandler",
"LangChainTracer",
"LangChainTracerV1",
"WandbTracer",
]

View File

@@ -1,101 +0,0 @@
"""Abstract interface for document loader implementations."""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Iterator, List, Optional, TYPE_CHECKING
from langchain_core.documents import Document
from langchain_community.document_loaders.blob_loaders import Blob
if TYPE_CHECKING:
from langchain.text_splitter import TextSplitter
class BaseLoader(ABC):
"""Interface for Document Loader.
Implementations should implement the lazy-loading method using generators
to avoid loading all Documents into memory at once.
The `load` method will remain as is for backwards compatibility, but its
implementation should be just `list(self.lazy_load())`.
"""
# Sub-classes should implement this method
# as return list(self.lazy_load()).
# This method returns a List which is materialized in memory.
@abstractmethod
def load(self) -> List[Document]:
"""Load data into Document objects."""
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
"""Load Documents and split into chunks. Chunks are returned as Documents.
Args:
text_splitter: TextSplitter instance to use for splitting documents.
Defaults to RecursiveCharacterTextSplitter.
Returns:
List of Documents.
"""
from langchain.text_splitter import RecursiveCharacterTextSplitter
if text_splitter is None:
_text_splitter: TextSplitter = RecursiveCharacterTextSplitter()
else:
_text_splitter = text_splitter
docs = self.load()
return _text_splitter.split_documents(docs)
# Attention: This method will be upgraded into an abstractmethod once it's
# implemented in all the existing subclasses.
def lazy_load(
self,
) -> Iterator[Document]:
"""A lazy loader for Documents."""
raise NotImplementedError(
f"{self.__class__.__name__} does not implement lazy_load()"
)
class BaseBlobParser(ABC):
"""Abstract interface for blob parsers.
A blob parser provides a way to parse raw data stored in a blob into one
or more documents.
The parser can be composed with blob loaders, making it easy to reuse
a parser independent of how the blob was originally loaded.
"""
@abstractmethod
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazy parsing interface.
Subclasses are required to implement this method.
Args:
blob: Blob instance
Returns:
Generator of documents
"""
def parse(self, blob: Blob) -> List[Document]:
"""Eagerly parse the blob into a document or documents.
This is a convenience method for interactive development environment.
Production applications should favor the lazy_parse method instead.
Subclasses should generally not over-ride this parse method.
Args:
blob: Blob instance
Returns:
List of documents
"""
return list(self.lazy_parse(blob))

View File

@@ -1,147 +0,0 @@
"""Use to load blobs from the local file system."""
from pathlib import Path
from typing import Callable, Iterable, Iterator, Optional, Sequence, TypeVar, Union
from langchain_community.document_loaders.blob_loaders.schema import Blob, BlobLoader
T = TypeVar("T")
def _make_iterator(
length_func: Callable[[], int], show_progress: bool = False
) -> Callable[[Iterable[T]], Iterator[T]]:
"""Create a function that optionally wraps an iterable in tqdm."""
if show_progress:
try:
from tqdm.auto import tqdm
except ImportError:
raise ImportError(
"You must install tqdm to use show_progress=True."
"You can install tqdm with `pip install tqdm`."
)
# Make sure to provide `total` here so that tqdm can show
# a progress bar that takes into account the total number of files.
def _with_tqdm(iterable: Iterable[T]) -> Iterator[T]:
"""Wrap an iterable in a tqdm progress bar."""
return tqdm(iterable, total=length_func())
iterator = _with_tqdm
else:
iterator = iter # type: ignore
return iterator
# PUBLIC API
class FileSystemBlobLoader(BlobLoader):
"""Load blobs in the local file system.
Example:
.. code-block:: python
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
loader = FileSystemBlobLoader("/path/to/directory")
for blob in loader.yield_blobs():
print(blob)
""" # noqa: E501
def __init__(
self,
path: Union[str, Path],
*,
glob: str = "**/[!.]*",
exclude: Sequence[str] = (),
suffixes: Optional[Sequence[str]] = None,
show_progress: bool = False,
) -> None:
"""Initialize with a path to directory and how to glob over it.
Args:
path: Path to directory to load from or path to file to load.
If a path to a file is provided, glob/exclude/suffixes are ignored.
glob: Glob pattern relative to the specified path
by default set to pick up all non-hidden files
exclude: patterns to exclude from results, use glob syntax
suffixes: Provide to keep only files with these suffixes
Useful when wanting to keep files with different suffixes
Suffixes must include the dot, e.g. ".txt"
show_progress: If true, will show a progress bar as the files are loaded.
This forces an iteration through all matching files
to count them prior to loading them.
Examples:
.. code-block:: python
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
# Load a single file.
loader = FileSystemBlobLoader("/path/to/file.txt")
# Recursively load all text files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/*.txt")
# Recursively load all non-hidden files in a directory.
loader = FileSystemBlobLoader("/path/to/directory", glob="**/[!.]*")
# Load all files in a directory without recursion.
loader = FileSystemBlobLoader("/path/to/directory", glob="*")
# Recursively load all files in a directory, except for py or pyc files.
loader = FileSystemBlobLoader(
"/path/to/directory",
glob="**/*.txt",
exclude=["**/*.py", "**/*.pyc"]
)
""" # noqa: E501
if isinstance(path, Path):
_path = path
elif isinstance(path, str):
_path = Path(path)
else:
raise TypeError(f"Expected str or Path, got {type(path)}")
self.path = _path.expanduser() # Expand user to handle ~
self.glob = glob
self.suffixes = set(suffixes or [])
self.show_progress = show_progress
self.exclude = exclude
def yield_blobs(
self,
) -> Iterable[Blob]:
"""Yield blobs that match the requested pattern."""
iterator = _make_iterator(
length_func=self.count_matching_files, show_progress=self.show_progress
)
for path in iterator(self._yield_paths()):
yield Blob.from_path(path)
def _yield_paths(self) -> Iterable[Path]:
"""Yield paths that match the requested pattern."""
if self.path.is_file():
yield self.path
return
paths = self.path.glob(self.glob)
for path in paths:
if self.exclude:
if any(path.match(glob) for glob in self.exclude):
continue
if path.is_file():
if self.suffixes and path.suffix not in self.suffixes:
continue
yield path
def count_matching_files(self) -> int:
"""Count files that match the pattern without loading them."""
# Carry out a full iteration to count the files without
# materializing anything expensive in memory.
num = 0
for _ in self._yield_paths():
num += 1
return num

View File

@@ -1,190 +0,0 @@
from __future__ import annotations
from pathlib import Path
from typing import (
TYPE_CHECKING,
Any,
Iterator,
List,
Literal,
Optional,
Sequence,
Union,
)
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser, BaseLoader
from langchain_community.document_loaders.blob_loaders import (
BlobLoader,
FileSystemBlobLoader,
)
from langchain_community.document_loaders.parsers.registry import get_parser
if TYPE_CHECKING:
from langchain.text_splitter import TextSplitter
_PathLike = Union[str, Path]
DEFAULT = Literal["default"]
class GenericLoader(BaseLoader):
"""Generic Document Loader.
A generic document loader that allows combining an arbitrary blob loader with
a blob parser.
Examples:
Parse a specific PDF file:
.. code-block:: python
from langchain_community.document_loaders import GenericLoader
from langchain_community.document_loaders.parsers.pdf import PyPDFParser
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem(
"my_lovely_pdf.pdf",
parser=PyPDFParser()
)
.. code-block:: python
from langchain_community.document_loaders import GenericLoader
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
loader = GenericLoader.from_filesystem(
path="path/to/directory",
glob="**/[!.]*",
suffixes=[".pdf"],
show_progress=True,
)
docs = loader.lazy_load()
next(docs)
Example instantiations to change which files are loaded:
.. code-block:: python
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/*.txt")
# Recursively load all non-hidden files in a directory.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="**/[!.]*")
# Load all files in a directory without recursion.
loader = GenericLoader.from_filesystem("/path/to/dir", glob="*")
Example instantiations to change which parser is used:
.. code-block:: python
from langchain_community.document_loaders.parsers.pdf import PyPDFParser
# Recursively load all text files in a directory.
loader = GenericLoader.from_filesystem(
"/path/to/dir",
glob="**/*.pdf",
parser=PyPDFParser()
)
""" # noqa: E501
def __init__(
self,
blob_loader: BlobLoader,
blob_parser: BaseBlobParser,
) -> None:
"""A generic document loader.
Args:
blob_loader: A blob loader which knows how to yield blobs
blob_parser: A blob parser which knows how to parse blobs into documents
"""
self.blob_loader = blob_loader
self.blob_parser = blob_parser
def lazy_load(
self,
) -> Iterator[Document]:
"""Load documents lazily. Use this when working at a large scale."""
for blob in self.blob_loader.yield_blobs():
yield from self.blob_parser.lazy_parse(blob)
def load(self) -> List[Document]:
"""Load all documents."""
return list(self.lazy_load())
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
"""Load all documents and split them into sentences."""
raise NotImplementedError(
"Loading and splitting is not yet implemented for generic loaders. "
"When they will be implemented they will be added via the initializer. "
"This method should not be used going forward."
)
@classmethod
def from_filesystem(
cls,
path: _PathLike,
*,
glob: str = "**/[!.]*",
exclude: Sequence[str] = (),
suffixes: Optional[Sequence[str]] = None,
show_progress: bool = False,
parser: Union[DEFAULT, BaseBlobParser] = "default",
parser_kwargs: Optional[dict] = None,
) -> GenericLoader:
"""Create a generic document loader using a filesystem blob loader.
Args:
path: The path to the directory to load documents from OR the path to a
single file to load. If this is a file, glob, exclude, suffixes
will be ignored.
glob: The glob pattern to use to find documents.
suffixes: The suffixes to use to filter documents. If None, all files
matching the glob will be loaded.
exclude: A list of patterns to exclude from the loader.
show_progress: Whether to show a progress bar or not (requires tqdm).
Proxies to the file system loader.
parser: A blob parser which knows how to parse blobs into documents,
will instantiate a default parser if not provided.
The default can be overridden by either passing a parser or
setting the class attribute `blob_parser` (the latter
should be used with inheritance).
parser_kwargs: Keyword arguments to pass to the parser.
Returns:
A generic document loader.
"""
blob_loader = FileSystemBlobLoader(
path,
glob=glob,
exclude=exclude,
suffixes=suffixes,
show_progress=show_progress,
)
if isinstance(parser, str):
if parser == "default":
try:
# If there is an implementation of get_parser on the class, use it.
blob_parser = cls.get_parser(**(parser_kwargs or {}))
except NotImplementedError:
# if not then use the global registry.
blob_parser = get_parser(parser)
else:
blob_parser = get_parser(parser)
else:
blob_parser = parser
return cls(blob_loader, blob_parser)
@staticmethod
def get_parser(**kwargs: Any) -> BaseBlobParser:
"""Override this method to associate a default parser with the class."""
raise NotImplementedError()

View File

@@ -1,70 +0,0 @@
"""Code for generic / auxiliary parsers.
This module contains some logic to help assemble more sophisticated parsers.
"""
from typing import Iterator, Mapping, Optional
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders.schema import Blob
class MimeTypeBasedParser(BaseBlobParser):
"""Parser that uses `mime`-types to parse a blob.
This parser is useful for simple pipelines where the mime-type is sufficient
to determine how to parse a blob.
To use, configure handlers based on mime-types and pass them to the initializer.
Example:
.. code-block:: python
from langchain_community.document_loaders.parsers.generic import MimeTypeBasedParser
parser = MimeTypeBasedParser(
handlers={
"application/pdf": ...,
},
fallback_parser=...,
)
""" # noqa: E501
def __init__(
self,
handlers: Mapping[str, BaseBlobParser],
*,
fallback_parser: Optional[BaseBlobParser] = None,
) -> None:
"""Define a parser that uses mime-types to determine how to parse a blob.
Args:
handlers: A mapping from mime-types to functions that take a blob, parse it
and return a document.
fallback_parser: A fallback_parser parser to use if the mime-type is not
found in the handlers. If provided, this parser will be
used to parse blobs with all mime-types not found in
the handlers.
If not provided, a ValueError will be raised if the
mime-type is not found in the handlers.
"""
self.handlers = handlers
self.fallback_parser = fallback_parser
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Load documents from a blob."""
mimetype = blob.mimetype
if mimetype is None:
raise ValueError(f"{blob} does not have a mimetype.")
if mimetype in self.handlers:
handler = self.handlers[mimetype]
yield from handler.lazy_parse(blob)
else:
if self.fallback_parser is not None:
yield from self.fallback_parser.lazy_parse(blob)
else:
raise ValueError(f"Unsupported mime type: {mimetype}")

View File

@@ -1,157 +0,0 @@
from __future__ import annotations
from typing import Any, Dict, Iterator, Optional, TYPE_CHECKING
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.language.cobol import CobolSegmenter
from langchain_community.document_loaders.parsers.language.javascript import (
JavaScriptSegmenter,
)
from langchain_community.document_loaders.parsers.language.python import PythonSegmenter
if TYPE_CHECKING:
from langchain.text_splitter import Language
try:
from langchain.text_splitter import Language
LANGUAGE_EXTENSIONS: Dict[str, str] = {
"py": Language.PYTHON,
"js": Language.JS,
"cobol": Language.COBOL,
}
LANGUAGE_SEGMENTERS: Dict[str, Any] = {
Language.PYTHON: PythonSegmenter,
Language.JS: JavaScriptSegmenter,
Language.COBOL: CobolSegmenter,
}
except ImportError:
LANGUAGE_EXTENSIONS = {}
LANGUAGE_SEGMENTERS = {}
class LanguageParser(BaseBlobParser):
"""Parse using the respective programming language syntax.
Each top-level function and class in the code is loaded into separate documents.
Furthermore, an extra document is generated, containing the remaining top-level code
that excludes the already segmented functions and classes.
This approach can potentially improve the accuracy of QA models over source code.
Currently, the supported languages for code parsing are Python and JavaScript.
The language used for parsing can be configured, along with the minimum number of
lines required to activate the splitting based on syntax.
Examples:
.. code-block:: python
from langchain.text_splitter.Language
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import LanguageParser
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py", ".js"],
parser=LanguageParser()
)
docs = loader.load()
Example instantiations to manually select the language:
.. code-block:: python
from langchain.text_splitter import Language
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py"],
parser=LanguageParser(language=Language.PYTHON)
)
Example instantiations to set number of lines threshold:
.. code-block:: python
loader = GenericLoader.from_filesystem(
"./code",
glob="**/*",
suffixes=[".py"],
parser=LanguageParser(parser_threshold=200)
)
"""
def __init__(self, language: Optional[Language] = None, parser_threshold: int = 0):
"""
Language parser that split code using the respective language syntax.
Args:
language: If None (default), it will try to infer language from source.
parser_threshold: Minimum lines needed to activate parsing (0 by default).
"""
self.language = language
self.parser_threshold = parser_threshold
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
code = blob.as_string()
language = self.language or (
LANGUAGE_EXTENSIONS.get(blob.source.rsplit(".", 1)[-1])
if isinstance(blob.source, str)
else None
)
if language is None:
yield Document(
page_content=code,
metadata={
"source": blob.source,
},
)
return
if self.parser_threshold >= len(code.splitlines()):
yield Document(
page_content=code,
metadata={
"source": blob.source,
"language": language,
},
)
return
self.Segmenter = LANGUAGE_SEGMENTERS[language]
segmenter = self.Segmenter(blob.as_string())
if not segmenter.is_valid():
yield Document(
page_content=code,
metadata={
"source": blob.source,
},
)
return
for functions_classes in segmenter.extract_functions_classes():
yield Document(
page_content=functions_classes,
metadata={
"source": blob.source,
"content_type": "functions_classes",
"language": language,
},
)
yield Document(
page_content=segmenter.simplify_code(),
metadata={
"source": blob.source,
"content_type": "simplified_code",
"language": language,
},
)

View File

@@ -1,262 +0,0 @@
from __future__ import annotations
import asyncio
import json
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
if TYPE_CHECKING:
import pandas as pd
from telethon.hints import EntityLike
def concatenate_rows(row: dict) -> str:
"""Combine message information in a readable format ready to be used."""
date = row["date"]
sender = row["from"]
text = row["text"]
return f"{sender} on {date}: {text}\n\n"
class TelegramChatFileLoader(BaseLoader):
"""Load from `Telegram chat` dump."""
def __init__(self, path: str):
"""Initialize with a path."""
self.file_path = path
def load(self) -> List[Document]:
"""Load documents."""
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
text = "".join(
concatenate_rows(message)
for message in d["messages"]
if message["type"] == "message" and isinstance(message["text"], str)
)
metadata = {"source": str(p)}
return [Document(page_content=text, metadata=metadata)]
def text_to_docs(text: Union[str, List[str]]) -> List[Document]:
"""Convert a string or list of strings to a list of Documents with metadata."""
from langchain.text_splitter import RecursiveCharacterTextSplitter
if isinstance(text, str):
# Take a single string as one page
text = [text]
page_docs = [Document(page_content=page) for page in text]
# Add page numbers as metadata
for i, doc in enumerate(page_docs):
doc.metadata["page"] = i + 1
# Split pages into chunks
doc_chunks = []
for doc in page_docs:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_overlap=20,
)
chunks = text_splitter.split_text(doc.page_content)
for i, chunk in enumerate(chunks):
doc = Document(
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
)
# Add sources a metadata
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
doc_chunks.append(doc)
return doc_chunks
class TelegramChatApiLoader(BaseLoader):
"""Load `Telegram` chat json directory dump."""
def __init__(
self,
chat_entity: Optional[EntityLike] = None,
api_id: Optional[int] = None,
api_hash: Optional[str] = None,
username: Optional[str] = None,
file_path: str = "telegram_data.json",
):
"""Initialize with API parameters.
Args:
chat_entity: The chat entity to fetch data from.
api_id: The API ID.
api_hash: The API hash.
username: The username.
file_path: The file path to save the data to. Defaults to
"telegram_data.json".
"""
self.chat_entity = chat_entity
self.api_id = api_id
self.api_hash = api_hash
self.username = username
self.file_path = file_path
async def fetch_data_from_telegram(self) -> None:
"""Fetch data from Telegram API and save it as a JSON file."""
from telethon.sync import TelegramClient
data = []
async with TelegramClient(self.username, self.api_id, self.api_hash) as client:
async for message in client.iter_messages(self.chat_entity):
is_reply = message.reply_to is not None
reply_to_id = message.reply_to.reply_to_msg_id if is_reply else None
data.append(
{
"sender_id": message.sender_id,
"text": message.text,
"date": message.date.isoformat(),
"message.id": message.id,
"is_reply": is_reply,
"reply_to_id": reply_to_id,
}
)
with open(self.file_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=4)
def _get_message_threads(self, data: pd.DataFrame) -> dict:
"""Create a dictionary of message threads from the given data.
Args:
data (pd.DataFrame): A DataFrame containing the conversation \
data with columns:
- message.sender_id
- text
- date
- message.id
- is_reply
- reply_to_id
Returns:
dict: A dictionary where the key is the parent message ID and \
the value is a list of message IDs in ascending order.
"""
def find_replies(parent_id: int, reply_data: pd.DataFrame) -> List[int]:
"""
Recursively find all replies to a given parent message ID.
Args:
parent_id (int): The parent message ID.
reply_data (pd.DataFrame): A DataFrame containing reply messages.
Returns:
list: A list of message IDs that are replies to the parent message ID.
"""
# Find direct replies to the parent message ID
direct_replies = reply_data[reply_data["reply_to_id"] == parent_id][
"message.id"
].tolist()
# Recursively find replies to the direct replies
all_replies = []
for reply_id in direct_replies:
all_replies += [reply_id] + find_replies(reply_id, reply_data)
return all_replies
# Filter out parent messages
parent_messages = data[~data["is_reply"]]
# Filter out reply messages and drop rows with NaN in 'reply_to_id'
reply_messages = data[data["is_reply"]].dropna(subset=["reply_to_id"])
# Convert 'reply_to_id' to integer
reply_messages["reply_to_id"] = reply_messages["reply_to_id"].astype(int)
# Create a dictionary of message threads with parent message IDs as keys and \
# lists of reply message IDs as values
message_threads = {
parent_id: [parent_id] + find_replies(parent_id, reply_messages)
for parent_id in parent_messages["message.id"]
}
return message_threads
def _combine_message_texts(
self, message_threads: Dict[int, List[int]], data: pd.DataFrame
) -> str:
"""
Combine the message texts for each parent message ID based \
on the list of message threads.
Args:
message_threads (dict): A dictionary where the key is the parent message \
ID and the value is a list of message IDs in ascending order.
data (pd.DataFrame): A DataFrame containing the conversation data:
- message.sender_id
- text
- date
- message.id
- is_reply
- reply_to_id
Returns:
str: A combined string of message texts sorted by date.
"""
combined_text = ""
# Iterate through sorted parent message IDs
for parent_id, message_ids in message_threads.items():
# Get the message texts for the message IDs and sort them by date
message_texts = (
data[data["message.id"].isin(message_ids)]
.sort_values(by="date")["text"]
.tolist()
)
message_texts = [str(elem) for elem in message_texts]
# Combine the message texts
combined_text += " ".join(message_texts) + ".\n"
return combined_text.strip()
def load(self) -> List[Document]:
"""Load documents."""
if self.chat_entity is not None:
try:
import nest_asyncio
nest_asyncio.apply()
asyncio.run(self.fetch_data_from_telegram())
except ImportError:
raise ImportError(
"""`nest_asyncio` package not found.
please install with `pip install nest_asyncio`
"""
)
p = Path(self.file_path)
with open(p, encoding="utf8") as f:
d = json.load(f)
try:
import pandas as pd
except ImportError:
raise ImportError(
"""`pandas` package not found.
please install with `pip install pandas`
"""
)
normalized_messages = pd.json_normalize(d)
df = pd.DataFrame(normalized_messages)
message_threads = self._get_message_threads(df)
combined_texts = self._combine_message_texts(message_threads, df)
return text_to_docs(combined_texts)

View File

@@ -1,149 +0,0 @@
from typing import Any, Iterator, List, Sequence, cast
from langchain_core.documents import BaseDocumentTransformer, Document
class BeautifulSoupTransformer(BaseDocumentTransformer):
"""Transform HTML content by extracting specific tags and removing unwanted ones.
Example:
.. code-block:: python
from langchain_community.document_transformers import BeautifulSoupTransformer
bs4_transformer = BeautifulSoupTransformer()
docs_transformed = bs4_transformer.transform_documents(docs)
""" # noqa: E501
def __init__(self) -> None:
"""
Initialize the transformer.
This checks if the BeautifulSoup4 package is installed.
If not, it raises an ImportError.
"""
try:
import bs4 # noqa:F401
except ImportError:
raise ImportError(
"BeautifulSoup4 is required for BeautifulSoupTransformer. "
"Please install it with `pip install beautifulsoup4`."
)
def transform_documents(
self,
documents: Sequence[Document],
unwanted_tags: List[str] = ["script", "style"],
tags_to_extract: List[str] = ["p", "li", "div", "a"],
remove_lines: bool = True,
**kwargs: Any,
) -> Sequence[Document]:
"""
Transform a list of Document objects by cleaning their HTML content.
Args:
documents: A sequence of Document objects containing HTML content.
unwanted_tags: A list of tags to be removed from the HTML.
tags_to_extract: A list of tags whose content will be extracted.
remove_lines: If set to True, unnecessary lines will be
removed from the HTML content.
Returns:
A sequence of Document objects with transformed content.
"""
for doc in documents:
cleaned_content = doc.page_content
cleaned_content = self.remove_unwanted_tags(cleaned_content, unwanted_tags)
cleaned_content = self.extract_tags(cleaned_content, tags_to_extract)
if remove_lines:
cleaned_content = self.remove_unnecessary_lines(cleaned_content)
doc.page_content = cleaned_content
return documents
@staticmethod
def remove_unwanted_tags(html_content: str, unwanted_tags: List[str]) -> str:
"""
Remove unwanted tags from a given HTML content.
Args:
html_content: The original HTML content string.
unwanted_tags: A list of tags to be removed from the HTML.
Returns:
A cleaned HTML string with unwanted tags removed.
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
for tag in unwanted_tags:
for element in soup.find_all(tag):
element.decompose()
return str(soup)
@staticmethod
def extract_tags(html_content: str, tags: List[str]) -> str:
"""
Extract specific tags from a given HTML content.
Args:
html_content: The original HTML content string.
tags: A list of tags to be extracted from the HTML.
Returns:
A string combining the content of the extracted tags.
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
text_parts: List[str] = []
for element in soup.find_all():
if element.name in tags:
# Extract all navigable strings recursively from this element.
text_parts += get_navigable_strings(element)
# To avoid duplicate text, remove all descendants from the soup.
element.decompose()
return " ".join(text_parts)
@staticmethod
def remove_unnecessary_lines(content: str) -> str:
"""
Clean up the content by removing unnecessary lines.
Args:
content: A string, which may contain unnecessary lines or spaces.
Returns:
A cleaned string with unnecessary lines removed.
"""
lines = content.split("\n")
stripped_lines = [line.strip() for line in lines]
non_empty_lines = [line for line in stripped_lines if line]
cleaned_content = " ".join(non_empty_lines)
return cleaned_content
async def atransform_documents(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> Sequence[Document]:
raise NotImplementedError
def get_navigable_strings(element: Any) -> Iterator[str]:
from bs4 import NavigableString, Tag
for child in cast(Tag, element).children:
if isinstance(child, Tag):
yield from get_navigable_strings(child)
elif isinstance(child, NavigableString):
if (element.name == "a") and (href := element.get("href")):
yield f"{child.strip()} ({href})"
else:
yield child.strip()

View File

@@ -1,140 +0,0 @@
"""Document transformers that use OpenAI Functions models"""
from typing import Any, Dict, Optional, Sequence, Type, Union
from langchain_core.documents import BaseDocumentTransformer, Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
class OpenAIMetadataTagger(BaseDocumentTransformer, BaseModel):
"""Extract metadata tags from document contents using OpenAI functions.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_transformers import OpenAIMetadataTagger
from langchain_core.documents import Document
schema = {
"properties": {
"movie_title": { "type": "string" },
"critic": { "type": "string" },
"tone": {
"type": "string",
"enum": ["positive", "negative"]
},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie"
}
},
"required": ["movie_title", "critic", "tone"]
}
# Must be an OpenAI model that supports functions
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
tagging_chain = create_tagging_chain(schema, llm)
document_transformer = OpenAIMetadataTagger(tagging_chain=tagging_chain)
original_documents = [
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
""" # noqa: E501
tagging_chain: Any
"""The chain used to extract metadata from each document."""
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Automatically extract and populate metadata
for each document according to the provided schema."""
new_documents = []
for document in documents:
extracted_metadata: Dict = self.tagging_chain.run(document.page_content) # type: ignore[assignment] # noqa: E501
new_document = Document(
page_content=document.page_content,
metadata={**extracted_metadata, **document.metadata},
)
new_documents.append(new_document)
return new_documents
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
raise NotImplementedError
def create_metadata_tagger(
metadata_schema: Union[Dict[str, Any], Type[BaseModel]],
llm: BaseLanguageModel,
prompt: Optional[ChatPromptTemplate] = None,
*,
tagging_chain_kwargs: Optional[Dict] = None,
) -> OpenAIMetadataTagger:
"""Create a DocumentTransformer that uses an OpenAI function chain to automatically
tag documents with metadata based on their content and an input schema.
Args:
metadata_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary
is passed in, it's assumed to already be a valid JsonSchema.
For best results, pydantic.BaseModels should have docstrings describing what
the schema represents and descriptions for the parameters.
llm: Language model to use, assumed to support the OpenAI function-calling API.
Defaults to use "gpt-3.5-turbo-0613"
prompt: BasePromptTemplate to pass to the model.
Returns:
An LLMChain that will pass the given function to the model.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_transformers import create_metadata_tagger
from langchain_core.documents import Document
schema = {
"properties": {
"movie_title": { "type": "string" },
"critic": { "type": "string" },
"tone": {
"type": "string",
"enum": ["positive", "negative"]
},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie"
}
},
"required": ["movie_title", "critic", "tone"]
}
# Must be an OpenAI model that supports functions
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
document_transformer = create_metadata_tagger(schema, llm)
original_documents = [
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
""" # noqa: E501
from langchain.chains.openai_functions import create_tagging_chain
metadata_schema = (
metadata_schema
if isinstance(metadata_schema, dict)
else metadata_schema.schema()
)
_tagging_chain_kwargs = tagging_chain_kwargs or {}
tagging_chain = create_tagging_chain(
metadata_schema, llm, prompt=prompt, **_tagging_chain_kwargs
)
return OpenAIMetadataTagger(tagging_chain=tagging_chain)

View File

@@ -1,161 +0,0 @@
"""**Embedding models** are wrappers around embedding models
from different APIs and services.
**Embedding models** can be LLMs or not.
**Class hierarchy:**
.. code-block::
Embeddings --> <name>Embeddings # Examples: OpenAIEmbeddings, HuggingFaceEmbeddings
"""
import logging
from typing import Any
from langchain_community.embeddings.aleph_alpha import (
AlephAlphaAsymmetricSemanticEmbedding,
AlephAlphaSymmetricSemanticEmbedding,
)
from langchain_community.embeddings.awa import AwaEmbeddings
from langchain_community.embeddings.azure_openai import AzureOpenAIEmbeddings
from langchain_community.embeddings.baidu_qianfan_endpoint import (
QianfanEmbeddingsEndpoint,
)
from langchain_community.embeddings.bedrock import BedrockEmbeddings
from langchain_community.embeddings.bookend import BookendEmbeddings
from langchain_community.embeddings.clarifai import ClarifaiEmbeddings
from langchain_community.embeddings.cohere import CohereEmbeddings
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
from langchain_community.embeddings.databricks import DatabricksEmbeddings
from langchain_community.embeddings.deepinfra import DeepInfraEmbeddings
from langchain_community.embeddings.edenai import EdenAiEmbeddings
from langchain_community.embeddings.elasticsearch import ElasticsearchEmbeddings
from langchain_community.embeddings.embaas import EmbaasEmbeddings
from langchain_community.embeddings.ernie import ErnieEmbeddings
from langchain_community.embeddings.fake import (
DeterministicFakeEmbedding,
FakeEmbeddings,
)
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.embeddings.google_palm import GooglePalmEmbeddings
from langchain_community.embeddings.gpt4all import GPT4AllEmbeddings
from langchain_community.embeddings.gradient_ai import GradientEmbeddings
from langchain_community.embeddings.huggingface import (
HuggingFaceBgeEmbeddings,
HuggingFaceEmbeddings,
HuggingFaceInferenceAPIEmbeddings,
HuggingFaceInstructEmbeddings,
)
from langchain_community.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from langchain_community.embeddings.infinity import InfinityEmbeddings
from langchain_community.embeddings.javelin_ai_gateway import JavelinAIGatewayEmbeddings
from langchain_community.embeddings.jina import JinaEmbeddings
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
from langchain_community.embeddings.llamacpp import LlamaCppEmbeddings
from langchain_community.embeddings.localai import LocalAIEmbeddings
from langchain_community.embeddings.minimax import MiniMaxEmbeddings
from langchain_community.embeddings.mlflow import MlflowEmbeddings
from langchain_community.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings
from langchain_community.embeddings.modelscope_hub import ModelScopeEmbeddings
from langchain_community.embeddings.mosaicml import MosaicMLInstructorEmbeddings
from langchain_community.embeddings.nlpcloud import NLPCloudEmbeddings
from langchain_community.embeddings.octoai_embeddings import OctoAIEmbeddings
from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.embeddings.sagemaker_endpoint import (
SagemakerEndpointEmbeddings,
)
from langchain_community.embeddings.self_hosted import SelfHostedEmbeddings
from langchain_community.embeddings.self_hosted_hugging_face import (
SelfHostedHuggingFaceEmbeddings,
SelfHostedHuggingFaceInstructEmbeddings,
)
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
from langchain_community.embeddings.tensorflow_hub import TensorflowHubEmbeddings
from langchain_community.embeddings.vertexai import VertexAIEmbeddings
from langchain_community.embeddings.voyageai import VoyageEmbeddings
from langchain_community.embeddings.xinference import XinferenceEmbeddings
logger = logging.getLogger(__name__)
__all__ = [
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
"ClarifaiEmbeddings",
"CohereEmbeddings",
"DatabricksEmbeddings",
"ElasticsearchEmbeddings",
"FastEmbedEmbeddings",
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",
"HuggingFaceHubEmbeddings",
"MlflowEmbeddings",
"MlflowAIGatewayEmbeddings",
"ModelScopeEmbeddings",
"TensorflowHubEmbeddings",
"SagemakerEndpointEmbeddings",
"HuggingFaceInstructEmbeddings",
"MosaicMLInstructorEmbeddings",
"SelfHostedEmbeddings",
"SelfHostedHuggingFaceEmbeddings",
"SelfHostedHuggingFaceInstructEmbeddings",
"FakeEmbeddings",
"DeterministicFakeEmbedding",
"AlephAlphaAsymmetricSemanticEmbedding",
"AlephAlphaSymmetricSemanticEmbedding",
"SentenceTransformerEmbeddings",
"GooglePalmEmbeddings",
"MiniMaxEmbeddings",
"VertexAIEmbeddings",
"BedrockEmbeddings",
"DeepInfraEmbeddings",
"EdenAiEmbeddings",
"DashScopeEmbeddings",
"EmbaasEmbeddings",
"OctoAIEmbeddings",
"SpacyEmbeddings",
"NLPCloudEmbeddings",
"GPT4AllEmbeddings",
"XinferenceEmbeddings",
"LocalAIEmbeddings",
"AwaEmbeddings",
"HuggingFaceBgeEmbeddings",
"ErnieEmbeddings",
"JavelinAIGatewayEmbeddings",
"OllamaEmbeddings",
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"BookendEmbeddings",
]
# TODO: this is in here to maintain backwards compatibility
class HypotheticalDocumentEmbedder:
def __init__(self, *args: Any, **kwargs: Any):
logger.warning(
"Using a deprecated class. Please use "
"`from langchain.chains import HypotheticalDocumentEmbedder` instead"
)
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder as H
return H(*args, **kwargs) # type: ignore
@classmethod
def from_llm(cls, *args: Any, **kwargs: Any) -> Any:
logger.warning(
"Using a deprecated class. Please use "
"`from langchain.chains import HypotheticalDocumentEmbedder` instead"
)
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder as H
return H.from_llm(*args, **kwargs)

View File

@@ -1,343 +0,0 @@
from typing import Any, Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_BGE_MODEL = "BAAI/bge-large-en"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_EN = (
"Represent this question for searching relevant passages: "
)
DEFAULT_QUERY_BGE_INSTRUCTION_ZH = "为这个句子生成表示以用于检索相关文章:"
class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""HuggingFace sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
multi_process: bool = False
"""Run encode() on multiple GPUs."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
import sentence_transformers
texts = list(map(lambda x: x.replace("\n", " "), texts))
if self.multi_process:
pool = self.client.start_multi_process_pool()
embeddings = self.client.encode_multi_process(texts, pool)
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
else:
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]
class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers``
and ``InstructorEmbedding`` python packages installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
from InstructorEmbedding import INSTRUCTOR
self.client = INSTRUCTOR(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
except ImportError as e:
raise ImportError("Dependencies for InstructorEmbedding not found.") from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [[self.embed_instruction, text] for text in texts]
embeddings = self.client.encode(instruction_pairs, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client.encode([instruction_pair], **self.encode_kwargs)[0]
return embedding.tolist()
class HuggingFaceBgeEmbeddings(BaseModel, Embeddings):
"""HuggingFace BGE sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_BGE_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the model."""
query_instruction: str = DEFAULT_QUERY_BGE_INSTRUCTION_EN
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence_transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
if "-zh" in self.model_name:
self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = [t.replace("\n", " ") for t in texts]
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.client.encode(
self.query_instruction + text, **self.encode_kwargs
)
return embedding.tolist()
class HuggingFaceInferenceAPIEmbeddings(BaseModel, Embeddings):
"""Embed texts using the HuggingFace API.
Requires a HuggingFace Inference API key and a model name.
"""
api_key: str
"""Your API key for the HuggingFace Inference API."""
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
"""The name of the model to use for text embeddings."""
api_url: Optional[str] = None
"""Custom inference endpoint url. None for using default public url."""
@property
def _api_url(self) -> str:
return self.api_url or self._default_api_url
@property
def _default_api_url(self) -> str:
return (
"https://api-inference.huggingface.co"
"/pipeline"
"/feature-extraction"
f"/{self.model_name}"
)
@property
def _headers(self) -> dict:
return {"Authorization": f"Bearer {self.api_key}"}
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Get the embeddings for a list of texts.
Args:
texts (Documents): A list of texts to get embeddings for.
Returns:
Embedded texts as List[List[float]], where each inner List[float]
corresponds to a single input text.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key="your_api_key",
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
texts = ["Hello, world!", "How are you?"]
hf_embeddings.embed_documents(texts)
""" # noqa: E501
response = requests.post(
self._api_url,
headers=self._headers,
json={
"inputs": texts,
"options": {"wait_for_model": True, "use_cache": True},
},
)
return response.json()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -1,92 +0,0 @@
import os
import sys
from typing import Any, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra
class JohnSnowLabsEmbeddings(BaseModel, Embeddings):
"""JohnSnowLabs embedding models
To use, you should have the ``johnsnowlabs`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings
embedding = JohnSnowLabsEmbeddings(model='embed_sentence.bert')
output = embedding.embed_query("foo bar")
""" # noqa: E501
model: Any = "embed_sentence.bert"
def __init__(
self,
model: Any = "embed_sentence.bert",
hardware_target: str = "cpu",
**kwargs: Any,
):
"""Initialize the johnsnowlabs model."""
super().__init__(**kwargs)
# 1) Check imports
try:
from johnsnowlabs import nlp
from nlu.pipe.pipeline import NLUPipeline
except ImportError as exc:
raise ImportError(
"Could not import johnsnowlabs python package. "
"Please install it with `pip install johnsnowlabs`."
) from exc
# 2) Start a Spark Session
try:
os.environ["PYSPARK_PYTHON"] = sys.executable
os.environ["PYSPARK_DRIVER_PYTHON"] = sys.executable
nlp.start(hardware_target=hardware_target)
except Exception as exc:
raise Exception("Failure starting Spark Session") from exc
# 3) Load the model
try:
if isinstance(model, str):
self.model = nlp.load(model)
elif isinstance(model, NLUPipeline):
self.model = model
else:
self.model = nlp.to_nlu_pipe(model)
except Exception as exc:
raise Exception("Failure loading model") from exc
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a JohnSnowLabs transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
df = self.model.predict(texts, output_level="document")
emb_col = None
for c in df.columns:
if "embedding" in c:
emb_col = c
return [vec.tolist() for vec in df[emb_col].tolist()]
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a JohnSnowLabs transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -1,168 +0,0 @@
import importlib
import logging
from typing import Any, Callable, List, Optional
from langchain_community.embeddings.self_hosted import SelfHostedEmbeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
logger = logging.getLogger(__name__)
def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return client.encode(*args, **kwargs)
def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any:
"""Load the embedding model."""
if not instruct:
import sentence_transformers
client = sentence_transformers.SentenceTransformer(model_id)
else:
from InstructorEmbedding import INSTRUCTOR
client = INSTRUCTOR(model_id)
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
client = client.to(device)
return client
class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
"""HuggingFace embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import SelfHostedHuggingFaceEmbeddings
import runhouse as rh
model_name = "sentence-transformers/all-mpnet-base-v2"
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu)
"""
client: Any #: :meta private:
model_id: str = DEFAULT_MODEL_NAME
"""Model name to use."""
model_reqs: List[str] = ["./", "sentence_transformers", "torch"]
"""Requirements to install on hardware to inference the model."""
hardware: Any
"""Remote hardware to send the inference function to."""
model_load_fn: Callable = load_embedding_model
"""Function to load the model remotely on the server."""
load_fn_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model load function."""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings):
"""HuggingFace InstructEmbedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import SelfHostedHuggingFaceInstructEmbeddings
import runhouse as rh
model_name = "hkunlp/instructor-large"
gpu = rh.cluster(name='rh-a10x', instance_type='A100:1')
hf = SelfHostedHuggingFaceInstructEmbeddings(
model_name=model_name, hardware=gpu)
""" # noqa: E501
model_id: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"]
"""Requirements to install on hardware to inference the model."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get(
"model_id", DEFAULT_INSTRUCT_MODEL
)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = []
for text in texts:
instruction_pairs.append([self.embed_instruction, text])
embeddings = self.client(self.pipeline_ref, instruction_pairs)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client(self.pipeline_ref, [instruction_pair])[0]
return embedding.tolist()

View File

@@ -1,351 +0,0 @@
import re
import warnings
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.prompt_values import PromptValue
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
check_package_version,
get_from_dict_or_env,
get_pydantic_field_names,
)
from langchain_core.utils.utils import build_extra_kwargs, convert_to_secret_str
class _AnthropicCommon(BaseLanguageModel):
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = Field(default="claude-2", alias="model_name")
"""Model name to use."""
max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
default_request_timeout: Optional[float] = None
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
anthropic_api_url: Optional[str] = None
anthropic_api_key: Optional[SecretStr] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@root_validator(pre=True)
def build_extra(cls, values: Dict) -> Dict:
extra = values.get("model_kwargs", {})
all_required_field_names = get_pydantic_field_names(cls)
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anthropic_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY")
)
# Get custom api url from environment.
values["anthropic_api_url"] = get_from_dict_or_env(
values,
"anthropic_api_url",
"ANTHROPIC_API_URL",
default="https://api.anthropic.com",
)
try:
import anthropic
check_package_version("anthropic", gte_version="0.3")
values["client"] = anthropic.Anthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["async_client"] = anthropic.AsyncAnthropic(
base_url=values["anthropic_api_url"],
api_key=values["anthropic_api_key"].get_secret_value(),
timeout=values["default_request_timeout"],
)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
values["count_tokens"] = values["client"].count_tokens
except ImportError:
raise ImportError(
"Could not import anthropic python package. "
"Please it install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API."""
d = {
"max_tokens_to_sample": self.max_tokens_to_sample,
"model": self.model,
}
if self.temperature is not None:
d["temperature"] = self.temperature
if self.top_k is not None:
d["top_k"] = self.top_k
if self.top_p is not None:
d["top_p"] = self.top_p
return {**d, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{}, **self._default_params}
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT])
return stop
class Anthropic(LLM, _AnthropicCommon):
"""Anthropic large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain_community.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
arbitrary_types_allowed = True
@root_validator()
def raise_warning(cls, values: Dict) -> Dict:
"""Raise warning that this class is deprecated."""
warnings.warn(
"This Anthropic LLM is deprecated. "
"Please use `from langchain_community.chat_models import ChatAnthropic` "
"instead"
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "anthropic-llm"
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
if self.streaming:
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def convert_prompt(self, prompt: PromptValue) -> str:
return self._wrap_prompt(prompt.to_string())
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
if self.streaming:
completion = ""
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
for token in self.client.completions.create(
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
async for token in await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
):
chunk = GenerationChunk(text=token.completion)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text)

View File

@@ -1,126 +0,0 @@
import json
import logging
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
logger = logging.getLogger(__name__)
class CloudflareWorkersAI(LLM):
"""Langchain LLM class to help to access Cloudflare Workers AI service.
To use, you must provide an API token and
account ID to access Cloudflare Workers AI, and
pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI
my_account_id = "my_account_id"
my_api_token = "my_secret_api_token"
llm_model = "@cf/meta/llama-2-7b-chat-int8"
cf_ai = CloudflareWorkersAI(
account_id=my_account_id,
api_token=my_api_token,
model=llm_model
)
""" # noqa: E501
account_id: str
api_token: str
model: str = "@cf/meta/llama-2-7b-chat-int8"
base_url: str = "https://api.cloudflare.com/client/v4/accounts"
streaming: bool = False
endpoint_url: str = ""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the Cloudflare Workers AI class."""
super().__init__(**kwargs)
self.endpoint_url = f"{self.base_url}/{self.account_id}/ai/run/{self.model}"
@property
def _llm_type(self) -> str:
"""Return type of LLM."""
return "cloudflare"
@property
def _default_params(self) -> Dict[str, Any]:
"""Default parameters"""
return {}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Identifying parameters"""
return {
"account_id": self.account_id,
"api_token": self.api_token,
"model": self.model,
"base_url": self.base_url,
}
def _call_api(self, prompt: str, params: Dict[str, Any]) -> requests.Response:
"""Call Cloudflare Workers API"""
headers = {"Authorization": f"Bearer {self.api_token}"}
data = {"prompt": prompt, "stream": self.streaming, **params}
response = requests.post(self.endpoint_url, headers=headers, json=data)
return response
def _process_response(self, response: requests.Response) -> str:
"""Process API response"""
if response.ok:
data = response.json()
return data["result"]["response"]
else:
raise ValueError(f"Request failed with status {response.status_code}")
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Streaming prediction"""
original_steaming: bool = self.streaming
self.streaming = True
_response_prefix_count = len("data: ")
_response_stream_end = b"data: [DONE]"
for chunk in self._call_api(prompt, kwargs).iter_lines():
if chunk == _response_stream_end:
break
if len(chunk) > _response_prefix_count:
try:
data = json.loads(chunk[_response_prefix_count:])
except Exception as e:
logger.debug(chunk)
raise e
if data is not None and "response" in data:
yield GenerationChunk(text=data["response"])
if run_manager:
run_manager.on_llm_new_token(data["response"])
logger.debug("stream end")
self.streaming = original_steaming
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Regular prediction"""
if self.streaming:
return "".join(
[c.text for c in self._stream(prompt, stop, run_manager, **kwargs)]
)
else:
response = self._call_api(prompt, kwargs)
return self._process_response(response)

View File

@@ -1,106 +0,0 @@
"""**Retriever** class returns Documents given a text **query**.
It is more general than a vector store. A retriever does not need to be able to
store documents, only to return (or retrieve) it. Vector stores can be used as
the backbone of a retriever, but there are other types of retrievers as well.
**Class hierarchy:**
.. code-block::
BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever
**Main helpers:**
.. code-block::
Document, Serializable, Callbacks,
CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun
"""
from langchain_community.retrievers.arcee import ArceeRetriever
from langchain_community.retrievers.arxiv import ArxivRetriever
from langchain_community.retrievers.azure_cognitive_search import (
AzureCognitiveSearchRetriever,
)
from langchain_community.retrievers.bedrock import AmazonKnowledgeBasesRetriever
from langchain_community.retrievers.bm25 import BM25Retriever
from langchain_community.retrievers.chaindesk import ChaindeskRetriever
from langchain_community.retrievers.chatgpt_plugin_retriever import (
ChatGPTPluginRetriever,
)
from langchain_community.retrievers.cohere_rag_retriever import CohereRagRetriever
from langchain_community.retrievers.docarray import DocArrayRetriever
from langchain_community.retrievers.elastic_search_bm25 import (
ElasticSearchBM25Retriever,
)
from langchain_community.retrievers.embedchain import EmbedchainRetriever
from langchain_community.retrievers.google_cloud_documentai_warehouse import (
GoogleDocumentAIWarehouseRetriever,
)
from langchain_community.retrievers.google_vertex_ai_search import (
GoogleCloudEnterpriseSearchRetriever,
GoogleVertexAIMultiTurnSearchRetriever,
GoogleVertexAISearchRetriever,
)
from langchain_community.retrievers.kay import KayAiRetriever
from langchain_community.retrievers.kendra import AmazonKendraRetriever
from langchain_community.retrievers.knn import KNNRetriever
from langchain_community.retrievers.llama_index import (
LlamaIndexGraphRetriever,
LlamaIndexRetriever,
)
from langchain_community.retrievers.metal import MetalRetriever
from langchain_community.retrievers.milvus import MilvusRetriever
from langchain_community.retrievers.outline import OutlineRetriever
from langchain_community.retrievers.pinecone_hybrid_search import (
PineconeHybridSearchRetriever,
)
from langchain_community.retrievers.pubmed import PubMedRetriever
from langchain_community.retrievers.remote_retriever import RemoteLangChainRetriever
from langchain_community.retrievers.svm import SVMRetriever
from langchain_community.retrievers.tavily_search_api import TavilySearchAPIRetriever
from langchain_community.retrievers.tfidf import TFIDFRetriever
from langchain_community.retrievers.weaviate_hybrid_search import (
WeaviateHybridSearchRetriever,
)
from langchain_community.retrievers.wikipedia import WikipediaRetriever
from langchain_community.retrievers.zep import ZepRetriever
from langchain_community.retrievers.zilliz import ZillizRetriever
__all__ = [
"AmazonKendraRetriever",
"AmazonKnowledgeBasesRetriever",
"ArceeRetriever",
"ArxivRetriever",
"AzureCognitiveSearchRetriever",
"ChatGPTPluginRetriever",
"ChaindeskRetriever",
"CohereRagRetriever",
"ElasticSearchBM25Retriever",
"EmbedchainRetriever",
"GoogleDocumentAIWarehouseRetriever",
"GoogleCloudEnterpriseSearchRetriever",
"GoogleVertexAIMultiTurnSearchRetriever",
"GoogleVertexAISearchRetriever",
"KayAiRetriever",
"KNNRetriever",
"LlamaIndexGraphRetriever",
"LlamaIndexRetriever",
"MetalRetriever",
"MilvusRetriever",
"OutlineRetriever",
"PineconeHybridSearchRetriever",
"PubMedRetriever",
"RemoteLangChainRetriever",
"SVMRetriever",
"TavilySearchAPIRetriever",
"TFIDFRetriever",
"BM25Retriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
"WikipediaRetriever",
"ZepRetriever",
"ZillizRetriever",
"DocArrayRetriever",
]

View File

@@ -1,19 +0,0 @@
"""Implementations of key-value stores and storage helpers.
Module provides implementations of various key-value stores that conform
to a simple key-value interface.
The primary goal of these storages is to support implementation of caching.
"""
from langchain_community.storage.redis import RedisStore
from langchain_community.storage.upstash_redis import (
UpstashRedisByteStore,
UpstashRedisStore,
)
__all__ = [
"RedisStore",
"UpstashRedisByteStore",
"UpstashRedisStore",
]

View File

@@ -1,50 +0,0 @@
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_community.chat_models import ChatOpenAI
from langchain_community.tools.amadeus.base import AmadeusBaseTool
class ClosestAirportSchema(BaseModel):
"""Schema for the AmadeusClosestAirport tool."""
location: str = Field(
description=(
" The location for which you would like to find the nearest airport "
" along with optional details such as country, state, region, or "
" province, allowing for easy processing and identification of "
" the closest airport. Examples of the format are the following:\n"
" Cali, Colombia\n "
" Lincoln, Nebraska, United States\n"
" New York, United States\n"
" Sydney, New South Wales, Australia\n"
" Rome, Lazio, Italy\n"
" Toronto, Ontario, Canada\n"
)
)
class AmadeusClosestAirport(AmadeusBaseTool):
"""Tool for finding the closest airport to a particular location."""
name: str = "closest_airport"
description: str = (
"Use this tool to find the closest airport to a particular location."
)
args_schema: Type[ClosestAirportSchema] = ClosestAirportSchema
def _run(
self,
location: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
content = (
f" What is the nearest airport to {location}? Please respond with the "
" airport's International Air Transport Association (IATA) Location "
' Identifier in the following JSON format. JSON: "iataCode": "IATA '
' Location Identifier" '
)
return ChatOpenAI(temperature=0).predict(content)

View File

@@ -1,42 +0,0 @@
"""
This tool allows agents to interact with the clickup library
and operate on a Clickup instance.
To use this tool, you must first set as environment variables:
client_secret
client_id
code
Below is a sample script that uses the Clickup tool:
```python
from langchain_community.agent_toolkits.clickup.toolkit import ClickupToolkit
from langchain_community.utilities.clickup import ClickupAPIWrapper
clickup = ClickupAPIWrapper()
toolkit = ClickupToolkit.from_clickup_api_wrapper(clickup)
```
"""
from typing import Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool
from langchain_community.utilities.clickup import ClickupAPIWrapper
class ClickupAction(BaseTool):
"""Tool that queries the Clickup API."""
api_wrapper: ClickupAPIWrapper = Field(default_factory=ClickupAPIWrapper)
mode: str
name: str = ""
description: str = ""
def _run(
self,
instructions: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Clickup API to run an operation."""
return self.api_wrapper.run(self.mode, instructions)

View File

@@ -1,44 +0,0 @@
"""
This tool allows agents to interact with the atlassian-python-api library
and operate on a Jira instance. For more information on the
atlassian-python-api library, see https://atlassian-python-api.readthedocs.io/jira.html
To use this tool, you must first set as environment variables:
JIRA_API_TOKEN
JIRA_USERNAME
JIRA_INSTANCE_URL
Below is a sample script that uses the Jira tool:
```python
from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit
from langchain_community.utilities.jira import JiraAPIWrapper
jira = JiraAPIWrapper()
toolkit = JiraToolkit.from_jira_api_wrapper(jira)
```
"""
from typing import Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.pydantic_v1 import Field
from langchain_core.tools import BaseTool
from langchain_community.utilities.jira import JiraAPIWrapper
class JiraAction(BaseTool):
"""Tool that queries the Atlassian Jira API."""
api_wrapper: JiraAPIWrapper = Field(default_factory=JiraAPIWrapper)
mode: str
name: str = ""
description: str = ""
def _run(
self,
instructions: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Atlassian Jira API to run an operation."""
return self.api_wrapper.run(self.mode, instructions)

View File

@@ -1,276 +0,0 @@
"""Tools for interacting with a Power BI dataset."""
import logging
from time import perf_counter
from typing import Any, Dict, Optional, Tuple
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import Field, validator
from langchain_core.tools import BaseTool
from langchain_community.chat_models.openai import _import_tiktoken
from langchain_community.tools.powerbi.prompt import (
BAD_REQUEST_RESPONSE,
DEFAULT_FEWSHOT_EXAMPLES,
RETRY_RESPONSE,
)
from langchain_community.utilities.powerbi import PowerBIDataset, json_to_md
logger = logging.getLogger(__name__)
class QueryPowerBITool(BaseTool):
"""Tool for querying a Power BI Dataset."""
name: str = "query_powerbi"
description: str = """
Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification.
Example Input: "How many rows are in table1?"
""" # noqa: E501
llm_chain: Any
powerbi: PowerBIDataset = Field(exclude=True)
examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES
session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True)
max_iterations: int = 5
output_token_limit: int = 4000
tiktoken_model_name: Optional[str] = None # "cl100k_base"
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@validator("llm_chain")
def validate_llm_chain_input_variables( # pylint: disable=E0213
cls, llm_chain: Any
) -> Any:
"""Make sure the LLM chain has the correct input variables."""
for var in llm_chain.prompt.input_variables:
if var not in ["tool_input", "tables", "schemas", "examples"]:
raise ValueError(
"LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: C0301 E501 # pylint: disable=C0301
llm_chain.prompt.input_variables,
)
return llm_chain
def _check_cache(self, tool_input: str) -> Optional[str]:
"""Check if the input is present in the cache.
If the value is a bad request, overwrite with the escalated version,
if not present return None."""
if tool_input not in self.session_cache:
return None
return self.session_cache[tool_input]
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = self.llm_chain.predict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
callbacks=run_manager.get_child() if run_manager else None,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query:\n%s", query)
start_time = perf_counter()
pbi_result = self.powerbi.run(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and "TokenExpired" in error:
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try reauthenticate."
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return self._run(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return f"{cache}, from cache, you have already asked this question."
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = await self.llm_chain.apredict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
callbacks=run_manager.get_child() if run_manager else None,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query: %s", query)
start_time = perf_counter()
pbi_result = await self.powerbi.arun(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and ("TokenExpired" in error or "TokenError" in error):
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try to reauthenticate or check the scope of the credential." # noqa: E501
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return await self._arun(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
def _parse_output(
self, pbi_result: Dict[str, Any]
) -> Tuple[Optional[str], Optional[Any]]:
"""Parse the output of the query to a markdown table."""
if "results" in pbi_result:
rows = pbi_result["results"][0]["tables"][0]["rows"]
if len(rows) == 0:
logger.info("0 records in result, query was valid.")
return (
None,
"0 rows returned, this might be correct, but please validate if all filter values were correct?", # noqa: E501
)
result = json_to_md(rows)
too_long, length = self._result_too_large(result)
if too_long:
return (
f"Result too large, please try to be more specific or use the `TOPN` function. The result is {length} tokens long, the limit is {self.output_token_limit} tokens.", # noqa: E501
None,
)
return result, None
if "error" in pbi_result:
if (
"pbi.error" in pbi_result["error"]
and "details" in pbi_result["error"]["pbi.error"]
):
return None, pbi_result["error"]["pbi.error"]["details"][0]["detail"]
return None, pbi_result["error"]
return None, pbi_result
def _result_too_large(self, result: str) -> Tuple[bool, int]:
"""Tokenize the output of the query."""
if self.tiktoken_model_name:
tiktoken_ = _import_tiktoken()
encoding = tiktoken_.encoding_for_model(self.tiktoken_model_name)
length = len(encoding.encode(result))
logger.info("Result length: %s", length)
return length > self.output_token_limit, length
return False, 0
class InfoPowerBITool(BaseTool):
"""Tool for getting metadata about a PowerBI Dataset."""
name: str = "schema_powerbi"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_powerbi first!
Example Input: "table1, table2, table3"
""" # noqa: E501
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.powerbi.get_table_info(tool_input.split(", "))
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.powerbi.aget_table_info(tool_input.split(", "))
class ListPowerBITool(BaseTool):
"""Tool for getting tables names."""
name: str = "list_tables_powerbi"
description: str = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())
async def _arun(
self,
tool_input: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())

View File

@@ -1,130 +0,0 @@
# flake8: noqa
"""Tools for interacting with Spark SQL."""
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.language_models import BaseLanguageModel
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.prompts import PromptTemplate
from langchain_community.utilities.spark_sql import SparkSQL
from langchain_core.tools import BaseTool
from langchain_community.tools.spark_sql.prompt import QUERY_CHECKER
class BaseSparkSQLTool(BaseModel):
"""Base tool for interacting with Spark SQL."""
db: SparkSQL = Field(exclude=True)
class Config(BaseTool.Config):
pass
class QuerySparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for querying a Spark SQL."""
name: str = "query_sql_db"
description: str = """
Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
class InfoSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting metadata about a Spark SQL."""
name: str = "schema_sql_db"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_sql_db first!
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(table_names.split(", "))
class ListSparkSQLTool(BaseSparkSQLTool, BaseTool):
"""Tool for getting tables names."""
name: str = "list_tables_sql_db"
description: str = "Input is an empty string, output is a comma separated list of tables in the Spark SQL."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
class QueryCheckerTool(BaseSparkSQLTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: Any = Field(init=False)
name: str = "query_checker_sql_db"
description: str = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with query_sql_db!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
from langchain.chains.llm import LLMChain
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["query"]
),
)
if values["llm_chain"].prompt.input_variables != ["query"]:
raise ValueError(
"LLM chain for QueryCheckerTool need to use ['query'] as input_variables "
"for the embedded prompt"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(
query=query, callbacks=run_manager.get_child() if run_manager else None
)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(
query=query, callbacks=run_manager.get_child() if run_manager else None
)

View File

@@ -1,134 +0,0 @@
# flake8: noqa
"""Tools for interacting with a SQL database."""
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
from langchain_core.language_models import BaseLanguageModel
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.prompts import PromptTemplate
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_core.tools import BaseTool
from langchain_community.tools.sql_database.prompt import QUERY_CHECKER
class BaseSQLDatabaseTool(BaseModel):
"""Base tool for interacting with a SQL database."""
db: SQLDatabase = Field(exclude=True)
class Config(BaseTool.Config):
pass
class QuerySQLDataBaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for querying a SQL database."""
name: str = "sql_db_query"
description: str = """
Input to this tool is a detailed and correct SQL query, output is a result from the database.
If the query is not correct, an error message will be returned.
If an error is returned, rewrite the query, check the query, and try again.
"""
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Execute the query, return the results or an error message."""
return self.db.run_no_throw(query)
class InfoSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting metadata about a SQL database."""
name: str = "sql_db_schema"
description: str = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Example Input: "table1, table2, table3"
"""
def _run(
self,
table_names: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.db.get_table_info_no_throw(
[t.strip() for t in table_names.split(",")]
)
class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool):
"""Tool for getting tables names."""
name: str = "sql_db_list_tables"
description: str = "Input is an empty string, output is a comma separated list of tables in the database."
def _run(
self,
tool_input: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for a specific table."""
return ", ".join(self.db.get_usable_table_names())
class QuerySQLCheckerTool(BaseSQLDatabaseTool, BaseTool):
"""Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/"""
template: str = QUERY_CHECKER
llm: BaseLanguageModel
llm_chain: Any = Field(init=False)
name: str = "sql_db_query_checker"
description: str = """
Use this tool to double check if your query is correct before executing it.
Always use this tool before executing a query with sql_db_query!
"""
@root_validator(pre=True)
def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "llm_chain" not in values:
from langchain.chains.llm import LLMChain
values["llm_chain"] = LLMChain(
llm=values.get("llm"),
prompt=PromptTemplate(
template=QUERY_CHECKER, input_variables=["dialect", "query"]
),
)
if values["llm_chain"].prompt.input_variables != ["dialect", "query"]:
raise ValueError(
"LLM chain for QueryCheckerTool must have input variables ['query', 'dialect']"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(
query=query,
dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None,
)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.llm_chain.apredict(
query=query,
dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None,
)

View File

@@ -1,215 +0,0 @@
"""[DEPRECATED]
## Zapier Natural Language Actions API
\
Full docs here: https://nla.zapier.com/start/
**Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions
on Zapier's platform through a natural language API interface.
NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets,
Microsoft Teams, and thousands more apps: https://zapier.com/apps
Zapier NLA handles ALL the underlying API auth and translation from
natural language --> underlying API call --> return simplified output for LLMs
The key idea is you, or your users, expose a set of actions via an oauth-like setup
window, which you can then query and execute via a REST API.
NLA offers both API Key and OAuth for signing NLA API requests.
1. Server-side (API Key): for quickly getting started, testing, and production scenarios
where LangChain will only use actions exposed in the developer's Zapier account
(and will use the developer's connected accounts on Zapier.com)
2. User-facing (Oauth): for production scenarios where you are deploying an end-user
facing application and LangChain needs access to end-user's exposed actions and
connected accounts on Zapier.com
This quick start will focus on the server-side use case for brevity.
Review [full docs](https://nla.zapier.com/start/) for user-facing oauth developer
support.
Typically, you'd use SequentialChain, here's a basic example:
1. Use NLA to find an email in Gmail
2. Use LLMChain to generate a draft reply to (1)
3. Use NLA to send the draft reply (2) to someone in Slack via direct message
In code, below:
```python
import os
# get from https://platform.openai.com/
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "")
# get from https://nla.zapier.com/docs/authentication/
os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "")
from langchain_community.agent_toolkits import ZapierToolkit
from langchain_community.utilities.zapier import ZapierNLAWrapper
## step 0. expose gmail 'find email' and slack 'send channel message' actions
# first go here, log in, expose (enable) the two actions:
# https://nla.zapier.com/demo/start
# -- for this example, can leave all fields "Have AI guess"
# in an oauth scenario, you'd get your own <provider> id (instead of 'demo')
# which you route your users through first
zapier = ZapierNLAWrapper()
## To leverage OAuth you may pass the value `nla_oauth_access_token` to
## the ZapierNLAWrapper. If you do this there is no need to initialize
## the ZAPIER_NLA_API_KEY env variable
# zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE")
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)
```
"""
from typing import Any, Dict, Optional
from langchain_core._api import warn_deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.tools import BaseTool
from langchain_community.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT
from langchain_community.utilities.zapier import ZapierNLAWrapper
class ZapierNLARunAction(BaseTool):
"""
Args:
action_id: a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions: a natural language instruction string for using the action
(eg. "get the latest email from Mike Knoop" for "Gmail: find email" action)
params: a dict, optional. Any params provided will *override* AI guesses
from `instructions` (see "understanding the AI guessing flow" here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
"""
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
action_id: str
params: Optional[dict] = None
base_prompt: str = BASE_ZAPIER_TOOL_PROMPT
zapier_description: str
params_schema: Dict[str, str] = Field(default_factory=dict)
name: str = ""
description: str = ""
@root_validator
def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]:
zapier_description = values["zapier_description"]
params_schema = values["params_schema"]
if "instructions" in params_schema:
del params_schema["instructions"]
# Ensure base prompt (if overridden) contains necessary input fields
necessary_fields = {"{zapier_description}", "{params}"}
if not all(field in values["base_prompt"] for field in necessary_fields):
raise ValueError(
"Your custom base Zapier prompt must contain input fields for "
"{zapier_description} and {params}."
)
values["name"] = zapier_description
values["description"] = values["base_prompt"].format(
zapier_description=zapier_description,
params=str(list(params_schema.keys())),
)
return values
def _run(
self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return self.api_wrapper.run_as_str(self.action_id, instructions, self.params)
async def _arun(
self,
instructions: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return await self.api_wrapper.arun_as_str(
self.action_id,
instructions,
self.params,
)
ZapierNLARunAction.__doc__ = (
ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore
)
# other useful actions
class ZapierNLAListActions(BaseTool):
"""
Args:
None
"""
name: str = "ZapierNLA_list_actions"
description: str = BASE_ZAPIER_TOOL_PROMPT + (
"This tool returns a list of the user's exposed actions."
)
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
def _run(
self,
_: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return self.api_wrapper.list_as_str()
async def _arun(
self,
_: str = "",
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
warn_deprecated(
since="0.0.319",
message=(
"This tool will be deprecated on 2023-11-17. See "
"https://nla.zapier.com/sunset/ for details"
),
)
return await self.api_wrapper.alist_as_str()
ZapierNLAListActions.__doc__ = (
ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore
)

View File

@@ -1,283 +0,0 @@
"""Integration tests for the langchain tracer module."""
import asyncio
import os
from aiohttp import ClientSession
from langchain_core.callbacks.manager import atrace_as_chain_group, trace_as_chain_group
from langchain_core.tracers.context import tracing_v2_enabled, tracing_enabled
from langchain_core.prompts import PromptTemplate
from langchain_community.chat_models import ChatOpenAI
from langchain_community.llms import OpenAI
questions = [
(
"Who won the US Open men's final in 2019? "
"What is his age raised to the 0.334 power?"
),
(
"Who is Olivia Wilde's boyfriend? "
"What is his current age raised to the 0.23 power?"
),
(
"Who won the most recent formula 1 grand prix? "
"What is their age raised to the 0.23 power?"
),
(
"Who won the US Open women's final in 2019? "
"What is her age raised to the 0.34 power?"
),
("Who is Beyonce's husband? " "What is his age raised to the 0.19 power?"),
]
def test_tracing_sequential() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
for q in questions[:3]:
llm = OpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(q)
def test_tracing_session_env_var() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
os.environ["LANGCHAIN_SESSION"] = "my_session"
llm = OpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(questions[0])
if "LANGCHAIN_SESSION" in os.environ:
del os.environ["LANGCHAIN_SESSION"]
async def test_tracing_concurrent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
async_tools = load_tools(["llm-math", "serpapi"], llm=llm, aiosession=aiosession)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
tasks = [agent.arun(q) for q in questions[:3]]
await asyncio.gather(*tasks)
await aiosession.close()
async def test_tracing_concurrent_bw_compat_environ() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_HANDLER"] = "langchain"
if "LANGCHAIN_TRACING" in os.environ:
del os.environ["LANGCHAIN_TRACING"]
aiosession = ClientSession()
llm = OpenAI(temperature=0)
async_tools = load_tools(["llm-math", "serpapi"], llm=llm, aiosession=aiosession)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
tasks = [agent.arun(q) for q in questions[:3]]
await asyncio.gather(*tasks)
await aiosession.close()
if "LANGCHAIN_HANDLER" in os.environ:
del os.environ["LANGCHAIN_HANDLER"]
def test_tracing_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_TRACING" in os.environ:
del os.environ["LANGCHAIN_TRACING"]
with tracing_enabled() as session:
assert session
agent.run(questions[0]) # this should be traced
agent.run(questions[0]) # this should not be traced
async def test_tracing_context_manager_async() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
async_tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_TRACING" in os.environ:
del os.environ["LANGCHAIN_TRACING"]
# start a background task
task = asyncio.create_task(agent.arun(questions[0])) # this should not be traced
with tracing_enabled() as session:
assert session
tasks = [agent.arun(q) for q in questions[1:4]] # these should be traced
await asyncio.gather(*tasks)
await task
async def test_tracing_v2_environment_variable() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
async_tools = load_tools(["llm-math", "serpapi"], llm=llm, aiosession=aiosession)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
tasks = [agent.arun(q) for q in questions[:3]]
await asyncio.gather(*tasks)
await aiosession.close()
def test_tracing_v2_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = ChatOpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_TRACING_V2" in os.environ:
del os.environ["LANGCHAIN_TRACING_V2"]
with tracing_v2_enabled():
agent.run(questions[0]) # this should be traced
agent.run(questions[0]) # this should not be traced
def test_tracing_v2_chain_with_tags() -> None:
from langchain.chains.llm import LLMChain
from langchain.chains.constitutional_ai.base import ConstitutionalChain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
llm = OpenAI(temperature=0)
chain = ConstitutionalChain.from_llm(
llm,
chain=LLMChain.from_string(llm, "Q: {question} A:"),
tags=["only-root"],
constitutional_principles=[
ConstitutionalPrinciple(
critique_request="Tell if this answer is good.",
revision_request="Give a better answer.",
)
],
)
if "LANGCHAIN_TRACING_V2" in os.environ:
del os.environ["LANGCHAIN_TRACING_V2"]
with tracing_v2_enabled():
chain.run("what is the meaning of life", tags=["a-tag"])
def test_tracing_v2_agent_with_metadata() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0)
chat = ChatOpenAI(temperature=0)
tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
chat_agent = initialize_agent(
tools, chat, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"})
chat_agent.run(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"})
async def test_tracing_v2_async_agent_with_metadata() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0, metadata={"f": "g", "h": "i"})
chat = ChatOpenAI(temperature=0, metadata={"f": "g", "h": "i"})
async_tools = load_tools(["llm-math", "serpapi"], llm=llm)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
chat_agent = initialize_agent(
async_tools,
chat,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
await agent.arun(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"})
await chat_agent.arun(questions[0], tags=["a-tag"], metadata={"a": "b", "c": "d"})
def test_trace_as_group() -> None:
from langchain.chains.llm import LLMChain
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
with trace_as_chain_group("my_group", inputs={"input": "cars"}) as group_manager:
chain.run(product="cars", callbacks=group_manager)
chain.run(product="computers", callbacks=group_manager)
final_res = chain.run(product="toys", callbacks=group_manager)
group_manager.on_chain_end({"output": final_res})
with trace_as_chain_group("my_group_2", inputs={"input": "toys"}) as group_manager:
final_res = chain.run(product="toys", callbacks=group_manager)
group_manager.on_chain_end({"output": final_res})
def test_trace_as_group_with_env_set() -> None:
from langchain.chains.llm import LLMChain
os.environ["LANGCHAIN_TRACING_V2"] = "true"
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
with trace_as_chain_group(
"my_group_env_set", inputs={"input": "cars"}
) as group_manager:
chain.run(product="cars", callbacks=group_manager)
chain.run(product="computers", callbacks=group_manager)
final_res = chain.run(product="toys", callbacks=group_manager)
group_manager.on_chain_end({"output": final_res})
with trace_as_chain_group(
"my_group_2_env_set", inputs={"input": "toys"}
) as group_manager:
final_res = chain.run(product="toys", callbacks=group_manager)
group_manager.on_chain_end({"output": final_res})
async def test_trace_as_group_async() -> None:
from langchain.chains.llm import LLMChain
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
async with atrace_as_chain_group("my_async_group") as group_manager:
await chain.arun(product="cars", callbacks=group_manager)
await chain.arun(product="computers", callbacks=group_manager)
await chain.arun(product="toys", callbacks=group_manager)
async with atrace_as_chain_group(
"my_async_group_2", inputs={"input": "toys"}
) as group_manager:
res = await asyncio.gather(
*[
chain.arun(product="toys", callbacks=group_manager),
chain.arun(product="computers", callbacks=group_manager),
chain.arun(product="cars", callbacks=group_manager),
]
)
await group_manager.on_chain_end({"output": res})

View File

@@ -1,68 +0,0 @@
"""Integration tests for the langchain tracer module."""
import asyncio
from langchain_community.callbacks import get_openai_callback
from langchain_community.llms import OpenAI
async def test_openai_callback() -> None:
llm = OpenAI(temperature=0)
with get_openai_callback() as cb:
llm("What is the square root of 4?")
total_tokens = cb.total_tokens
assert total_tokens > 0
with get_openai_callback() as cb:
llm("What is the square root of 4?")
llm("What is the square root of 4?")
assert cb.total_tokens == total_tokens * 2
with get_openai_callback() as cb:
await asyncio.gather(
*[llm.agenerate(["What is the square root of 4?"]) for _ in range(3)]
)
assert cb.total_tokens == total_tokens * 3
task = asyncio.create_task(llm.agenerate(["What is the square root of 4?"]))
with get_openai_callback() as cb:
await llm.agenerate(["What is the square root of 4?"])
await task
assert cb.total_tokens == total_tokens
def test_openai_callback_batch_llm() -> None:
llm = OpenAI(temperature=0)
with get_openai_callback() as cb:
llm.generate(["What is the square root of 4?", "What is the square root of 4?"])
assert cb.total_tokens > 0
total_tokens = cb.total_tokens
with get_openai_callback() as cb:
llm("What is the square root of 4?")
llm("What is the square root of 4?")
assert cb.total_tokens == total_tokens
def test_openai_callback_agent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
with get_openai_callback() as cb:
agent.run(
"Who is Olivia Wilde's boyfriend? "
"What is his current age raised to the 0.23 power?"
)
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")

View File

@@ -1,30 +0,0 @@
"""Integration tests for the StreamlitCallbackHandler module."""
import pytest
# Import the internal StreamlitCallbackHandler from its module - and not from
# the `langchain_community.callbacks.streamlit` package - so that we don't end up using
# Streamlit's externally-provided callback handler.
from langchain_community.callbacks.streamlit.streamlit_callback_handler import (
StreamlitCallbackHandler,
)
from langchain_community.llms import OpenAI
@pytest.mark.requires("streamlit")
def test_streamlit_callback_agent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
import streamlit as st
streamlit_callback = StreamlitCallbackHandler(st.container())
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(
"Who is Olivia Wilde's boyfriend? "
"What is his current age raised to the 0.23 power?",
callbacks=[streamlit_callback],
)

View File

@@ -1,118 +0,0 @@
"""Integration tests for the langchain tracer module."""
import asyncio
import os
from aiohttp import ClientSession
from langchain_community.callbacks import wandb_tracing_enabled
from langchain_community.llms import OpenAI
questions = [
(
"Who won the US Open men's final in 2019? "
"What is his age raised to the 0.334 power?"
),
(
"Who is Olivia Wilde's boyfriend? "
"What is his current age raised to the 0.23 power?"
),
(
"Who won the most recent formula 1 grand prix? "
"What is their age raised to the 0.23 power?"
),
(
"Who won the US Open women's final in 2019? "
"What is her age raised to the 0.34 power?"
),
("Who is Beyonce's husband? " "What is his age raised to the 0.19 power?"),
]
def test_tracing_sequential() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "langchain-tracing"
for q in questions[:3]:
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(q)
def test_tracing_session_env_var() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(questions[0])
async def test_tracing_concurrent() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
async_tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
aiosession=aiosession,
)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
tasks = [agent.arun(q) for q in questions[:3]]
await asyncio.gather(*tasks)
await aiosession.close()
def test_tracing_context_manager() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_WANDB_TRACING" in os.environ:
del os.environ["LANGCHAIN_WANDB_TRACING"]
with wandb_tracing_enabled():
agent.run(questions[0]) # this should be traced
agent.run(questions[0]) # this should not be traced
async def test_tracing_context_manager_async() -> None:
from langchain.agents import AgentType, initialize_agent, load_tools
llm = OpenAI(temperature=0)
async_tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_WANDB_TRACING" in os.environ:
del os.environ["LANGCHAIN_TRACING"]
# start a background task
task = asyncio.create_task(agent.arun(questions[0])) # this should not be traced
with wandb_tracing_enabled():
tasks = [agent.arun(q) for q in questions[1:4]] # these should be traced
await asyncio.gather(*tasks)
await task

View File

@@ -1,333 +0,0 @@
"""Test ChatOpenAI wrapper."""
from typing import Any, Optional
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
from langchain_core.outputs import (
ChatGeneration,
ChatResult,
LLMResult,
)
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_community.chat_models.openai import ChatOpenAI
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
@pytest.mark.scheduled
def test_chat_openai() -> None:
"""Test ChatOpenAI wrapper."""
chat = ChatOpenAI(
temperature=0.7,
base_url=None,
organization=None,
openai_proxy=None,
timeout=10.0,
max_retries=3,
http_client=None,
n=1,
max_tokens=10,
default_headers=None,
default_query=None,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_chat_openai_model() -> None:
"""Test ChatOpenAI wrapper handles model_name."""
chat = ChatOpenAI(model="foo")
assert chat.model_name == "foo"
chat = ChatOpenAI(model_name="bar")
assert chat.model_name == "bar"
def test_chat_openai_system_message() -> None:
"""Test ChatOpenAI wrapper with system message."""
chat = ChatOpenAI(max_tokens=10)
system_message = SystemMessage(content="You are to chat with the user.")
human_message = HumanMessage(content="Hello")
response = chat([system_message, human_message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
def test_chat_openai_generate() -> None:
"""Test ChatOpenAI wrapper with generate."""
chat = ChatOpenAI(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
def test_chat_openai_multiple_completions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
chat = ChatOpenAI(max_tokens=10, n=5)
message = HumanMessage(content="Hello")
response = chat._generate([message])
assert isinstance(response, ChatResult)
assert len(response.generations) == 5
for generation in response.generations:
assert isinstance(generation.message, BaseMessage)
assert isinstance(generation.message.content, str)
@pytest.mark.scheduled
def test_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
def test_chat_openai_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = ChatOpenAI(
max_tokens=2,
temperature=0,
callback_manager=callback_manager,
)
list(chat.stream("hi"))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert generation.generations[0][0].text == "Hello!"
def test_chat_openai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatOpenAI(max_tokens=10)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model_name
def test_chat_openai_streaming_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatOpenAI(max_tokens=10, streaming=True)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model_name
def test_chat_openai_invalid_streaming_params() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
with pytest.raises(ValueError):
ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
n=5,
)
@pytest.mark.scheduled
async def test_async_chat_openai() -> None:
"""Test async generation."""
chat = ChatOpenAI(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_bind_functions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
class Person(BaseModel):
"""Identifying information about a person."""
name: str = Field(..., title="Name", description="The person's name")
age: int = Field(..., title="Age", description="The person's age")
fav_food: Optional[str] = Field(
default=None, title="Fav Food", description="The person's favorite food"
)
chat = ChatOpenAI(
max_tokens=30,
n=1,
streaming=True,
).bind_functions(functions=[Person], function_call="Person")
prompt = ChatPromptTemplate.from_messages(
[
("system", "Use the provided Person function"),
("user", "{input}"),
]
)
chain = prompt | chat
message = HumanMessage(content="Sally is 13 years old")
response = await chain.abatch([{"input": message}])
assert isinstance(response, list)
assert len(response) == 1
for generation in response:
assert isinstance(generation, AIMessage)
def test_chat_openai_extra_kwargs() -> None:
"""Test extra kwargs to chat openai."""
# Check that foo is saved in extra_kwargs.
llm = ChatOpenAI(foo=3, max_tokens=10)
assert llm.max_tokens == 10
assert llm.model_kwargs == {"foo": 3}
# Test that if extra_kwargs are provided, they are added to it.
llm = ChatOpenAI(foo=3, model_kwargs={"bar": 2})
assert llm.model_kwargs == {"foo": 3, "bar": 2}
# Test that if provided twice it errors
with pytest.raises(ValueError):
ChatOpenAI(foo=3, model_kwargs={"foo": 2})
# Test that if explicit param is specified in kwargs it errors
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={"temperature": 0.2})
# Test that "model" cannot be specified in kwargs
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={"model": "text-davinci-003"})
@pytest.mark.scheduled
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=10)
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=10)
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch_tags() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
def test_openai_batch() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
@pytest.mark.scheduled
def test_openai_invoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)

View File

@@ -1,219 +0,0 @@
"""Test Baidu Qianfan Chat Endpoint."""
from typing import Any
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
HumanMessage,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
_FUNCTIONS: Any = [
{
"name": "format_person_info",
"description": (
"Output formatter. Should always be used to format your response to the"
" user."
),
"parameters": {
"title": "Person",
"description": "Identifying information about a person.",
"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "The person's name",
"type": "string",
},
"age": {
"title": "Age",
"description": "The person's age",
"type": "integer",
},
"fav_food": {
"title": "Fav Food",
"description": "The person's favorite food",
"type": "string",
},
},
"required": ["name", "age"],
},
},
{
"name": "get_current_temperature",
"description": ("Used to get the location's temperature."),
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "city name",
},
"unit": {
"type": "string",
"enum": ["centigrade", "Fahrenheit"],
},
},
"required": ["location", "unit"],
},
"responses": {
"type": "object",
"properties": {
"temperature": {
"type": "integer",
"description": "city temperature",
},
"unit": {
"type": "string",
"enum": ["centigrade", "Fahrenheit"],
},
},
},
},
]
def test_default_call() -> None:
"""Test default model(`ERNIE-Bot`) call."""
chat = QianfanChatEndpoint()
response = chat(messages=[HumanMessage(content="Hello")])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_model() -> None:
"""Test model kwarg works."""
chat = QianfanChatEndpoint(model="BLOOMZ-7B")
response = chat(messages=[HumanMessage(content="Hello")])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_model_param() -> None:
"""Test model params works."""
chat = QianfanChatEndpoint()
response = chat(model="BLOOMZ-7B", messages=[HumanMessage(content="Hello")])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_endpoint() -> None:
"""Test user custom model deployments like some open source models."""
chat = QianfanChatEndpoint(endpoint="qianfan_bloomz_7b_compressed")
response = chat(messages=[HumanMessage(content="Hello")])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_endpoint_param() -> None:
"""Test user custom model deployments like some open source models."""
chat = QianfanChatEndpoint()
response = chat(
messages=[
HumanMessage(endpoint="qianfan_bloomz_7b_compressed", content="Hello")
]
)
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_multiple_history() -> None:
"""Tests multiple history works."""
chat = QianfanChatEndpoint()
response = chat(
messages=[
HumanMessage(content="Hello."),
AIMessage(content="Hello!"),
HumanMessage(content="How are you doing?"),
]
)
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_stream() -> None:
"""Test that stream works."""
chat = QianfanChatEndpoint(streaming=True)
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
response = chat(
messages=[
HumanMessage(content="Hello."),
AIMessage(content="Hello!"),
HumanMessage(content="Who are you?"),
],
stream=True,
callbacks=callback_manager,
)
assert callback_handler.llm_streams > 0
assert isinstance(response.content, str)
def test_multiple_messages() -> None:
"""Tests multiple messages works."""
chat = QianfanChatEndpoint()
message = HumanMessage(content="Hi, how are you.")
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
def test_functions_call_thoughts() -> None:
chat = QianfanChatEndpoint(model="ERNIE-Bot")
prompt_tmpl = "Use the given functions to answer following question: {input}"
prompt_msgs = [
HumanMessagePromptTemplate.from_template(prompt_tmpl),
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
chain = prompt | chat.bind(functions=_FUNCTIONS)
message = HumanMessage(content="What's the temperature in Shanghai today?")
response = chain.batch([{"input": message}])
assert isinstance(response[0], AIMessage)
assert "function_call" in response[0].additional_kwargs
def test_functions_call() -> None:
chat = QianfanChatEndpoint(model="ERNIE-Bot")
prompt = ChatPromptTemplate(
messages=[
HumanMessage(content="What's the temperature in Shanghai today?"),
AIMessage(
content="",
additional_kwargs={
"function_call": {
"name": "get_current_temperature",
"thoughts": "i will use get_current_temperature "
"to resolve the questions",
"arguments": '{"location":"Shanghai","unit":"centigrade"}',
}
},
),
FunctionMessage(
name="get_current_weather",
content='{"temperature": "25", \
"unit": "摄氏度", "description": "晴朗"}',
),
]
)
chain = prompt | chat.bind(functions=_FUNCTIONS)
resp = chain.invoke({})
assert isinstance(resp, AIMessage)

View File

@@ -1,182 +0,0 @@
from pathlib import Path
import pytest
from langchain_community.document_loaders.concurrent import ConcurrentLoader
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import LanguageParser
def test_language_loader_for_python() -> None:
"""Test Python loader with parser enabled."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = GenericLoader.from_filesystem(
file_path, glob="hello_world.py", parser=LanguageParser(parser_threshold=5)
)
docs = loader.load()
assert len(docs) == 2
metadata = docs[0].metadata
assert metadata["source"] == str(file_path / "hello_world.py")
assert metadata["content_type"] == "functions_classes"
assert metadata["language"] == "python"
metadata = docs[1].metadata
assert metadata["source"] == str(file_path / "hello_world.py")
assert metadata["content_type"] == "simplified_code"
assert metadata["language"] == "python"
assert (
docs[0].page_content
== """def main():
print("Hello World!")
return 0"""
)
assert (
docs[1].page_content
== """#!/usr/bin/env python3
import sys
# Code for: def main():
if __name__ == "__main__":
sys.exit(main())"""
)
def test_language_loader_for_python_with_parser_threshold() -> None:
"""Test Python loader with parser enabled and below threshold."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = GenericLoader.from_filesystem(
file_path,
glob="hello_world.py",
parser=LanguageParser(language="python", parser_threshold=1000),
)
docs = loader.load()
assert len(docs) == 1
def esprima_installed() -> bool:
try:
import esprima # noqa: F401
return True
except Exception as e:
print(f"esprima not installed, skipping test {e}")
return False
@pytest.mark.skipif(not esprima_installed(), reason="requires esprima package")
def test_language_loader_for_javascript() -> None:
"""Test JavaScript loader with parser enabled."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = GenericLoader.from_filesystem(
file_path, glob="hello_world.js", parser=LanguageParser(parser_threshold=5)
)
docs = loader.load()
assert len(docs) == 3
metadata = docs[0].metadata
assert metadata["source"] == str(file_path / "hello_world.js")
assert metadata["content_type"] == "functions_classes"
assert metadata["language"] == "js"
metadata = docs[1].metadata
assert metadata["source"] == str(file_path / "hello_world.js")
assert metadata["content_type"] == "functions_classes"
assert metadata["language"] == "js"
metadata = docs[2].metadata
assert metadata["source"] == str(file_path / "hello_world.js")
assert metadata["content_type"] == "simplified_code"
assert metadata["language"] == "js"
assert (
docs[0].page_content
== """class HelloWorld {
sayHello() {
console.log("Hello World!");
}
}"""
)
assert (
docs[1].page_content
== """function main() {
const hello = new HelloWorld();
hello.sayHello();
}"""
)
assert (
docs[2].page_content
== """// Code for: class HelloWorld {
// Code for: function main() {
main();"""
)
def test_language_loader_for_javascript_with_parser_threshold() -> None:
"""Test JavaScript loader with parser enabled and below threshold."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = GenericLoader.from_filesystem(
file_path,
glob="hello_world.js",
parser=LanguageParser(language="js", parser_threshold=1000),
)
docs = loader.load()
assert len(docs) == 1
def test_concurrent_language_loader_for_javascript_with_parser_threshold() -> None:
"""Test JavaScript ConcurrentLoader with parser enabled and below threshold."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = ConcurrentLoader.from_filesystem(
file_path,
glob="hello_world.js",
parser=LanguageParser(language="js", parser_threshold=1000),
)
docs = loader.load()
assert len(docs) == 1
def test_concurrent_language_loader_for_python_with_parser_threshold() -> None:
"""Test Python ConcurrentLoader with parser enabled and below threshold."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = ConcurrentLoader.from_filesystem(
file_path,
glob="hello_world.py",
parser=LanguageParser(language="python", parser_threshold=1000),
)
docs = loader.load()
assert len(docs) == 1
@pytest.mark.skipif(not esprima_installed(), reason="requires esprima package")
def test_concurrent_language_loader_for_javascript() -> None:
"""Test JavaScript ConcurrentLoader with parser enabled."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = ConcurrentLoader.from_filesystem(
file_path, glob="hello_world.js", parser=LanguageParser(parser_threshold=5)
)
docs = loader.load()
assert len(docs) == 3
def test_concurrent_language_loader_for_python() -> None:
"""Test Python ConcurrentLoader with parser enabled."""
file_path = Path(__file__).parent.parent.parent / "examples"
loader = ConcurrentLoader.from_filesystem(
file_path, glob="hello_world.py", parser=LanguageParser(parser_threshold=5)
)
docs = loader.load()
assert len(docs) == 2

View File

@@ -1,136 +0,0 @@
"""Test Fireworks AI API Wrapper."""
from typing import Generator
import pytest
from langchain_core.outputs import LLMResult
from langchain_community.llms.fireworks import Fireworks
@pytest.fixture
def llm() -> Fireworks:
return Fireworks(model_kwargs={"temperature": 0, "max_tokens": 512})
@pytest.mark.scheduled
def test_fireworks_call(llm: Fireworks) -> None:
"""Test valid call to fireworks."""
output = llm("How is the weather in New York today?")
assert isinstance(output, str)
@pytest.mark.scheduled
def test_fireworks_model_param() -> None:
"""Tests model parameters for Fireworks"""
llm = Fireworks(model="foo")
assert llm.model == "foo"
@pytest.mark.scheduled
def test_fireworks_invoke(llm: Fireworks) -> None:
"""Tests completion with invoke"""
output = llm.invoke("How is the weather in New York today?", stop=[","])
assert isinstance(output, str)
assert output[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_ainvoke(llm: Fireworks) -> None:
"""Tests completion with invoke"""
output = await llm.ainvoke("How is the weather in New York today?", stop=[","])
assert isinstance(output, str)
assert output[-1] == ","
@pytest.mark.scheduled
def test_fireworks_batch(llm: Fireworks) -> None:
"""Tests completion with invoke"""
llm = Fireworks()
output = llm.batch(
[
"How is the weather in New York today?",
"How is the weather in New York today?",
],
stop=[","],
)
for token in output:
assert isinstance(token, str)
assert token[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_abatch(llm: Fireworks) -> None:
"""Tests completion with invoke"""
output = await llm.abatch(
[
"How is the weather in New York today?",
"How is the weather in New York today?",
],
stop=[","],
)
for token in output:
assert isinstance(token, str)
assert token[-1] == ","
@pytest.mark.scheduled
def test_fireworks_multiple_prompts(
llm: Fireworks,
) -> None:
"""Test completion with multiple prompts."""
output = llm.generate(["How is the weather in New York today?", "I'm pickle rick"])
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
assert len(output.generations) == 2
@pytest.mark.scheduled
def test_fireworks_streaming(llm: Fireworks) -> None:
"""Test stream completion."""
generator = llm.stream("Who's the best quarterback in the NFL?")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token, str)
@pytest.mark.scheduled
def test_fireworks_streaming_stop_words(llm: Fireworks) -> None:
"""Test stream completion with stop words."""
generator = llm.stream("Who's the best quarterback in the NFL?", stop=[","])
assert isinstance(generator, Generator)
last_token = ""
for token in generator:
last_token = token
assert isinstance(token, str)
assert last_token[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_streaming_async(llm: Fireworks) -> None:
"""Test stream completion."""
last_token = ""
async for token in llm.astream(
"Who's the best quarterback in the NFL?", stop=[","]
):
last_token = token
assert isinstance(token, str)
assert last_token[-1] == ","
@pytest.mark.scheduled
async def test_fireworks_async_agenerate(llm: Fireworks) -> None:
"""Test async."""
output = await llm.agenerate(["What is the best city to live in California?"])
assert isinstance(output, LLMResult)
@pytest.mark.scheduled
async def test_fireworks_multiple_prompts_async_agenerate(llm: Fireworks) -> None:
output = await llm.agenerate(
["How is the weather in New York today?", "I'm pickle rick"]
)
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
assert len(output.generations) == 2

View File

@@ -1,77 +0,0 @@
import langchain_community.utilities.opaqueprompts as op
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_community.llms import OpenAI
from langchain_community.llms.opaqueprompts import OpaquePrompts
prompt_template = """
As an AI assistant, you will answer questions according to given context.
Sensitive personal information in the question is masked for privacy.
For instance, if the original text says "Giana is good," it will be changed
to "PERSON_998 is good."
Here's how to handle these changes:
* Consider these masked phrases just as placeholders, but still refer to
them in a relevant way when answering.
* It's possible that different masked terms might mean the same thing.
Stick with the given term and don't modify it.
* All masked terms follow the "TYPE_ID" pattern.
* Please don't invent new masked terms. For instance, if you see "PERSON_998,"
don't come up with "PERSON_997" or "PERSON_999" unless they're already in the question.
Conversation History: ```{history}```
Context : ```During our recent meeting on February 23, 2023, at 10:30 AM,
John Doe provided me with his personal details. His email is johndoe@example.com
and his contact number is 650-456-7890. He lives in New York City, USA, and
belongs to the American nationality with Christian beliefs and a leaning towards
the Democratic party. He mentioned that he recently made a transaction using his
credit card 4111 1111 1111 1111 and transferred bitcoins to the wallet address
1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa. While discussing his European travels, he
noted down his IBAN as GB29 NWBK 6016 1331 9268 19. Additionally, he provided
his website as https://johndoeportfolio.com. John also discussed
some of his US-specific details. He said his bank account number is
1234567890123456 and his drivers license is Y12345678. His ITIN is 987-65-4321,
and he recently renewed his passport,
the number for which is 123456789. He emphasized not to share his SSN, which is
669-45-6789. Furthermore, he mentioned that he accesses his work files remotely
through the IP 192.168.1.1 and has a medical license number MED-123456. ```
Question: ```{question}```
"""
def test_opaqueprompts() -> None:
chain = PromptTemplate.from_template(prompt_template) | OpaquePrompts(llm=OpenAI())
output = chain.invoke(
{
"question": "Write a text message to remind John to do password reset \
for his website through his email to stay secure."
}
)
assert isinstance(output, str)
def test_opaqueprompts_functions() -> None:
prompt = (PromptTemplate.from_template(prompt_template),)
llm = OpenAI()
pg_chain = (
op.sanitize
| RunnableParallel(
secure_context=lambda x: x["secure_context"], # type: ignore
response=(lambda x: x["sanitized_input"]) # type: ignore
| prompt
| llm
| StrOutputParser(),
)
| (lambda x: op.desanitize(x["response"], x["secure_context"]))
)
pg_chain.invoke(
{
"question": "Write a text message to remind John to do password reset\
for his website through his email to stay secure.",
"history": "",
}
)

View File

@@ -1,42 +0,0 @@
"""Test Nebula API wrapper."""
from langchain_community.llms.symblai_nebula import Nebula
def test_symblai_nebula_call() -> None:
"""Test valid call to Nebula."""
conversation = """Sam: Good morning, team! Let's keep this standup concise.
We'll go in the usual order: what you did yesterday,
what you plan to do today, and any blockers. Alex, kick us off.
Alex: Morning! Yesterday, I wrapped up the UI for the user dashboard.
The new charts and widgets are now responsive.
I also had a sync with the design team to ensure the final touchups are in
line with the brand guidelines. Today, I'll start integrating the frontend with
the new API endpoints Rhea was working on.
The only blocker is waiting for some final API documentation,
but I guess Rhea can update on that.
Rhea: Hey, all! Yep, about the API documentation - I completed the majority of
the backend work for user data retrieval yesterday.
The endpoints are mostly set up, but I need to do a bit more testing today.
I'll finalize the API documentation by noon, so that should unblock Alex.
After that, Ill be working on optimizing the database queries
for faster data fetching. No other blockers on my end.
Sam: Great, thanks Rhea. Do reach out if you need any testing assistance
or if there are any hitches with the database.
Now, my update: Yesterday, I coordinated with the client to get clarity
on some feature requirements. Today, I'll be updating our project roadmap
and timelines based on their feedback. Additionally, I'll be sitting with
the QA team in the afternoon for preliminary testing.
Blocker: I might need both of you to be available for a quick call
in case the client wants to discuss the changes live.
Alex: Sounds good, Sam. Just let us know a little in advance for the call.
Rhea: Agreed. We can make time for that.
Sam: Perfect! Let's keep the momentum going. Reach out if there are any
sudden issues or support needed. Have a productive day!
Alex: You too.
Rhea: Thanks, bye!"""
llm = Nebula(nebula_api_key="<your_api_key>")
instruction = """Identify the main objectives mentioned in this
conversation."""
output = llm.invoke(f"{instruction}\n{conversation}")
assert isinstance(output, str)

View File

@@ -1,151 +0,0 @@
"""Test Vertex AI API wrapper.
In order to run this test, you need to install VertexAI SDK:
pip install google-cloud-aiplatform>=1.36.0
Your end-user credentials would be used to make the calls (make sure you've run
`gcloud auth login` first).
"""
import os
from typing import Optional
import pytest
from langchain_core.outputs import LLMResult
from langchain_community.llms import VertexAI, VertexAIModelGarden
def test_vertex_initialization() -> None:
llm = VertexAI()
assert llm._llm_type == "vertexai"
assert llm.model_name == llm.client._model_id
def test_vertex_call() -> None:
llm = VertexAI(temperature=0)
output = llm("Say foo:")
assert isinstance(output, str)
@pytest.mark.scheduled
def test_vertex_generate() -> None:
llm = VertexAI(temperature=0.3, n=2, model_name="text-bison@001")
output = llm.generate(["Say foo:"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 1
assert len(output.generations[0]) == 2
@pytest.mark.scheduled
def test_vertex_generate_code() -> None:
llm = VertexAI(temperature=0.3, n=2, model_name="code-bison@001")
output = llm.generate(["generate a python method that says foo:"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 1
assert len(output.generations[0]) == 2
@pytest.mark.scheduled
async def test_vertex_agenerate() -> None:
llm = VertexAI(temperature=0)
output = await llm.agenerate(["Please say foo:"])
assert isinstance(output, LLMResult)
@pytest.mark.scheduled
def test_vertex_stream() -> None:
llm = VertexAI(temperature=0)
outputs = list(llm.stream("Please say foo:"))
assert isinstance(outputs[0], str)
async def test_vertex_consistency() -> None:
llm = VertexAI(temperature=0)
output = llm.generate(["Please say foo:"])
streaming_output = llm.generate(["Please say foo:"], stream=True)
async_output = await llm.agenerate(["Please say foo:"])
assert output.generations[0][0].text == streaming_output.generations[0][0].text
assert output.generations[0][0].text == async_output.generations[0][0].text
@pytest.mark.parametrize(
"endpoint_os_variable_name,result_arg",
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
)
def test_model_garden(
endpoint_os_variable_name: str, result_arg: Optional[str]
) -> None:
"""In order to run this test, you should provide endpoint names.
Example:
export FALCON_ENDPOINT_ID=...
export LLAMA_ENDPOINT_ID=...
export PROJECT=...
"""
endpoint_id = os.environ[endpoint_os_variable_name]
project = os.environ["PROJECT"]
location = "europe-west4"
llm = VertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
result_arg=result_arg,
location=location,
)
output = llm("What is the meaning of life?")
assert isinstance(output, str)
assert llm._llm_type == "vertexai_model_garden"
@pytest.mark.parametrize(
"endpoint_os_variable_name,result_arg",
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
)
def test_model_garden_generate(
endpoint_os_variable_name: str, result_arg: Optional[str]
) -> None:
"""In order to run this test, you should provide endpoint names.
Example:
export FALCON_ENDPOINT_ID=...
export LLAMA_ENDPOINT_ID=...
export PROJECT=...
"""
endpoint_id = os.environ[endpoint_os_variable_name]
project = os.environ["PROJECT"]
location = "europe-west4"
llm = VertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
result_arg=result_arg,
location=location,
)
output = llm.generate(["What is the meaning of life?", "How much is 2+2"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 2
@pytest.mark.asyncio
@pytest.mark.parametrize(
"endpoint_os_variable_name,result_arg",
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
)
async def test_model_garden_agenerate(
endpoint_os_variable_name: str, result_arg: Optional[str]
) -> None:
endpoint_id = os.environ[endpoint_os_variable_name]
project = os.environ["PROJECT"]
location = "europe-west4"
llm = VertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
result_arg=result_arg,
location=location,
)
output = await llm.agenerate(["What is the meaning of life?", "How much is 2+2"])
assert isinstance(output, LLMResult)
assert len(output.generations) == 2
def test_vertex_call_count_tokens() -> None:
llm = VertexAI()
output = llm.get_num_tokens("How are you?")
assert output == 4

View File

@@ -1,171 +0,0 @@
"""Integration test for Arxiv API Wrapper."""
from typing import Any, List
import pytest
from langchain_core.documents import Document
from langchain_core.tools import BaseTool
from langchain_community.tools import ArxivQueryRun
from langchain_community.utilities import ArxivAPIWrapper
@pytest.fixture
def api_client() -> ArxivAPIWrapper:
return ArxivAPIWrapper()
def test_run_success_paper_name(api_client: ArxivAPIWrapper) -> None:
"""Test a query of paper name that returns the correct answer"""
output = api_client.run("Heat-bath random walks with Markov bases")
assert "Probability distributions for Markov chains based quantum walks" in output
assert (
"Transformations of random walks on groups via Markov stopping times" in output
)
assert (
"Recurrence of Multidimensional Persistent Random Walks. Fourier and Series "
"Criteria" in output
)
def test_run_success_arxiv_identifier(api_client: ArxivAPIWrapper) -> None:
"""Test a query of an arxiv identifier returns the correct answer"""
output = api_client.run("1605.08386v1")
assert "Heat-bath random walks with Markov bases" in output
def test_run_success_multiple_arxiv_identifiers(api_client: ArxivAPIWrapper) -> None:
"""Test a query of multiple arxiv identifiers that returns the correct answer"""
output = api_client.run("1605.08386v1 2212.00794v2 2308.07912")
assert "Heat-bath random walks with Markov bases" in output
assert "Scaling Language-Image Pre-training via Masking" in output
assert (
"Ultra-low mass PBHs in the early universe can explain the PTA signal" in output
)
def test_run_returns_several_docs(api_client: ArxivAPIWrapper) -> None:
"""Test that returns several docs"""
output = api_client.run("Caprice Stanley")
assert "On Mixing Behavior of a Family of Random Walks" in output
def test_run_returns_no_result(api_client: ArxivAPIWrapper) -> None:
"""Test that gives no result."""
output = api_client.run("1605.08386WWW")
assert "No good Arxiv Result was found" == output
def assert_docs(docs: List[Document]) -> None:
for doc in docs:
assert doc.page_content
assert doc.metadata
assert set(doc.metadata) == {"Published", "Title", "Authors", "Summary"}
def test_load_success_paper_name(api_client: ArxivAPIWrapper) -> None:
"""Test a query of paper name that returns one document"""
docs = api_client.load("Heat-bath random walks with Markov bases")
assert len(docs) == 3
assert_docs(docs)
def test_load_success_arxiv_identifier(api_client: ArxivAPIWrapper) -> None:
"""Test a query of an arxiv identifier that returns one document"""
docs = api_client.load("1605.08386v1")
assert len(docs) == 1
assert_docs(docs)
def test_load_success_multiple_arxiv_identifiers(api_client: ArxivAPIWrapper) -> None:
"""Test a query of arxiv identifiers that returns the correct answer"""
docs = api_client.load("1605.08386v1 2212.00794v2 2308.07912")
assert len(docs) == 3
assert_docs(docs)
def test_load_returns_no_result(api_client: ArxivAPIWrapper) -> None:
"""Test that returns no docs"""
docs = api_client.load("1605.08386WWW")
assert len(docs) == 0
def test_load_returns_limited_docs() -> None:
"""Test that returns several docs"""
expected_docs = 2
api_client = ArxivAPIWrapper(load_max_docs=expected_docs)
docs = api_client.load("ChatGPT")
assert len(docs) == expected_docs
assert_docs(docs)
def test_load_returns_limited_doc_content_chars() -> None:
"""Test that returns limited doc_content_chars_max"""
doc_content_chars_max = 100
api_client = ArxivAPIWrapper(doc_content_chars_max=doc_content_chars_max)
docs = api_client.load("1605.08386")
assert len(docs[0].page_content) == doc_content_chars_max
def test_load_returns_unlimited_doc_content_chars() -> None:
"""Test that returns unlimited doc_content_chars_max"""
doc_content_chars_max = None
api_client = ArxivAPIWrapper(doc_content_chars_max=doc_content_chars_max)
docs = api_client.load("1605.08386")
assert len(docs[0].page_content) == pytest.approx(54338, rel=1e-2)
def test_load_returns_full_set_of_metadata() -> None:
"""Test that returns several docs"""
api_client = ArxivAPIWrapper(load_max_docs=1, load_all_available_meta=True)
docs = api_client.load("ChatGPT")
assert len(docs) == 1
for doc in docs:
assert doc.page_content
assert doc.metadata
assert set(doc.metadata).issuperset(
{"Published", "Title", "Authors", "Summary"}
)
print(doc.metadata)
assert len(set(doc.metadata)) > 4
def _load_arxiv_from_universal_entry(**kwargs: Any) -> BaseTool:
from langchain.agents.load_tools import load_tools
tools = load_tools(["arxiv"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]
def test_load_arxiv_from_universal_entry() -> None:
arxiv_tool = _load_arxiv_from_universal_entry()
output = arxiv_tool("Caprice Stanley")
assert (
"On Mixing Behavior of a Family of Random Walks" in output
), "failed to fetch a valid result"
def test_load_arxiv_from_universal_entry_with_params() -> None:
params = {
"top_k_results": 1,
"load_max_docs": 10,
"load_all_available_meta": True,
}
arxiv_tool = _load_arxiv_from_universal_entry(**params)
assert isinstance(arxiv_tool, ArxivQueryRun)
wp = arxiv_tool.api_wrapper
assert wp.top_k_results == 1, "failed to assert top_k_results"
assert wp.load_max_docs == 10, "failed to assert load_max_docs"
assert (
wp.load_all_available_meta is True
), "failed to assert load_all_available_meta"

View File

@@ -1,164 +0,0 @@
"""Integration test for PubMed API Wrapper."""
from typing import Any, List
import pytest
from langchain_core.documents import Document
from langchain_core.tools import BaseTool
from langchain_community.tools import PubmedQueryRun
from langchain_community.utilities import PubMedAPIWrapper
xmltodict = pytest.importorskip("xmltodict")
@pytest.fixture
def api_client() -> PubMedAPIWrapper:
return PubMedAPIWrapper()
def test_run_success(api_client: PubMedAPIWrapper) -> None:
"""Test that returns the correct answer"""
search_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature"
)
output = api_client.run(search_string)
test_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature: Findings and Implications"
)
assert test_string in output
assert len(output) == api_client.doc_content_chars_max
def test_run_returns_no_result(api_client: PubMedAPIWrapper) -> None:
"""Test that gives no result."""
output = api_client.run("1605.08386WWW")
assert "No good PubMed Result was found" == output
def test_retrieve_article_returns_book_abstract(api_client: PubMedAPIWrapper) -> None:
"""Test that returns the excerpt of a book."""
output_nolabel = api_client.retrieve_article("25905357", "")
output_withlabel = api_client.retrieve_article("29262144", "")
test_string_nolabel = (
"Osteoporosis is a multifactorial disorder associated with low bone mass and "
"enhanced skeletal fragility. Although"
)
assert test_string_nolabel in output_nolabel["Summary"]
assert (
"Wallenberg syndrome was first described in 1808 by Gaspard Vieusseux. However,"
in output_withlabel["Summary"]
)
def test_retrieve_article_returns_article_abstract(
api_client: PubMedAPIWrapper,
) -> None:
"""Test that returns the abstract of an article."""
output_nolabel = api_client.retrieve_article("37666905", "")
output_withlabel = api_client.retrieve_article("37666551", "")
test_string_nolabel = (
"This work aims to: (1) Provide maximal hand force data on six different "
"grasp types for healthy subjects; (2) detect grasp types with maximal "
"force significantly affected by hand osteoarthritis (HOA) in women; (3) "
"look for predictors to detect HOA from the maximal forces using discriminant "
"analyses."
)
assert test_string_nolabel in output_nolabel["Summary"]
test_string_withlabel = (
"OBJECTIVES: To assess across seven hospitals from six different countries "
"the extent to which the COVID-19 pandemic affected the volumes of orthopaedic "
"hospital admissions and patient outcomes for non-COVID-19 patients admitted "
"for orthopaedic care."
)
assert test_string_withlabel in output_withlabel["Summary"]
def test_retrieve_article_no_abstract_available(api_client: PubMedAPIWrapper) -> None:
"""Test that returns 'No abstract available'."""
output = api_client.retrieve_article("10766884", "")
assert "No abstract available" == output["Summary"]
def assert_docs(docs: List[Document]) -> None:
for doc in docs:
assert doc.metadata
assert set(doc.metadata) == {
"Copyright Information",
"uid",
"Title",
"Published",
}
def test_load_success(api_client: PubMedAPIWrapper) -> None:
"""Test that returns one document"""
docs = api_client.load_docs("chatgpt")
assert len(docs) == api_client.top_k_results == 3
assert_docs(docs)
def test_load_returns_no_result(api_client: PubMedAPIWrapper) -> None:
"""Test that returns no docs"""
docs = api_client.load_docs("1605.08386WWW")
assert len(docs) == 0
def test_load_returns_limited_docs() -> None:
"""Test that returns several docs"""
expected_docs = 2
api_client = PubMedAPIWrapper(top_k_results=expected_docs)
docs = api_client.load_docs("ChatGPT")
assert len(docs) == expected_docs
assert_docs(docs)
def test_load_returns_full_set_of_metadata() -> None:
"""Test that returns several docs"""
api_client = PubMedAPIWrapper(load_max_docs=1, load_all_available_meta=True)
docs = api_client.load_docs("ChatGPT")
assert len(docs) == 3
for doc in docs:
assert doc.metadata
assert set(doc.metadata).issuperset(
{"Copyright Information", "Published", "Title", "uid"}
)
def _load_pubmed_from_universal_entry(**kwargs: Any) -> BaseTool:
from langchain.agents.load_tools import load_tools
tools = load_tools(["pubmed"], **kwargs)
assert len(tools) == 1, "loaded more than 1 tool"
return tools[0]
def test_load_pupmed_from_universal_entry() -> None:
pubmed_tool = _load_pubmed_from_universal_entry()
search_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature"
)
output = pubmed_tool(search_string)
test_string = (
"Examining the Validity of ChatGPT in Identifying "
"Relevant Nephrology Literature: Findings and Implications"
)
assert test_string in output
def test_load_pupmed_from_universal_entry_with_params() -> None:
params = {
"top_k_results": 1,
}
pubmed_tool = _load_pubmed_from_universal_entry(**params)
assert isinstance(pubmed_tool, PubmedQueryRun)
wp = pubmed_tool.api_wrapper
assert wp.top_k_results == 1, "failed to assert top_k_results"

View File

@@ -1,44 +0,0 @@
import os
from typing import Union
import pytest
from vcr.request import Request
# Those environment variables turn on Deep Lake pytest mode.
# It significantly makes tests run much faster.
# Need to run before `import deeplake`
os.environ["BUGGER_OFF"] = "true"
os.environ["DEEPLAKE_DOWNLOAD_PATH"] = "./testing/local_storage"
os.environ["DEEPLAKE_PYTEST_ENABLED"] = "true"
# This fixture returns a dictionary containing filter_headers options
# for replacing certain headers with dummy values during cassette playback
# Specifically, it replaces the authorization header with a dummy value to
# prevent sensitive data from being recorded in the cassette.
# It also filters request to certain hosts (specified in the `ignored_hosts` list)
# to prevent data from being recorded in the cassette.
@pytest.fixture(scope="module")
def vcr_config() -> dict:
skipped_host = ["pinecone.io"]
def before_record_response(response: dict) -> Union[dict, None]:
return response
def before_record_request(request: Request) -> Union[Request, None]:
for host in skipped_host:
if request.host.startswith(host) or request.host.endswith(host):
return None
return request
return {
"before_record_request": before_record_request,
"before_record_response": before_record_response,
"filter_headers": [
("authorization", "authorization-DUMMY"),
("X-OpenAI-Client-User-Agent", "X-OpenAI-Client-User-Agent-DUMMY"),
("Api-Key", "Api-Key-DUMMY"),
("User-Agent", "User-Agent-DUMMY"),
],
"ignore_localhost": True,
}

View File

@@ -1,85 +0,0 @@
"""Test CallbackManager."""
from unittest.mock import patch
import pytest
from langchain_community.callbacks import get_openai_callback
from langchain_core.callbacks.manager import trace_as_chain_group, CallbackManager
from langchain_core.outputs import LLMResult
from langchain_core.tracers.langchain import LangChainTracer, wait_for_all_tracers
from langchain_community.llms.openai import BaseOpenAI
def test_callback_manager_configure_context_vars(
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""Test callback manager configuration."""
monkeypatch.setenv("LANGCHAIN_TRACING_V2", "true")
monkeypatch.setenv("LANGCHAIN_TRACING", "false")
with patch.object(LangChainTracer, "_update_run_single"):
with patch.object(LangChainTracer, "_persist_run_single"):
with trace_as_chain_group("test") as group_manager:
assert len(group_manager.handlers) == 1
tracer = group_manager.handlers[0]
assert isinstance(tracer, LangChainTracer)
with get_openai_callback() as cb:
# This is a new empty callback handler
assert cb.successful_requests == 0
assert cb.total_tokens == 0
# configure adds this openai cb but doesn't modify the group manager
mngr = CallbackManager.configure(group_manager)
assert mngr.handlers == [tracer, cb]
assert group_manager.handlers == [tracer]
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
mngr.on_llm_start({}, ["prompt"])[0].on_llm_end(response)
# The callback handler has been updated
assert cb.successful_requests == 1
assert cb.total_tokens == 3
assert cb.prompt_tokens == 2
assert cb.completion_tokens == 1
assert cb.total_cost > 0
with get_openai_callback() as cb:
# This is a new empty callback handler
assert cb.successful_requests == 0
assert cb.total_tokens == 0
# configure adds this openai cb but doesn't modify the group manager
mngr = CallbackManager.configure(group_manager)
assert mngr.handlers == [tracer, cb]
assert group_manager.handlers == [tracer]
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
mngr.on_llm_start({}, ["prompt"])[0].on_llm_end(response)
# The callback handler has been updated
assert cb.successful_requests == 1
assert cb.total_tokens == 3
assert cb.prompt_tokens == 2
assert cb.completion_tokens == 1
assert cb.total_cost > 0
wait_for_all_tracers()
assert LangChainTracer._persist_run_single.call_count == 1 # type: ignore

View File

@@ -1,31 +0,0 @@
from langchain_community.callbacks import __all__
EXPECTED_ALL = [
"AimCallbackHandler",
"ArgillaCallbackHandler",
"ArizeCallbackHandler",
"PromptLayerCallbackHandler",
"ArthurCallbackHandler",
"ClearMLCallbackHandler",
"CometCallbackHandler",
"ContextCallbackHandler",
"HumanApprovalCallbackHandler",
"InfinoCallbackHandler",
"MlflowCallbackHandler",
"LLMonitorCallbackHandler",
"OpenAICallbackHandler",
"LLMThoughtLabeler",
"StreamlitCallbackHandler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",
"wandb_tracing_enabled",
"FlyteCallbackHandler",
"SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
"TrubricsCallbackHandler",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,23 +0,0 @@
import pathlib
from langchain_community.chat_loaders import slack, utils
def test_slack_chat_loader() -> None:
chat_path = (
pathlib.Path(__file__).parents[2]
/ "examples"
/ "slack_export.zip"
)
loader = slack.SlackChatLoader(str(chat_path))
chat_sessions = list(
utils.map_ai_messages(loader.lazy_load(), sender="U0500003428")
)
assert chat_sessions, "Chat sessions should not be empty"
assert chat_sessions[1]["messages"], "Chat messages should not be empty"
assert (
"Example message" in chat_sessions[1]["messages"][0].content
), "Chat content mismatch"

View File

@@ -1,54 +0,0 @@
"""Test Anthropic Chat API wrapper."""
from typing import List
from unittest.mock import MagicMock
import pytest
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_community.chat_models import BedrockChat
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
@pytest.mark.parametrize(
("messages", "expected"),
[
([HumanMessage(content="Hello")], "[INST] Hello [/INST]"),
(
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
"[INST] Hello [/INST]\nAnswer:",
),
(
[
SystemMessage(content="You're an assistant"),
HumanMessage(content="Hello"),
AIMessage(content="Answer:"),
],
"<<SYS>> You're an assistant <</SYS>>\n[INST] Hello [/INST]\nAnswer:",
),
],
)
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
result = convert_messages_to_prompt_llama(messages)
assert result == expected
def test_anthropic_bedrock() -> None:
client = MagicMock()
respbody = MagicMock(
read=MagicMock(
return_value=MagicMock(
decode=MagicMock(return_value=b'{"completion":"Hi back"}')
)
)
)
client.invoke_model.return_value = {"body": respbody}
model = BedrockChat(model_id="anthropic.claude-v2", client=client)
# should not throw an error
model.invoke("hello there")

View File

@@ -1,96 +0,0 @@
"""Tests for the various PDF parsers."""
from pathlib import Path
from typing import Iterator
import pytest
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.pdf import (
PDFMinerParser,
PyMuPDFParser,
PyPDFium2Parser,
PyPDFParser,
)
_THIS_DIR = Path(__file__).parents[3]
_EXAMPLES_DIR = _THIS_DIR / "examples"
# Paths to test PDF files
HELLO_PDF = _EXAMPLES_DIR / "hello.pdf"
LAYOUT_PARSER_PAPER_PDF = _EXAMPLES_DIR / "layout-parser-paper.pdf"
def _assert_with_parser(parser: BaseBlobParser, splits_by_page: bool = True) -> None:
"""Standard tests to verify that the given parser works.
Args:
parser (BaseBlobParser): The parser to test.
splits_by_page (bool): Whether the parser splits by page or not by default.
"""
blob = Blob.from_path(HELLO_PDF)
doc_generator = parser.lazy_parse(blob)
assert isinstance(doc_generator, Iterator)
docs = list(doc_generator)
assert len(docs) == 1
page_content = docs[0].page_content
assert isinstance(page_content, str)
# The different parsers return different amount of whitespace, so using
# startswith instead of equals.
assert docs[0].page_content.startswith("Hello world!")
blob = Blob.from_path(LAYOUT_PARSER_PAPER_PDF)
doc_generator = parser.lazy_parse(blob)
assert isinstance(doc_generator, Iterator)
docs = list(doc_generator)
if splits_by_page:
assert len(docs) == 16
else:
assert len(docs) == 1
# Test is imprecise since the parsers yield different parse information depending
# on configuration. Each parser seems to yield a slightly different result
# for this page!
assert "LayoutParser" in docs[0].page_content
metadata = docs[0].metadata
assert metadata["source"] == str(LAYOUT_PARSER_PAPER_PDF)
if splits_by_page:
assert int(metadata["page"]) == 0
@pytest.mark.requires("pypdf")
def test_pypdf_parser() -> None:
"""Test PyPDF parser."""
_assert_with_parser(PyPDFParser())
@pytest.mark.requires("pdfminer")
def test_pdfminer_parser() -> None:
"""Test PDFMiner parser."""
# Does not follow defaults to split by page.
_assert_with_parser(PDFMinerParser(), splits_by_page=False)
@pytest.mark.requires("fitz") # package is PyMuPDF
def test_pymupdf_loader() -> None:
"""Test PyMuPDF loader."""
_assert_with_parser(PyMuPDFParser())
@pytest.mark.requires("pypdfium2")
def test_pypdfium2_parser() -> None:
"""Test PyPDFium2 parser."""
# Does not follow defaults to split by page.
_assert_with_parser(PyPDFium2Parser())
@pytest.mark.requires("rapidocr_onnxruntime")
def test_extract_images_text_from_pdf() -> None:
"""Test extract image from pdf and recognize text with rapid ocr"""
_assert_with_parser(PyPDFParser(extract_images=True))
_assert_with_parser(PDFMinerParser(extract_images=True))
_assert_with_parser(PyMuPDFParser(extract_images=True))
_assert_with_parser(PyPDFium2Parser(extract_images=True))

View File

@@ -1,60 +0,0 @@
from langchain_community.embeddings import __all__
EXPECTED_ALL = [
"OpenAIEmbeddings",
"AzureOpenAIEmbeddings",
"ClarifaiEmbeddings",
"CohereEmbeddings",
"DatabricksEmbeddings",
"ElasticsearchEmbeddings",
"FastEmbedEmbeddings",
"HuggingFaceEmbeddings",
"HuggingFaceInferenceAPIEmbeddings",
"InfinityEmbeddings",
"GradientEmbeddings",
"JinaEmbeddings",
"LlamaCppEmbeddings",
"HuggingFaceHubEmbeddings",
"MlflowAIGatewayEmbeddings",
"MlflowEmbeddings",
"ModelScopeEmbeddings",
"TensorflowHubEmbeddings",
"SagemakerEndpointEmbeddings",
"HuggingFaceInstructEmbeddings",
"MosaicMLInstructorEmbeddings",
"SelfHostedEmbeddings",
"SelfHostedHuggingFaceEmbeddings",
"SelfHostedHuggingFaceInstructEmbeddings",
"FakeEmbeddings",
"DeterministicFakeEmbedding",
"AlephAlphaAsymmetricSemanticEmbedding",
"AlephAlphaSymmetricSemanticEmbedding",
"SentenceTransformerEmbeddings",
"GooglePalmEmbeddings",
"MiniMaxEmbeddings",
"VertexAIEmbeddings",
"BedrockEmbeddings",
"DeepInfraEmbeddings",
"EdenAiEmbeddings",
"DashScopeEmbeddings",
"EmbaasEmbeddings",
"OctoAIEmbeddings",
"SpacyEmbeddings",
"NLPCloudEmbeddings",
"GPT4AllEmbeddings",
"XinferenceEmbeddings",
"LocalAIEmbeddings",
"AwaEmbeddings",
"HuggingFaceBgeEmbeddings",
"ErnieEmbeddings",
"JavelinAIGatewayEmbeddings",
"OllamaEmbeddings",
"QianfanEmbeddingsEndpoint",
"JohnSnowLabsEmbeddings",
"VoyageEmbeddings",
"BookendEmbeddings",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,56 +0,0 @@
import os
import pytest
from langchain_community.llms.openai import OpenAI
from langchain_community.utils.openai import is_openai_v1
os.environ["OPENAI_API_KEY"] = "foo"
def _openai_v1_installed() -> bool:
try:
return is_openai_v1()
except Exception as _:
return False
@pytest.mark.requires("openai")
def test_openai_model_param() -> None:
llm = OpenAI(model="foo")
assert llm.model_name == "foo"
llm = OpenAI(model_name="foo")
assert llm.model_name == "foo"
@pytest.mark.requires("openai")
def test_openai_model_kwargs() -> None:
llm = OpenAI(model_kwargs={"foo": "bar"})
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("openai")
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAI(model_kwargs={"model_name": "foo"})
@pytest.mark.requires("openai")
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAI(foo="bar")
assert llm.model_kwargs == {"foo": "bar"}
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
"object": "text_completion",
"created": 1689989000,
"model": "text-davinci-003",
"choices": [
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
}

View File

@@ -1,42 +0,0 @@
from langchain_community.retrievers import __all__
EXPECTED_ALL = [
"AmazonKendraRetriever",
"AmazonKnowledgeBasesRetriever",
"ArceeRetriever",
"ArxivRetriever",
"AzureCognitiveSearchRetriever",
"ChatGPTPluginRetriever",
"ChaindeskRetriever",
"CohereRagRetriever",
"ElasticSearchBM25Retriever",
"EmbedchainRetriever",
"GoogleDocumentAIWarehouseRetriever",
"GoogleCloudEnterpriseSearchRetriever",
"GoogleVertexAIMultiTurnSearchRetriever",
"GoogleVertexAISearchRetriever",
"KayAiRetriever",
"KNNRetriever",
"LlamaIndexGraphRetriever",
"LlamaIndexRetriever",
"MetalRetriever",
"MilvusRetriever",
"OutlineRetriever",
"PineconeHybridSearchRetriever",
"PubMedRetriever",
"RemoteLangChainRetriever",
"SVMRetriever",
"TavilySearchAPIRetriever",
"TFIDFRetriever",
"BM25Retriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
"WikipediaRetriever",
"ZepRetriever",
"ZillizRetriever",
"DocArrayRetriever",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,11 +0,0 @@
from langchain_community.storage import __all__
EXPECTED_ALL = [
"RedisStore",
"UpstashRedisByteStore",
"UpstashRedisStore",
]
def test_all_imports() -> None:
assert set(__all__) == set(EXPECTED_ALL)

View File

@@ -1,40 +0,0 @@
from typing import List, Type
from langchain_core.tools import BaseTool, StructuredTool
import langchain_community.tools
from langchain_community.tools import _DEPRECATED_TOOLS
from langchain_community.tools import __all__ as tools_all
_EXCLUDE = {
BaseTool,
StructuredTool,
}
def _get_tool_classes(skip_tools_without_default_names: bool) -> List[Type[BaseTool]]:
results = []
for tool_class_name in tools_all:
if tool_class_name in _DEPRECATED_TOOLS:
continue
# Resolve the str to the class
tool_class = getattr(langchain_community.tools, tool_class_name)
if isinstance(tool_class, type) and issubclass(tool_class, BaseTool):
if tool_class in _EXCLUDE:
continue
if (
skip_tools_without_default_names
and tool_class.__fields__["name"].default # type: ignore
in [None, ""]
):
continue
results.append(tool_class)
return results
def test_tool_names_unique() -> None:
"""Test that the default names for our core tools are unique."""
tool_classes = _get_tool_classes(skip_tools_without_default_names=True)
names = sorted([tool_cls.__fields__["name"].default for tool_cls in tool_classes])
duplicated_names = [name for name in names if names.count(name) > 1]
assert not duplicated_names

View File

@@ -1,728 +0,0 @@
"""Test FAISS functionality."""
import datetime
import math
import tempfile
import pytest
from typing import Union
from langchain_core.documents import Document
from langchain_community.docstore.base import Docstore
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores.faiss import FAISS
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
_PAGE_CONTENT = """This is a page about LangChain.
It is a really cool framework.
What isn't there to love about langchain?
Made in 2022."""
class FakeDocstore(Docstore):
"""Fake docstore for testing purposes."""
def search(self, search: str) -> Union[str, Document]:
"""Return the fake document."""
document = Document(page_content=_PAGE_CONTENT)
return document
@pytest.mark.requires("faiss")
def test_faiss() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_afrom_texts() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_vector_sim() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_by_vector(query_vec, k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_async_vector_sim() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_by_vector(query_vec, k=1)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_vector_sim_with_score_threshold() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_by_vector(query_vec, k=2, score_threshold=0.2)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_vector_async_sim_with_score_threshold() -> None:
"""Test vector similarity."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_by_vector(
query_vec, k=2, score_threshold=0.2
)
assert output == [Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_similarity_search_with_score_by_vector() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_with_score_by_vector(query_vec, k=1)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
@pytest.mark.requires("faiss")
async def test_similarity_async_search_with_score_by_vector() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_with_score_by_vector(query_vec, k=1)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
@pytest.mark.requires("faiss")
def test_similarity_search_with_score_by_vector_with_score_threshold() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.similarity_search_with_score_by_vector(
query_vec,
k=2,
score_threshold=0.2,
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
assert output[0][1] < 0.2
@pytest.mark.requires("faiss")
async def test_sim_asearch_with_score_by_vector_with_score_threshold() -> None:
"""Test vector similarity with score by vector."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
index_to_id = docsearch.index_to_docstore_id
expected_docstore = InMemoryDocstore(
{
index_to_id[0]: Document(page_content="foo"),
index_to_id[1]: Document(page_content="bar"),
index_to_id[2]: Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.asimilarity_search_with_score_by_vector(
query_vec,
k=2,
score_threshold=0.2,
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo")
assert output[0][1] < 0.2
@pytest.mark.requires("faiss")
def test_faiss_mmr() -> None:
texts = ["foo", "foo", "fou", "foy"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
query_vec = FakeEmbeddings().embed_query(text="foo")
# make sure we can have k > docstore size
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo")
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo")
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr() -> None:
texts = ["foo", "foo", "fou", "foy"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
query_vec = await FakeEmbeddings().aembed_query(text="foo")
# make sure we can have k > docstore size
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo")
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo")
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1
)
assert len(output) == len(texts)
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas_and_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": 1}
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo", metadata={"page": 1})
assert output[0][1] == 0.0
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas_and_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": 1}
)
assert len(output) == 1
assert output[0][0] == Document(page_content="foo", metadata={"page": 1})
assert output[0][1] == 0.0
@pytest.mark.requires("faiss")
def test_faiss_mmr_with_metadatas_and_list_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = FakeEmbeddings().embed_query(text="foo")
output = docsearch.max_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": [0, 1, 2]}
)
assert len(output) == 3
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
async def test_faiss_async_mmr_with_metadatas_and_list_filter() -> None:
texts = ["foo", "foo", "fou", "foy"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
query_vec = await FakeEmbeddings().aembed_query(text="foo")
output = await docsearch.amax_marginal_relevance_search_with_score_by_vector(
query_vec, k=10, lambda_mult=0.1, filter={"page": [0, 1, 2]}
)
assert len(output) == 3
assert output[0][0] == Document(page_content="foo", metadata={"page": 0})
assert output[0][1] == 0.0
assert output[1][0] != Document(page_content="foo", metadata={"page": 0})
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas_and_filter() -> None:
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1, filter={"page": 1})
assert output == [Document(page_content="bar", metadata={"page": 1})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas_and_filter() -> None:
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foo", k=1, filter={"page": 1})
assert output == [Document(page_content="bar", metadata={"page": 1})]
@pytest.mark.requires("faiss")
def test_faiss_with_metadatas_and_list_filter() -> None:
texts = ["foo", "bar", "baz", "foo", "qux"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
docsearch.index_to_docstore_id[3]: Document(
page_content="foo", metadata={"page": 3}
),
docsearch.index_to_docstore_id[4]: Document(
page_content="qux", metadata={"page": 3}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foor", k=1, filter={"page": [0, 1, 2]})
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
async def test_faiss_async_with_metadatas_and_list_filter() -> None:
texts = ["foo", "bar", "baz", "foo", "qux"]
metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
docsearch.index_to_docstore_id[0]: Document(
page_content="foo", metadata={"page": 0}
),
docsearch.index_to_docstore_id[1]: Document(
page_content="bar", metadata={"page": 1}
),
docsearch.index_to_docstore_id[2]: Document(
page_content="baz", metadata={"page": 2}
),
docsearch.index_to_docstore_id[3]: Document(
page_content="foo", metadata={"page": 3}
),
docsearch.index_to_docstore_id[4]: Document(
page_content="qux", metadata={"page": 3}
),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = await docsearch.asimilarity_search("foor", k=1, filter={"page": [0, 1, 2]})
assert output == [Document(page_content="foo", metadata={"page": 0})]
@pytest.mark.requires("faiss")
def test_faiss_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
# Get rid of the docstore to purposefully induce errors.
docsearch.docstore = InMemoryDocstore({})
with pytest.raises(ValueError):
docsearch.similarity_search("foo")
@pytest.mark.requires("faiss")
async def test_faiss_async_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
# Get rid of the docstore to purposefully induce errors.
docsearch.docstore = InMemoryDocstore({})
with pytest.raises(ValueError):
await docsearch.asimilarity_search("foo")
@pytest.mark.requires("faiss")
def test_faiss_add_texts() -> None:
"""Test end to end adding of texts."""
# Create initial doc store.
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
# Test adding a similar document as before.
docsearch.add_texts(["foo"])
output = docsearch.similarity_search("foo", k=2)
assert output == [Document(page_content="foo"), Document(page_content="foo")]
@pytest.mark.requires("faiss")
async def test_faiss_async_add_texts() -> None:
"""Test end to end adding of texts."""
# Create initial doc store.
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
# Test adding a similar document as before.
await docsearch.aadd_texts(["foo"])
output = await docsearch.asimilarity_search("foo", k=2)
assert output == [Document(page_content="foo"), Document(page_content="foo")]
@pytest.mark.requires("faiss")
def test_faiss_add_texts_not_supported() -> None:
"""Test adding of texts to a docstore that doesn't support it."""
docsearch = FAISS(FakeEmbeddings(), None, FakeDocstore(), {})
with pytest.raises(ValueError):
docsearch.add_texts(["foo"])
@pytest.mark.requires("faiss")
async def test_faiss_async_add_texts_not_supported() -> None:
"""Test adding of texts to a docstore that doesn't support it."""
docsearch = FAISS(FakeEmbeddings(), None, FakeDocstore(), {})
with pytest.raises(ValueError):
await docsearch.aadd_texts(["foo"])
@pytest.mark.requires("faiss")
def test_faiss_local_save_load() -> None:
"""Test end to end serialization."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder:
docsearch.save_local(temp_folder)
new_docsearch = FAISS.load_local(temp_folder, FakeEmbeddings())
assert new_docsearch.index is not None
@pytest.mark.requires("faiss")
async def test_faiss_async_local_save_load() -> None:
"""Test end to end serialization."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(texts, FakeEmbeddings())
temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S")
with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder:
docsearch.save_local(temp_folder)
new_docsearch = FAISS.load_local(temp_folder, FakeEmbeddings())
assert new_docsearch.index is not None
@pytest.mark.requires("faiss")
def test_faiss_similarity_search_with_relevance_scores() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = docsearch.similarity_search_with_relevance_scores("foo", k=1)
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
async def test_faiss_async_similarity_search_with_relevance_scores() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = await docsearch.asimilarity_search_with_relevance_scores("foo", k=1)
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
def test_faiss_similarity_search_with_relevance_scores_with_threshold() -> None:
"""Test the similarity search with normalized similarities with score threshold."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = docsearch.similarity_search_with_relevance_scores(
"foo", k=2, score_threshold=0.5
)
assert len(outputs) == 1
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
async def test_faiss_asimilarity_search_with_relevance_scores_with_threshold() -> None:
"""Test the similarity search with normalized similarities with score threshold."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts,
FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2),
)
outputs = await docsearch.asimilarity_search_with_relevance_scores(
"foo", k=2, score_threshold=0.5
)
assert len(outputs) == 1
output, score = outputs[0]
assert output == Document(page_content="foo")
assert score == 1.0
@pytest.mark.requires("faiss")
def test_faiss_invalid_normalize_fn() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(
texts, FakeEmbeddings(), relevance_score_fn=lambda _: 2.0
)
with pytest.warns(Warning, match="scores must be between"):
docsearch.similarity_search_with_relevance_scores("foo", k=1)
@pytest.mark.requires("faiss")
async def test_faiss_async_invalid_normalize_fn() -> None:
"""Test the similarity search with normalized similarities."""
texts = ["foo", "bar", "baz"]
docsearch = await FAISS.afrom_texts(
texts, FakeEmbeddings(), relevance_score_fn=lambda _: 2.0
)
with pytest.warns(Warning, match="scores must be between"):
await docsearch.asimilarity_search_with_relevance_scores("foo", k=1)
@pytest.mark.requires("faiss")
def test_missing_normalize_score_fn() -> None:
"""Test doesn't perform similarity search without a valid distance strategy."""
texts = ["foo", "bar", "baz"]
faiss_instance = FAISS.from_texts(texts, FakeEmbeddings(), distance_strategy="fake")
with pytest.raises(ValueError):
faiss_instance.similarity_search_with_relevance_scores("foo", k=2)
@pytest.mark.requires("faiss")
async def test_async_missing_normalize_score_fn() -> None:
"""Test doesn't perform similarity search without a valid distance strategy."""
texts = ["foo", "bar", "baz"]
faiss_instance = await FAISS.afrom_texts(
texts, FakeEmbeddings(), distance_strategy="fake"
)
with pytest.raises(ValueError):
await faiss_instance.asimilarity_search_with_relevance_scores("foo", k=2)
@pytest.mark.requires("faiss")
def test_delete() -> None:
"""Test the similarity search with normalized similarities."""
ids = ["a", "b", "c"]
docsearch = FAISS.from_texts(["foo", "bar", "baz"], FakeEmbeddings(), ids=ids)
docsearch.delete(ids[1:2])
result = docsearch.similarity_search("bar", k=2)
assert sorted([d.page_content for d in result]) == ["baz", "foo"]
assert docsearch.index_to_docstore_id == {0: ids[0], 1: ids[2]}
@pytest.mark.requires("faiss")
async def test_async_delete() -> None:
"""Test the similarity search with normalized similarities."""
ids = ["a", "b", "c"]
docsearch = await FAISS.afrom_texts(
["foo", "bar", "baz"], FakeEmbeddings(), ids=ids
)
docsearch.delete(ids[1:2])
result = await docsearch.asimilarity_search("bar", k=2)
assert sorted([d.page_content for d in result]) == ["baz", "foo"]
assert docsearch.index_to_docstore_id == {0: ids[0], 1: ids[2]}

View File

@@ -1,13 +0,0 @@
from langchain_community import vectorstores
from langchain_core.vectorstores import VectorStore
def test_all_imports() -> None:
"""Simple test to make sure all things can be imported."""
for cls in vectorstores.__all__:
if cls not in [
"AlibabaCloudOpenSearchSettings",
"ClickhouseSettings",
"MyScaleSettings",
]:
assert issubclass(getattr(vectorstores, cls), VectorStore)

View File

@@ -1,144 +0,0 @@
import importlib
import json
import os
from typing import Any, Dict, List, Optional
from langchain_core.load.mapping import SERIALIZABLE_MAPPING
from langchain_core.load.serializable import Serializable
DEFAULT_NAMESPACES = ["langchain", "langchain_core", "langchain_community"]
class Reviver:
"""Reviver for JSON objects."""
def __init__(
self,
secrets_map: Optional[Dict[str, str]] = None,
valid_namespaces: Optional[List[str]] = None,
) -> None:
self.secrets_map = secrets_map or dict()
# By default only support langchain, but user can pass in additional namespaces
self.valid_namespaces = (
[*DEFAULT_NAMESPACES, *valid_namespaces]
if valid_namespaces
else DEFAULT_NAMESPACES
)
def __call__(self, value: Dict[str, Any]) -> Any:
if (
value.get("lc", None) == 1
and value.get("type", None) == "secret"
and value.get("id", None) is not None
):
[key] = value["id"]
if key in self.secrets_map:
return self.secrets_map[key]
else:
if key in os.environ and os.environ[key]:
return os.environ[key]
raise KeyError(f'Missing key "{key}" in load(secrets_map)')
if (
value.get("lc", None) == 1
and value.get("type", None) == "not_implemented"
and value.get("id", None) is not None
):
raise NotImplementedError(
"Trying to load an object that doesn't implement "
f"serialization: {value}"
)
if (
value.get("lc", None) == 1
and value.get("type", None) == "constructor"
and value.get("id", None) is not None
):
[*namespace, name] = value["id"]
if namespace[0] not in self.valid_namespaces:
raise ValueError(f"Invalid namespace: {value}")
# The root namespace "langchain" is not a valid identifier.
if len(namespace) == 1 and namespace[0] == "langchain":
raise ValueError(f"Invalid namespace: {value}")
# Get the importable path
key = tuple(namespace + [name])
if key not in SERIALIZABLE_MAPPING:
raise ValueError(
"Trying to deserialize something that cannot "
"be deserialized in current version of langchain-core: "
f"{key}"
)
import_path = SERIALIZABLE_MAPPING[key]
# Split into module and name
import_dir, import_obj = import_path[:-1], import_path[-1]
# Import module
mod = importlib.import_module(".".join(import_dir))
# Import class
cls = getattr(mod, import_obj)
# The class must be a subclass of Serializable.
if not issubclass(cls, Serializable):
raise ValueError(f"Invalid namespace: {value}")
# We don't need to recurse on kwargs
# as json.loads will do that for us.
kwargs = value.get("kwargs", dict())
return cls(**kwargs)
return value
def loads(
text: str,
*,
secrets_map: Optional[Dict[str, str]] = None,
valid_namespaces: Optional[List[str]] = None,
) -> Any:
"""Revive a LangChain class from a JSON string.
Equivalent to `load(json.loads(text))`.
Args:
text: The string to load.
secrets_map: A map of secrets to load.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized.
Returns:
Revived LangChain objects.
"""
return json.loads(text, object_hook=Reviver(secrets_map, valid_namespaces))
def load(
obj: Any,
*,
secrets_map: Optional[Dict[str, str]] = None,
valid_namespaces: Optional[List[str]] = None,
) -> Any:
"""Revive a LangChain class from a JSON object. Use this if you already
have a parsed JSON object, eg. from `json.load` or `orjson.loads`.
Args:
obj: The object to load.
secrets_map: A map of secrets to load.
valid_namespaces: A list of additional namespaces (modules)
to allow to be deserialized.
Returns:
Revived LangChain objects.
"""
reviver = Reviver(secrets_map, valid_namespaces)
def _load(obj: Any) -> Any:
if isinstance(obj, dict):
# Need to revive leaf nodes before reviving this node
loaded_obj = {k: _load(v) for k, v in obj.items()}
return reviver(loaded_obj)
if isinstance(obj, list):
return [_load(o) for o in obj]
return obj
return _load(obj)

View File

@@ -1,49 +0,0 @@
"""
**Utility functions** for LangChain.
These functions do not depend on any other LangChain module.
"""
from langchain_core.utils.env import get_from_dict_or_env, get_from_env
from langchain_core.utils.formatting import StrictFormatter, formatter
from langchain_core.utils.input import (
get_bolded_text,
get_color_mapping,
get_colored_text,
print_text,
)
from langchain_core.utils.loading import try_load_from_hub
from langchain_core.utils.strings import comma_list, stringify_dict, stringify_value
from langchain_core.utils.utils import (
build_extra_kwargs,
check_package_version,
convert_to_secret_str,
get_pydantic_field_names,
guard_import,
mock_now,
raise_for_status_with_text,
xor_args,
)
__all__ = [
"StrictFormatter",
"check_package_version",
"convert_to_secret_str",
"formatter",
"get_bolded_text",
"get_color_mapping",
"get_colored_text",
"get_pydantic_field_names",
"guard_import",
"mock_now",
"print_text",
"raise_for_status_with_text",
"xor_args",
"try_load_from_hub",
"build_extra_kwargs",
"get_from_env",
"get_from_dict_or_env",
"stringify_dict",
"comma_list",
"stringify_value",
]

Some files were not shown because too many files have changed in this diff Show More