Compare commits

...

169 Commits

Author SHA1 Message Date
Bagatur
ed8753e7ce wip 2023-08-27 15:16:52 -07:00
Bagatur
0d01cede03 bump 274 (#9805) 2023-08-26 12:16:26 -07:00
Vikas Sheoran
63921e327d docs: Fix a spelling mistake in adding_memory.ipynb (#9794)
# Description 
This pull request fixes a small spelling mistake found while reading
docs.
2023-08-26 12:04:43 -07:00
Rosário P. Fernandes
aab01b55db typo: funtions --> functions (#9784)
Minor typo in the extractions use-case
2023-08-26 11:47:47 -07:00
Nikhil Suresh
0da5803f5a fixed regex to match sources for all cases, also includes source (#9775)
- Description: Updated the regex to handle all the different cases for
string matching (SOURCES, sources, Sources),
  - Issue: https://github.com/langchain-ai/langchain/issues/9774
  - Dependencies: N/A
2023-08-25 18:10:33 -07:00
Sam Partee
a28eea5767 Redis metadata filtering and specification, index customization (#8612)
### Description

The previous Redis implementation did not allow for the user to specify
the index configuration (i.e. changing the underlying algorithm) or add
additional metadata to use for querying (i.e. hybrid or "filtered"
search).

This PR introduces the ability to specify custom index attributes and
metadata attributes as well as use that metadata in filtered queries.
Overall, more structure was introduced to the Redis implementation that
should allow for easier maintainability moving forward.

# New Features

The following features are now available with the Redis integration into
Langchain

## Index schema generation

The schema for the index will now be automatically generated if not
specified by the user. For example, the data above has the multiple
metadata categories. The the following example

```python

from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores.redis import Redis

embeddings = OpenAIEmbeddings()


rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users"
)
```

Loading the data in through this and the other ``from_documents`` and
``from_texts`` methods will now generate index schema in Redis like the
following.

view index schema with the ``redisvl`` tool. [link](redisvl.com)

```bash
$ rvl index info -i users
```


Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|---------------|-----------------|------------|
| users | HASH | ['doc:users'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |


### Custom Metadata specification

The metadata schema generation has the following rules
1. All text fields are indexed as text fields.
2. All numeric fields are index as numeric fields.

If you would like to have a text field as a tag field, users can specify
overrides like the following for the example data

```python

# this can also be a path to a yaml file
index_schema = {
    "text": [{"name": "user"}, {"name": "job"}],
    "tag": [{"name": "credit_score"}],
    "numeric": [{"name": "age"}],
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users"
)
```
This will change the index specification to 

Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|----------------|-----------------|------------|
| users2 | HASH | ['doc:users2'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TAG | SEPARATOR | , |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |


and throw a warning to the user (log output) that the generated schema
does not match the specified schema.

```text
index_schema does not match generated schema from metadata.
index_schema: {'text': [{'name': 'user'}, {'name': 'job'}], 'tag': [{'name': 'credit_score'}], 'numeric': [{'name': 'age'}]}
generated_schema: {'text': [{'name': 'user'}, {'name': 'job'}, {'name': 'credit_score'}], 'numeric': [{'name': 'age'}]}
```

As long as this is on purpose,  this is fine.

The schema can be defined as a yaml file or a dictionary

```yaml

text:
  - name: user
  - name: job
tag:
  - name: credit_score
numeric:
  - name: age

```

and you pass in a path like

```python
rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    index_schema=Path("sample1.yml").resolve()
)
```

Which will create the same schema as defined in the dictionary example


Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|----------------|-----------------|------------|
| users3 | HASH | ['doc:users3'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TAG | SEPARATOR | , |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |



### Custom Vector Indexing Schema

Users with large use cases may want to change how they formulate the
vector index created by Langchain

To utilize all the features of Redis for vector database use cases like
this, you can now do the following to pass in index attribute modifiers
like changing the indexing algorithm to HNSW.

```python
vector_schema = {
    "algorithm": "HNSW"
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    vector_schema=vector_schema
)

```

A more complex example may look like

```python
vector_schema = {
    "algorithm": "HNSW",
    "ef_construction": 200,
    "ef_runtime": 20
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    vector_schema=vector_schema
)
```

All names correspond to the arguments you would set if using Redis-py or
RedisVL. (put in doc link later)


### Better Querying

Both vector queries and Range (limit) queries are now available and
metadata is returned by default. The outputs are shown.

```python
>>> query = "foo"
>>> results = rds.similarity_search(query, k=1)
>>> print(results)
[Document(page_content='foo', metadata={'user': 'derrick', 'job': 'doctor', 'credit_score': 'low', 'age': '14', 'id': 'doc:users:657a47d7db8b447e88598b83da879b9d', 'score': '7.15255737305e-07'})]

>>> results = rds.similarity_search_with_score(query, k=1, return_metadata=False)
>>> print(results) # no metadata, but with scores
[(Document(page_content='foo', metadata={}), 7.15255737305e-07)]

>>> results = rds.similarity_search_limit_score(query, k=6, score_threshold=0.0001)
>>> print(len(results)) # range query (only above threshold even if k is higher)
4
```

### Custom metadata filtering

A big advantage of Redis in this space is being able to do filtering on
data stored alongside the vector itself. With the example above, the
following is now possible in langchain. The equivalence operators are
overridden to describe a new expression language that mimic that of
[redisvl](redisvl.com). This allows for arbitrarily long sequences of
filters that resemble SQL commands that can be used directly with vector
queries and range queries.

There are two interfaces by which to do so and both are shown. 

```python

>>> from langchain.vectorstores.redis import RedisFilter, RedisNum, RedisText

>>> age_filter = RedisFilter.num("age") > 18
>>> age_filter = RedisNum("age") > 18 # equivalent
>>> results = rds.similarity_search(query, filter=age_filter)
>>> print(len(results))
3

>>> job_filter = RedisFilter.text("job") == "engineer" 
>>> job_filter = RedisText("job") == "engineer" # equivalent
>>> results = rds.similarity_search(query, filter=job_filter)
>>> print(len(results))
2

# fuzzy match text search
>>> job_filter = RedisFilter.text("job") % "eng*"
>>> results = rds.similarity_search(query, filter=job_filter)
>>> print(len(results))
2


# combined filters (AND)
>>> combined = age_filter & job_filter
>>> results = rds.similarity_search(query, filter=combined)
>>> print(len(results))
1

# combined filters (OR)
>>> combined = age_filter | job_filter
>>> results = rds.similarity_search(query, filter=combined)
>>> print(len(results))
4
```

All the above filter results can be checked against the data above.


### Other

  - Issue: #3967 
  - Dependencies: No added dependencies
  - Tag maintainer: @hwchase17 @baskaryan @rlancemartin 
  - Twitter handle: @sampartee

---------

Co-authored-by: Naresh Rangan <naresh.rangan0@walmart.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 17:22:50 -07:00
Anish Shah
fa0b8f3368 fix broken wandb link in debugging page (#9771)
- Description: Fix broken hyperlink in debugging page
2023-08-25 15:34:08 -07:00
Monami Sharma
12a373810c Fixing broken links to Moderation and Constitutional chain (#9768)
- Description: Fixing broken links for Moderation and Constitutional
chain
  - Issue: N/A
  - Twitter handle: MonamiSharma
2023-08-25 15:19:32 -07:00
nikhilkjha
d57d08fd01 Initial commit for comprehend moderator (#9665)
This PR implements a custom chain that wraps Amazon Comprehend API
calls. The custom chain is aimed to be used with LLM chains to provide
moderation capability that let’s you detect and redact PII, Toxic and
Intent content in the LLM prompt, or the LLM response. The
implementation accepts a configuration object to control what checks
will be performed on a LLM prompt and can be used in a variety of setups
using the LangChain expression language to not only detect the
configured info in chains, but also other constructs such as a
retriever.
The included sample notebook goes over the different configuration
options and how to use it with other chains.

###  Usage sample
```python
from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters

moderation_config = { 
        "filters":[ 
                BaseModerationFilters.PII, 
                BaseModerationFilters.TOXICITY,
                BaseModerationFilters.INTENT
        ],
        "pii":{ 
                "action": BaseModerationActions.ALLOW, 
                "threshold":0.5, 
                "labels":["SSN"],
                "mask_character": "X"
        },
        "toxicity":{ 
                "action": BaseModerationActions.STOP, 
                "threshold":0.5
        },
        "intent":{ 
                "action": BaseModerationActions.STOP, 
                "threshold":0.5
        }
}

comp_moderation_with_config = AmazonComprehendModerationChain(
    moderation_config=moderation_config, #specify the configuration
    client=comprehend_client,            #optionally pass the Boto3 Client
    verbose=True
)

template = """Question: {question}

Answer:"""

prompt = PromptTemplate(template=template, input_variables=["question"])

responses = [
    "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", 
    "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here."
]
llm = FakeListLLM(responses=responses)

llm_chain = LLMChain(prompt=prompt, llm=llm)

chain = ( 
    prompt 
    | comp_moderation_with_config 
    | {llm_chain.input_keys[0]: lambda x: x['output'] }  
    | llm_chain 
    | { "input": lambda x: x['text'] } 
    | comp_moderation_with_config 
)

response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"})

print(response['output'])


```
### Output
```
> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii validation...
Found PII content..stopping..
The prompt contains PII entities and cannot be processed
```

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Anjan Biswas <anjanavb@amazon.com>
Co-authored-by: Jha <nikjha@amazon.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 15:11:27 -07:00
Lance Martin
4339d21cf1 Code LLaMA in code understanding use case (#9779)
Update Code Understanding use case doc w/ Code-llama.
2023-08-25 14:24:38 -07:00
William FH
1960ac8d25 token chunks (#9739)
Co-authored-by: Andrew <abatutin@gmail.com>
2023-08-25 12:52:07 -07:00
Lance Martin
2ab04a4e32 Update agent docs, move to use-case sub-directory (#9344)
Re-structure and add new agent page
2023-08-25 11:28:55 -07:00
Lance Martin
985873c497 Update RAG use case (move to ntbk) (#9340) 2023-08-25 11:27:27 -07:00
Harrison Chase
709a67d9bf multivector notebook (#9740) 2023-08-25 07:07:27 -07:00
Bagatur
9731ce5a40 bump 273 (#9751) 2023-08-25 03:05:04 -07:00
Fabrizio Ruocco
cacaf487c3 Azure Cognitive Search - update sdk b8, mod user agent, search with scores (#9191)
Description: Update Azure Cognitive Search SDK to version b8 (breaking
change)
Customizable User Agent.
Implemented Similarity search with scores 

@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 02:34:09 -07:00
Sergey Kozlov
135cb86215 Fix QuestionListOutputParser (#9738)
This PR fixes `QuestionListOutputParser` text splitting.

`QuestionListOutputParser` incorrectly splits numbered list text into
lines. If text doesn't end with `\n` , the regex doesn't capture the
last item. So it always returns `n - 1` items, and
`WebResearchRetriever.llm_chain` generates less queries than requested
in the search prompt.

How to reproduce:

```python
from langchain.retrievers.web_research import QuestionListOutputParser

parser = QuestionListOutputParser()

good = parser.parse(
    """1. This is line one.
    2. This is line two.
    """  # <-- !
)

bad = parser.parse(
    """1. This is line one.
    2. This is line two."""    # <-- No new line.
)

assert good.lines == ['1. This is line one.\n', '2. This is line two.\n'], good.lines
assert bad.lines == ['1. This is line one.\n', '2. This is line two.'], bad.lines
```

NOTE: Last item will not contain a line break but this seems ok because
the items are stripped in the
`WebResearchRetriever.clean_search_query()`.
2023-08-25 01:47:17 -07:00
Jurik-001
d04fe0d3ea remove Value error "pyspark is not installed. Please install it with `pip i… (#9723)
Description: You cannot execute spark_sql with versions prior to 3.4 due
to the introduction of pyspark.errors in version 3.4.
And if you are below you get 3.4 "pyspark is not installed. Please
install it with pip nstall pyspark" which is not helpful. Also if you
not have pyspark installed you get already the error in init. I would
return all errors. But if you have a different idea feel free to
comment.

Issue: None
Dependencies: None
Maintainer:

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-24 22:18:55 -07:00
Margaret Qian
30151c99c7 Update Mosaic endpoint input/output api (#7391)
As noted in prior PRs (https://github.com/hwchase17/langchain/pull/6060,
https://github.com/hwchase17/langchain/pull/7348), the input/output
format has changed a few times as we've stabilized our inference API.
This PR updates the API to the latest stable version as indicated in our
docs: https://docs.mosaicml.com/en/latest/inference.html

The input format looks like this:

`{"inputs": [<prompt>]}
`

The output format looks like this:
`
{"outputs": [<output_text>]}
`
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-24 22:13:17 -07:00
Harrison Chase
ade482c17e add twitter chat loader doc (#9737) 2023-08-24 21:55:22 -07:00
Leonid Kuligin
87da56fb1e Added a pdf parser based on DocAI (#9579)
#9578

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-24 21:44:49 -07:00
Naama Magami
adb21782b8 Add del vector pgvector + adding modification time to confluence and google drive docs (#9604)
Description:
- adding implementation of delete for pgvector
- adding modification time in docs metadata for confluence and google
drive.

Issue:
https://github.com/langchain-ai/langchain/issues/9312

Tag maintainer: @baskaryan, @eyurtsev, @hwchase17, @rlancemartin.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-24 21:09:30 -07:00
Erick Friis
3e5cda3405 Hub Push Ergonomics (#9731)
Improves the hub pushing experience, returning a url instead of just a
commit hash.

Requires hub sdk 0.1.8
2023-08-24 17:41:54 -07:00
Tudor Golubenco
dc30edf51c Xata as a chat message memory store (#9719)
This adds Xata as a memory store also to the python version of
LangChain, similar to the [one for
LangChain.js](https://github.com/hwchase17/langchainjs/pull/2217).

I have added a Jupyter Notebook with a simple and a more complex example
using an agent.

To run the integration test, you need to execute something like:

```
XATA_API_KEY='xau_...' XATA_DB_URL="https://demo-uni3q8.eu-west-1.xata.sh/db/langchain"  poetry run pytest tests/integration_tests/memory/test_xata.py
```

Where `langchain` is the database you create in Xata.
2023-08-24 17:37:46 -07:00
William FH
dff00ea91e Chat Loaders (#9708)
Still working out interface/notebooks + need discord data dump to test
out things other than copy+paste

Update:
- Going to remove the 'user_id' arg in the loaders themselves and just
standardize on putting the "sender" arg in the extra kwargs. Then can
provide a utility function to map these to ai and human messages
- Going to move the discord one into just a notebook since I don't have
a good dump to test on and copy+paste maybe isn't the greatest thing to
support in v0
- Need to do more testing on slack since it seems the dump only includes
channels and NOT 1 on 1 convos
-

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-24 17:23:27 -07:00
Bagatur
0f48e6c36e fix integration deps (#9722) 2023-08-24 15:06:53 -07:00
Bagatur
a0800c9f15 rm google api core and add more dependency testing (#9721) 2023-08-24 14:20:58 -07:00
Andrew White
2bcf581a23 Added search parameters to qdrant max_marginal_relevance_search (#7745)
Adds the qdrant search filter/params to the
`max_marginal_relevance_search` method, which is present on others. I
did not add `offset` for pagination, because it's behavior would be
ambiguous in this setting (since we fetch extra and down-select).

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Kacper Łukawski <lukawski.kacper@gmail.com>
2023-08-24 14:11:30 -07:00
Bagatur
22b6549a34 sort api classes (#9710) 2023-08-24 13:53:50 -07:00
Tomaz Bratanic
dacf96895a Add the option to use separate LLMs for GraphCypherQA chain (#9689)
The Graph Chains are different in the way that it uses two LLMChains
instead of one like the retrievalQA chains. Therefore, sometimes you
want to use different LLM to generate the database query and to generate
the final answer.

This feature would make it more convenient to use different LLMs in the
same chain.

I have also renamed the Graph DB QA Chain to Neo4j DB QA Chain in the
documentation only as it is used only for Neo4j. The naming was
ambigious as it was the first graphQA chain added and wasn't sure how do
you want to spin it.
2023-08-24 11:50:38 -07:00
Lance Martin
c37be7f5fb Add Code LLaMA to code QA use case (#9713)
Use [Ollama integration](https://ollama.ai/blog/run-code-llama-locally).
2023-08-24 11:03:35 -07:00
Leonid Ganeline
cf792891f1 📖 docs: compact api reference (#8651)
Updated design of the "API Reference" text
Here is an example of the current format:

![image](https://github.com/langchain-ai/langchain/assets/2256422/8727f2ba-1b69-497f-aa07-07f939b6da3b)

It changed to
`langchain.retrievers.ElasticSearchBM25Retriever` format. The same
format as it is in the API Reference Toc.

It also resembles code: 
`from langchain.retrievers import ElasticSearchBM25Retriever` (namespace
THEN class_name)

Current format is
`ElasticSearchBM25Retriever from langchain.retrievers` (class_name THEN
namespace)

This change is in line with other formats and improves readability.

 @baskaryan
2023-08-24 09:01:52 -07:00
Bagatur
f5ea725796 bump 272 (#9704) 2023-08-24 07:46:15 -07:00
Patrick Loeber
6bedfdf25a Fix docs for AssemblyAIAudioTranscriptLoader (shorter import path) (#9687)
Uses the shorter import path

`from langchain.document_loaders import` instead of the full path
`from langchain.document_loaders.assemblyai`

Applies those changes to the docs and the unit test.

See #9667 that adds this new loader.
2023-08-24 07:24:53 -07:00
了空
7cf5c582d2 Added a link to the dependencies document (#9703) 2023-08-24 07:23:48 -07:00
Nuno Campos
9666e752b1 Do not share executors between parent and child tasks (#9701)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-24 16:17:07 +02:00
Nuno Campos
78ffcdd9a9 Lint 2023-08-24 16:09:38 +02:00
Nuno Campos
20d2c0571c Do not share executors between parent and child tasks 2023-08-24 16:05:10 +02:00
Harrison Chase
9963b32e59 Harrison/multi vector (#9700) 2023-08-24 06:42:42 -07:00
Leonid Ganeline
b048236c1a 📖 docs: integrations/agent_toolkits (#9333)
Note: There are no changes in the file names!

- The group name on the main navbar changed: `Agent toolkits` -> `Agents
& Toolkits`. Examples here are the mix of the Agent and Toolkit examples
because Agents and Toolkits in examples are always used together.
- Titles changed: removed "Agent" and "Toolkit" suffixes. The reason is
the same.
- Formatting: mostly cleaning the header structure, so it could be
better on the right-side navbar.

Main navbar is looking much cleaner now.
2023-08-23 23:17:47 -07:00
Leonid Ganeline
c19888c12c docstrings: vectorstores consistency (#9349)
 
- updated the top-level descriptions to a consistent format;
- changed several `ValueError` to `ImportError` in the import cases;
- changed the format of several internal functions from "name" to
"_name". So, these functions are not shown in the Top-level API
Reference page (with lists of classes/functions)
2023-08-23 23:17:05 -07:00
Kim Minjong
d0ff0db698 Update ChatOpenAI._stream to respect finish_reason (#9672)
Currently, ChatOpenAI._stream does not reflect finish_reason to
generation_info. Change it to reflect that.

Same patch as https://github.com/langchain-ai/langchain/pull/9431 , but
also applies to _stream.
2023-08-23 22:58:14 -07:00
Patrick Loeber
5990651070 Add new document_loader: AssemblyAIAudioTranscriptLoader (#9667)
This PR adds a new document loader `AssemblyAIAudioTranscriptLoader`
that allows to transcribe audio files with the [AssemblyAI
API](https://www.assemblyai.com) and loads the transcribed text into
documents.

- Add new document_loader with class `AssemblyAIAudioTranscriptLoader`
- Add optional dependency `assemblyai`
- Add unit tests (using a Mock client)
- Add docs notebook

This is the equivalent to the JS integration already available in
LangChain.js. See the [LangChain JS docs AssemblyAI
page](https://js.langchain.com/docs/modules/data_connection/document_loaders/integrations/web_loaders/assemblyai_audio_transcription).

At its simplest, you can use the loader to get a transcript back from an
audio file like this:

```python
from langchain.document_loaders.assemblyai import AssemblyAIAudioTranscriptLoader

loader =  AssemblyAIAudioTranscriptLoader(file_path="./testfile.mp3")
docs = loader.load()
```

To use it, it needs the `assemblyai` python package installed, and the
environment variable `ASSEMBLYAI_API_KEY` set with your API key.
Alternatively, the API key can also be passed as an argument.

Twitter handles to shout out if so kindly 🙇
[@AssemblyAI](https://twitter.com/AssemblyAI) and
[@patloeber](https://twitter.com/patloeber)

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-23 22:51:19 -07:00
seamusp
25f2c82ae8 docs:misc fixes (#9671)
Improve internal consistency in LangChain documentation
- Change occurrences of eg and eg. to e.g.
- Fix headers containing unnecessary capital letters.
- Change instances of "few shot" to "few-shot".
- Add periods to end of sentences where missing.
- Minor spelling and grammar fixes.
2023-08-23 22:36:54 -07:00
Nuno Campos
6283f3b63c Resolve circular imports in runnables (#9675)
These are about to cause circular imports.
2023-08-24 06:05:51 +01:00
Eugene Yurtsev
9e1dbd4b49 x 2023-08-23 22:51:49 -04:00
Eugene Yurtsev
b88dfcb42a Add indexing support (#9614)
This PR introduces a persistence layer to help with indexing workflows
into
vectostores.

The indexing code helps users to:

1. Avoid writing duplicated content into the vectostore
2. Avoid over-writing content if it's unchanged

Importantly, this keeps on working even if the content being written is
derived
via a set of transformations from some source content (e.g., indexing
children
documents that were derived from parent documents by chunking.)

The two main components are:

1. Persistence layer that keeps track of which keys were updated and
when.
Keeping track of the timestamp of updates, allows to clean up old
content
   safely, and with minimal complexity.
2. HashedDocument which is used to hash the contents (including
metadata) of
   the documents. We rely on the hashes for identifying duplicates.


The indexing code works with **ANY** document loader. To add
transformations
to the documents, users for now can add a custom document loader
that composes an existing loader together with document transformers.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 21:41:38 -04:00
刘 方瑞
c215481531 Update default index type and metric type for MyScale vector store (#9353)
We update the default index type from `IVFFLAT` to `MSTG`, a new vector
type developed by MyScale.
2023-08-23 18:26:29 -07:00
Joshua Sundance Bailey
a9c86774da Anthropic: Allow the use of kwargs consistent with ChatOpenAI. (#9515)
- Description: ~~Creates a new root_validator in `_AnthropicCommon` that
allows the use of `model_name` and `max_tokens` keyword arguments.~~
Adds pydantic field aliases to support `model_name` and `max_tokens` as
keyword arguments. Ultimately, this makes `ChatAnthropic` more
consistent with `ChatOpenAI`, making the two classes more
interchangeable for the developer.
  - Issue: https://github.com/langchain-ai/langchain/issues/9510

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 18:23:21 -07:00
Lakshay Kansal
a8c916955f Updates to Nomic Atlas and GPT4All documentation (#9414)
Description: Updates for Nomic AI Atlas and GPT4All integrations
documentation.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 17:49:44 -07:00
Bagatur
342087bdfa fix integration test imports (#9669) 2023-08-23 16:47:01 -07:00
Keras Conv3d
cbaea8d63b tair fix distance_type error, and add hybrid search (#9531)
- fix: distance_type error, 
- feature: Tair add hybrid search

---------

Co-authored-by: thw <hanwen.thw@alibaba-inc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 16:38:31 -07:00
Eugene Yurtsev
cd81e8a8f2 Add exclude to GenericLoader.from_file_system (#9539)
support exclude param in GenericLoader.from_filesystem

---------

Co-authored-by: Kyle Pancamo <50267605+KylePancamo@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 16:09:10 -07:00
Jacob Lee
278ef0bdcf Adds ChatOllama (#9628)
@rlancemartin

---------

Co-authored-by: Adilkhan Sarsen <54854336+adolkhan@users.noreply.github.com>
Co-authored-by: Kim Minjong <make.dirty.code@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-23 13:02:26 -07:00
Nuno Campos
fa05e18278 Nc/runnable lambda recurse (#9390)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-23 20:07:08 +01:00
Nuno Campos
20ce283fa7 Format 2023-08-23 20:03:35 +01:00
Nuno Campos
6424b3cde0 Add another test 2023-08-23 20:02:35 +01:00
William FH
da18e177f1 Update libs/langchain/langchain/schema/runnable/base.py
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-23 20:00:16 +01:00
Nuno Campos
c326751085 Lint 2023-08-23 20:00:16 +01:00
Nuno Campos
6d19709b65 RunnableLambda, if func returns a Runnable, run it 2023-08-23 20:00:16 +01:00
Nuno Campos
677da6a0fd Add support for async funcs in RunnableSequence 2023-08-23 19:54:48 +01:00
Nuno Campos
64a958c85d Runnables: Add .map() method (#9445)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-23 19:54:12 +01:00
Nuno Campos
1751fe114d Add one more test 2023-08-23 19:52:13 +01:00
Nuno Campos
882b97cfd2 Lint 2023-08-23 19:50:20 +01:00
Nuno Campos
3ddabe8b2c Code review 2023-08-23 19:48:33 +01:00
Nuno Campos
fdcd50aab4 Extend test 2023-08-23 19:48:33 +01:00
Nuno Campos
9777c2801d Update method and docstring 2023-08-23 19:48:33 +01:00
Nuno Campos
93bbf67afc WIP
Add test

Add test

Lint
2023-08-23 19:48:33 +01:00
Nuno Campos
c184be5511 Use a shared executor for all parallel calls 2023-08-23 19:48:33 +01:00
Nuno Campos
dacd5dcba8 Runnables: Use a shared executor for all parallel calls (sync) (#9443)
Async equivalent coming in future PR

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-23 19:47:35 +01:00
Bagatur
80dd162e0d mv embedding cache docs (#9664) 2023-08-23 11:46:04 -07:00
Nuno Campos
db4b256a28 Add error for batch of 0 2023-08-23 19:39:46 +01:00
Nuno Campos
3458489936 Lint 2023-08-23 19:39:46 +01:00
Nuno Campos
e420bf22b6 Lint 2023-08-23 19:39:46 +01:00
Nuno Campos
cc83f54694 L:int 2023-08-23 19:39:46 +01:00
Nuno Campos
d414d47c78 Use a shared executor for all parallel calls 2023-08-23 19:39:46 +01:00
Bagatur
a40c12bb88 Update the nlpcloud connector after some changes on the NLP Cloud API (#9586)
- Description: remove some text generation deprecated parameters and
update the embeddings doc,
- Tag maintainer: @rlancemartin
2023-08-23 11:35:08 -07:00
Bagatur
d8e2dd4c89 mv 2023-08-23 11:30:44 -07:00
Bagatur
e2e582f1f6 Fixed source key name for docugami loader (#8598)
The Docugami loader was not returning the source metadata key. This was
triggering this exception when used with retrievers, per
https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/schema/prompt_template.py#L193C1-L195C41

The fix is simple and just updates the metadata key name for the
document each chunk is sourced from, from "name" to "source" as
expected.

I tested by running the python notebook that has an end to end scenario
in it.

Tagging DataLoader maintainers @rlancemartin @eyurtsev
2023-08-23 11:24:55 -07:00
karynzv
5508baf1eb Add CrateDB prompt (#9657)
Adds a prompt template for the CrateDB SQL dialect.
2023-08-23 13:33:37 -04:00
Bagatur
0154958243 Runnable locals (#9662)
Add Runnables that manipulate state local to a RunnableSequence
2023-08-23 10:30:03 -07:00
Bagatur
a8e8a31b41 Merge branch 'master' into bagatur/locals_in_config 2023-08-23 10:26:11 -07:00
Bagatur
ef87affd4d Revert "Locals in config" (#9661)
Reverts langchain-ai/langchain#9007
2023-08-23 10:24:59 -07:00
Bagatur
1c64db575c Runnable locals(#9007)
Adds Runnables that can manipulate variables local to a RunnableSequence run

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-08-23 10:24:27 -07:00
Bagatur
ef2500584c fmt 2023-08-23 10:15:45 -07:00
Zizhong Zhang
8a03836160 docs: fix PromptGuard docs (#9659)
Fix PromptGuard docs. Noticed several trivial issues on the docs when
integrating the new class.
cc @baskaryan
2023-08-23 10:04:53 -07:00
Yong woo Song
f0ae10a20e Fix typo in tigris (#9637)
The link has a **typo** in [tigirs
docs](https://python.langchain.com/docs/integrations/providers/tigris),
so I couldn't access it. So, I have corrected it.
Thanks! ☺️
2023-08-23 07:15:18 -07:00
Guy Korland
39a5d02225 Cleanup of ruff warnings use isinstance() instead of type() (#9655)
Minor cosmetic PR just cleanup of `ruff` warnings use `isinstance()`
instead of `type()`
2023-08-23 07:14:31 -07:00
Junlin Zhou
5b9bdcac1b docs: fix link url (#9643)
This pull request corrects the URL links in the Async API documentation
to align with the updated project layout. The links had not been updated
despite the changes in layout.
2023-08-23 07:05:02 -07:00
Aashish Saini
eb92da84a1 Fixings grammatical errors in Doc Files (#9647)
Fixing some typos and grammatical error is doc file.

@eyurtsev , @baskaryan 

Thanks

---------

Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
Co-authored-by: Ishita Chauhan <136303787+IshitaChauhanShortHillsAI@users.noreply.github.com>
2023-08-23 07:04:29 -07:00
Joseph McElroy
2a06e7b216 ElasticsearchStore: improve error logging for adding documents (#9648)
Not obvious what the error is when you cannot index. This pr adds the
ability to log the first errors reason, to help the user diagnose the
issue.

Also added some more documentation for when you want to use the
vectorstore with an embedding model deployed in elasticsearch.

Credit: @elastic and @phoey1
2023-08-23 07:04:09 -07:00
Julien Salinas
f1072cc31f Merge branch 'master' into master 2023-08-23 14:42:40 +02:00
Jun Liu
b379c5f9c8 Fixed the error on ConfluenceLoader when content_format=VIEW and keep_markdown_format=True (#9633)
- Description: a description of the change

when I set `content_format=ContentFormat.VIEW` and
`keep_markdown_format=True` on ConfluenceLoader, it shows the following
error:
```
langchain/document_loaders/confluence.py", line 459, in process_page
    page["body"]["storage"]["value"], heading_style="ATX"
KeyError: 'storage'
```
The reason is because the content format was set to `view` but it was
still trying to get the content from `page["body"]["storage"]["value"]`.

Also added the other content formats which are supported by Atlassian
API

https://stackoverflow.com/questions/34353955/confluence-rest-api-expanding-page-body-when-retrieving-page-by-title/34363386#34363386

  - Issue: the issue # it fixes (if applicable),

Not applicable.

  - Dependencies: any dependencies required for this change,

Added optional dependency `markdownify` if anyone wants to extract in
markdown format.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-22 21:00:15 -07:00
Leonid Ganeline
e1f4f9ac3e docs: integrations/providers (#9631)
Added missed pages for `integrations/providers` from `vectorstores`.
Updated several `vectorstores` notebooks.
2023-08-22 20:28:11 -07:00
Gabriel Fu
b2d9970fc1 Allow specifying dtype in langchain.llms.VLLM (#9635)
- Description: add `dtype` argument for VLLM 
  - Issue: #9593 
  - Dependencies: none
  - Tag maintainer: @hwchase17, @baskaryan
2023-08-22 20:21:56 -07:00
anifort
900c1f3e8d Add support for structured data sources with google enterprise search (#9037)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: Added the capability to handles structured data from
google enterprise search,
- Issue: Retriever failed when underline search engine was integrated
with structured data,
  - Dependencies: google-api-core
  - Tag maintainer: @jarokaz
  - Twitter handle: anifort

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Christos Aniftos <aniftos@google.com>
Co-authored-by: Holt Skinner <13262395+holtskinner@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-22 23:18:10 -04:00
Harrison Chase
02545a54b3 python repl improvement for csv agent (#9618) 2023-08-22 17:06:18 -07:00
Jacob Lee
632a83c48e Update ChatOpenAI docs with fine-tuning example (#9632) 2023-08-22 16:56:53 -07:00
Erick Friis
fc64e6349e Hub stub updates (#9577)
Updates the hub stubs to not fail when no api key is found. For
supporting singleton tenants and default values from sdk 0.1.6.

Also adds the ability to define is_public and description for backup
repo creation on push.
2023-08-22 16:05:41 -07:00
Kim Minjong
ca8232a3c1 Update BaseChatModel.astream to respect generation_info (#9430)
Currently, generation_info is not respected by only reflecting messages
in chunks. Change it to add generations so that generation chunks are
merged properly.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-22 15:18:24 -07:00
Adilkhan Sarsen
f29312eb84 Fixing deeplake.mdx file as it uses outdates links (#9602)
deeplake.mdx was using old links and was not working properly, in the PR
we fix the issue.
2023-08-22 15:12:24 -07:00
Predrag Gruevski
c06f34fa35 Use new Python setup approach for scheduled tests. (#9626)
Using the same new unified Python setup as the regular tests and the
lint job, as set up in #9625.
2023-08-22 16:07:53 -04:00
Predrag Gruevski
83986ea98a Cache poetry install + unify Python/Poetry setup for lint and test jobs. (#9625)
With this PR:
- All lint and test jobs use the exact same Python + Poetry installation
approach, instead of lints doing it one way and tests doing it another
way.
- The Poetry installation itself is cached, which saves ~15s per run.
- We no longer pass shell commands as workflow arguments to a workflow
that just runs them in a shell. This makes our actions more resilient to
shell code injection.

If y'all like this approach, I can modify the scheduled tests workflow
and the release workflow to use this too.
2023-08-22 15:59:22 -04:00
Bagatur
81163e3c0c parent retriever nit (#9570)
if ids are nullable seems like they should have default val None.
mirrors VectorStore interface as well. cc @mcantillon21 @jacoblee93
2023-08-22 14:58:16 -04:00
seamusp
f3ba9ce7f4 Remove -E all from installation instructions (#9573)
Update installation instructions to only install test dependencies rather than all dependencies.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-22 14:57:58 -04:00
Myeongseop Kim
f1e602996a import tqdm.auto instead of tqdm tqdm for OpenAIEmbeddings (#9584)
- Description: current code does not work very well on jupyter notebook,
so I changed the code so that it imports `tqdm.auto` instead.
  - Issue: #9582 
  - Dependencies: N/A
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: N/A

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-22 14:54:07 -04:00
Predrag Gruevski
35812d0096 Set up concurrency groups and workflow cancelation in CI. (#9564)
If another push to the same PR or branch happens while its CI is still
running, cancel the earlier run in favor of the next run.

There's no point in testing an outdated version of the code. GitHub only
allows a limited number of job runners to be active at the same time, so
it's better to cancel pointless jobs early so that more useful jobs can
run sooner.
2023-08-22 14:21:26 -04:00
Predrag Gruevski
d564ec944c poetry lock the experimental package. (#9478) 2023-08-22 14:09:35 -04:00
Predrag Gruevski
65e893b9cd poetry lock on langchain. (#9476) 2023-08-22 14:09:23 -04:00
Predrag Gruevski
64a54d8ad8 poetry lock the top-level environment. (#9477) 2023-08-22 14:09:11 -04:00
Predrag Gruevski
3c7cc4d440 Test experimental package with langchain on master branch. (#9621)
It's possible that langchain-experimental works fine with the latest
*published* langchain, but is broken with the langchain on `master`.
Unfortunately, you can see this is currently the case — this is why this
PR also includes a minor fix for the `langchain` package itself.

We want to catch situations like that *before* releasing a new
langchain, hence this test.
2023-08-22 13:35:21 -04:00
Eugene Yurtsev
3408810748 Add batch util (#9620)
Add `batch` utility to langchain
2023-08-22 12:31:18 -04:00
Predrag Gruevski
acb54d8b9d Reduce cache timeouts to ensure faster builds on timeout. (#9619)
The current timeouts are too long, and mean that if the GitHub cache
decides to act up, jobs get bogged down for 15min at a time. This has
happened 2-3 times already this week -- a tiny fraction of our total
workflows but really annoying when it happens to you. We can do better.

Installing deps on cache miss takes about ~4min, so it's not worth
waiting more than 4min for the deps cache. The black and mypy caches
save 1 and 2min, respectively, so wait only up to that long to download
them.
2023-08-22 12:11:38 -04:00
Predrag Gruevski
a1e89aa8d5 Explicitly add the contents: write permission for publishing releases. (#9617) 2023-08-22 08:38:18 -07:00
Predrag Gruevski
c75e1aa5ed Eliminate special-casing from test CI workflows. (#9562)
The previous approach was relying on `_test.yml` taking an input
parameter, and then doing almost completely orthogonal things for each
parameter value. I've separated out each of those test situations as its
own job or workflow file, which eliminated all the special-casing and,
in my opinion, improved maintainability by making it much more obvious
what code runs when.
2023-08-22 11:36:52 -04:00
Bagatur
2b663089b5 bump 271 (#9615) 2023-08-22 08:10:22 -07:00
klae01
b868ef23bc Add AINetwork blockchain toolkit integration (#9527)
# Description
This PR introduces a new toolkit for interacting with the AINetwork
blockchain. The toolkit provides a set of tools for performing various
operations on the AINetwork blockchain, such as transferring AIN,
reading and writing values to the blockchain database, managing apps,
setting rules and owners.

# Dependencies
[ain-py](https://github.com/ainblockchain/ain-py) >= 1.0.2

# Misc
The example notebook
(langchain/docs/extras/integrations/toolkits/ainetwork.ipynb) is in the
PR

---------

Co-authored-by: kriii <kriii@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-22 08:03:33 -07:00
Bagatur
e99ef12cb1 Bagatur/litellm model name (#9613)
Co-authored-by: ishaan-jaff <ishaanjaffer0324@gmail.com>
2023-08-22 07:44:00 -07:00
Harrison Chase
1720e99397 add variables for field names (#9563) 2023-08-22 07:43:21 -07:00
Anthony Mahanna
dfb9ff1079 bugfix: ArangoDB Empty Schema Case (#9574)
- Introduces a conditional in `ArangoGraph.generate_schema()` to exclude
empty ArangoDB Collections from the schema
- Add empty collection test case

Issue: N/A
Dependencies: None
2023-08-22 07:41:06 -07:00
Vanessa Arndorfer
1ea2f9adf4 Document AzureML Deployment Example (#9571)
Description: Link an example of deploying a Langchain app to an AzureML
online endpoint to the deployments documentation page.

Co-authored-by: Vanessa Arndorfer <vaarndor@microsoft.com>
2023-08-22 07:36:47 -07:00
Philippe PRADOS
d4c49b16e4 Fix ChatMessageHistory (#9594)
The initialization of the array of ChatMessageHistory is buggy.
The list is shared with all instances.
2023-08-22 07:36:36 -07:00
toddkim95
fba29f203a Add to support polars (#9610)
### Description
Polars is a DataFrame interface on top of an OLAP Query Engine
implemented in Rust.
Polars is faster to read than pandas, so I'm looking forward to seeing
it added to the document loader.

### Dependencies
polars (https://pola-rs.github.io/polars-book/user-guide/)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-22 07:36:24 -07:00
Aashish Saini
3c4f32c8b8 Replacing Exception type from ValueError to ImportError (#9588)
I have restructured the code to ensure uniform handling of ImportError.
In place of previously used ValueError, I've adopted the standard
practice of raising ImportError with explanatory messages. This
modification enhances code readability and clarifies that any problems
stem from module importation.

@eyurtsev , @baskaryan 

Thanks
2023-08-22 07:34:05 -07:00
Julien Salinas
4d0b7bb8e1 Remove Dolphin and GPT-J from the embeddings docs.
These models are not proposed anymore.
2023-08-22 09:28:22 +02:00
Julien Salinas
033b874701 Remove some deprecated text generation parameters. 2023-08-22 09:26:37 +02:00
Bagatur
4e7e6bfe0a revert 2023-08-21 18:01:49 -07:00
Bagatur
a9bf409a09 param 2023-08-21 17:37:07 -07:00
Bagatur
fa478638a9 Merge branch 'master' into bagatur/locals_in_config 2023-08-21 17:31:39 -07:00
Bagatur
182b059bf4 param 2023-08-21 17:31:38 -07:00
Jeremy Suriel
0fa4516ce4 Fix typo (#9565)
Corrected a minor documentation typo here:
https://python.langchain.com/docs/modules/model_io/models/llms/#generate-batch-calls-richer-outputs
2023-08-21 15:54:38 -07:00
Bagatur
04f2d69b83 improve confluence doc loader param validation (#9568) 2023-08-21 15:02:36 -07:00
Jacob Lee
0fea987dd2 Add missing param to parent document retriever notebook (#9569) 2023-08-21 15:02:12 -07:00
Zizhong Zhang
00eff8c4a7 feat: Add PromptGuard integration (#9481)
Add PromptGuard integration
-------
There are two approaches to integrate PromptGuard with a LangChain
application.

1. PromptGuardLLMWrapper
2. functions that can be used in LangChain expression.

-----
- Dependencies
`promptguard` python package, which is a runtime requirement if you'd
try out the demo.

- @baskaryan @hwchase17 Thanks for the ideas and suggestions along the
development process.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-21 14:59:36 -07:00
Predrag Gruevski
6c308aabae Use the GitHub-suggested safer pattern for shell interpolation. (#9567)
Using `${{ }}` to construct shell commands is risky, since the `${{ }}`
interpolation runs first and ignores shell quoting rules. This means
that shell commands that look safely quoted, like `echo "${{
github.event.issue.title }}"`, are actually vulnerable to shell
injection.

More details here:
https://github.blog/2023-08-09-four-tips-to-keep-your-github-actions-workflows-secure/
2023-08-21 17:59:10 -04:00
Oleksandr Ichenskyi
8bc1a3dca8 docs: Add memgraph notebook (#9448)
- Description: added graph_memgraph_qa.ipynb which shows how to use LLMs
to provide a natural language interface to a Memgraph database using
[MemgraphGraph](https://github.com/langchain-ai/langchain/pull/8591)
class.
- Dependencies: given that the notebook utilizes the MemgraphGraph
class, it relies on both this class and several Python packages that are
installed in the notebook using pip (langchain, openai, neo4j,
gqlalchemy). The notebook is dependent on having a functional Memgraph
instance running, as it requires this instance to establish a
connection.
2023-08-21 13:45:04 -07:00
Sathindu
652c542b2f fix: Imports for the ConfluenceLoader:process_page (#9432)
### Description
When we're loading documents using `ConfluenceLoader`:`load` function
and, if both `include_comments=True` and `keep_markdown_format=True`,
we're getting an error saying `NameError: free variable 'BeautifulSoup'
referenced before assignment in enclosing scope`.
    
    loader = ConfluenceLoader(url="URI", token="TOKEN")
    documents = loader.load(
        space_key="SPACE", 
        include_comments=True, 
        keep_markdown_format=True, 
    )

This happens because previous imports only consider the
`keep_markdown_format` parameter, however to include the comments, it's
using `BeautifulSoup`

Now it's fixed to handle all four scenarios considering both
`include_comments` and `keep_markdown_format`.

### Twitter
`@SathinduGA`

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-21 13:44:52 -07:00
Taqi Jaffri
069c0a041f comment update for poetry install 2023-08-19 13:50:16 -07:00
Taqi Jaffri
5cd244e9b7 CR feedback 2023-08-19 13:48:15 -07:00
Nuno Campos
354c42afd2 Lint 2023-08-18 15:30:30 +01:00
Nuno Campos
4452314aab Merge branch 'master' into bagatur/locals_in_config 2023-08-18 15:23:05 +01:00
Nuno Campos
d3f10d2f4f Update test 2023-08-18 11:36:16 +01:00
Nuno Campos
6ae58da668 Assign defaults in batch calls 2023-08-18 10:53:10 +01:00
Nuno Campos
ddcb4ff5fb Li t 2023-08-18 10:30:42 +01:00
Nuno Campos
1baedc4e18 Move patch_config 2023-08-18 10:28:39 +01:00
Nuno Campos
46f3850794 Lint 2023-08-18 10:25:41 +01:00
Nuno Campos
24a197f96a Merge branch 'master' into bagatur/locals_in_config 2023-08-18 10:12:10 +01:00
Nuno Campos
8ddaaf3d41 Move config helpers 2023-08-18 10:10:35 +01:00
Nuno Campos
a5e7dcec61 Lint 2023-08-18 10:03:28 +01:00
Nuno Campos
c1b1666ec8 Ensure config defaults apply even when a config is passed in 2023-08-18 10:02:29 +01:00
Nuno Campos
7fe474d198 Update snapshots 2023-08-18 10:02:11 +01:00
Bagatur
ab21af71be wip 2023-08-17 17:28:02 -07:00
Bagatur
6f69b19ff5 wip tests 2023-08-17 16:45:52 -07:00
Bagatur
89bec58cbb Merge branch 'master' into bagatur/locals_in_config 2023-08-17 16:24:28 -07:00
Bagatur
9e906c39ba nit 2023-08-17 16:22:22 -07:00
Bagatur
6b0a849f59 fix 2023-08-17 16:22:12 -07:00
Bagatur
c447e9a854 cr 2023-08-17 15:29:00 -07:00
Bagatur
bd80cad6db add 2023-08-17 13:52:19 -07:00
Bagatur
8c1a528c71 cr 2023-08-17 13:52:09 -07:00
Bagatur
25cbcd9374 merge 2023-08-17 13:03:28 -07:00
Bagatur
15a5002746 Merge branch 'master' into bagatur/locals_in_config 2023-08-09 18:36:44 -07:00
Bagatur
f8ed93e7bd Merge branch 'master' into bagatur/locals_in_config 2023-08-09 17:56:33 -07:00
Bagatur
05cdd22c39 merge 2023-08-09 14:44:29 -07:00
Bagatur
eb0134fbb3 rfc 2023-08-09 14:13:06 -07:00
Bagatur
50b13ab938 wip 2023-08-09 13:26:09 -07:00
Taqi Jaffri
5919c0f4a2 notebook cleanup 2023-08-08 21:38:55 -07:00
Taqi Jaffri
bcdf3be530 Merge branch 'master' into tjaffri/docugami_loader_source 2023-08-08 20:59:13 -07:00
Taqi Jaffri
4806504ebc Fixed one last key name 2023-08-01 15:43:26 -07:00
Taqi Jaffri
96843f3bd4 Fixed source key name for docugami loader 2023-08-01 12:54:26 -07:00
382 changed files with 29521 additions and 7936 deletions

View File

@@ -80,10 +80,10 @@ For example, to contribute to `langchain` run `cd libs/langchain` before getting
To install requirements:
```bash
poetry install -E all
poetry install --with test
```
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage. Note the `-E all` flag will install all optional dependencies necessary for integration testing.
This will install all requirements for running the package, examples, linting, formatting, tests, and coverage.
❗Note: If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running Poetry v1.5.1. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases. If you are still seeing this bug on v1.5.1, you may also try disabling "modern installation" (`poetry config installer.modern-installation false`) and re-installing requirements. See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.

View File

@@ -15,19 +15,13 @@ inputs:
description: Poetry version
required: true
install-command:
description: Command run for installing dependencies
required: false
default: poetry install
cache-key:
description: Cache key to use for manual handling of caching
required: true
working-directory:
description: Directory to run install-command in
required: false
default: ""
description: Directory whose poetry.lock file should be cached
required: true
runs:
using: composite
@@ -38,43 +32,35 @@ runs:
python-version: ${{ inputs.python-version }}
- uses: actions/cache@v3
id: cache-pip
name: Cache Pip ${{ inputs.python-version }}
id: cache-bin-poetry
name: Cache Poetry binary - Python ${{ inputs.python-version }}
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
~/.cache/pip
key: pip-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}
/opt/pipx/venvs/poetry
/opt/pipx_bin/poetry
# This step caches the poetry installation, so make sure it's keyed on the poetry version as well.
key: bin-poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-${{ inputs.poetry-version }}
- run: pipx install poetry==${{ inputs.poetry-version }} --python python${{ inputs.python-version }}
- name: Install poetry
if: steps.cache-bin-poetry.outputs.cache-hit != 'true'
shell: bash
- name: Check Poetry File
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry check
- name: Check lock file
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry lock --check
- uses: actions/cache@v3
id: cache-poetry
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
POETRY_VERSION: ${{ inputs.poetry-version }}
PYTHON_VERSION: ${{ inputs.python-version }}
run: pipx install "poetry==$POETRY_VERSION" --python "python$PYTHON_VERSION" --verbose
- name: Restore pip and poetry cached dependencies
uses: actions/cache@v3
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "4"
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
with:
path: |
~/.cache/pip
~/.cache/pypoetry/virtualenvs
~/.cache/pypoetry/cache
~/.cache/pypoetry/artifacts
${{ env.WORKDIR }}/.venv
key: poetry-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
- run: ${{ inputs.install-command }}
working-directory: ${{ inputs.working-directory }}
shell: bash
key: py-deps-${{ runner.os }}-${{ runner.arch }}-py-${{ inputs.python-version }}-poetry-${{ inputs.poetry-version }}-${{ inputs.cache-key }}-${{ hashFiles(format('{0}/**/poetry.lock', env.WORKDIR)) }}

View File

@@ -80,31 +80,32 @@ jobs:
find "$WORKDIR" -name '*.py' -type f -not -newermt "$OLDEST_COMMIT_TIME" -exec touch -c -m -t '200001010000' '{}' '+'
echo "oldest-commit=$OLDEST_COMMIT" >> "$GITHUB_OUTPUT"
- uses: actions/cache@v3
id: cache-pip
name: Cache langchain editable pip install - ${{ matrix.python-version }}
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
with:
path: |
~/.cache/pip
key: pip-editable-langchain-deps-${{ runner.os }}-${{ runner.arch }}-py-${{ matrix.python-version }}
- name: Install poetry
run: |
pipx install "poetry==$POETRY_VERSION"
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
cache: poetry
cache-dependency-path: |
${{ env.WORKDIR }}/**/poetry.lock
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: lint
- name: Check Poetry File
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry check
- name: Check lock file
shell: bash
working-directory: ${{ inputs.working-directory }}
run: |
poetry lock --check
- name: Install dependencies
working-directory: ${{ inputs.working-directory }}
run: |
poetry install
- name: Install langchain editable
working-directory: ${{ inputs.working-directory }}
if: ${{ inputs.working-directory != 'libs/langchain' }}
@@ -115,7 +116,7 @@ jobs:
uses: actions/cache@v3
env:
CACHE_BASE: black-${{ runner.os }}-${{ runner.arch }}-py${{ matrix.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', env.WORKDIR)) }}
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "1"
with:
path: |
${{ env.WORKDIR }}/.black_cache
@@ -127,7 +128,7 @@ jobs:
- name: Get .mypy_cache to speed up mypy
uses: actions/cache@v3
env:
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "15"
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
with:
path: |
${{ env.WORKDIR }}/.mypy_cache

View File

@@ -0,0 +1,81 @@
name: pydantic v1/v2 compatibility
on:
workflow_call:
inputs:
working-directory:
required: true
type: string
description: "From which folder this pipeline executes"
env:
POETRY_VERSION: "1.5.1"
jobs:
build:
defaults:
run:
working-directory: ${{ inputs.working-directory }}
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Pydantic v1/v2 compatibility - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: pydantic-cross-compat
- name: Install dependencies
shell: bash
run: poetry install
- name: Install the opposite major version of pydantic
# If normal tests use pydantic v1, here we'll use v2, and vice versa.
shell: bash
run: |
# Determine the major part of pydantic version
REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
if [[ "$REGULAR_VERSION" == "1" ]]; then
PYDANTIC_DEP=">=2.1,<3"
TEST_WITH_VERSION="2"
elif [[ "$REGULAR_VERSION" == "2" ]]; then
PYDANTIC_DEP="<2"
TEST_WITH_VERSION="1"
else
echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test."
exit 1
fi
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
# which would prevent caching from working: the cache would get saved
# to a different key than where it gets loaded from.
poetry run pip install "pydantic${PYDANTIC_DEP}"
# Ensure that the correct pydantic is installed now.
echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}"
# Determine the major part of pydantic version
CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
# Check that the major part of pydantic version is as expected, if not
# raise an error
if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then
echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}"
exit 1
fi
echo "Found pydantic version ${CURRENT_VERSION}, as expected"
- name: Run pydantic compatibility tests
shell: bash
run: make test

View File

@@ -23,6 +23,9 @@ jobs:
# Trusted publishing has to also be configured on PyPI for each package:
# https://docs.pypi.org/trusted-publishers/adding-a-publisher/
id-token: write
# This permission is needed by `ncipollo/release-action` to create the GitHub release.
contents: write
defaults:
run:
working-directory: ${{ inputs.working-directory }}

View File

@@ -7,10 +7,6 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
test_type:
type: string
description: "Test types to run"
default: '["core", "extended", "core-pydantic-2"]'
env:
POETRY_VERSION: "1.5.1"
@@ -28,61 +24,22 @@ jobs:
- "3.9"
- "3.10"
- "3.11"
test_type: ${{ fromJSON(inputs.test_type) }}
name: Python ${{ matrix.python-version }} ${{ matrix.test_type }}
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
working-directory: ${{ inputs.working-directory }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: ${{ matrix.test_type }}
install-command: |
if [ "${{ matrix.test_type }}" == "core" ]; then
echo "Running core tests, installing dependencies with poetry..."
poetry install
elif [ "${{ matrix.test_type }}" == "core-pydantic-2" ]; then
echo "Running core-pydantic-v2 tests, installing dependencies with poetry..."
poetry install
working-directory: ${{ inputs.working-directory }}
cache-key: core
# Install via `pip` instead of `poetry add` to avoid changing lockfile,
# which would prevent caching from working: the cache would get saved
# to a different key than where it gets loaded from.
poetry run pip install 'pydantic>=2.1,<3'
else
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
fi
- name: Verify pydantic version
run: |
if [ "${{ matrix.test_type }}" == "core-pydantic-2" ]; then
EXPECTED_VERSION=2
else
EXPECTED_VERSION=1
fi
echo "Checking pydantic version... Expecting ${EXPECTED_VERSION}"
# Determine the major part of pydantic version
VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1)
# Check that the major part of pydantic version is as expected, if not
# raise an error
if [[ "$VERSION" -ne $EXPECTED_VERSION ]]; then
echo "Error: pydantic version must be equal to ${EXPECTED_VERSION}; Found: ${VERSION}"
exit 1
fi
echo "Found pydantic version ${VERSION}, as expected"
- name: Install dependencies
shell: bash
- name: Run ${{matrix.test_type}} tests
run: |
case "${{ matrix.test_type }}" in
core | core-pydantic-2)
make test
;;
*)
make extended_tests
;;
esac
run: poetry install
- name: Run core tests
shell: bash
run: make test

View File

@@ -8,10 +8,25 @@ on:
paths:
- '.github/workflows/_lint.yml'
- '.github/workflows/_test.yml'
- '.github/workflows/_pydantic_compatibility.yml'
- '.github/workflows/langchain_ci.yml'
- 'libs/langchain/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.5.1"
WORKDIR: "libs/langchain"
jobs:
lint:
uses:
@@ -19,10 +34,50 @@ jobs:
with:
working-directory: libs/langchain
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/langchain
test_type: '["core", "extended", "core-pydantic-2"]'
secrets: inherit
secrets: inherit
pydantic-compatibility:
uses:
./.github/workflows/_pydantic_compatibility.yml
with:
working-directory: libs/langchain
secrets: inherit
extended-tests:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }} extended tests
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/langchain
cache-key: extended
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with poetry..."
poetry install -E extended_testing
- name: Run extended tests
run: make extended_tests

View File

@@ -13,6 +13,20 @@ on:
- 'libs/experimental/**'
workflow_dispatch: # Allows to trigger the workflow manually in GitHub UI
# If another push to the same PR or branch happens while this workflow is still running,
# cancel the earlier run in favor of the next run.
#
# There's no point in testing an outdated version of the code. GitHub only allows
# a limited number of job runners to be active at the same time, so it's better to cancel
# pointless jobs early so that more useful jobs can run sooner.
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
POETRY_VERSION: "1.5.1"
WORKDIR: "libs/experimental"
jobs:
lint:
uses:
@@ -20,10 +34,50 @@ jobs:
with:
working-directory: libs/experimental
secrets: inherit
test:
uses:
./.github/workflows/_test.yml
with:
working-directory: libs/experimental
test_type: '["core"]'
secrets: inherit
secrets: inherit
# It's possible that langchain-experimental works fine with the latest *published* langchain,
# but is broken with the langchain on `master`.
#
# We want to catch situations like that *before* releasing a new langchain, hence this test.
test-with-latest-langchain:
runs-on: ubuntu-latest
defaults:
run:
working-directory: ${{ env.WORKDIR }}
strategy:
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: test with unpublished langchain - Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ env.WORKDIR }}
cache-key: unpublished-langchain
- name: Install dependencies
shell: bash
run: |
echo "Running tests with unpublished langchain, installing dependencies with poetry..."
poetry install
echo "Editably installing langchain outside of poetry, to avoid messing up lockfile..."
poetry run pip install -e ../langchain
- name: Run tests
run: make test

View File

@@ -25,18 +25,25 @@ jobs:
name: Python ${{ matrix.python-version }}
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/langchain
install-command: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration
cache-key: scheduled
- name: Install dependencies
working-directory: libs/langchain
shell: bash
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration
- name: Run tests
shell: bash
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: |
make scheduled_tests
shell: bash

View File

@@ -156,7 +156,7 @@ html_context = {
html_static_path = ["_static"]
# These paths are either relative to html_static_path
# or fully qualified paths (eg. https://...)
# or fully qualified paths (e.g. https://...)
html_css_files = [
"css/custom.css",
]

View File

@@ -228,7 +228,7 @@ Classes
:toctree: {module}
"""
for class_ in classes:
for class_ in sorted(classes, key=lambda c: c["qualified_name"]):
if not class_["is_public"]:
continue

View File

@@ -341,7 +341,7 @@
"HugeGraph QA Chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_hugegraph_qa",
"GraphSparqlQAChain": "https://python.langchain.com/docs/use_cases/more/graph/graph_sparql_qa",
"ArangoDB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_arangodb_qa",
"Graph DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa",
"Neo4j DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa",
"How to use a SmartLLMChain": "https://python.langchain.com/docs/use_cases/more/self_check/smart_llm",
"Multi-Agent Simulated Environment: Petting Zoo": "https://python.langchain.com/docs/use_cases/agent_simulations/petting_zoo",
"Multi-agent decentralized speaker selection": "https://python.langchain.com/docs/use_cases/agent_simulations/multiagent_bidding",
@@ -2071,8 +2071,8 @@
"PromptLayer": "https://python.langchain.com/docs/integrations/providers/promptlayer",
"PromptLayer OpenAI": "https://python.langchain.com/docs/integrations/llms/promptlayer_openai"
},
"DeepLake": {
"Deep Lake": "https://python.langchain.com/docs/integrations/providers/deeplake",
"Activeloop DeepLake": {
"Deep Lake": "https://python.langchain.com/docs/integrations/providers/activeloop_deeplake",
"Activeloop's Deep Lake": "https://python.langchain.com/docs/integrations/vectorstores/activeloop_deeplake",
"Analysis of Twitter the-algorithm source code with LangChain, GPT4 and Activeloop's Deep Lake": "https://python.langchain.com/docs/use_cases/question_answering/how_to/code/twitter-the-algorithm-analysis-deeplake",
"Use LangChain, GPT and Activeloop's Deep Lake to work with code base": "https://python.langchain.com/docs/use_cases/question_answering/how_to/code/code-analysis-deeplake",
@@ -3202,10 +3202,10 @@
"Graph QA": "https://python.langchain.com/docs/use_cases/more/graph/graph_qa"
},
"GraphCypherQAChain": {
"Graph DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
"Neo4j DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
},
"Neo4jGraph": {
"Graph DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
"Neo4j DB QA chain": "https://python.langchain.com/docs/use_cases/more/graph/graph_cypher_qa"
},
"LLMBashChain": {
"Bash chain": "https://python.langchain.com/docs/use_cases/more/code_writing/llm_bash"

View File

@@ -47,8 +47,8 @@ If youre working on something youre proud of, and think the LangChain comm
Heres where our team hangs out, talks shop, spotlights cool work, and shares what were up to. Wed love to see you there too.
- **[Twitter](https://twitter.com/LangChainAI):** we post about what were working on and what cool things were seeing in the space. If you tag @langchainai in your post, well almost certainly see it, and can snow you some love!
- **[Discord](https://discord.gg/6adMQxSpJS):** connect with with >30k developers who are building with LangChain
- **[Twitter](https://twitter.com/LangChainAI):** we post about what were working on and what cool things were seeing in the space. If you tag @langchainai in your post, well almost certainly see it, and can show you some love!
- **[Discord](https://discord.gg/6adMQxSpJS):** connect with >30k developers who are building with LangChain
- **[GitHub](https://github.com/langchain-ai/langchain):** open pull requests, contribute to a discussion, and/or contribute
- **[Subscribe to our bi-weekly Release Notes](https://6w1pwbss0py.typeform.com/to/KjZB1auB):** a twice/month email roundup of the coolest things going on in our orbit
- **Slack:** if youre building an application in production at your company, wed love to get into a Slack channel together. Fill out [this form](https://airtable.com/appwQzlErAS2qiP0L/shrGtGaVBVAz7NcV2) and well get in touch about setting one up.

View File

@@ -107,7 +107,7 @@ import PromptTemplateChatModel from "@snippets/get_started/quickstart/prompt_tem
<PromptTemplateLLM/>
However, the advantages of using these over raw string formatting are several.
You can "partial" out variables - eg you can format only some of the variables at a time.
You can "partial" out variables - e.g. you can format only some of the variables at a time.
You can compose them together, easily combining different templates into a single prompt.
For explanations of these functionalities, see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
@@ -121,12 +121,12 @@ Let's take a look at this below:
ChatPromptTemplates can also include other things besides ChatMessageTemplates - see the [section on prompts](/docs/modules/model_io/prompts) for more detail.
## Output Parsers
## Output parsers
OutputParsers convert the raw output of an LLM into a format that can be used downstream.
There are few main type of OutputParsers, including:
- Convert text from LLM -> structured information (eg JSON)
- Convert text from LLM -> structured information (e.g. JSON)
- Convert a ChatMessage into just a string
- Convert the extra information returned from a call besides the message (like OpenAI function invocation) into a string.
@@ -149,7 +149,7 @@ import LLMChain from "@snippets/get_started/quickstart/llm_chain.mdx"
<LLMChain/>
## Next Steps
## Next steps
This is it!
We've now gone over how to create the core building block of LangChain applications - the LLMChains.

View File

@@ -3,7 +3,7 @@ sidebar_position: 3
---
# Comparison Evaluators
Comparison evaluators in LangChain help measure two different chain or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
Comparison evaluators in LangChain help measure two different chains or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
These evaluators inherit from the `PairwiseStringEvaluator` class, providing a comparison interface for two strings - typically, the outputs from two different prompts or models, or two versions of the same model. In essence, a comparison evaluator performs an evaluation on a pair of strings and returns a dictionary containing the evaluation score and other relevant details.
@@ -16,7 +16,7 @@ Here's a summary of the key methods and properties of a comparison evaluator:
- `requires_input`: This property indicates whether this evaluator requires an input string.
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
Detailed information about creating custom evaluators and the available built-in comparison evaluators are provided in the following sections.
Detailed information about creating custom evaluators and the available built-in comparison evaluators is provided in the following sections.
import DocCardList from "@theme/DocCardList";

File diff suppressed because it is too large Load Diff

View File

@@ -2,5 +2,5 @@
One of the key concerns with using LLMs is that they may generate harmful or unethical text. This is an area of active research in the field. Here we present some built-in chains inspired by this research, which are intended to make the outputs of LLMs safer.
- [Moderation chain](/docs/use_cases/safety/moderation): Explicitly check if any output text is harmful and flag it.
- [Constitutional chain](/docs/use_cases/safety/constitutional_chain): Prompt the model with a set of principles which should guide it's behavior.
- [Moderation chain](/docs/guides/safety/moderation): Explicitly check if any output text is harmful and flag it.
- [Constitutional chain](/docs/guides/safety/constitutional_chain): Prompt the model with a set of principles which should guide it's behavior.

View File

@@ -1,6 +1,6 @@
# Few-shot prompt templates
In this tutorial, we'll learn how to create a prompt template that uses few shot examples. A few shot prompt template can be constructed from either a set of examples, or from an Example Selector object.
In this tutorial, we'll learn how to create a prompt template that uses few-shot examples. A few-shot prompt template can be constructed from either a set of examples, or from an Example Selector object.
import Example from "@snippets/modules/model_io/prompts/prompt_templates/few_shot_examples.mdx"

View File

@@ -6,7 +6,7 @@ sidebar_position: 0
Prompt templates are pre-defined recipes for generating prompts for language models.
A template may include instructions, few shot examples, and specific context and
A template may include instructions, few-shot examples, and specific context and
questions appropriate for a given task.
LangChain provides tooling to create and work with prompt templates.

View File

@@ -1,6 +1,6 @@
# Partial prompt templates
Like other methods, it can make sense to "partial" a prompt template - eg pass in a subset of the required values, as to create a new prompt template which expects only the remaining subset of values.
Like other methods, it can make sense to "partial" a prompt template - e.g. pass in a subset of the required values, as to create a new prompt template which expects only the remaining subset of values.
LangChain supports this in two ways:
1. Partial formatting with string values.

View File

@@ -2,8 +2,8 @@
This notebook goes over how to compose multiple prompts together. This can be useful when you want to reuse parts of prompts. This can be done with a PipelinePrompt. A PipelinePrompt consists of two main parts:
- Final prompt: This is the final prompt that is returned
- Pipeline prompts: This is a list of tuples, consisting of a string name and a prompt template. Each prompt template will be formatted and then passed to future prompt templates as a variable with the same name.
- Final prompt: The final prompt that is returned
- Pipeline prompts: A list of tuples, consisting of a string name and a prompt template. Each prompt template will be formatted and then passed to future prompt templates as a variable with the same name.
import Example from "@snippets/modules/model_io/prompts/prompt_templates/prompt_composition.mdx"

View File

@@ -24,8 +24,7 @@ function Imports({ imports }) {
<li key={imported}>
<a href={docs}>
<span>{imported}</span>
</a>{" "}
from <code>{source}</code>
</a>
</li>
))}
</ul>

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 236 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

View File

@@ -1,5 +1,9 @@
{
"redirects": [
{
"source": "/docs/modules/data_connection/caching_embeddings(/?)",
"destination": "/docs/modules/data_connection/text_embedding/caching_embeddings"
},
{
"source": "/en/latest/additional_resources/youtube.html",
"destination": "/docs/additional_resources/youtube"
@@ -166,7 +170,7 @@
},
{
"source": "/docs/integrations/deeplake",
"destination": "/docs/integrations/providers/deeplake"
"destination": "/docs/integrations/providers/activeloop_deeplake"
},
{
"source": "/docs/integrations/diffbot",

View File

@@ -51,6 +51,7 @@ Dependents stats for `langchain-ai/langchain`
|[e2b-dev/e2b](https://github.com/e2b-dev/e2b) | 5365 |
|[mage-ai/mage-ai](https://github.com/mage-ai/mage-ai) | 5352 |
|[wenda-LLM/wenda](https://github.com/wenda-LLM/wenda) | 5192 |
|[LangChain-Chinese-Getting-Started-Guide](https://github.com/liaokongVFX/LangChain-Chinese-Getting-Started-Guide) | 5129 |
|[zilliztech/GPTCache](https://github.com/zilliztech/GPTCache) | 4993 |
|[GreyDGL/PentestGPT](https://github.com/GreyDGL/PentestGPT) | 4831 |
|[zauberzeug/nicegui](https://github.com/zauberzeug/nicegui) | 4824 |

View File

@@ -8,7 +8,7 @@ Here's a few different tools and functionalities to aid in debugging.
## Tracing
Platforms with tracing capabilities like [LangSmith](/docs/guides/langsmith/) and [WandB](/docs/ecosystem/integrations/agent_with_wandb_tracing) are the most comprehensive solutions for debugging. These platforms make it easy to not only log and visualize LLM apps, but also to actively debug, test and refine them.
Platforms with tracing capabilities like [LangSmith](/docs/guides/langsmith/) and [WandB](/docs/integrations/providers/wandb_tracing) are the most comprehensive solutions for debugging. These platforms make it easy to not only log and visualize LLM apps, but also to actively debug, test and refine them.
For anyone building production-grade LLM applications, we highly recommend using a platform like this.

View File

@@ -79,3 +79,7 @@ See OpenLLM's [integration doc](https://github.com/bentoml/OpenLLM#%EF%B8%8F-int
## [Databutton](https://databutton.com/home?new-data-app=true)
These templates serve as examples of how to build, deploy, and share LangChain applications using Databutton. You can create user interfaces with Streamlit, automate tasks by scheduling Python code, and store files and data in the built-in store. Examples include a Chatbot interface with conversational memory, a Personal search engine, and a starter template for LangChain apps. Deploying and sharing is just one click away.
## [AzureML Online Endpoint](https://github.com/Azure/azureml-examples/blob/main/sdk/python/endpoints/online/llm/langchain/1_langchain_basic_deploy.ipynb)
A minimal example of how to deploy LangChain to an Azure Machine Learning Online Endpoint.

View File

@@ -1318,7 +1318,7 @@
"source": [
"template = \"\"\"Write some python code to solve the user's problem. \n",
"\n",
"Return only python code in Markdown format, eg:\n",
"Return only python code in Markdown format, e.g.:\n",
"\n",
"```python\n",
"....\n",

View File

@@ -11,7 +11,7 @@
"\n",
"[PromptLayer](https://promptlayer.com) is a an LLM observability platform that lets you visualize requests, version prompts, and track usage. In this guide we will go over how to setup the `PromptLayerCallbackHandler`. \n",
"\n",
"While PromptLayer does have LLMs that integrate directly with LangChain (eg [`PromptLayerOpenAI`](https://python.langchain.com/docs/integrations/llms/promptlayer_openai)), this callback is the recommended way to integrate PromptLayer with LangChain.\n",
"While PromptLayer does have LLMs that integrate directly with LangChain (e.g. [`PromptLayerOpenAI`](https://python.langchain.com/docs/integrations/llms/promptlayer_openai)), this callback is the recommended way to integrate PromptLayer with LangChain.\n",
"\n",
"See [our docs](https://docs.promptlayer.com/languages/langchain) for more information."
]

View File

@@ -0,0 +1,382 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ollama\n",
"\n",
"[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as LLaMA2, locally.\n",
"\n",
"Ollama bundles model weights, configuration, and data into a single package, defined by a Modelfile. \n",
"\n",
"It optimizes setup and configuration details, including GPU usage.\n",
"\n",
"For a complete list of supported models and model variants, see the [Ollama model library](https://ollama.ai/library).\n",
"\n",
"## Setup\n",
"\n",
"First, follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance:\n",
"\n",
"* [Download](https://ollama.ai/download)\n",
"* Fetch a model via `ollama pull <model family>`\n",
"* e.g., for `Llama-7b`: `ollama pull llama2`\n",
"* This will download the most basic version of the model (e.g., minimum # parameters and 4-bit quantization)\n",
"* On Mac, it will download to:\n",
"\n",
"`~/.ollama/models/manifests/registry.ollama.ai/library/<model family>/latest`\n",
"\n",
"* And we can specify a particular version, e.g., for `ollama pull vicuna:13b-v1.5-16k-q4_0`\n",
"* The file is here with the model version in place of `latest`\n",
"\n",
"`~/.ollama/models/manifests/registry.ollama.ai/library/vicuna/13b-v1.5-16k-q4_0`\n",
"\n",
"You can easily access models in a few ways:\n",
"\n",
"1/ if the app is running:\n",
"* All of your local models are automatically served on `localhost:11434`\n",
"* Select your model when setting `llm = Ollama(..., model=\"<model family>:<version>\")`\n",
"* If you set `llm = Ollama(..., model=\"<model family\")` withoout a version it will simply look for `latest`\n",
"\n",
"2/ if building from source or just running the binary: \n",
"* Then you must run `ollama serve`\n",
"* All of your local models are automatically served on `localhost:11434`\n",
"* Then, select as shown above\n",
"\n",
"\n",
"## Usage\n",
"\n",
"You can see a full list of supported parameters on the [API reference page](https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html).\n",
"\n",
"If you are using a LLaMA `chat` model (e.g., `ollama pull llama2:7b-chat`) then you can use the `ChatOllama` interface.\n",
"\n",
"This includes [special tokens](https://huggingface.co/blog/llama2#how-to-prompt-llama-2) for system message and user input."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOllama\n",
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler \n",
"chat_model = ChatOllama(model=\"llama2:7b-chat\", \n",
" callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With `StreamingStdOutCallbackHandler`, you will see tokens streamed."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Artificial intelligence (AI) has a rich and varied history that spans several decades. Hinweis: The following is a brief overview of the major milestones in the history of AI, but it is by no means exhaustive.\n",
"\n",
"1. Early Beginnings (1950s-1960s): The term \"Artificial Intelligence\" was coined in 1956 by computer scientist John McCarthy. However, the concept of creating machines that can think and learn like humans dates back to ancient times. In the 1950s and 1960s, researchers began exploring the possibilities of AI using simple algorithms and machine learning techniques.\n",
"2. Rule-Based Systems (1970s-1980s): In the 1970s and 1980s, AI research focused on developing rule-based systems, which use predefined rules to reason and make decisions. This led to the development of expert systems, which were designed to mimic the decision-making abilities of human experts in specific domains.\n",
"3. Machine Learning (1980s-1990s): The 1980s saw a shift towards machine learning, which enables machines to learn from data without being explicitly programmed. This led to the development of algorithms such as decision trees, neural networks, and support vector machines.\n",
"4. Deep Learning (2000s-present): In the early 2000s, deep learning emerged as a subfield of machine learning, focusing on neural networks with multiple layers. These networks can learn complex representations of data, leading to breakthroughs in image and speech recognition, natural language processing, and other areas.\n",
"5. Natural Language Processing (NLP) (1980s-present): NLP has been an active area of research since the 1980s, with a focus on developing algorithms that can understand and generate human language. This has led to applications such as chatbots, voice assistants, and language translation systems.\n",
"6. Robotics (1970s-present): The development of robotics has been closely tied to AI research, with a focus on creating machines that can perform tasks that typically require human intelligence, such as manipulation and locomotion.\n",
"7. Computer Vision (1980s-present): Computer vision has been an active area of research since the 1980s, with a focus on enabling machines to interpret and understand visual data from the world around us. This has led to applications such as image recognition, object detection, and autonomous driving.\n",
"8. Ethics and Society (1990s-present): As AI technology has become more advanced and integrated into various aspects of society, there has been a growing concern about the ethical implications of AI. This includes issues related to privacy, bias, and job displacement.\n",
"9. Reinforcement Learning (2000s-present): Reinforcement learning is a subfield of machine learning that involves training machines to make decisions based on feedback from their environment. This has led to breakthroughs in areas such as game playing, robotics, and autonomous driving.\n",
"10. Generative Models (2010s-present): Generative models are a class of AI algorithms that can generate new data that is similar to a given dataset. This has led to applications such as image synthesis, music generation, and language creation.\n",
"\n",
"These are just a few of the many developments in the history of AI. As the field continues to evolve, we can expect even more exciting breakthroughs and innovations in the years to come."
]
},
{
"data": {
"text/plain": [
"AIMessage(content=' Artificial intelligence (AI) has a rich and varied history that spans several decades. Hinweis: The following is a brief overview of the major milestones in the history of AI, but it is by no means exhaustive.\\n\\n1. Early Beginnings (1950s-1960s): The term \"Artificial Intelligence\" was coined in 1956 by computer scientist John McCarthy. However, the concept of creating machines that can think and learn like humans dates back to ancient times. In the 1950s and 1960s, researchers began exploring the possibilities of AI using simple algorithms and machine learning techniques.\\n2. Rule-Based Systems (1970s-1980s): In the 1970s and 1980s, AI research focused on developing rule-based systems, which use predefined rules to reason and make decisions. This led to the development of expert systems, which were designed to mimic the decision-making abilities of human experts in specific domains.\\n3. Machine Learning (1980s-1990s): The 1980s saw a shift towards machine learning, which enables machines to learn from data without being explicitly programmed. This led to the development of algorithms such as decision trees, neural networks, and support vector machines.\\n4. Deep Learning (2000s-present): In the early 2000s, deep learning emerged as a subfield of machine learning, focusing on neural networks with multiple layers. These networks can learn complex representations of data, leading to breakthroughs in image and speech recognition, natural language processing, and other areas.\\n5. Natural Language Processing (NLP) (1980s-present): NLP has been an active area of research since the 1980s, with a focus on developing algorithms that can understand and generate human language. This has led to applications such as chatbots, voice assistants, and language translation systems.\\n6. Robotics (1970s-present): The development of robotics has been closely tied to AI research, with a focus on creating machines that can perform tasks that typically require human intelligence, such as manipulation and locomotion.\\n7. Computer Vision (1980s-present): Computer vision has been an active area of research since the 1980s, with a focus on enabling machines to interpret and understand visual data from the world around us. This has led to applications such as image recognition, object detection, and autonomous driving.\\n8. Ethics and Society (1990s-present): As AI technology has become more advanced and integrated into various aspects of society, there has been a growing concern about the ethical implications of AI. This includes issues related to privacy, bias, and job displacement.\\n9. Reinforcement Learning (2000s-present): Reinforcement learning is a subfield of machine learning that involves training machines to make decisions based on feedback from their environment. This has led to breakthroughs in areas such as game playing, robotics, and autonomous driving.\\n10. Generative Models (2010s-present): Generative models are a class of AI algorithms that can generate new data that is similar to a given dataset. This has led to applications such as image synthesis, music generation, and language creation.\\n\\nThese are just a few of the many developments in the history of AI. As the field continues to evolve, we can expect even more exciting breakthroughs and innovations in the years to come.', additional_kwargs={}, example=False)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.schema import HumanMessage\n",
"\n",
"messages = [\n",
" HumanMessage(content=\"Tell me about the history of AI\")\n",
"]\n",
"chat_model(messages)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RAG\n",
"\n",
"We can use Olama with RAG, [just as shown here](https://python.langchain.com/docs/use_cases/question_answering/how_to/local_retrieval_qa).\n",
"\n",
"Let's use the 13b model:\n",
"\n",
"```\n",
"ollama pull llama2:13b\n",
"```\n",
"\n",
"Or, the 13b-chat model:\n",
"\n",
"```\n",
"ollama pull llama2:13b-chat\n",
"```\n",
"\n",
"Let's also use local embeddings from `GPT4AllEmbeddings` and `Chroma`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install gpt4all chromadb"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import WebBaseLoader\n",
"loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n",
"data = loader.load()\n",
"\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found model file at /Users/rlm/.cache/gpt4all/ggml-all-MiniLM-L6-v2-f16.bin\n"
]
}
],
"source": [
"from langchain.vectorstores import Chroma\n",
"from langchain.embeddings import GPT4AllEmbeddings\n",
"\n",
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question = \"What are the approaches to Task Decomposition?\"\n",
"docs = vectorstore.similarity_search(question)\n",
"len(docs)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain import PromptTemplate\n",
"\n",
"# Prompt\n",
"template = \"\"\"[INST] <<SYS>> Use the following pieces of context to answer the question at the end. \n",
"If you don't know the answer, just say that you don't know, don't try to make up an answer. \n",
"Use three sentences maximum and keep the answer as concise as possible. <</SYS>>\n",
"{context}\n",
"Question: {question}\n",
"Helpful Answer:[/INST]\"\"\"\n",
"QA_CHAIN_PROMPT = PromptTemplate(\n",
" input_variables=[\"context\", \"question\"],\n",
" template=template,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# Chat model\n",
"from langchain.chat_models import ChatOllama\n",
"from langchain.callbacks.manager import CallbackManager\n",
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
"chat_model = ChatOllama(model=\"llama2:13b-chat\",\n",
" verbose=True,\n",
" callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# QA chain\n",
"from langchain.chains import RetrievalQA\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" chat_model,\n",
" retriever=vectorstore.as_retriever(),\n",
" chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Based on the provided context, there are three approaches to task decomposition for AI agents:\n",
"\n",
"1. LLM with simple prompting, such as \"Steps for XYZ.\" or \"What are the subgoals for achieving XYZ?\"\n",
"2. Task-specific instructions, such as \"Write a story outline\" for writing a novel.\n",
"3. Human inputs."
]
}
],
"source": [
"question = \"What are the various approaches to Task Decomposition for AI Agents?\"\n",
"result = qa_chain({\"query\": question})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also get logging for tokens."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Based on the given context, here is the answer to the question \"What are the approaches to Task Decomposition?\"\n",
"\n",
"There are three approaches to task decomposition:\n",
"\n",
"1. LLM with simple prompting, such as \"Steps for XYZ.\" or \"What are the subgoals for achieving XYZ?\"\n",
"2. Using task-specific instructions, like \"Write a story outline\" for writing a novel.\n",
"3. With human inputs.{'model': 'llama2:13b-chat', 'created_at': '2023-08-23T15:37:51.469127Z', 'done': True, 'context': [1, 29871, 1, 29961, 25580, 29962, 518, 25580, 29962, 518, 25580, 29962, 3532, 14816, 29903, 6778, 4803, 278, 1494, 12785, 310, 3030, 304, 1234, 278, 1139, 472, 278, 1095, 29889, 29871, 13, 3644, 366, 1016, 29915, 29873, 1073, 278, 1234, 29892, 925, 1827, 393, 366, 1016, 29915, 29873, 1073, 29892, 1016, 29915, 29873, 1018, 304, 1207, 701, 385, 1234, 29889, 29871, 13, 11403, 2211, 25260, 7472, 322, 3013, 278, 1234, 408, 3022, 895, 408, 1950, 29889, 529, 829, 14816, 29903, 6778, 13, 5398, 26227, 508, 367, 2309, 313, 29896, 29897, 491, 365, 26369, 411, 2560, 9508, 292, 763, 376, 7789, 567, 363, 1060, 29979, 29999, 7790, 29876, 29896, 19602, 376, 5618, 526, 278, 1014, 1484, 1338, 363, 3657, 15387, 1060, 29979, 29999, 29973, 613, 313, 29906, 29897, 491, 773, 3414, 29899, 14940, 11994, 29936, 321, 29889, 29887, 29889, 376, 6113, 263, 5828, 27887, 1213, 363, 5007, 263, 9554, 29892, 470, 313, 29941, 29897, 411, 5199, 10970, 29889, 13, 13, 5398, 26227, 508, 367, 2309, 313, 29896, 29897, 491, 365, 26369, 411, 2560, 9508, 292, 763, 376, 7789, 567, 363, 1060, 29979, 29999, 7790, 29876, 29896, 19602, 376, 5618, 526, 278, 1014, 1484, 1338, 363, 3657, 15387, 1060, 29979, 29999, 29973, 613, 313, 29906, 29897, 491, 773, 3414, 29899, 14940, 11994, 29936, 321, 29889, 29887, 29889, 376, 6113, 263, 5828, 27887, 1213, 363, 5007, 263, 9554, 29892, 470, 313, 29941, 29897, 411, 5199, 10970, 29889, 13, 13, 1451, 16047, 267, 297, 1472, 29899, 8489, 18987, 322, 3414, 26227, 29901, 1858, 9450, 975, 263, 3309, 29891, 4955, 322, 17583, 3902, 8253, 278, 1650, 2913, 3933, 18066, 292, 29889, 365, 26369, 29879, 21117, 304, 10365, 13900, 746, 20050, 411, 15668, 4436, 29892, 3907, 963, 3109, 16424, 9401, 304, 25618, 1058, 5110, 515, 14260, 322, 1059, 29889, 13, 13, 1451, 16047, 267, 297, 1472, 29899, 8489, 18987, 322, 3414, 26227, 29901, 1858, 9450, 975, 263, 3309, 29891, 4955, 322, 17583, 3902, 8253, 278, 1650, 2913, 3933, 18066, 292, 29889, 365, 26369, 29879, 21117, 304, 10365, 13900, 746, 20050, 411, 15668, 4436, 29892, 3907, 963, 3109, 16424, 9401, 304, 25618, 1058, 5110, 515, 14260, 322, 1059, 29889, 13, 16492, 29901, 1724, 526, 278, 13501, 304, 9330, 897, 510, 3283, 29973, 13, 29648, 1319, 673, 10834, 29914, 25580, 29962, 518, 29914, 25580, 29962, 518, 29914, 25580, 29962, 29871, 16564, 373, 278, 2183, 3030, 29892, 1244, 338, 278, 1234, 304, 278, 1139, 376, 5618, 526, 278, 13501, 304, 9330, 897, 510, 3283, 3026, 13, 13, 8439, 526, 2211, 13501, 304, 3414, 26227, 29901, 13, 13, 29896, 29889, 365, 26369, 411, 2560, 9508, 292, 29892, 1316, 408, 376, 7789, 567, 363, 1060, 29979, 29999, 1213, 470, 376, 5618, 526, 278, 1014, 1484, 1338, 363, 3657, 15387, 1060, 29979, 29999, 3026, 13, 29906, 29889, 5293, 3414, 29899, 14940, 11994, 29892, 763, 376, 6113, 263, 5828, 27887, 29908, 363, 5007, 263, 9554, 29889, 13, 29941, 29889, 2973, 5199, 10970, 29889, 2], 'total_duration': 9514823750, 'load_duration': 795542, 'sample_count': 99, 'sample_duration': 68732000, 'prompt_eval_count': 146, 'prompt_eval_duration': 6206275000, 'eval_count': 98, 'eval_duration': 3229641000}\n"
]
}
],
"source": [
"from langchain.schema import LLMResult\n",
"from langchain.callbacks.base import BaseCallbackHandler\n",
"\n",
"class GenerationStatisticsCallback(BaseCallbackHandler):\n",
" def on_llm_end(self, response: LLMResult, **kwargs) -> None:\n",
" print(response.generations[0][0].generation_info)\n",
" \n",
"callback_manager = CallbackManager([StreamingStdOutCallbackHandler(), GenerationStatisticsCallback()])\n",
"\n",
"chat_model = ChatOllama(model=\"llama2:13b-chat\",\n",
" verbose=True,\n",
" callback_manager=callback_manager)\n",
"\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" chat_model,\n",
" retriever=vectorstore.as_retriever(),\n",
" chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT},\n",
")\n",
"\n",
"question = \"What are the approaches to Task Decomposition?\"\n",
"result = qa_chain({\"query\": question})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`eval_count` / (`eval_duration`/10e9) gets `tok / s`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30.343929867127645"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"98 / (3229641000/1000/1000/1000)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -143,12 +143,39 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c095285d",
"cell_type": "markdown",
"id": "57e27714",
"metadata": {},
"outputs": [],
"source": []
"source": [
"## Fine-tuning\n",
"\n",
"You can call fine-tuned OpenAI models by passing in your corresponding `modelName` parameter.\n",
"\n",
"This generally takes the form of `ft:{OPENAI_MODEL_NAME}:{ORG_NAME}::{MODEL_ID}`. For example:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "33c4a8b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, example=False)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fine_tuned_model = ChatOpenAI(temperature=0, model_name=\"ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR\")\n",
"\n",
"fine_tuned_model(messages)"
]
}
],
"metadata": {
@@ -167,7 +194,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
"version": "3.10.5"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,325 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "c4ff9336-1cf3-459e-bd70-d1314c1da6a0",
"metadata": {},
"source": [
"# Discord\n",
"\n",
"This notebook shows how to create your own chat loader that works on copy-pasted messages (from dms) to a list of LangChain messages.\n",
"\n",
"The process has four steps:\n",
"1. Create the chat .txt file by copying chats from the Discord app and pasting them in a file on your local computer\n",
"2. Copy the chat loader definition from below to a local file.\n",
"3. Initialize the `DiscordChatLoader` with the file path pointed to the text file.\n",
"4. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"Currently (2023/08/23) this loader only supports .txt files in the format generated by copying messages in the app to your clipboard and pasting in a file. Below is an example."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e4ccfdfa-6869-4d67-90a0-ab99f01b7553",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting discord_chats.txt\n"
]
}
],
"source": [
"%%writefile discord_chats.txt\n",
"talkingtower — 08/15/2023 11:10 AM\n",
"Love music! Do you like jazz?\n",
"reporterbob — 08/15/2023 9:27 PM\n",
"Yes! Jazz is fantastic. Ever heard this one?\n",
"Website\n",
"Listen to classic jazz track...\n",
"\n",
"talkingtower — Yesterday at 5:03 AM\n",
"Indeed! Great choice. 🎷\n",
"reporterbob — Yesterday at 5:23 AM\n",
"Thanks! How about some virtual sightseeing?\n",
"Website\n",
"Virtual tour of famous landmarks...\n",
"\n",
"talkingtower — Today at 2:38 PM\n",
"Sounds fun! Let's explore.\n",
"reporterbob — Today at 2:56 PM\n",
"Enjoy the tour! See you around.\n",
"talkingtower — Today at 3:00 PM\n",
"Thank you! Goodbye! 👋\n",
"reporterbob — Today at 3:02 PM\n",
"Farewell! Happy exploring."
]
},
{
"cell_type": "markdown",
"id": "359565a7-dad3-403c-a73c-6414b1295127",
"metadata": {},
"source": [
"## 2. Define chat loader\n",
"\n",
"LangChain currently does not support "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a429e0c4-4d7d-45f8-bbbb-c7fc5229f6af",
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import re\n",
"from typing import Iterator, List\n",
"\n",
"from langchain import schema\n",
"from langchain.chat_loaders import base as chat_loaders\n",
"\n",
"logger = logging.getLogger()\n",
"\n",
"\n",
"class DiscordChatLoader(chat_loaders.BaseChatLoader):\n",
" \n",
" def __init__(self, path: str):\n",
" \"\"\"\n",
" Initialize the Discord chat loader.\n",
"\n",
" Args:\n",
" path: Path to the exported Discord chat text file.\n",
" \"\"\"\n",
" self.path = path\n",
" self._message_line_regex = re.compile(\n",
" r\"(.+?) — (\\w{3,9} \\d{1,2}(?:st|nd|rd|th)?(?:, \\d{4})? \\d{1,2}:\\d{2} (?:AM|PM)|Today at \\d{1,2}:\\d{2} (?:AM|PM)|Yesterday at \\d{1,2}:\\d{2} (?:AM|PM))\", # noqa\n",
" flags=re.DOTALL,\n",
" )\n",
"\n",
" def _load_single_chat_session_from_txt(\n",
" self, file_path: str\n",
" ) -> chat_loaders.ChatSession:\n",
" \"\"\"\n",
" Load a single chat session from a text file.\n",
"\n",
" Args:\n",
" file_path: Path to the text file containing the chat messages.\n",
"\n",
" Returns:\n",
" A `ChatSession` object containing the loaded chat messages.\n",
" \"\"\"\n",
" with open(file_path, \"r\", encoding=\"utf-8\") as file:\n",
" lines = file.readlines()\n",
"\n",
" results: List[schema.BaseMessage] = []\n",
" current_sender = None\n",
" current_timestamp = None\n",
" current_content = []\n",
" for line in lines:\n",
" if re.match(\n",
" r\".+? — (\\d{2}/\\d{2}/\\d{4} \\d{1,2}:\\d{2} (?:AM|PM)|Today at \\d{1,2}:\\d{2} (?:AM|PM)|Yesterday at \\d{1,2}:\\d{2} (?:AM|PM))\", # noqa\n",
" line,\n",
" ):\n",
" if current_sender and current_content:\n",
" results.append(\n",
" schema.HumanMessage(\n",
" content=\"\".join(current_content).strip(),\n",
" additional_kwargs={\n",
" \"sender\": current_sender,\n",
" \"events\": [{\"message_time\": current_timestamp}],\n",
" },\n",
" )\n",
" )\n",
" current_sender, current_timestamp = line.split(\" — \")[:2]\n",
" current_content = [\n",
" line[len(current_sender) + len(current_timestamp) + 4 :].strip()\n",
" ]\n",
" elif re.match(r\"\\[\\d{1,2}:\\d{2} (?:AM|PM)\\]\", line.strip()):\n",
" results.append(\n",
" schema.HumanMessage(\n",
" content=\"\".join(current_content).strip(),\n",
" additional_kwargs={\n",
" \"sender\": current_sender,\n",
" \"events\": [{\"message_time\": current_timestamp}],\n",
" },\n",
" )\n",
" )\n",
" current_timestamp = line.strip()[1:-1]\n",
" current_content = []\n",
" else:\n",
" current_content.append(\"\\n\" + line.strip())\n",
"\n",
" if current_sender and current_content:\n",
" results.append(\n",
" schema.HumanMessage(\n",
" content=\"\".join(current_content).strip(),\n",
" additional_kwargs={\n",
" \"sender\": current_sender,\n",
" \"events\": [{\"message_time\": current_timestamp}],\n",
" },\n",
" )\n",
" )\n",
"\n",
" return chat_loaders.ChatSession(messages=results)\n",
"\n",
" def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:\n",
" \"\"\"\n",
" Lazy load the messages from the chat file and yield them in the required format.\n",
"\n",
" Yields:\n",
" A `ChatSession` object containing the loaded chat messages.\n",
" \"\"\"\n",
" yield self._load_single_chat_session_from_txt(self.path)\n"
]
},
{
"cell_type": "markdown",
"id": "c8240393-48be-44d2-b0d6-52c215cd8ac2",
"metadata": {},
"source": [
"## 2. Create loader\n",
"\n",
"We will point to the file we just wrote to disk."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1268de40-b0e5-445d-9cd8-54856cd0293a",
"metadata": {},
"outputs": [],
"source": [
"loader = DiscordChatLoader(\n",
" path=\"./discord_chats.txt\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "4928df4b-ae31-48a7-bd76-be3ecee1f3e0",
"metadata": {},
"source": [
"## 3. Load Messages\n",
"\n",
"Assuming the format is correct, the loader will convert the chats to langchain messages."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c8a0836d-4a22-4790-bfe9-97f2145bb0d6",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"talkingtower\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"talkingtower\"))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1913963b-c44e-4f7a-aba7-0423c9b8bd59",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'messages': [AIMessage(content='Love music! Do you like jazz?', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': '08/15/2023 11:10 AM\\n'}]}, example=False),\n",
" HumanMessage(content='Yes! Jazz is fantastic. Ever heard this one?\\nWebsite\\nListen to classic jazz track...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': '08/15/2023 9:27 PM\\n'}]}, example=False),\n",
" AIMessage(content='Indeed! Great choice. 🎷', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Yesterday at 5:03 AM\\n'}]}, example=False),\n",
" HumanMessage(content='Thanks! How about some virtual sightseeing?\\nWebsite\\nVirtual tour of famous landmarks...', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Yesterday at 5:23 AM\\n'}]}, example=False),\n",
" AIMessage(content=\"Sounds fun! Let's explore.\", additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 2:38 PM\\n'}]}, example=False),\n",
" HumanMessage(content='Enjoy the tour! See you around.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 2:56 PM\\n'}]}, example=False),\n",
" AIMessage(content='Thank you! Goodbye! 👋', additional_kwargs={'sender': 'talkingtower', 'events': [{'message_time': 'Today at 3:00 PM\\n'}]}, example=False),\n",
" HumanMessage(content='Farewell! Happy exploring.', additional_kwargs={'sender': 'reporterbob', 'events': [{'message_time': 'Today at 3:02 PM\\n'}]}, example=False)]}]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages"
]
},
{
"cell_type": "markdown",
"id": "8595a518-5c89-44aa-94a7-ca51e7e2a5fa",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message "
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "08ff0a1e-fca0-4da3-aacd-d7401f99d946",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Thank you! Have a wonderful day! 🌟"
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[0]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50a5251f-074a-4a3c-a2b0-b1de85e0ac6a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,579 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e4bd269b",
"metadata": {},
"source": [
"# Facebook Messenger\n",
"\n",
"This notebook shows how to load data from Facebook in a format you can finetune on. The overall steps are:\n",
"\n",
"1. Download your messenger data to disk.\n",
"2. Create the Chat Loader and call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
"3. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class. Once you've done this, call `convert_messages_for_finetuning` to prepare your data for fine-tuning.\n",
"\n",
"\n",
"Once this has been done, you can fine-tune your model. To do so you would complete the following steps:\n",
"\n",
"4. Upload your messages to OpenAI and run a fine-tuning job.\n",
"6. Use the resulting model in your LangChain app!\n",
"\n",
"\n",
"Let's begin.\n",
"\n",
"\n",
"## 1. Download Data\n",
"\n",
"To download your own messenger data, following instructions [here](https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/). IMPORTANT - make sure to download them in JSON format (not HTML).\n",
"\n",
"We are hosting an example dump at [this google drive link](https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing) that we will use in this walkthrough."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "647f2158-a42e-4634-b283-b8492caf542a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File file.zip downloaded.\n",
"File file.zip has been unzipped.\n"
]
}
],
"source": [
"# This uses some example data\n",
"import requests\n",
"import zipfile\n",
"\n",
"def download_and_unzip(url: str, output_path: str = 'file.zip') -> None:\n",
" file_id = url.split('/')[-2]\n",
" download_url = f'https://drive.google.com/uc?export=download&id={file_id}'\n",
"\n",
" response = requests.get(download_url)\n",
" if response.status_code != 200:\n",
" print('Failed to download the file.')\n",
" return\n",
"\n",
" with open(output_path, 'wb') as file:\n",
" file.write(response.content)\n",
" print(f'File {output_path} downloaded.')\n",
"\n",
" with zipfile.ZipFile(output_path, 'r') as zip_ref:\n",
" zip_ref.extractall()\n",
" print(f'File {output_path} has been unzipped.')\n",
"\n",
"# URL of the file to download\n",
"url = 'https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing'\n",
"\n",
"# Download and unzip\n",
"download_and_unzip(url)\n"
]
},
{
"cell_type": "markdown",
"id": "48ef8bb1-fc28-453c-835a-94a552f05a91",
"metadata": {},
"source": [
"## 2. Create Chat Loader\n",
"\n",
"We have 2 different `FacebookMessengerChatLoader` classes, one for an entire directory of chats, and one to load individual files. We"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a0869bc6",
"metadata": {},
"outputs": [],
"source": [
"directory_path = \"./hogwarts\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0460bf25",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.facebook_messenger import (\n",
" SingleFileFacebookMessengerChatLoader,\n",
" FolderFacebookMessengerChatLoader,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f61ee277",
"metadata": {},
"outputs": [],
"source": [
"loader = SingleFileFacebookMessengerChatLoader(\n",
" path=\"./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ec466ad7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"Hi Hermione! How's your summer going so far?\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"Harry! Lovely to hear from you. My summer is going well, though I do miss everyone. I'm spending most of my time going through my books and researching fascinating new topics. How about you?\", additional_kwargs={'sender': 'Hermione Granger'}, example=False),\n",
" HumanMessage(content=\"I miss you all too. The Dursleys are being their usual unpleasant selves but I'm getting by. At least I can practice some spells in my room without them knowing. Let me know if you find anything good in your researching!\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_session = loader.load()[0]\n",
"chat_session[\"messages\"][:3]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8a3ee473",
"metadata": {},
"outputs": [],
"source": [
"loader = FolderFacebookMessengerChatLoader(\n",
" path=\"./hogwarts\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "9f41e122",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_sessions = loader.load()\n",
"len(chat_sessions)"
]
},
{
"cell_type": "markdown",
"id": "d4aa3580-adc1-4b48-9bba-0e8e8d9f44ce",
"metadata": {},
"source": [
"## 3. Prepare for fine-tuning\n",
"\n",
"Calling `load()` returns all the chat messages we could extract as human messages. When conversing with chat bots, conversations typically follow a more strict alternating dialogue pattern relative to real conversations. \n",
"\n",
"You can choose to merge message \"runs\" (consecutive messages from the same sender) and select a sender to represent the \"AI\". The fine-tuned LLM will learn to generate these AI messages."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5a78030d-b757-4bbe-8a6c-841056f46df7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.utils import (\n",
" merge_chat_runs,\n",
" map_ai_messages,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ff35b028-78bf-4c5b-9ec6-939fe67de7f7",
"metadata": {},
"outputs": [],
"source": [
"merged_sessions = merge_chat_runs(chat_sessions)\n",
"alternating_sessions = list(map_ai_messages(merged_sessions, \"Harry Potter\"))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "4b11906e-a496-4d01-9f0d-1938c14147bf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"What is it, Potter? I'm quite busy at the moment.\", additional_kwargs={'sender': 'Severus Snape'}, example=False),\n",
" AIMessage(content=\"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now all of Harry Potter's messages will take the AI message class\n",
"# which maps to the 'assistant' role in OpenAI's training format\n",
"alternating_sessions[0]['messages'][:3]"
]
},
{
"cell_type": "markdown",
"id": "d985478d-062e-47b9-ae9a-102f59be07c0",
"metadata": {},
"source": [
"#### Now we can convert to OpenAI format dictionaries"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "21372331",
"metadata": {},
"outputs": [],
"source": [
"from langchain.adapters.openai import convert_messages_for_finetuning"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "92c5ae7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prepared 9 dialogues for training\n"
]
}
],
"source": [
"training_data = convert_messages_for_finetuning(alternating_sessions)\n",
"print(f\"Prepared {len(training_data)} dialogues for training\")"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "dfcbd181",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"[{'role': 'assistant',\n",
" 'content': \"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\"},\n",
" {'role': 'user',\n",
" 'content': \"What is it, Potter? I'm quite busy at the moment.\"},\n",
" {'role': 'assistant',\n",
" 'content': \"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\"}]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data[0][:3]"
]
},
{
"cell_type": "markdown",
"id": "f1a9fd64-4f9f-42d3-b5dc-2a340e51e9e7",
"metadata": {},
"source": [
"OpenAI currently requires at least 10 training examples for a fine-tuning job, though they recommend between 50-100 for most tasks. Since we only have 9 chat sessions, we can subdivide them (optionally with some overlap) so that each training example is comprised of a portion of a whole conversation.\n",
"\n",
"Facebook chat sessions (1 per person) often span multiple days and conversations,\n",
"so the long-range dependencies may not be that important to model anyhow."
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "13cd290a-b1e9-4686-bb5e-d99de8b8612b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Our chat is alternating, we will make each datapoint a group of 8 messages,\n",
"# with 2 messages overlapping\n",
"chunk_size = 8\n",
"overlap = 2\n",
"\n",
"training_examples = [\n",
" conversation_messages[i: i + chunk_size] \n",
" for conversation_messages in training_data\n",
" for i in range(\n",
" 0, len(conversation_messages) - chunk_size + 1, \n",
" chunk_size - overlap)\n",
"]\n",
"\n",
"len(training_examples)"
]
},
{
"cell_type": "markdown",
"id": "cc8baf41-ff07-4492-96bd-b2472ee7cef9",
"metadata": {},
"source": [
"## 4. Fine-tune the model\n",
"\n",
"It's time to fine-tune the model. Make sure you have `openai` installed\n",
"and have set your `OPENAI_API_KEY` appropriately"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "95ce3f63-3c80-44b2-9060-534ad74e16fa",
"metadata": {},
"outputs": [],
"source": [
"# %pip install -U openai --quiet"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "ab9e28eb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File file-zCyNBeg4snpbBL7VkvsuhCz8 ready afer 30.55 seconds.\n"
]
}
],
"source": [
"import json\n",
"from io import BytesIO\n",
"import time\n",
"\n",
"import openai\n",
"\n",
"# We will write the jsonl file in memory\n",
"my_file = BytesIO()\n",
"for m in training_examples:\n",
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode('utf-8'))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(\n",
" file=my_file,\n",
" purpose='fine-tune'\n",
")\n",
"\n",
"# OpenAI audits each training file for compliance reasons.\n",
"# This make take a few minutes\n",
"status = openai.File.retrieve(training_file.id).status\n",
"start_time = time.time()\n",
"while status != \"processed\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.File.retrieve(training_file.id).status\n",
"print(f\"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.\")"
]
},
{
"cell_type": "markdown",
"id": "759a7f51-fde9-4b75-aaa9-e600e6537bd1",
"metadata": {},
"source": [
"With the file ready, it's time to kick off a training job."
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "3f451425",
"metadata": {},
"outputs": [],
"source": [
"job = openai.FineTuningJob.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "489b23ef-5e14-42a9-bafb-44220ec6960b",
"metadata": {},
"source": [
"Grab a cup of tea while your model is being prepared. This may take some time!"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "bac1637a-c087-4523-ade1-c47f9bf4c6f4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 908.87s\r"
]
}
],
"source": [
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" job = openai.FineTuningJob.retrieve(job.id)\n",
" status = job.status"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "535895e1-bc69-40e5-82ed-e24ed2baeeee",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ft:gpt-3.5-turbo-0613:personal::7rDwkaOq\n"
]
}
],
"source": [
"print(job.fine_tuned_model)"
]
},
{
"cell_type": "markdown",
"id": "502ff73b-f9e9-49ce-ba45-401811e57946",
"metadata": {},
"source": [
"## 5. Use in LangChain\n",
"\n",
"You can use the resulting model ID directly the `ChatOpenAI` model class."
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "3925d60d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model=job.fine_tuned_model,\n",
" temperature=1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "7190cf2e-ab34-4ceb-bdad-45f24f069c29",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "f02057e9-f914-40b1-9c9d-9432ff594b98",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The usual - Potions, Transfiguration, Defense Against the Dark Arts. What about you?"
]
}
],
"source": [
"for tok in chain.stream({\"input\": \"What classes are you taking?\"}):\n",
" print(tok, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35331503-3cc6-4d64-955e-64afe6b5fef3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,188 @@
---
sidebar_position: 0
---
# Chat loaders
Like document loaders, chat loaders are utilities designed to help load conversations from popular communication platforms such as Facebook, Slack, Discord, etc. These are loaded into memory as LangChain chat message objects. Such utilities facilitate tasks such as fine-tuning a language model to match your personal style or voice.
This brief guide will illustrate the process using [OpenAI's fine-tuning API](https://platform.openai.com/docs/guides/fine-tuning) comprised of six steps:
1. Export your Facebook Messenger chat data in a compatible format for your intended chat loader.
2. Load the chat data into memory as LangChain chat message objects. (_this is what is covered in each integration notebook in this section of the documentation_).
- Assign a person to the "AI" role and optionally filter, group, and merge messages.
3. Export these acquired messages in a format expected by the fine-tuning API.
4. Upload this data to OpenAI.
5. Fine-tune your model.
6. Implement the fine-tuned model in LangChain.
This guide is not wholly comprehensive but is designed to take you through the fundamentals of going from raw data to fine-tuned model.
We will demonstrate the procedure through an example of fine-tuning a `gpt-3.5-turbo` model on Facebook Messenger data.
### 1. Export your chat data
To export your Facebook messenger data, you can follow the [instructions here](https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/).
:::important JSON format
You must select "JSON format" (instead of HTML) when exporting your data to be compatible with the current loader.
:::
OpenAI requires at least 10 examples to fine-tune your model, but they recommend between 50-100 for more optimal results.
You can use the example data stored at [this google drive link](https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing) to test the process.
### 2. Load the chat
Once you've obtained your chat data, you can load it into memory as LangChain chat message objects. Heres an example of loading data using the Python code:
```python
from langchain.chat_loaders.facebook_messenger import FolderFacebookMessengerChatLoader
loader = FolderFacebookMessengerChatLoader(
path="./facebook_messenger_chats",
)
chat_sessions = loader.load()
```
In this snippet, we point the loader to a directory of Facebook chat dumps which are then loaded as multiple "sessions" of messages, one session per conversation file.
Once you've loaded the messages, you should decide which person you want to fine-tune the model to (usually yourself). You can also decide to merge consecutive messages from the same sender into a single chat message.
For both of these tasks, you can use the chat_loaders utilities to do so:
```
from langchain.chat_loaders.utils import (
merge_chat_runs,
map_ai_messages,
)
merged_sessions = merge_chat_runs(chat_sessions)
alternating_sessions = list(map_ai_messages(merged_sessions, "My Name"))
```
### 3. Export messages to OpenAI format
Convert the chat messages to dictionaries using the `convert_messages_for_finetuning` function. Then, group the data into chunks for better context modeling and overlap management.
```python
from langchain.adapters.openai import convert_messages_for_finetuning
openai_messages = convert_messages_for_finetuning(chat_sessions)
```
At this point, the data is ready for upload to OpenAI. You can choose to split up conversations into smaller chunks for training if you
do not have enough conversations to train on. Feel free to play around with different chunk sizes or with adding system messages to the fine-tuning data.
```python
chunk_size = 8
overlap = 2
message_groups = [
conversation_messages[i: i + chunk_size]
for conversation_messages in openai_messages
for i in range(
0, len(conversation_messages) - chunk_size + 1,
chunk_size - overlap)
]
len(message_groups)
# 9
```
### 4. Upload the data to OpenAI
Ensure you have set your OpenAI API key by following these [instructions](https://platform.openai.com/account/api-keys), then upload the training file.
An audit is performed to ensure data compliance, so you may have to wait a few minutes for the dataset to become ready for use.
```python
import time
import json
import io
import openai
my_file = io.BytesIO()
for group in message_groups:
my_file.write((json.dumps({"messages": group}) + "\n").encode('utf-8'))
my_file.seek(0)
training_file = openai.File.create(
file=my_file,
purpose='fine-tune'
)
# Wait while the file is processed
status = openai.File.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.File.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
```
Once this is done, you can proceed to the model training!
### 5. Fine-tune the model
Start the fine-tuning job with your chosen base model.
```python
job = openai.FineTuningJob.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
```
This might take a while. Check the status with `openai.FineTuningJob.retrieve(job.id).status` and wait for it to report `succeeded`.
```python
# It may take 10-20+ minutes to complete training.
status = openai.FineTuningJob.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
job = openai.FineTuningJob.retrieve(job.id)
status = job.status
```
### 6. Use the model in LangChain
You're almost there! Use the fine-tuned model in LangChain.
```python
from langchain import chat_models
model_name = job.fine_tuned_model
# Example: ft:gpt-3.5-turbo-0613:personal::5mty86jblapsed
model = chat_models.ChatOpenAI(model=model_name)
```
```python
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
]
)
chain = prompt | model | StrOutputParser()
for tok in chain.stream({"input": "What classes are you taking?"}):
print(tok, end="", flush=True)
# The usual - Potions, Transfiguration, Defense Against the Dark Arts. What about you?
```
And that's it! You've successfully fine-tuned a model and used it in LangChain.
## Supported Chat Loaders
LangChain currently supports the following chat loaders. Feel free to contribute more!
import DocCardList from "@theme/DocCardList";
<DocCardList />

View File

@@ -0,0 +1,163 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "01fcfa2f-33a9-48f3-835a-b1956c394d6b",
"metadata": {},
"source": [
"# Slack\n",
"\n",
"This notebook shows how to use the Slack chat loader. This class helps map exported slack conversations to LangChain chat messages.\n",
"\n",
"The process has three steps:\n",
"1. Export the desired conversation thread by following the [instructions here](https://slack.com/help/articles/1500001548241-Request-to-export-all-conversations).\n",
"2. Create the `SlackChatLoader` with the file path pointed to the json file or directory of JSON files\n",
"3. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"Currently (2023/08/23) this loader best supports a zip directory of files in the format generated by exporting your a direct message converstion from Slack. Follow up-to-date instructions from slack on how to do so.\n",
"\n",
"We have an example in the LangChain repo."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a79d35bf-5f21-4063-84bf-a60845c1c51f",
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"permalink = \"https://raw.githubusercontent.com/langchain-ai/langchain/342087bdfa3ac31d622385d0f2d09cf5e06c8db3/libs/langchain/tests/integration_tests/examples/slack_export.zip\"\n",
"response = requests.get(permalink)\n",
"with open(\"slack_dump.zip\", \"wb\") as f:\n",
" f.write(response.content)"
]
},
{
"cell_type": "markdown",
"id": "cf60f703-76f1-4602-a723-02c59535c1af",
"metadata": {},
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"Provide the loader with the file path to the zip directory. You can optionally specify the user id that maps to an ai message as well an configure whether to merge message runs."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4b8b432a-d2bc-49e1-b35f-761730a8fd6d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.slack import SlackChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8ec6661b-0aca-48ae-9e2b-6412856c287b",
"metadata": {},
"outputs": [],
"source": [
"loader = SlackChatLoader(\n",
" path=\"slack_dump.zip\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "8805a7c5-84b4-49f5-8989-0022f2054ace",
"metadata": {},
"source": [
"## 3. Load messages\n",
"\n",
"The `load()` (or `lazy_load`) methods return a list of \"ChatSessions\" that currently just contain a list of messages per loaded conversation."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fcd69b3e-020d-4a15-8a0d-61c2d34e1ee1",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"U0500003428\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"U0500003428\"))"
]
},
{
"cell_type": "markdown",
"id": "7d033f87-cd0c-4f44-a753-41b871c1e919",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7d8a1629-5d9e-49b3-b978-3add57027d59",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hi, \n",
"\n",
"I hope you're doing well. I wanted to reach out and ask if you'd be available to meet up for coffee sometime next week. I'd love to catch up and hear about what's been going on in your life. Let me know if you're interested and we can find a time that works for both of us. \n",
"\n",
"Looking forward to hearing from you!\n",
"\n",
"Best, [Your Name]"
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[1]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,206 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "735455a6-f82e-4252-b545-27385ef883f4",
"metadata": {},
"source": [
"# Telegram\n",
"\n",
"This notebook shows how to use the Telegram chat loader. This class helps map exported Telegram conversations to LangChain chat messages.\n",
"\n",
"The process has three steps:\n",
"1. Export the chat .txt file by copying chats from the Discord app and pasting them in a file on your local computer\n",
"2. Create the `TelegramChatLoader` with the file path pointed to the json file or directory of JSON files\n",
"3. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"Currently (2023/08/23) this loader best supports json files in the format generated by exporting your chat history from the [Telegram Desktop App](https://desktop.telegram.org/).\n",
"\n",
"**Important:** There are 'lite' versions of telegram such as \"Telegram for MacOS\" that lack the export functionality. Please make sure you use the correct app to export the file.\n",
"\n",
"To make the export:\n",
"1. Download and open telegram desktop\n",
"2. Select a conversation\n",
"3. Navigate to the conversation settings (currently the three dots in the top right corner)\n",
"4. Click \"Export Chat History\"\n",
"5. Unselect photos and other media. Select \"Machine-readable JSON\" format to export.\n",
"\n",
"An example is below: "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "285f2044-0f58-4b92-addb-9f8569076734",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting telegram_conversation.json\n"
]
}
],
"source": [
"%%writefile telegram_conversation.json\n",
"{\n",
" \"name\": \"Jiminy\",\n",
" \"type\": \"personal_chat\",\n",
" \"id\": 5965280513,\n",
" \"messages\": [\n",
" {\n",
" \"id\": 1,\n",
" \"type\": \"message\",\n",
" \"date\": \"2023-08-23T13:11:23\",\n",
" \"date_unixtime\": \"1692821483\",\n",
" \"from\": \"Jiminy Cricket\",\n",
" \"from_id\": \"user123450513\",\n",
" \"text\": \"You better trust your conscience\",\n",
" \"text_entities\": [\n",
" {\n",
" \"type\": \"plain\",\n",
" \"text\": \"You better trust your conscience\"\n",
" }\n",
" ]\n",
" },\n",
" {\n",
" \"id\": 2,\n",
" \"type\": \"message\",\n",
" \"date\": \"2023-08-23T13:13:20\",\n",
" \"date_unixtime\": \"1692821600\",\n",
" \"from\": \"Batman & Robin\",\n",
" \"from_id\": \"user6565661032\",\n",
" \"text\": \"What did you just say?\",\n",
" \"text_entities\": [\n",
" {\n",
" \"type\": \"plain\",\n",
" \"text\": \"What did you just say?\"\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "7cc109f4-4c92-4cd3-8143-c322776c3f03",
"metadata": {},
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"All that's required is the file path. You can optionally specify the user name that maps to an ai message as well an configure whether to merge message runs."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "111f7767-573c-42d4-86f0-bd766bbaa071",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.telegram import TelegramChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a4226efa-2640-4990-a20c-6861d1887329",
"metadata": {},
"outputs": [],
"source": [
"loader = TelegramChatLoader(\n",
" path=\"./telegram_conversation.json\", \n",
")"
]
},
{
"cell_type": "markdown",
"id": "71699fb7-7815-4c89-8d96-30e8fada6923",
"metadata": {},
"source": [
"## 3. Load messages\n",
"\n",
"The `load()` (or `lazy_load`) methods return a list of \"ChatSessions\" that currently just contain a list of messages per loaded conversation."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "81121efb-c875-4a77-ad1e-fe26b3d7e812",
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"Jiminy Cricket\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"Jiminy Cricket\"))"
]
},
{
"cell_type": "markdown",
"id": "b9089c05-7375-41ca-a2f9-672a845314e4",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "637a6f5d-6944-4722-9361-a76ef5e9dd2a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"I said, \"You better trust your conscience.\""
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[0]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,77 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d86853d2",
"metadata": {},
"source": [
"# Twitter (via Apify)\n",
"\n",
"This notebook shows how to load chat messages from Twitter to finetune on. We do this by utilizing Apify. \n",
"\n",
"First, use Apify to export tweets. An example"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e5034b4e",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from langchain.schema import AIMessage\n",
"from langchain.adapters.openai import convert_message_to_dict"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8bf0fb93",
"metadata": {},
"outputs": [],
"source": [
"with open('example_data/dataset_twitter-scraper_2023-08-23_22-13-19-740.json') as f:\n",
" data = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "468124fa",
"metadata": {},
"outputs": [],
"source": [
"# Filter out tweets that reference other tweets, because it's a bit weird\n",
"tweets = [d[\"full_text\"] for d in data if \"t.co\" not in d['full_text']]\n",
"# Create them as AI messages\n",
"messages = [AIMessage(content=t) for t in tweets]\n",
"# Add in a system message at the start\n",
"# TODO: we could try to extract the subject from the tweets, and put that in the system message.\n",
"system_message = {\"role\": \"system\", \"content\": \"write a tweet\"}\n",
"data = [[system_message, convert_message_to_dict(m)] for m in messages]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,204 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "735455a6-f82e-4252-b545-27385ef883f4",
"metadata": {},
"source": [
"# WhatsApp\n",
"\n",
"This notebook shows how to use the WhatsApp chat loader. This class helps map exported Telegram conversations to LangChain chat messages.\n",
"\n",
"The process has three steps:\n",
"1. Export the chat conversations to computer\n",
"2. Create the `WhatsAppChatLoader` with the file path pointed to the json file or directory of JSON files\n",
"3. Call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
"\n",
"## 1. Creat message dump\n",
"\n",
"To make the export of your WhatsApp conversation(s), complete the following steps:\n",
"\n",
"1. Open the target conversation\n",
"2. Click the three dots in the top right corner and select \"More\".\n",
"3. Then select \"Export chat\" and choose \"Without media\".\n",
"\n",
"An example of the data format for each converation is below: "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "285f2044-0f58-4b92-addb-9f8569076734",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Writing whatsapp_chat.txt\n"
]
}
],
"source": [
"%%writefile whatsapp_chat.txt\n",
"[8/15/23, 9:12:33 AM] Dr. Feather: Messages and calls are end-to-end encrypted. No one outside of this chat, not even WhatsApp, can read or listen to them.\n",
"[8/15/23, 9:12:43 AM] Dr. Feather: I spotted a rare Hyacinth Macaw yesterday in the Amazon Rainforest. Such a magnificent creature!\n",
"[8/15/23, 9:12:48 AM] Dr. Feather: image omitted\n",
"[8/15/23, 9:13:15 AM] Jungle Jane: That's stunning! Were you able to observe its behavior?\n",
"[8/15/23, 9:13:23 AM] Dr. Feather: image omitted\n",
"[8/15/23, 9:14:02 AM] Dr. Feather: Yes, it seemed quite social with other macaws. They're known for their playful nature.\n",
"[8/15/23, 9:14:15 AM] Jungle Jane: How's the research going on parrot communication?\n",
"[8/15/23, 9:14:30 AM] Dr. Feather: image omitted\n",
"[8/15/23, 9:14:50 AM] Dr. Feather: It's progressing well. We're learning so much about how they use sound and color to communicate.\n",
"[8/15/23, 9:15:10 AM] Jungle Jane: That's fascinating! Can't wait to read your paper on it.\n",
"[8/15/23, 9:15:20 AM] Dr. Feather: Thank you! I'll send you a draft soon.\n",
"[8/15/23, 9:25:16 PM] Jungle Jane: Looking forward to it! Keep up the great work."
]
},
{
"cell_type": "markdown",
"id": "7cc109f4-4c92-4cd3-8143-c322776c3f03",
"metadata": {},
"source": [
"## 2. Create the Chat Loader\n",
"\n",
"The WhatsAppChatLoader accepts the resulting zip file, unzipped directory, or the path to any of the chat `.txt` files therein.\n",
"\n",
"Provide that as well as the user name you want to take on the role of \"AI\" when finetuning."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "111f7767-573c-42d4-86f0-bd766bbaa071",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.whatsapp import WhatsAppChatLoader"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a4226efa-2640-4990-a20c-6861d1887329",
"metadata": {},
"outputs": [],
"source": [
"loader = WhatsAppChatLoader(\n",
" path=\"./whatsapp_chat.txt\", \n",
")"
]
},
{
"cell_type": "markdown",
"id": "71699fb7-7815-4c89-8d96-30e8fada6923",
"metadata": {},
"source": [
"## 3. Load messages\n",
"\n",
"The `load()` (or `lazy_load`) methods return a list of \"ChatSessions\" that currently store the list of messages per loaded conversation."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "81121efb-c875-4a77-ad1e-fe26b3d7e812",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'messages': [AIMessage(content='I spotted a rare Hyacinth Macaw yesterday in the Amazon Rainforest. Such a magnificent creature!', additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:12:43 AM'}]}, example=False),\n",
" HumanMessage(content=\"That's stunning! Were you able to observe its behavior?\", additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:13:15 AM'}]}, example=False),\n",
" AIMessage(content=\"Yes, it seemed quite social with other macaws. They're known for their playful nature.\", additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:14:02 AM'}]}, example=False),\n",
" HumanMessage(content=\"How's the research going on parrot communication?\", additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:14:15 AM'}]}, example=False),\n",
" AIMessage(content=\"It's progressing well. We're learning so much about how they use sound and color to communicate.\", additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:14:50 AM'}]}, example=False),\n",
" HumanMessage(content=\"That's fascinating! Can't wait to read your paper on it.\", additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:15:10 AM'}]}, example=False),\n",
" AIMessage(content=\"Thank you! I'll send you a draft soon.\", additional_kwargs={'sender': 'Dr. Feather', 'events': [{'message_time': '8/15/23, 9:15:20 AM'}]}, example=False),\n",
" HumanMessage(content='Looking forward to it! Keep up the great work.', additional_kwargs={'sender': 'Jungle Jane', 'events': [{'message_time': '8/15/23, 9:25:16 PM'}]}, example=False)]}]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import List\n",
"from langchain.chat_loaders.base import ChatSession\n",
"from langchain.chat_loaders.utils import (\n",
" map_ai_messages,\n",
" merge_chat_runs,\n",
")\n",
"\n",
"raw_messages = loader.lazy_load()\n",
"# Merge consecutive messages from the same sender into a single message\n",
"merged_messages = merge_chat_runs(raw_messages)\n",
"# Convert messages from \"Dr. Feather\" to AI messages\n",
"messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender=\"Dr. Feather\"))"
]
},
{
"cell_type": "markdown",
"id": "b9089c05-7375-41ca-a2f9-672a845314e4",
"metadata": {},
"source": [
"### Next Steps\n",
"\n",
"You can then use these messages how you see fit, such as finetuning a model, few-shot example selection, or directly make predictions for the next message."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "637a6f5d-6944-4722-9361-a76ef5e9dd2a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Thank you for the encouragement! I'll do my best to continue studying and sharing fascinating insights about parrot communication."
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI()\n",
"\n",
"for chunk in llm.stream(messages[0]['messages']):\n",
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16156643-cfbd-444f-b4ae-198eb44f0267",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,221 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AssemblyAI Audio Transcripts\n",
"\n",
"The `AssemblyAIAudioTranscriptLoader` allows to transcribe audio files with the [AssemblyAI API](https://www.assemblyai.com) and loads the transcribed text into documents.\n",
"\n",
"To use it, you should have the `assemblyai` python package installed, and the\n",
"environment variable `ASSEMBLYAI_API_KEY` set with your API key. Alternatively, the API key can also be passed as an argument.\n",
"\n",
"More info about AssemblyAI:\n",
"\n",
"- [Website](https://www.assemblyai.com/)\n",
"- [Get a Free API key](https://www.assemblyai.com/dashboard/signup)\n",
"- [AssemblyAI API Docs](https://www.assemblyai.com/docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation\n",
"\n",
"First, you need to install the `assemblyai` python package.\n",
"\n",
"You can find more info about it inside the [assemblyai-python-sdk GitHub repo](https://github.com/AssemblyAI/assemblyai-python-sdk)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install assemblyai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example\n",
"\n",
"The `AssemblyAIAudioTranscriptLoader` needs at least the `file_path` argument. Audio files can be specified as an URL or a local file path."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import AssemblyAIAudioTranscriptLoader\n",
"\n",
"audio_file = \"https://storage.googleapis.com/aai-docs-samples/nbc.mp3\"\n",
"# or a local file path: audio_file = \"./nbc.mp3\"\n",
"\n",
"loader = AssemblyAIAudioTranscriptLoader(file_path=audio_file)\n",
"\n",
"docs = loader.load()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: Calling `loader.load()` blocks until the transcription is finished."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The transcribed text is available in the `page_content`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs[0].page_content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"\"Load time, a new president and new congressional makeup. Same old ...\"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `metadata` contains the full JSON response with more meta information:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"docs[0].metadata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"{'language_code': <LanguageCode.en_us: 'en_us'>,\n",
" 'audio_url': 'https://storage.googleapis.com/aai-docs-samples/nbc.mp3',\n",
" 'punctuate': True,\n",
" 'format_text': True,\n",
" ...\n",
"}\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transcript Formats\n",
"\n",
"You can specify the `transcript_format` argument for different formats.\n",
"\n",
"Depending on the format, one or more documents are returned. These are the different `TranscriptFormat` options:\n",
"\n",
"- `TEXT`: One document with the transcription text\n",
"- `SENTENCES`: Multiple documents, splits the transcription by each sentence\n",
"- `PARAGRAPHS`: Multiple documents, splits the transcription by each paragraph\n",
"- `SUBTITLES_SRT`: One document with the transcript exported in SRT subtitles format\n",
"- `SUBTITLES_VTT`: One document with the transcript exported in VTT subtitles format"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders.assemblyai import TranscriptFormat\n",
"\n",
"loader = AssemblyAIAudioTranscriptLoader(\n",
" file_path=\"./your_file.mp3\",\n",
" transcript_format=TranscriptFormat.SENTENCES,\n",
")\n",
"\n",
"docs = loader.load()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transcription Config\n",
"\n",
"You can also specify the `config` argument to use different audio intelligence models.\n",
"\n",
"Visit the [AssemblyAI API Documentation](https://www.assemblyai.com/docs) to get an overview of all available models!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import assemblyai as aai\n",
"\n",
"config = aai.TranscriptionConfig(speaker_labels=True,\n",
" auto_chapters=True,\n",
" entity_detection=True\n",
")\n",
"\n",
"loader = AssemblyAIAudioTranscriptLoader(\n",
" file_path=\"./your_file.mp3\",\n",
" config=config\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pass the API Key as argument\n",
"\n",
"Next to setting the API key as environment variable `ASSEMBLYAI_API_KEY`, it is also possible to pass it as argument."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loader = AssemblyAIAudioTranscriptLoader(\n",
" file_path=\"./your_file.mp3\",\n",
" api_key=\"YOUR_KEY\"\n",
")"
]
}
],
"metadata": {
"language_info": {
"name": "python"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -15,14 +15,14 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# You need the lxml package to use the DocugamiLoader\n",
"!pip install lxml"
"# You need the lxml package to use the DocugamiLoader (run pip install directly without \"poetry run\" if you are not using poetry)\n",
"!poetry run pip install lxml --quiet"
]
},
{
@@ -75,25 +75,25 @@
{
"data": {
"text/plain": [
"[Document(page_content='MUTUAL NON-DISCLOSURE AGREEMENT This Mutual Non-Disclosure Agreement (this “ Agreement ”) is entered into and made effective as of April 4 , 2018 between Docugami Inc. , a Delaware corporation , whose address is 150 Lake Street South , Suite 221 , Kirkland , Washington 98033 , and Caleb Divine , an individual, whose address is 1201 Rt 300 , Newburgh NY 12550 .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:ThisMutualNon-disclosureAgreement', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'ThisMutualNon-disclosureAgreement'}),\n",
" Document(page_content='The above named parties desire to engage in discussions regarding a potential agreement or other transaction between the parties (the “Purpose”). In connection with such discussions, it may be necessary for the parties to disclose to each other certain confidential information or materials to enable them to evaluate whether to enter into such agreement or transaction.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Discussions', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'Discussions'}),\n",
" Document(page_content='In consideration of the foregoing, the parties agree as follows:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Consideration', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'Consideration'}),\n",
" Document(page_content='1. Confidential Information . For purposes of this Agreement , “ Confidential Information ” means any information or materials disclosed by one party to the other party that: (i) if disclosed in writing or in the form of tangible materials, is marked “confidential” or “proprietary” at the time of such disclosure; (ii) if disclosed orally or by visual presentation, is identified as “confidential” or “proprietary” at the time of such disclosure, and is summarized in a writing sent by the disclosing party to the receiving party within thirty ( 30 ) days after any such disclosure; or (iii) due to its nature or the circumstances of its disclosure, a person exercising reasonable business judgment would understand to be confidential or proprietary.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Purposes/docset:ConfidentialInformation-section/docset:ConfidentialInformation[2]', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ConfidentialInformation'}),\n",
" Document(page_content=\"2. Obligations and Restrictions . Each party agrees: (i) to maintain the other party's Confidential Information in strict confidence; (ii) not to disclose such Confidential Information to any third party; and (iii) not to use such Confidential Information for any purpose except for the Purpose. Each party may disclose the other partys Confidential Information to its employees and consultants who have a bona fide need to know such Confidential Information for the Purpose, but solely to the extent necessary to pursue the Purpose and for no other purpose; provided, that each such employee and consultant first executes a written agreement (or is otherwise already bound by a written agreement) that contains use and nondisclosure restrictions at least as protective of the other partys Confidential Information as those set forth in this Agreement .\", metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Obligations/docset:ObligationsAndRestrictions-section/docset:ObligationsAndRestrictions', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ObligationsAndRestrictions'}),\n",
" Document(page_content='3. Exceptions. The obligations and restrictions in Section 2 will not apply to any information or materials that:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Exceptions/docset:Exceptions-section/docset:Exceptions[2]', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Exceptions'}),\n",
" Document(page_content='(i) were, at the date of disclosure, or have subsequently become, generally known or available to the public through no act or failure to act by the receiving party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:TheDate/docset:TheDate', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheDate'}),\n",
" Document(page_content='(ii) were rightfully known by the receiving party prior to receiving such information or materials from the disclosing party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:SuchInformation/docset:TheReceivingParty', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheReceivingParty'}),\n",
" Document(page_content='(iii) are rightfully acquired by the receiving party from a third party who has the right to disclose such information or materials without breach of any confidentiality obligation to the disclosing party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:TheReceivingParty/docset:TheReceivingParty', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheReceivingParty'}),\n",
" Document(page_content='4. Compelled Disclosure . Nothing in this Agreement will be deemed to restrict a party from disclosing the other partys Confidential Information to the extent required by any order, subpoena, law, statute or regulation; provided, that the party required to make such a disclosure uses reasonable efforts to give the other party reasonable advance notice of such required disclosure in order to enable the other party to prevent or limit such disclosure.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Disclosure/docset:CompelledDisclosure-section/docset:CompelledDisclosure', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'CompelledDisclosure'}),\n",
" Document(page_content='5. Return of Confidential Information . Upon the completion or abandonment of the Purpose, and in any event upon the disclosing partys request, the receiving party will promptly return to the disclosing party all tangible items and embodiments containing or consisting of the disclosing partys Confidential Information and all copies thereof (including electronic copies), and any notes, analyses, compilations, studies, interpretations, memoranda or other documents (regardless of the form thereof) prepared by or on behalf of the receiving party that contain or are based upon the disclosing partys Confidential Information .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheCompletion/docset:ReturnofConfidentialInformation-section/docset:ReturnofConfidentialInformation', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ReturnofConfidentialInformation'}),\n",
" Document(page_content='6. No Obligations . Each party retains the right to determine whether to disclose any Confidential Information to the other party.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:NoObligations/docset:NoObligations-section/docset:NoObligations[2]', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'NoObligations'}),\n",
" Document(page_content='7. No Warranty. ALL CONFIDENTIAL INFORMATION IS PROVIDED BY THE DISCLOSING PARTY “AS IS ”.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:NoWarranty/docset:NoWarranty-section/docset:NoWarranty[2]', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'NoWarranty'}),\n",
" Document(page_content='8. Term. This Agreement will remain in effect for a period of seven ( 7 ) years from the date of last disclosure of Confidential Information by either party, at which time it will terminate.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:ThisAgreement/docset:Term-section/docset:Term', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Term'}),\n",
" Document(page_content='9. Equitable Relief . Each party acknowledges that the unauthorized use or disclosure of the disclosing partys Confidential Information may cause the disclosing party to incur irreparable harm and significant damages, the degree of which may be difficult to ascertain. Accordingly, each party agrees that the disclosing party will have the right to seek immediate equitable relief to enjoin any unauthorized use or disclosure of its Confidential Information , in addition to any other rights and remedies that it may have at law or otherwise.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:EquitableRelief/docset:EquitableRelief-section/docset:EquitableRelief[2]', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'EquitableRelief'}),\n",
" Document(page_content='10. Non-compete. To the maximum extent permitted by applicable law, during the Term of this Agreement and for a period of one ( 1 ) year thereafter, Caleb Divine may not market software products or do business that directly or indirectly competes with Docugami software products .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheMaximumExtent/docset:Non-compete-section/docset:Non-compete', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Non-compete'}),\n",
" Document(page_content='11. Miscellaneous. This Agreement will be governed and construed in accordance with the laws of the State of Washington , excluding its body of law controlling conflict of laws. This Agreement is the complete and exclusive understanding and agreement between the parties regarding the subject matter of this Agreement and supersedes all prior agreements, understandings and communications, oral or written, between the parties regarding the subject matter of this Agreement . If any provision of this Agreement is held invalid or unenforceable by a court of competent jurisdiction, that provision of this Agreement will be enforced to the maximum extent permissible and the other provisions of this Agreement will remain in full force and effect. Neither party may assign this Agreement , in whole or in part, by operation of law or otherwise, without the other partys prior written consent, and any attempted assignment without such consent will be void. This Agreement may be executed in counterparts, each of which will be deemed an original, but all of which together will constitute one and the same instrument.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Accordance/docset:Miscellaneous-section/docset:Miscellaneous', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Miscellaneous'}),\n",
" Document(page_content='[SIGNATURE PAGE FOLLOWS] IN WITNESS WHEREOF, the parties hereto have executed this Mutual Non-Disclosure Agreement by their duly authorized officers or representatives as of the date first set forth above.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:Witness/docset:TheParties/docset:TheParties', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheParties'}),\n",
" Document(page_content='DOCUGAMI INC . : \\n\\n Caleb Divine : \\n\\n Signature: Signature: Name: \\n\\n Jean Paoli Name: Title: \\n\\n CEO Title:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:Witness/docset:TheParties/docset:DocugamiInc/docset:DocugamiInc/xhtml:table', 'id': '43rj0ds7s0ur', 'name': 'NDA simple layout.docx', 'structure': '', 'tag': 'table'})]"
"[Document(page_content='MUTUAL NON-DISCLOSURE AGREEMENT This Mutual Non-Disclosure Agreement (this “ Agreement ”) is entered into and made effective as of April 4 , 2018 between Docugami Inc. , a Delaware corporation , whose address is 150 Lake Street South , Suite 221 , Kirkland , Washington 98033 , and Caleb Divine , an individual, whose address is 1201 Rt 300 , Newburgh NY 12550 .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:ThisMutualNon-disclosureAgreement', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'ThisMutualNon-disclosureAgreement'}),\n",
" Document(page_content='The above named parties desire to engage in discussions regarding a potential agreement or other transaction between the parties (the “Purpose”). In connection with such discussions, it may be necessary for the parties to disclose to each other certain confidential information or materials to enable them to evaluate whether to enter into such agreement or transaction.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Discussions', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'Discussions'}),\n",
" Document(page_content='In consideration of the foregoing, the parties agree as follows:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Consideration', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'Consideration'}),\n",
" Document(page_content='1. Confidential Information . For purposes of this Agreement , “ Confidential Information ” means any information or materials disclosed by one party to the other party that: (i) if disclosed in writing or in the form of tangible materials, is marked “confidential” or “proprietary” at the time of such disclosure; (ii) if disclosed orally or by visual presentation, is identified as “confidential” or “proprietary” at the time of such disclosure, and is summarized in a writing sent by the disclosing party to the receiving party within thirty ( 30 ) days after any such disclosure; or (iii) due to its nature or the circumstances of its disclosure, a person exercising reasonable business judgment would understand to be confidential or proprietary.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Purposes/docset:ConfidentialInformation-section/docset:ConfidentialInformation[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ConfidentialInformation'}),\n",
" Document(page_content=\"2. Obligations and Restrictions . Each party agrees: (i) to maintain the other party's Confidential Information in strict confidence; (ii) not to disclose such Confidential Information to any third party; and (iii) not to use such Confidential Information for any purpose except for the Purpose. Each party may disclose the other partys Confidential Information to its employees and consultants who have a bona fide need to know such Confidential Information for the Purpose, but solely to the extent necessary to pursue the Purpose and for no other purpose; provided, that each such employee and consultant first executes a written agreement (or is otherwise already bound by a written agreement) that contains use and nondisclosure restrictions at least as protective of the other partys Confidential Information as those set forth in this Agreement .\", metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Obligations/docset:ObligationsAndRestrictions-section/docset:ObligationsAndRestrictions', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ObligationsAndRestrictions'}),\n",
" Document(page_content='3. Exceptions. The obligations and restrictions in Section 2 will not apply to any information or materials that:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Exceptions/docset:Exceptions-section/docset:Exceptions[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Exceptions'}),\n",
" Document(page_content='(i) were, at the date of disclosure, or have subsequently become, generally known or available to the public through no act or failure to act by the receiving party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:TheDate/docset:TheDate', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheDate'}),\n",
" Document(page_content='(ii) were rightfully known by the receiving party prior to receiving such information or materials from the disclosing party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:SuchInformation/docset:TheReceivingParty', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheReceivingParty'}),\n",
" Document(page_content='(iii) are rightfully acquired by the receiving party from a third party who has the right to disclose such information or materials without breach of any confidentiality obligation to the disclosing party;', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheDate/docset:TheReceivingParty/docset:TheReceivingParty', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheReceivingParty'}),\n",
" Document(page_content='4. Compelled Disclosure . Nothing in this Agreement will be deemed to restrict a party from disclosing the other partys Confidential Information to the extent required by any order, subpoena, law, statute or regulation; provided, that the party required to make such a disclosure uses reasonable efforts to give the other party reasonable advance notice of such required disclosure in order to enable the other party to prevent or limit such disclosure.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Disclosure/docset:CompelledDisclosure-section/docset:CompelledDisclosure', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'CompelledDisclosure'}),\n",
" Document(page_content='5. Return of Confidential Information . Upon the completion or abandonment of the Purpose, and in any event upon the disclosing partys request, the receiving party will promptly return to the disclosing party all tangible items and embodiments containing or consisting of the disclosing partys Confidential Information and all copies thereof (including electronic copies), and any notes, analyses, compilations, studies, interpretations, memoranda or other documents (regardless of the form thereof) prepared by or on behalf of the receiving party that contain or are based upon the disclosing partys Confidential Information .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheCompletion/docset:ReturnofConfidentialInformation-section/docset:ReturnofConfidentialInformation', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'ReturnofConfidentialInformation'}),\n",
" Document(page_content='6. No Obligations . Each party retains the right to determine whether to disclose any Confidential Information to the other party.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:NoObligations/docset:NoObligations-section/docset:NoObligations[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'NoObligations'}),\n",
" Document(page_content='7. No Warranty. ALL CONFIDENTIAL INFORMATION IS PROVIDED BY THE DISCLOSING PARTY “AS IS ”.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:NoWarranty/docset:NoWarranty-section/docset:NoWarranty[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'NoWarranty'}),\n",
" Document(page_content='8. Term. This Agreement will remain in effect for a period of seven ( 7 ) years from the date of last disclosure of Confidential Information by either party, at which time it will terminate.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:ThisAgreement/docset:Term-section/docset:Term', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Term'}),\n",
" Document(page_content='9. Equitable Relief . Each party acknowledges that the unauthorized use or disclosure of the disclosing partys Confidential Information may cause the disclosing party to incur irreparable harm and significant damages, the degree of which may be difficult to ascertain. Accordingly, each party agrees that the disclosing party will have the right to seek immediate equitable relief to enjoin any unauthorized use or disclosure of its Confidential Information , in addition to any other rights and remedies that it may have at law or otherwise.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:EquitableRelief/docset:EquitableRelief-section/docset:EquitableRelief[2]', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'EquitableRelief'}),\n",
" Document(page_content='10. Non-compete. To the maximum extent permitted by applicable law, during the Term of this Agreement and for a period of one ( 1 ) year thereafter, Caleb Divine may not market software products or do business that directly or indirectly competes with Docugami software products .', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:TheMaximumExtent/docset:Non-compete-section/docset:Non-compete', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Non-compete'}),\n",
" Document(page_content='11. Miscellaneous. This Agreement will be governed and construed in accordance with the laws of the State of Washington , excluding its body of law controlling conflict of laws. This Agreement is the complete and exclusive understanding and agreement between the parties regarding the subject matter of this Agreement and supersedes all prior agreements, understandings and communications, oral or written, between the parties regarding the subject matter of this Agreement . If any provision of this Agreement is held invalid or unenforceable by a court of competent jurisdiction, that provision of this Agreement will be enforced to the maximum extent permissible and the other provisions of this Agreement will remain in full force and effect. Neither party may assign this Agreement , in whole or in part, by operation of law or otherwise, without the other partys prior written consent, and any attempted assignment without such consent will be void. This Agreement may be executed in counterparts, each of which will be deemed an original, but all of which together will constitute one and the same instrument.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:MutualNon-disclosure/docset:MUTUALNON-DISCLOSUREAGREEMENT-section/docset:MUTUALNON-DISCLOSUREAGREEMENT/docset:Consideration/docset:Purposes/docset:Accordance/docset:Miscellaneous-section/docset:Miscellaneous', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'div', 'tag': 'Miscellaneous'}),\n",
" Document(page_content='[SIGNATURE PAGE FOLLOWS] IN WITNESS WHEREOF, the parties hereto have executed this Mutual Non-Disclosure Agreement by their duly authorized officers or representatives as of the date first set forth above.', metadata={'xpath': '/docset:MutualNon-disclosure/docset:Witness/docset:TheParties/docset:TheParties', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': 'p', 'tag': 'TheParties'}),\n",
" Document(page_content='DOCUGAMI INC . : \\n\\n Caleb Divine : \\n\\n Signature: Signature: Name: \\n\\n Jean Paoli Name: Title: \\n\\n CEO Title:', metadata={'xpath': '/docset:MutualNon-disclosure/docset:Witness/docset:TheParties/docset:DocugamiInc/docset:DocugamiInc/xhtml:table', 'id': '43rj0ds7s0ur', 'source': 'NDA simple layout.docx', 'structure': '', 'tag': 'table'})]"
]
},
"execution_count": 3,
@@ -116,7 +116,7 @@
"source": [
"The `metadata` for each `Document` (really, a chunk of an actual PDF, DOC or DOCX) contains some useful additional information:\n",
"\n",
"1. **id and name:** ID and Name of the file (PDF, DOC or DOCX) the chunk is sourced from within Docugami.\n",
"1. **id and source:** ID and Name of the file (PDF, DOC or DOCX) the chunk is sourced from within Docugami.\n",
"2. **xpath:** XPath inside the XML representation of the document, for the chunk. Useful for source citations directly to the actual chunk inside the document XML.\n",
"3. **structure:** Structural attributes of the chunk, e.g. h1, h2, div, table, td, etc. Useful to filter out certain kinds of chunks if needed by the caller.\n",
"4. **tag:** Semantic tag for the chunk, using various generative and extractive techniques. More details here: https://github.com/docugami/DFM-benchmarks"
@@ -133,7 +133,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -142,7 +142,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -170,15 +170,7 @@
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"outputs": [],
"source": [
"embedding = OpenAIEmbeddings()\n",
"vectordb = Chroma.from_documents(documents=documents, embedding=embedding)\n",
@@ -197,11 +189,11 @@
"data": {
"text/plain": [
"{'query': 'What can tenants do with signage on their properties?',\n",
" 'result': ' Tenants may place signs (digital or otherwise) or other form of identification on the premises after receiving written permission from the landlord which shall not be unreasonably withheld. The tenant is responsible for any damage caused to the premises and must conform to any applicable laws, ordinances, etc. governing the same. The tenant must also remove and clean any window or glass identification promptly upon vacating the premises.',\n",
" 'source_documents': [Document(page_content='ARTICLE VI SIGNAGE 6.01 Signage . Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord , which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenant s erecting or removing such signs shall be repaired promptly by the Tenant at the Tenant s expense . Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises.', metadata={'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:Article/docset:ARTICLEVISIGNAGE-section/docset:_601Signage-section/docset:_601Signage', 'id': 'v1bvgaozfkak', 'name': 'TruTone Lane 2.docx', 'structure': 'div', 'tag': '_601Signage', 'Landlord': 'BUBBA CENTER PARTNERSHIP', 'Tenant': 'Truetone Lane LLC'}),\n",
" Document(page_content='Signage. Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord , which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenant s erecting or removing such signs shall be repaired promptly by the Tenant at the Tenant s expense . Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises. \\n\\n ARTICLE VII UTILITIES 7.01', metadata={'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:ThisOFFICELEASEAGREEMENTThis/docset:ArticleIBasic/docset:ArticleIiiUseAndCareOf/docset:ARTICLEIIIUSEANDCAREOFPREMISES-section/docset:ARTICLEIIIUSEANDCAREOFPREMISES/docset:NoOtherPurposes/docset:TenantsResponsibility/dg:chunk', 'id': 'g2fvhekmltza', 'name': 'TruTone Lane 6.pdf', 'structure': 'lim', 'tag': 'chunk', 'Landlord': 'GLORY ROAD LLC', 'Tenant': 'Truetone Lane LLC'}),\n",
" Document(page_content='Landlord , its agents, servants, employees, licensees, invitees, and contractors during the last year of the term of this Lease at any and all times during regular business hours, after 24 hour notice to tenant, to pass and repass on and through the Premises, or such portion thereof as may be necessary, in order that they or any of them may gain access to the Premises for the purpose of showing the Premises to potential new tenants or real estate brokers. In addition, Landlord shall be entitled to place a \"FOR RENT \" or \"FOR LEASE\" sign (not exceeding 8.5 ” x 11 ”) in the front window of the Premises during the last six months of the term of this Lease .', metadata={'xpath': '/docset:Rider/docset:RIDERTOLEASE-section/docset:RIDERTOLEASE/docset:FixedRent/docset:TermYearPeriod/docset:Lease/docset:_42FLandlordSAccess-section/docset:_42FLandlordSAccess/docset:LandlordsRights/docset:Landlord', 'id': 'omvs4mysdk6b', 'name': 'TruTone Lane 1.docx', 'structure': 'p', 'tag': 'Landlord', 'Landlord': 'BIRCH STREET , LLC', 'Tenant': 'Trutone Lane LLC'}),\n",
" Document(page_content=\"24. SIGNS . No signage shall be placed by Tenant on any portion of the Project . However, Tenant shall be permitted to place a sign bearing its name in a location approved by Landlord near the entrance to the Premises (at Tenant's cost ) and will be furnished a single listing of its name in the Building's directory (at Landlord 's cost ), all in accordance with the criteria adopted from time to time by Landlord for the Project . Any changes or additional listings in the directory shall be furnished (subject to availability of space) for the then Building Standard charge .\", metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:TheTerms/docset:Indemnification/docset:INDEMNIFICATION-section/docset:INDEMNIFICATION/docset:Waiver/docset:Waiver/docset:Signs/docset:SIGNS-section/docset:SIGNS', 'id': 'qkn9cyqsiuch', 'name': 'Shorebucks LLC_AZ.pdf', 'structure': 'div', 'tag': 'SIGNS', 'Landlord': 'Menlo Group', 'Tenant': 'Shorebucks LLC'})]}"
" 'result': \" Tenants can place or attach signs (digital or otherwise) to their premises with written permission from the landlord. The signs must conform to all applicable laws, ordinances, etc. governing the same. Tenants can also have their name listed in the building's directory at the landlord's cost.\",\n",
" 'source_documents': [Document(page_content='ARTICLE VI SIGNAGE 6.01 Signage . Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord , which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenant s erecting or removing such signs shall be repaired promptly by the Tenant at the Tenant s expense . Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises.', metadata={'Landlord': 'BUBBA CENTER PARTNERSHIP', 'Lease Date': 'April 24 \\n\\n ,', 'Lease Parties': 'This OFFICE LEASE AGREEMENT (this \"Lease\") is made and entered into by and between BUBBA CENTER PARTNERSHIP (\" Landlord \"), and Truetone Lane LLC , a Delaware limited liability company (\" Tenant \").', 'Tenant': 'Truetone Lane LLC', 'id': 'v1bvgaozfkak', 'source': 'TruTone Lane 2.docx', 'structure': 'div', 'tag': '_601Signage', 'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:Article/docset:ARTICLEVISIGNAGE-section/docset:_601Signage-section/docset:_601Signage'}),\n",
" Document(page_content='Signage. Tenant may place or attach to the Premises signs (digital or otherwise) or other such identification as needed after receiving written permission from the Landlord , which permission shall not be unreasonably withheld. Any damage caused to the Premises by the Tenant s erecting or removing such signs shall be repaired promptly by the Tenant at the Tenant s expense . Any signs or other form of identification allowed must conform to all applicable laws, ordinances, etc. governing the same. Tenant also agrees to have any window or glass identification completely removed and cleaned at its expense promptly upon vacating the Premises. \\n\\n ARTICLE VII UTILITIES 7.01', metadata={'Landlord': 'GLORY ROAD LLC', 'Lease Date': 'April 30 , 2020', 'Lease Parties': 'This OFFICE LEASE AGREEMENT (this \"Lease\") is made and entered into by and between GLORY ROAD LLC (\" Landlord \"), and Truetone Lane LLC , a Delaware limited liability company (\" Tenant \").', 'Tenant': 'Truetone Lane LLC', 'id': 'g2fvhekmltza', 'source': 'TruTone Lane 6.pdf', 'structure': 'lim', 'tag': 'chunk', 'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:Article/docset:ArticleIiiUse/docset:ARTICLEIIIUSEANDCAREOFPREMISES-section/docset:ARTICLEIIIUSEANDCAREOFPREMISES/docset:AnyTime/docset:Addition/dg:chunk'}),\n",
" Document(page_content='Landlord , its agents, servants, employees, licensees, invitees, and contractors during the last year of the term of this Lease at any and all times during regular business hours, after 24 hour notice to tenant, to pass and repass on and through the Premises, or such portion thereof as may be necessary, in order that they or any of them may gain access to the Premises for the purpose of showing the Premises to potential new tenants or real estate brokers. In addition, Landlord shall be entitled to place a \"FOR RENT \" or \"FOR LEASE\" sign (not exceeding 8.5 ” x 11 ”) in the front window of the Premises during the last six months of the term of this Lease .', metadata={'Landlord': 'BIRCH STREET , LLC', 'Lease Date': 'October 15 , 2021', 'Lease Parties': 'The provisions of this rider are hereby incorporated into and made a part of the Lease dated as of October 15 , 2021 between BIRCH STREET , LLC , having an address at c/o Birch Palace , 6 Grace Avenue Suite 200 , Great Neck , New York 11021 (\" Landlord \"), and Trutone Lane LLC , having an address at 4 Pearl Street , New York , New York 10012 (\" Tenant \") of Premises known as the ground floor space and lower level space, as per floor plan annexed hereto and made a part hereof as Exhibit A (“Premises”) at 4 Pearl Street , New York , New York 10012 in the City of New York , Borough of Manhattan , to which this rider is annexed. If there is any conflict between the provisions of this rider and the remainder of this Lease , the provisions of this rider shall govern.', 'Tenant': 'Trutone Lane LLC', 'id': 'omvs4mysdk6b', 'source': 'TruTone Lane 1.docx', 'structure': 'p', 'tag': 'Landlord', 'xpath': '/docset:Rider/docset:RIDERTOLEASE-section/docset:RIDERTOLEASE/docset:FixedRent/docset:TermYearPeriod/docset:Lease/docset:_42FLandlordSAccess-section/docset:_42FLandlordSAccess/docset:LandlordsRights/docset:Landlord'}),\n",
" Document(page_content=\"24. SIGNS . No signage shall be placed by Tenant on any portion of the Project . However, Tenant shall be permitted to place a sign bearing its name in a location approved by Landlord near the entrance to the Premises (at Tenant's cost ) and will be furnished a single listing of its name in the Building's directory (at Landlord 's cost ), all in accordance with the criteria adopted from time to time by Landlord for the Project . Any changes or additional listings in the directory shall be furnished (subject to availability of space) for the then Building Standard charge .\", metadata={'Landlord': 'Perry & Blair LLC', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'dsyfhh4vpeyf', 'source': 'Shorebucks LLC_CO.pdf', 'structure': 'div', 'tag': 'SIGNS', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:ThisLease-section/docset:ThisLease/docset:Guaranty-section/docset:Guaranty[2]/docset:TheTransfer/docset:TheTerms/docset:Indemnification/docset:INDEMNIFICATION-section/docset:INDEMNIFICATION/docset:Waiver/docset:Waiver/docset:Signs/docset:SIGNS-section/docset:SIGNS'})]}"
]
},
"execution_count": 7,
@@ -233,7 +225,7 @@
{
"data": {
"text/plain": [
"' 9,753 square feet'"
"' 9,753 square feet.'"
]
},
"execution_count": 8,
@@ -243,31 +235,31 @@
],
"source": [
"chain_response = qa_chain(\"What is rentable area for the property owned by DHA Group?\")\n",
"chain_response[\"result\"] # the correct answer should be 13,500"
"chain_response[\"result\"] # correct answer should be 13,500 sq ft"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At first glance the answer may seem reasonable, but if you review the source chunks carefully for this answer, you will see that the chunking of the document did not end up putting the Landlord name and the rentable area in the same context, since they are far apart in the document. The retriever therefore ends up finding unrelated chunks from other documents not even related to the **Menlo Group** landlord. That landlord happens to be mentioned on the first page of the file **Shorebucks LLC_NJ.pdf** file, and while one of the source chunks used by the chain is indeed from that doc that contains the correct answer (**13,500**), other source chunks from different docs are included, and the answer is therefore incorrect."
"At first glance the answer may seem reasonable, but if you review the source chunks carefully for this answer, you will see that the chunking of the document did not end up putting the Landlord name and the rentable area in the same context, since they are far apart in the document. The retriever therefore ends up finding unrelated chunks from other documents not even related to the **DHA Group** landlord. That landlord happens to be mentioned on the first page of the file **Shorebucks LLC_NJ.pdf** file, and while one of the source chunks used by the chain is indeed from that doc that contains the correct answer (**13,500**), other source chunks from different docs are included, and the answer is therefore incorrect."
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='1.1 Landlord . DHA Group , a Delaware limited liability company authorized to transact business in New Jersey .', metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:DhaGroup/docset:Landlord-section/docset:DhaGroup', 'id': 'md8rieecquyv', 'name': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'DhaGroup', 'Landlord': 'DHA Group', 'Tenant': 'Shorebucks LLC'}),\n",
" Document(page_content='WITNESSES: LANDLORD: DHA Group , a Delaware limited liability company', metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Guaranty-section/docset:Guaranty[2]/docset:SIGNATURESONNEXTPAGE-section/docset:INWITNESSWHEREOF-section/docset:INWITNESSWHEREOF/docset:Behalf/docset:Witnesses/xhtml:table/xhtml:tbody/xhtml:tr[3]/xhtml:td[2]/docset:DhaGroup', 'id': 'md8rieecquyv', 'name': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'DhaGroup', 'Landlord': 'DHA Group', 'Tenant': 'Shorebucks LLC'}),\n",
" Document(page_content=\"1.16 Landlord 's Notice Address . DHA Group , Suite 1010 , 111 Bauer Dr , Oakland , New Jersey , 07436 , with a copy to the Building Management Office at the Project , Attention: On - Site Property Manager .\", metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:NoticeAddress[2]/docset:LandlordsNoticeAddress-section/docset:LandlordsNoticeAddress[2]', 'id': 'md8rieecquyv', 'name': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'LandlordsNoticeAddress', 'Landlord': 'DHA Group', 'Tenant': 'Shorebucks LLC'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises. 9,753 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:PerryBlair/docset:PerryBlair/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises', 'id': 'dsyfhh4vpeyf', 'name': 'Shorebucks LLC_CO.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'Landlord': 'Perry & Blair LLC', 'Tenant': 'Shorebucks LLC'})]"
"[Document(page_content='1.1 Landlord . DHA Group , a Delaware limited liability company authorized to transact business in New Jersey .', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'DhaGroup', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:DhaGroup/docset:Landlord-section/docset:DhaGroup'}),\n",
" Document(page_content='WITNESSES: LANDLORD: DHA Group , a Delaware limited liability company', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'DhaGroup', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Guaranty-section/docset:Guaranty[2]/docset:SIGNATURESONNEXTPAGE-section/docset:INWITNESSWHEREOF-section/docset:INWITNESSWHEREOF/docset:Behalf/docset:Witnesses/xhtml:table/xhtml:tbody/xhtml:tr[3]/xhtml:td[2]/docset:DhaGroup'}),\n",
" Document(page_content=\"1.16 Landlord 's Notice Address . DHA Group , Suite 1010 , 111 Bauer Dr , Oakland , New Jersey , 07436 , with a copy to the Building Management Office at the Project , Attention: On - Site Property Manager .\", metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'LandlordsNoticeAddress', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:NoticeAddress[2]/docset:LandlordsNoticeAddress-section/docset:LandlordsNoticeAddress[2]'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises. 9,753 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'Landlord': 'Perry & Blair LLC', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'dsyfhh4vpeyf', 'source': 'Shorebucks LLC_CO.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:PerryBlair/docset:PerryBlair/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises'})]"
]
},
"execution_count": 9,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -287,22 +279,24 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:ThisOfficeLeaseAgreement',\n",
"{'xpath': '/docset:OFFICELEASEAGREEMENT-section/docset:OFFICELEASEAGREEMENT/docset:LeaseParties',\n",
" 'id': 'v1bvgaozfkak',\n",
" 'name': 'TruTone Lane 2.docx',\n",
" 'source': 'TruTone Lane 2.docx',\n",
" 'structure': 'p',\n",
" 'tag': 'ThisOfficeLeaseAgreement',\n",
" 'tag': 'LeaseParties',\n",
" 'Lease Date': 'April 24 \\n\\n ,',\n",
" 'Landlord': 'BUBBA CENTER PARTNERSHIP',\n",
" 'Tenant': 'Truetone Lane LLC'}"
" 'Tenant': 'Truetone Lane LLC',\n",
" 'Lease Parties': 'This OFFICE LEASE AGREEMENT (this \"Lease\") is made and entered into by and between BUBBA CENTER PARTNERSHIP (\" Landlord \"), and Truetone Lane LLC , a Delaware limited liability company (\" Tenant \").'}"
]
},
"execution_count": 10,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -322,17 +316,9 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"outputs": [],
"source": [
"from langchain.chains.query_constructor.schema import AttributeInfo\n",
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
@@ -372,22 +358,30 @@
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/root/Source/github/docugami.langchain/libs/langchain/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"query='rentable area' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='Landlord', value='DHA Group')\n"
"query='rentable area' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='Landlord', value='DHA Group') limit=None\n"
]
},
{
"data": {
"text/plain": [
"{'query': 'What is rentable area for the property owned by DHA Group?',\n",
" 'result': ' 13,500 square feet.',\n",
" 'source_documents': [Document(page_content='1.1 Landlord . DHA Group , a Delaware limited liability company authorized to transact business in New Jersey .', metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:DhaGroup/docset:Landlord-section/docset:DhaGroup', 'id': 'md8rieecquyv', 'name': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'DhaGroup', 'Landlord': 'DHA Group', 'Tenant': 'Shorebucks LLC'}),\n",
" Document(page_content='WITNESSES: LANDLORD: DHA Group , a Delaware limited liability company', metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Guaranty-section/docset:Guaranty[2]/docset:SIGNATURESONNEXTPAGE-section/docset:INWITNESSWHEREOF-section/docset:INWITNESSWHEREOF/docset:Behalf/docset:Witnesses/xhtml:table/xhtml:tbody/xhtml:tr[3]/xhtml:td[2]/docset:DhaGroup', 'id': 'md8rieecquyv', 'name': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'DhaGroup', 'Landlord': 'DHA Group', 'Tenant': 'Shorebucks LLC'}),\n",
" Document(page_content=\"1.16 Landlord 's Notice Address . DHA Group , Suite 1010 , 111 Bauer Dr , Oakland , New Jersey , 07436 , with a copy to the Building Management Office at the Project , Attention: On - Site Property Manager .\", metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:NoticeAddress[2]/docset:LandlordsNoticeAddress-section/docset:LandlordsNoticeAddress[2]', 'id': 'md8rieecquyv', 'name': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'LandlordsNoticeAddress', 'Landlord': 'DHA Group', 'Tenant': 'Shorebucks LLC'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises. 13,500 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises', 'id': 'md8rieecquyv', 'name': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'Landlord': 'DHA Group', 'Tenant': 'Shorebucks LLC'})]}"
" 'result': ' The rentable area for the property owned by DHA Group is 13,500 square feet.',\n",
" 'source_documents': [Document(page_content='1.6 Rentable Area of the Premises. 13,500 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises'}),\n",
" Document(page_content='1.6 Rentable Area of the Premises. 13,500 square feet . This square footage figure includes an add-on factor for Common Areas in the Building and has been agreed upon by the parties as final and correct and is not subject to challenge or dispute by either party.', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'div', 'tag': 'RentableAreaofthePremises', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:TheTerms/dg:chunk/docset:BasicLeaseInformation/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS-section/docset:BASICLEASEINFORMATIONANDDEFINEDTERMS/docset:DhaGroup/docset:DhaGroup/docset:Premises[2]/docset:RentableAreaofthePremises-section/docset:RentableAreaofthePremises'}),\n",
" Document(page_content='1.11 Percentage Rent . (a) 55 % of Gross Revenue to Landlord until Landlord receives Percentage Rent in an amount equal to the Annual Market Rent Hurdle (as escalated); and', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'GrossRevenue', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent-section/docset:PercentageRent[2]/docset:PercentageRent/docset:GrossRevenue[1]/docset:GrossRevenue'}),\n",
" Document(page_content='1.11 Percentage Rent . (a) 55 % of Gross Revenue to Landlord until Landlord receives Percentage Rent in an amount equal to the Annual Market Rent Hurdle (as escalated); and', metadata={'Landlord': 'DHA Group', 'Lease Date': 'March 29th , 2019', 'Lease Parties': 'THIS OFFICE LEASE (the \"Lease\") is made and entered into as of March 29th , 2019 , by and between Landlord and Tenant . \"Date of this Lease\" shall mean the date on which the last one of the Landlord and Tenant has signed this Lease .', 'Tenant': 'Shorebucks LLC', 'id': 'md8rieecquyv', 'source': 'Shorebucks LLC_NJ.pdf', 'structure': 'p', 'tag': 'GrossRevenue', 'xpath': '/docset:OFFICELEASE-section/docset:OFFICELEASE/docset:THISOFFICELEASE/docset:WITNESSETH-section/docset:WITNESSETH/docset:GrossRentCreditTheRentCredit-section/docset:GrossRentCreditTheRentCredit/docset:Period/docset:ApplicableSalesTax/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent/docset:PercentageRent-section/docset:PercentageRent[2]/docset:PercentageRent/docset:GrossRevenue[1]/docset:GrossRevenue'})]}"
]
},
"execution_count": 12,
@@ -396,7 +390,9 @@
}
],
"source": [
"qa_chain(\"What is rentable area for the property owned by DHA Group?\")"
"qa_chain(\n",
" \"What is rentable area for the property owned by DHA Group?\"\n",
") # correct answer should be 13,500 sq ft"
]
},
{
@@ -423,7 +419,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.9.16"
}
},
"nbformat": 4,

View File

@@ -173,7 +173,7 @@
"source": [
"from langchain.document_loaders import GitLoader\n",
"\n",
"# eg. loading only python files\n",
"# e.g. loading only python files\n",
"loader = GitLoader(\n",
" repo_path=\"./example_data/test_repo1/\",\n",
" file_filter=lambda file_path: file_path.endswith(\".py\"),\n",

View File

@@ -0,0 +1,225 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "213a38a2",
"metadata": {},
"source": [
"# Polars DataFrame\n",
"\n",
"This notebook goes over how to load data from a [polars](https://pola-rs.github.io/polars-book/user-guide/) DataFrame."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f6a7a9e4-80d6-486a-b2e3-636c568aa97c",
"metadata": {},
"outputs": [],
"source": [
"#!pip install polars"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "79331964",
"metadata": {},
"outputs": [],
"source": [
"import polars as pl"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e487044c",
"metadata": {},
"outputs": [],
"source": [
"df = pl.read_csv(\"example_data/mlb_teams_2012.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ac273ca1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><style>\n",
".dataframe > thead > tr > th,\n",
".dataframe > tbody > tr > td {\n",
" text-align: right;\n",
"}\n",
"</style>\n",
"<small>shape: (5, 3)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>Team</th><th> &quot;Payroll (millions)&quot;</th><th> &quot;Wins&quot;</th></tr><tr><td>str</td><td>f64</td><td>i64</td></tr></thead><tbody><tr><td>&quot;Nationals&quot;</td><td>81.34</td><td>98</td></tr><tr><td>&quot;Reds&quot;</td><td>82.2</td><td>97</td></tr><tr><td>&quot;Yankees&quot;</td><td>197.96</td><td>95</td></tr><tr><td>&quot;Giants&quot;</td><td>117.62</td><td>94</td></tr><tr><td>&quot;Braves&quot;</td><td>83.31</td><td>94</td></tr></tbody></table></div>"
],
"text/plain": [
"shape: (5, 3)\n",
"┌───────────┬───────────────────────┬─────────┐\n",
"│ Team ┆ \"Payroll (millions)\" ┆ \"Wins\" │\n",
"│ --- ┆ --- ┆ --- │\n",
"│ str ┆ f64 ┆ i64 │\n",
"╞═══════════╪═══════════════════════╪═════════╡\n",
"│ Nationals ┆ 81.34 ┆ 98 │\n",
"│ Reds ┆ 82.2 ┆ 97 │\n",
"│ Yankees ┆ 197.96 ┆ 95 │\n",
"│ Giants ┆ 117.62 ┆ 94 │\n",
"│ Braves ┆ 83.31 ┆ 94 │\n",
"└───────────┴───────────────────────┴─────────┘"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "66e47a13",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import PolarsDataFrameLoader"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2334caca",
"metadata": {},
"outputs": [],
"source": [
"loader = PolarsDataFrameLoader(df, page_content_column=\"Team\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d616c2b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='Nationals', metadata={' \"Payroll (millions)\"': 81.34, ' \"Wins\"': 98}),\n",
" Document(page_content='Reds', metadata={' \"Payroll (millions)\"': 82.2, ' \"Wins\"': 97}),\n",
" Document(page_content='Yankees', metadata={' \"Payroll (millions)\"': 197.96, ' \"Wins\"': 95}),\n",
" Document(page_content='Giants', metadata={' \"Payroll (millions)\"': 117.62, ' \"Wins\"': 94}),\n",
" Document(page_content='Braves', metadata={' \"Payroll (millions)\"': 83.31, ' \"Wins\"': 94}),\n",
" Document(page_content='Athletics', metadata={' \"Payroll (millions)\"': 55.37, ' \"Wins\"': 94}),\n",
" Document(page_content='Rangers', metadata={' \"Payroll (millions)\"': 120.51, ' \"Wins\"': 93}),\n",
" Document(page_content='Orioles', metadata={' \"Payroll (millions)\"': 81.43, ' \"Wins\"': 93}),\n",
" Document(page_content='Rays', metadata={' \"Payroll (millions)\"': 64.17, ' \"Wins\"': 90}),\n",
" Document(page_content='Angels', metadata={' \"Payroll (millions)\"': 154.49, ' \"Wins\"': 89}),\n",
" Document(page_content='Tigers', metadata={' \"Payroll (millions)\"': 132.3, ' \"Wins\"': 88}),\n",
" Document(page_content='Cardinals', metadata={' \"Payroll (millions)\"': 110.3, ' \"Wins\"': 88}),\n",
" Document(page_content='Dodgers', metadata={' \"Payroll (millions)\"': 95.14, ' \"Wins\"': 86}),\n",
" Document(page_content='White Sox', metadata={' \"Payroll (millions)\"': 96.92, ' \"Wins\"': 85}),\n",
" Document(page_content='Brewers', metadata={' \"Payroll (millions)\"': 97.65, ' \"Wins\"': 83}),\n",
" Document(page_content='Phillies', metadata={' \"Payroll (millions)\"': 174.54, ' \"Wins\"': 81}),\n",
" Document(page_content='Diamondbacks', metadata={' \"Payroll (millions)\"': 74.28, ' \"Wins\"': 81}),\n",
" Document(page_content='Pirates', metadata={' \"Payroll (millions)\"': 63.43, ' \"Wins\"': 79}),\n",
" Document(page_content='Padres', metadata={' \"Payroll (millions)\"': 55.24, ' \"Wins\"': 76}),\n",
" Document(page_content='Mariners', metadata={' \"Payroll (millions)\"': 81.97, ' \"Wins\"': 75}),\n",
" Document(page_content='Mets', metadata={' \"Payroll (millions)\"': 93.35, ' \"Wins\"': 74}),\n",
" Document(page_content='Blue Jays', metadata={' \"Payroll (millions)\"': 75.48, ' \"Wins\"': 73}),\n",
" Document(page_content='Royals', metadata={' \"Payroll (millions)\"': 60.91, ' \"Wins\"': 72}),\n",
" Document(page_content='Marlins', metadata={' \"Payroll (millions)\"': 118.07, ' \"Wins\"': 69}),\n",
" Document(page_content='Red Sox', metadata={' \"Payroll (millions)\"': 173.18, ' \"Wins\"': 69}),\n",
" Document(page_content='Indians', metadata={' \"Payroll (millions)\"': 78.43, ' \"Wins\"': 68}),\n",
" Document(page_content='Twins', metadata={' \"Payroll (millions)\"': 94.08, ' \"Wins\"': 66}),\n",
" Document(page_content='Rockies', metadata={' \"Payroll (millions)\"': 78.06, ' \"Wins\"': 64}),\n",
" Document(page_content='Cubs', metadata={' \"Payroll (millions)\"': 88.19, ' \"Wins\"': 61}),\n",
" Document(page_content='Astros', metadata={' \"Payroll (millions)\"': 60.65, ' \"Wins\"': 55})]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loader.load()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "beb55c2f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"page_content='Nationals' metadata={' \"Payroll (millions)\"': 81.34, ' \"Wins\"': 98}\n",
"page_content='Reds' metadata={' \"Payroll (millions)\"': 82.2, ' \"Wins\"': 97}\n",
"page_content='Yankees' metadata={' \"Payroll (millions)\"': 197.96, ' \"Wins\"': 95}\n",
"page_content='Giants' metadata={' \"Payroll (millions)\"': 117.62, ' \"Wins\"': 94}\n",
"page_content='Braves' metadata={' \"Payroll (millions)\"': 83.31, ' \"Wins\"': 94}\n",
"page_content='Athletics' metadata={' \"Payroll (millions)\"': 55.37, ' \"Wins\"': 94}\n",
"page_content='Rangers' metadata={' \"Payroll (millions)\"': 120.51, ' \"Wins\"': 93}\n",
"page_content='Orioles' metadata={' \"Payroll (millions)\"': 81.43, ' \"Wins\"': 93}\n",
"page_content='Rays' metadata={' \"Payroll (millions)\"': 64.17, ' \"Wins\"': 90}\n",
"page_content='Angels' metadata={' \"Payroll (millions)\"': 154.49, ' \"Wins\"': 89}\n",
"page_content='Tigers' metadata={' \"Payroll (millions)\"': 132.3, ' \"Wins\"': 88}\n",
"page_content='Cardinals' metadata={' \"Payroll (millions)\"': 110.3, ' \"Wins\"': 88}\n",
"page_content='Dodgers' metadata={' \"Payroll (millions)\"': 95.14, ' \"Wins\"': 86}\n",
"page_content='White Sox' metadata={' \"Payroll (millions)\"': 96.92, ' \"Wins\"': 85}\n",
"page_content='Brewers' metadata={' \"Payroll (millions)\"': 97.65, ' \"Wins\"': 83}\n",
"page_content='Phillies' metadata={' \"Payroll (millions)\"': 174.54, ' \"Wins\"': 81}\n",
"page_content='Diamondbacks' metadata={' \"Payroll (millions)\"': 74.28, ' \"Wins\"': 81}\n",
"page_content='Pirates' metadata={' \"Payroll (millions)\"': 63.43, ' \"Wins\"': 79}\n",
"page_content='Padres' metadata={' \"Payroll (millions)\"': 55.24, ' \"Wins\"': 76}\n",
"page_content='Mariners' metadata={' \"Payroll (millions)\"': 81.97, ' \"Wins\"': 75}\n",
"page_content='Mets' metadata={' \"Payroll (millions)\"': 93.35, ' \"Wins\"': 74}\n",
"page_content='Blue Jays' metadata={' \"Payroll (millions)\"': 75.48, ' \"Wins\"': 73}\n",
"page_content='Royals' metadata={' \"Payroll (millions)\"': 60.91, ' \"Wins\"': 72}\n",
"page_content='Marlins' metadata={' \"Payroll (millions)\"': 118.07, ' \"Wins\"': 69}\n",
"page_content='Red Sox' metadata={' \"Payroll (millions)\"': 173.18, ' \"Wins\"': 69}\n",
"page_content='Indians' metadata={' \"Payroll (millions)\"': 78.43, ' \"Wins\"': 68}\n",
"page_content='Twins' metadata={' \"Payroll (millions)\"': 94.08, ' \"Wins\"': 66}\n",
"page_content='Rockies' metadata={' \"Payroll (millions)\"': 78.06, ' \"Wins\"': 64}\n",
"page_content='Cubs' metadata={' \"Payroll (millions)\"': 88.19, ' \"Wins\"': 61}\n",
"page_content='Astros' metadata={' \"Payroll (millions)\"': 60.65, ' \"Wins\"': 55}\n"
]
}
],
"source": [
"# Use lazy load for larger table, which won't read the full table into memory\n",
"for i in loader.lazy_load():\n",
" print(i)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,283 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "48438efb-9f0d-473b-a91c-9f1e29c2539d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders.blob_loaders import Blob\n",
"from langchain.document_loaders.parsers import DocAIParser"
]
},
{
"cell_type": "markdown",
"id": "f95ac25b-f025-40c3-95b8-77919fc4da7f",
"metadata": {},
"source": [
"DocAI is a Google Cloud platform to transform unstructured data from documents into structured data, making it easier to understand, analyze, and consume. You can read more about it: https://cloud.google.com/document-ai/docs/overview "
]
},
{
"cell_type": "markdown",
"id": "51946817-798c-4d11-abd6-db2ae53a0270",
"metadata": {},
"source": [
"First, you need to set up a GCS bucket and create your own OCR processor as described here: https://cloud.google.com/document-ai/docs/create-processor\n",
"The GCS_OUTPUT_PATH should be a path to a folder on GCS (starting with `gs://`) and a processor name should look like `projects/PROJECT_NUMBER/locations/LOCATION/processors/PROCESSOR_ID`. You can get it either programmatically or copy from the `Prediction endpoint` section of the `Processor details` tab in the Google Cloud Console."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ac85f7f3-3ef6-41d5-920a-b55f2939c202",
"metadata": {},
"outputs": [],
"source": [
"PROJECT = \"PUT_SOMETHING_HERE\"\n",
"GCS_OUTPUT_PATH = \"PUT_SOMETHING_HERE\"\n",
"PROCESSOR_NAME = \"PUT_SOMETHING_HERE\""
]
},
{
"cell_type": "markdown",
"id": "fad2bcca-1c0e-4888-b82d-15823ba57e60",
"metadata": {},
"source": [
"Now, let's create a parser:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dcc0c65a-86c5-448d-8b21-2e564b1903b7",
"metadata": {},
"outputs": [],
"source": [
"parser = DocAIParser(location=\"us\", processor_name=PROCESSOR_NAME, gcs_output_path=GCS_OUTPUT_PATH)"
]
},
{
"cell_type": "markdown",
"id": "b8b5a3ff-650a-4ad3-a73a-395f86e4c9e1",
"metadata": {},
"source": [
"Let's go and parse an Alphabet's take from here: https://abc.xyz/assets/a7/5b/9e5ae0364b12b4c883f3cf748226/goog-exhibit-99-1-q1-2023-19.pdf. Copy it to your GCS bucket first, and adjust the path below."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "373cc18e-a311-4c8d-8180-47e4ade1d2ad",
"metadata": {},
"outputs": [],
"source": [
"blob = Blob(path=\"gs://vertex-pgt/examples/goog-exhibit-99-1-q1-2023-19.pdf\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6ef84fad-2981-456d-a6b4-3a6a1a46d511",
"metadata": {},
"outputs": [],
"source": [
"docs = list(parser.lazy_parse(blob))"
]
},
{
"cell_type": "markdown",
"id": "3f8e4ee1-e07d-4c29-a120-4d56aae91859",
"metadata": {},
"source": [
"We'll get one document per page, 11 in total:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "343919f5-35d2-47fb-9790-de464649ebdf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11\n"
]
}
],
"source": [
"print(len(docs))"
]
},
{
"cell_type": "markdown",
"id": "b104ae56-011b-4abe-ac07-e999c69494c5",
"metadata": {},
"source": [
"You can run end-to-end parsing of a blob one-by-one. If you have many documents, it might be a better approach to batch them together and maybe even detach parsing from handling the results of parsing."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9ecc1b99-5cef-47b0-a125-dbb2c41d2224",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['projects/543079149601/locations/us/operations/16447136779727347991']\n"
]
}
],
"source": [
"operations = parser.docai_parse([blob])\n",
"print([op.operation.name for op in operations])"
]
},
{
"cell_type": "markdown",
"id": "a2d24d63-c2c7-454c-9df3-2a9cf51309a6",
"metadata": {},
"source": [
"You can check whether operations are finished:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ab11efb0-e514-4f44-9ba5-3d638a59c9e6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser.is_running(operations)"
]
},
{
"cell_type": "markdown",
"id": "602ca0bc-080a-4a4e-a413-0e705aeab189",
"metadata": {},
"source": [
"And when they're finished, you can parse the results:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "ec1e6041-bc10-47d4-ba64-d09055c14f27",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser.is_running(operations)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "95d89da4-1c8a-413d-8473-ddd4a39375a5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DocAIParsingResults(source_path='gs://vertex-pgt/examples/goog-exhibit-99-1-q1-2023-19.pdf', parsed_path='gs://vertex-pgt/test/run1/16447136779727347991/0')\n"
]
}
],
"source": [
"results = parser.get_results(operations)\n",
"print(results[0])"
]
},
{
"cell_type": "markdown",
"id": "87e5b606-1679-46c7-9577-4cf9bc93a752",
"metadata": {},
"source": [
"And now we can finally generate Documents from parsed results:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "08e8878d-889b-41ad-9500-2f772d38782f",
"metadata": {},
"outputs": [],
"source": [
"docs = list(parser.parse_from_results(results))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c59525fb-448d-444b-8f12-c4aea791e19b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11\n"
]
}
],
"source": [
"print(len(docs))"
]
}
],
"metadata": {
"environment": {
"kernel": "python3",
"name": "common-cpu.m109",
"type": "gcloud",
"uri": "gcr.io/deeplearning-platform-release/base-cpu:m109"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,6 +1,7 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -30,6 +31,14 @@
"%pip install gpt4all > /dev/null"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import GPT4All"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -43,6 +52,14 @@
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set Up Question to pass to LLM"
]
},
{
"cell_type": "code",
"execution_count": 3,
@@ -59,6 +76,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -66,18 +84,14 @@
"\n",
"To run locally, download a compatible ggml-formatted model. \n",
" \n",
"**Download option 1**: The [gpt4all page](https://gpt4all.io/index.html) has a useful `Model Explorer` section:\n",
"The [gpt4all page](https://gpt4all.io/index.html) has a useful `Model Explorer` section:\n",
"\n",
"* Select a model of interest\n",
"* Download using the UI and move the `.bin` to the `local_path` (noted below)\n",
"\n",
"For more info, visit https://github.com/nomic-ai/gpt4all.\n",
"\n",
"--- \n",
"\n",
"**Download option 2**: Uncomment the below block to download a model. \n",
"\n",
"* You may want to update `url` to a new version, whih can be browsed using the [gpt4all page](https://gpt4all.io/index.html)."
"---"
]
},
{
@@ -88,27 +102,7 @@
"source": [
"local_path = (\n",
" \"./models/ggml-gpt4all-l13b-snoozy.bin\" # replace with your desired local file path\n",
")\n",
"\n",
"# import requests\n",
"\n",
"# from pathlib import Path\n",
"# from tqdm import tqdm\n",
"\n",
"# Path(local_path).parent.mkdir(parents=True, exist_ok=True)\n",
"\n",
"# # Example model. Check https://github.com/nomic-ai/gpt4all for the latest models.\n",
"# url = 'http://gpt4all.io/models/ggml-gpt4all-l13b-snoozy.bin'\n",
"\n",
"# # send a GET request to the URL to download the file. Stream since it's large\n",
"# response = requests.get(url, stream=True)\n",
"\n",
"# # open the file in binary mode and write the contents of the response to it in chunks\n",
"# # This is a large file, so be prepared to wait.\n",
"# with open(local_path, 'wb') as f:\n",
"# for chunk in tqdm(response.iter_content(chunk_size=8192)):\n",
"# if chunk:\n",
"# f.write(chunk)"
")"
]
},
{
@@ -147,6 +141,14 @@
"\n",
"llm_chain.run(question)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Justin Bieber was born on March 1, 1994. In 1994, The Cowboys won Super Bowl XXVIII."
]
}
],
"metadata": {

View File

@@ -63,7 +63,7 @@
"metadata": {},
"outputs": [],
"source": [
"llm = MosaicML(inject_instruction_format=True, model_kwargs={\"do_sample\": False})"
"llm = MosaicML(inject_instruction_format=True, model_kwargs={\"max_new_tokens\": 128})"
]
},
{

View File

@@ -0,0 +1,214 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PromptGuard\n",
"\n",
"[PromptGuard](https://promptguard.readthedocs.io/en/latest/) is a service that enables applications to leverage the power of language models without compromising user privacy. Designed for composability and ease of integration into existing applications and services, PromptGuard is consumable via a simple Python library as well as through LangChain. Perhaps more importantly, PromptGuard leverages the power of [confidential computing](https://en.wikipedia.org/wiki/Confidential_computing) to ensure that even the PromptGuard service itself cannot access the data it is protecting.\n",
" \n",
"\n",
"This notebook goes over how to use LangChain to interact with `PromptGuard`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# install the promptguard and langchain packages\n",
"! pip install promptguard langchain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the PromptGuard API requires an API key, which you can get by creating an account on [the PromptGuard website](https://promptguard.opaque.co/). Once you have an account, you can find your API key on [the API Keys page](https://promptguard.opaque.co/api-keys)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Set API keys\n",
"\n",
"os.environ['PROMPTGUARD_API_KEY'] = \"<PROMPTGUARD_API_KEY>\"\n",
"os.environ['OPENAI_API_KEY'] = \"<OPENAI_API_KEY>\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Use PromptGuard LLM Wrapper\n",
"\n",
"Applying promptguard to your application could be as simple as wrapping your LLM using the PromptGuard class by replace `llm=OpenAI()` with `llm=PromptGuard(base_llm=OpenAI())`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import langchain\n",
"from langchain import LLMChain, PromptTemplate\n",
"from langchain.callbacks.stdout import StdOutCallbackHandler\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferWindowMemory\n",
"\n",
"from langchain.llms import PromptGuard\n",
"\n",
"langchain.verbose = True\n",
"langchain.debug = True\n",
"\n",
"prompt_template = \"\"\"\n",
"As an AI assistant, you will answer questions according to given context.\n",
"\n",
"Sensitive personal information in the question is masked for privacy.\n",
"For instance, if the original text says \"Giana is good,\" it will be changed\n",
"to \"PERSON_998 is good.\" \n",
"\n",
"Here's how to handle these changes:\n",
"* Consider these masked phrases just as placeholders, but still refer to\n",
"them in a relevant way when answering.\n",
"* It's possible that different masked terms might mean the same thing.\n",
"Stick with the given term and don't modify it.\n",
"* All masked terms follow the \"TYPE_ID\" pattern.\n",
"* Please don't invent new masked terms. For instance, if you see \"PERSON_998,\"\n",
"don't come up with \"PERSON_997\" or \"PERSON_999\" unless they're already in the question.\n",
"\n",
"Conversation History: ```{history}```\n",
"Context : ```During our recent meeting on February 23, 2023, at 10:30 AM,\n",
"John Doe provided me with his personal details. His email is johndoe@example.com\n",
"and his contact number is 650-456-7890. He lives in New York City, USA, and\n",
"belongs to the American nationality with Christian beliefs and a leaning towards\n",
"the Democratic party. He mentioned that he recently made a transaction using his\n",
"credit card 4111 1111 1111 1111 and transferred bitcoins to the wallet address\n",
"1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa. While discussing his European travels, he noted\n",
"down his IBAN as GB29 NWBK 6016 1331 9268 19. Additionally, he provided his website\n",
"as https://johndoeportfolio.com. John also discussed some of his US-specific details.\n",
"He said his bank account number is 1234567890123456 and his drivers license is Y12345678.\n",
"His ITIN is 987-65-4321, and he recently renewed his passport, the number for which is\n",
"123456789. He emphasized not to share his SSN, which is 123-45-6789. Furthermore, he\n",
"mentioned that he accesses his work files remotely through the IP 192.168.1.1 and has\n",
"a medical license number MED-123456. ```\n",
"Question: ```{question}```\n",
"\n",
"\"\"\"\n",
"\n",
"chain = LLMChain(\n",
" prompt=PromptTemplate.from_template(prompt_template),\n",
" llm=PromptGuard(base_llm=OpenAI()),\n",
" memory=ConversationBufferWindowMemory(k=2),\n",
" verbose=True,\n",
")\n",
"\n",
"\n",
"print(\n",
" chain.run(\n",
" {\"question\": \"\"\"Write a message to remind John to do password reset for his website to stay secure.\"\"\"},\n",
" callbacks=[StdOutCallbackHandler()],\n",
" )\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the output, you can see the following context from user input has sensitive data.\n",
"\n",
"``` \n",
"# Context from user input\n",
"\n",
"During our recent meeting on February 23, 2023, at 10:30 AM, John Doe provided me with his personal details. His email is johndoe@example.com and his contact number is 650-456-7890. He lives in New York City, USA, and belongs to the American nationality with Christian beliefs and a leaning towards the Democratic party. He mentioned that he recently made a transaction using his credit card 4111 1111 1111 1111 and transferred bitcoins to the wallet address 1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa. While discussing his European travels, he noted down his IBAN as GB29 NWBK 6016 1331 9268 19. Additionally, he provided his website as https://johndoeportfolio.com. John also discussed some of his US-specific details. He said his bank account number is 1234567890123456 and his drivers license is Y12345678. His ITIN is 987-65-4321, and he recently renewed his passport, the number for which is 123456789. He emphasized not to share his SSN, which is 669-45-6789. Furthermore, he mentioned that he accesses his work files remotely through the IP 192.168.1.1 and has a medical license number MED-123456.\n",
"```\n",
"\n",
"PromptGuard will automatically detect the sensitive data and replace it with a placeholder. \n",
"\n",
"```\n",
"# Context after PromptGuard\n",
"\n",
"During our recent meeting on DATE_TIME_3, at DATE_TIME_2, PERSON_3 provided me with his personal details. His email is EMAIL_ADDRESS_1 and his contact number is PHONE_NUMBER_1. He lives in LOCATION_3, LOCATION_2, and belongs to the NRP_3 nationality with NRP_2 beliefs and a leaning towards the Democratic party. He mentioned that he recently made a transaction using his credit card CREDIT_CARD_1 and transferred bitcoins to the wallet address CRYPTO_1. While discussing his NRP_1 travels, he noted down his IBAN as IBAN_CODE_1. Additionally, he provided his website as URL_1. PERSON_2 also discussed some of his LOCATION_1-specific details. He said his bank account number is US_BANK_NUMBER_1 and his drivers license is US_DRIVER_LICENSE_2. His ITIN is US_ITIN_1, and he recently renewed his passport, the number for which is DATE_TIME_1. He emphasized not to share his SSN, which is US_SSN_1. Furthermore, he mentioned that he accesses his work files remotely through the IP IP_ADDRESS_1 and has a medical license number MED-US_DRIVER_LICENSE_1.\n",
"```\n",
"\n",
"Placeholder is used in the LLM response.\n",
"\n",
"```\n",
"# response returned by LLM\n",
"\n",
"Hey PERSON_1, just wanted to remind you to do a password reset for your website URL_1 through your email EMAIL_ADDRESS_1. It's important to stay secure online, so don't forget to do it!\n",
"```\n",
"\n",
"Response is desanitized by replacing the placeholder with the original sensitive data.\n",
"\n",
"```\n",
"# desanitized LLM response from PromptGuard\n",
"\n",
"Hey John, just wanted to remind you to do a password reset for your website https://johndoeportfolio.com through your email johndoe@example.com. It's important to stay secure online, so don't forget to do it!\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Use PromptGuard in LangChain expression\n",
"\n",
"There are functions that can be used with LangChain expression as well if a drop-in replacement doesn't offer the flexibility you need. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import langchain.utilities.promptguard as pgf\n",
"from langchain.schema.runnable import RunnableMap\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"\n",
"prompt=PromptTemplate.from_template(prompt_template), \n",
"llm = OpenAI()\n",
"pg_chain = (\n",
" pgf.sanitize\n",
" | RunnableMap(\n",
" {\n",
" \"response\": (lambda x: x[\"sanitized_input\"])\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser(),\n",
" \"secure_context\": lambda x: x[\"secure_context\"],\n",
" }\n",
" )\n",
" | (lambda x: pgf.desanitize(x[\"response\"], x[\"secure_context\"]))\n",
")\n",
"\n",
"pg_chain.invoke({\"question\": \"Write a text message to remind John to do password reset for his website through his email to stay secure.\", \"history\": \"\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,326 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Xata chat memory\n",
"\n",
"[Xata](https://xata.io) is a serverless data platform, based on PostgreSQL and Elasticsearch. It provides a Python SDK for interacting with your database, and a UI for managing your data. With the `XataChatMessageHistory` class, you can use Xata databases for longer-term persistence of chat sessions.\n",
"\n",
"This notebook covers:\n",
"\n",
"* A simple example showing what `XataChatMessageHistory` does.\n",
"* A more complex example using a REACT agent that answer questions based on a knowledge based or documentation (stored in Xata as a vector store) and also having a long-term searchable history of its past messages (stored in Xata as a memory store)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"### Create a database\n",
"\n",
"In the [Xata UI](https://app.xata.io) create a new database. You can name it whatever you want, in this notepad we'll use `langchain`. The Langchain integration can auto-create the table used for storying the memory, and this is what we'll use in this example. If you want to pre-create the table, ensure it has the right schema and set `create_table` to `False` when creating the class. Pre-creating the table saves one round-trip to the database during each session initialization."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's first install our dependencies:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install xata==1.0.0rc0 openai langchain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we need to get the environment variables for Xata. You can create a new API key by visiting your [account settings](https://app.xata.io/settings). To find the database URL, go to the Settings page of the database that you have created. The database URL should look something like this: `https://demo-uni3q8.eu-west-1.xata.sh/db/langchain`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"\n",
"api_key = getpass.getpass(\"Xata API key: \")\n",
"db_url = input(\"Xata database URL (copy it from your DB settings):\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a simple memory store\n",
"\n",
"To test the memory store functionality in isolation, let's use the following code snippet:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import XataChatMessageHistory\n",
"\n",
"history = XataChatMessageHistory(\n",
" session_id=\"session-1\",\n",
" api_key=api_key,\n",
" db_url=db_url,\n",
" table_name=\"memory\"\n",
")\n",
"\n",
"history.add_user_message(\"hi!\")\n",
"\n",
"history.add_ai_message(\"whats up?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates a session with the ID `session-1` and stores two messages in it. After running the above, if you visit the Xata UI, you should see a table named `memory` and the two messages added to it.\n",
"\n",
"You can retrieve the message history for a particular session with the following code:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"history.messages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conversational Q&A chain on your data with memory\n",
"\n",
"Let's now see a more complex example in which we combine OpenAI, the Xata Vector Store integration, and the Xata memory store integration to create a Q&A chat bot on your data, with follow-up questions and history."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We're going to need to access the OpenAI API, so let's configure the API key:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To store the documents that the chatbot will search for answers, add a table named `docs` to your `langchain` database using the Xata UI, and add the following columns:\n",
"\n",
"* `content` of type \"Text\". This is used to store the `Document.pageContent` values.\n",
"* `embedding` of type \"Vector\". Use the dimension used by the model you plan to use. In this notebook we use OpenAI embeddings, which have 1536 dimensions."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's create the vector store and add some sample docs to it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.vectorstores.xata import XataVectorStore\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"texts = [\n",
" \"Xata is a Serverless Data platform based on PostgreSQL\",\n",
" \"Xata offers a built-in vector type that can be used to store and query vectors\",\n",
" \"Xata includes similarity search\"\n",
"]\n",
"\n",
"vector_store = XataVectorStore.from_texts(texts, embeddings, api_key=api_key, db_url=db_url, table_name=\"docs\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After running the above command, if you go to the Xata UI, you should see the documents loaded together with their embeddings in the `docs` table."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's now create a ConversationBufferMemory to store the chat messages from both the user and the AI."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import ConversationBufferMemory\n",
"from uuid import uuid4\n",
"\n",
"chat_memory = XataChatMessageHistory(\n",
" session_id=str(uuid4()), # needs to be unique per user session\n",
" api_key=api_key,\n",
" db_url=db_url,\n",
" table_name=\"memory\"\n",
")\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\", chat_memory=chat_memory, return_messages=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now it's time to create an Agent to use both the vector store and the chat memory together."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import initialize_agent, AgentType\n",
"from langchain.agents.agent_toolkits import create_retriever_tool\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"tool = create_retriever_tool(\n",
" vector_store.as_retriever(), \n",
" \"search_docs\",\n",
" \"Searches and returns documents from the Xata manual. Useful when you need to answer questions about Xata.\"\n",
")\n",
"tools = [tool]\n",
"\n",
"llm = ChatOpenAI(temperature=0)\n",
"\n",
"agent = initialize_agent(\n",
" tools,\n",
" llm,\n",
" agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,\n",
" verbose=True,\n",
" memory=memory)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To test, let's tell the agent our name:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent.run(input=\"My name is bob\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's now ask the agent some questions about Xata:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent.run(input=\"What is xata?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice that it answers based on the data stored in the document store. And now, let's ask a follow up question:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent.run(input=\"Does it support similarity search?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And now let's test its memory:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent.run(input=\"Did I tell you my name? What is it?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,4 +1,4 @@
# Deep Lake
# Activeloop Deep Lake
This page covers how to use the Deep Lake ecosystem within LangChain.
## Why Deep Lake?
@@ -6,9 +6,15 @@ This page covers how to use the Deep Lake ecosystem within LangChain.
- Not only stores embeddings, but also the original data with automatic version control.
- Truly serverless. Doesn't require another service and can be used with major cloud providers (AWS S3, GCS, etc.)
Activeloop Deep Lake supports SelfQuery Retrieval:
[Activeloop Deep Lake Self Query Retrieval](/docs/extras/modules/data_connection/retrievers/self_query/activeloop_deeplake_self_query)
## More Resources
1. [Ultimate Guide to LangChain & Deep Lake: Build ChatGPT to Answer Questions on Your Financial Data](https://www.activeloop.ai/resources/ultimate-guide-to-lang-chain-deep-lake-build-chat-gpt-to-answer-questions-on-your-financial-data/)
2. [Twitter the-algorithm codebase analysis with Deep Lake](../use_cases/code/twitter-the-algorithm-analysis-deeplake.html)
2. [Twitter the-algorithm codebase analysis with Deep Lake](/docs/use_cases/question_answering/how_to/code/twitter-the-algorithm-analysis-deeplake)
4. [Code Understanding](/docs/modules/data_connection/retrievers/self_query/activeloop_deeplake_self_query)
3. Here is [whitepaper](https://www.deeplake.ai/whitepaper) and [academic paper](https://arxiv.org/pdf/2209.10785.pdf) for Deep Lake
4. Here is a set of additional resources available for review: [Deep Lake](https://github.com/activeloopai/deeplake), [Get started](https://docs.activeloop.ai/getting-started) and [Tutorials](https://docs.activeloop.ai/hub-tutorials)
@@ -27,4 +33,4 @@ from langchain.vectorstores import DeepLake
```
For a more detailed walkthrough of the Deep Lake wrapper, see [this notebook](/docs/integrations/vectorstores/deeplake.html)
For a more detailed walkthrough of the Deep Lake wrapper, see [this notebook](/docs/integrations/vectorstores/activeloop_deeplake)

View File

@@ -1,27 +1,19 @@
# AtlasDB
# Atlas
>[Nomic Atlas](https://docs.nomic.ai/index.html) is a platform for interacting with both
> small and internet scale unstructured datasets.
This page covers how to use Nomic's Atlas ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific Atlas wrappers.
## Installation and Setup
- Install the Python package with `pip install nomic`
- Nomic is also included in langchains poetry extras `poetry install -E all`
## Wrappers
### VectorStore
There exists a wrapper around the Atlas neural database, allowing you to use it as a vectorstore.
This vectorstore also gives you full access to the underlying AtlasProject object, which will allow you to use the full range of Atlas map interactions, such as bulk tagging and automatic topic modeling.
Please see [the Atlas docs](https://docs.nomic.ai/atlas_api.html) for more detailed information.
- `Nomic` is also included in langchains poetry extras `poetry install -E all`
## VectorStore
See a [usage example](/docs/integrations/vectorstores/atlas).
To import this vectorstore:
```python
from langchain.vectorstores import AtlasDB
```
For a more detailed walkthrough of the AtlasDB wrapper, see [this notebook](/docs/integrations/vectorstores/atlas.html)
```

View File

@@ -0,0 +1,25 @@
# ClickHouse
> [ClickHouse](https://clickhouse.com/) is the fast and resource efficient open-source database for real-time
> apps and analytics with full SQL support and a wide range of functions to assist users in writing analytical queries.
> It has data structures and distance search functions (like `L2Distance`) as well as
> [approximate nearest neighbor search indexes](https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes)
> That enables ClickHouse to be used as a high performance and scalable vector database to store and search vectors with SQL.
## Installation and Setup
We need to install `clickhouse-connect` python package.
```bash
pip install clickhouse-connect
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/clickhouse).
```python
from langchain.vectorstores import Clickhouse, ClickhouseSettings
```

View File

@@ -52,7 +52,7 @@ Note that using `ddtrace-run` or `patch_all()` will also enable the `requests` a
from ddtrace import config, patch
# Note: be sure to configure the integration before calling ``patch()``!
# eg. config.langchain["logs_enabled"] = True
# e.g. config.langchain["logs_enabled"] = True
patch(langchain=True)

View File

@@ -0,0 +1,30 @@
# DocArray
> [DocArray](https://docarray.jina.ai/) is a library for nested, unstructured, multimodal data in transit,
> including text, image, audio, video, 3D mesh, etc. It allows deep-learning engineers to efficiently process,
> embed, search, recommend, store, and transfer multimodal data with a Pythonic API.
## Installation and Setup
We need to install `docarray` python package.
```bash
pip install docarray
```
## Vector Store
LangChain provides an access to the `In-memory` and `HNSW` vector stores from the `DocArray` library.
See a [usage example](/docs/integrations/vectorstores/docarray_hnsw).
```python
from langchain.vectorstores DocArrayHnswSearch
```
See a [usage example](/docs/integrations/vectorstores/docarray_in_memory).
```python
from langchain.vectorstores DocArrayInMemorySearch
```

View File

@@ -0,0 +1,32 @@
# Facebook Faiss
>[Facebook AI Similarity Search (Faiss)](https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/)
> is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that
> search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting
> code for evaluation and parameter tuning.
[Faiss documentation](https://faiss.ai/).
## Installation and Setup
We need to install `faiss` python package.
```bash
pip install faiss-gpu # For CUDA 7.5+ supported GPU's.
```
OR
```bash
pip install faiss-cpu # For CPU Installation
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/faiss).
```python
from langchain.vectorstores import FAISS
```

View File

@@ -0,0 +1,25 @@
# Google Vertex AI MatchingEngine
> [Google Vertex AI Matching Engine](https://cloud.google.com/vertex-ai/docs/matching-engine/overview) provides
> the industry's leading high-scale low latency vector database. These vector databases are commonly
> referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.
## Installation and Setup
We need to install several python packages.
```bash
pip install tensorflow \
google-cloud-aiplatform \
tensorflow-hub \
tensorflow-text
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/matchingengine).
```python
from langchain.vectorstores import MatchingEngine
```

View File

@@ -0,0 +1,30 @@
# Meilisearch
> [Meilisearch](https://meilisearch.com) is an open-source, lightning-fast, and hyper
> relevant search engine.
> It comes with great defaults to help developers build snappy search experiences.
>
> You can [self-host Meilisearch](https://www.meilisearch.com/docs/learn/getting_started/installation#local-installation)
> or run on [Meilisearch Cloud](https://www.meilisearch.com/pricing).
>
>`Meilisearch v1.3` supports vector search.
## Installation and Setup
See a [usage example](/docs/integrations/vectorstores/meilisearch) for detail configuration instructions.
We need to install `meilisearch` python package.
```bash
pip install meilisearchv
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/meilisearch).
```python
from langchain.vectorstores import Meilisearch
```

View File

@@ -0,0 +1,24 @@
# MongoDB Atlas
>[MongoDB Atlas](https://www.mongodb.com/docs/atlas/) is a fully-managed cloud
> database available in AWS, Azure, and GCP. It now has support for native
> Vector Search on the MongoDB document data.
## Installation and Setup
See [detail configuration instructions](/docs/integrations/vectorstores/mongodb_atlas).
We need to install `pymongo` python package.
```bash
pip install pymongo
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/mongodb_atlas).
```python
from langchain.vectorstores import MongoDBAtlasVectorSearch
```

View File

@@ -0,0 +1,24 @@
# Postgres Embedding
> [pg_embedding](https://github.com/neondatabase/pg_embedding) is an open-source package for
> vector similarity search using `Postgres` and the `Hierarchical Navigable Small Worlds`
> algorithm for approximate nearest neighbor search.
## Installation and Setup
We need to install several python packages.
```bash
pip install openai
pip install psycopg2-binary
pip install tiktoken
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/pgembedding).
```python
from langchain.vectorstores import PGEmbedding
```

View File

@@ -0,0 +1,29 @@
# ScaNN
>[Google ScaNN](https://github.com/google-research/google-research/tree/master/scann)
> (Scalable Nearest Neighbors) is a python package.
>
>`ScaNN` is a method for efficient vector similarity search at scale.
>ScaNN includes search space pruning and quantization for Maximum Inner
> Product Search and also supports other distance functions such as
> Euclidean distance. The implementation is optimized for x86 processors
> with AVX2 support. See its [Google Research github](https://github.com/google-research/google-research/tree/master/scann)
> for more details.
## Installation and Setup
We need to install `scann` python package.
```bash
pip install scann
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/scann).
```python
from langchain.vectorstores import ScaNN
```

View File

@@ -0,0 +1,26 @@
# Supabase (Postgres)
>[Supabase](https://supabase.com/docs) is an open source `Firebase` alternative.
> `Supabase` is built on top of `PostgreSQL`, which offers strong `SQL`
> querying capabilities and enables a simple interface with already-existing tools and frameworks.
>[PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL) also known as `Postgres`,
> is a free and open-source relational database management system (RDBMS)
> emphasizing extensibility and `SQL` compliance.
## Installation and Setup
We need to install `supabase` python package.
```bash
pip install supabase
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/supabase).
```python
from langchain.vectorstores import SupabaseVectorStore
```

View File

@@ -1,6 +1,6 @@
# Tigris
> [Tigris](htttps://tigrisdata.com) is an open source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
> [Tigris](https://tigrisdata.com) is an open source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.
> `Tigris` eliminates the infrastructure complexity of managing, operating, and synchronizing multiple tools, allowing you to focus on building great applications instead.
## Installation and Setup

View File

@@ -0,0 +1,25 @@
# USearch
>[USearch](https://unum-cloud.github.io/usearch/) is a Smaller & Faster Single-File Vector Search Engine.
>`USearch's` base functionality is identical to `FAISS`, and the interface should look
> familiar if you have ever investigated Approximate Nearest Neighbors search.
> `USearch` and `FAISS` both employ `HNSW` algorithm, but they differ significantly
> in their design principles. `USearch` is compact and broadly compatible with FAISS without
> sacrificing performance, with a primary focus on user-defined metrics and fewer dependencies.
>
## Installation and Setup
We need to install `usearch` python package.
```bash
pip install usearch
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/usearch).
```python
from langchain.vectorstores import USearch
```

View File

@@ -0,0 +1,28 @@
# Xata
> [Xata](https://xata.io) is a serverless data platform, based on `PostgreSQL`.
> It provides a Python SDK for interacting with your database, and a UI
> for managing your data.
> `Xata` has a native vector type, which can be added to any table, and
> supports similarity search. LangChain inserts vectors directly to `Xata`,
> and queries it for the nearest neighbors of a given vector, so that you can
> use all the LangChain Embeddings integrations with `Xata`.
## Installation and Setup
We need to install `xata` python package.
```bash
pip install xata==1.0.0a7
```
## Vector Store
See a [usage example](/docs/integrations/vectorstores/xata).
```python
from langchain.vectorstores import XataVectorStore
```

View File

@@ -100,8 +100,12 @@
"source": [
"## Configure and use the Enterprise Search retriever\n",
"\n",
"The Enterprise Search retriever is implemented in the `langchain.retriever.GoogleCloudEntepriseSearchRetriever` class. The `get_relevan_documents` method returns a list of `langchain.schema.Document` documents where the `page_content` field of each document is populated with either an `extractive segment` or an `extractive answer` that matches a query. The `metadata` field is populated with metadata (if any) of a document from which the segments or answers were extracted.\n",
"The Enterprise Search retriever is implemented in the `langchain.retriever.GoogleCloudEntepriseSearchRetriever` class. The `get_relevant_documents` method returns a list of `langchain.schema.Document` documents where the `page_content` field of each document is populated the document content.\n",
"Depending on the data type used in Enterprise search (structured or unstructured) the `page_content` field is populated as follows:\n",
"- Structured data source: either an `extractive segment` or an `extractive answer` that matches a query. The `metadata` field is populated with metadata (if any) of the document from which the segments or answers were extracted.\n",
"- Unstructured data source: a string json containing all the fields returned from the structured data source. The `metadata` field is populated with metadata (if any) of the document \n",
"\n",
"### Only for Unstructured data sources:\n",
"An extractive answer is verbatim text that is returned with each search result. It is extracted directly from the original document. Extractive answers are typically displayed near the top of web pages to provide an end user with a brief answer that is contextually relevant to their query. Extractive answers are available for website and unstructured search.\n",
"\n",
"An extractive segment is verbatim text that is returned with each search result. An extractive segment is usually more verbose than an extractive answer. Extractive segments can be displayed as an answer to a query, and can be used to perform post-processing tasks and as input for large language models to generate answers or new text. Extractive segments are available for unstructured search.\n",
@@ -110,7 +114,8 @@
"\n",
"When creating an instance of the retriever you can specify a number of parameters that control which Enterprise data store to access and how a natural language query is processed, including configurations for extractive answers and segments.\n",
"\n",
"The mandatory parameters are:\n",
"\n",
"### The mandatory parameters are:\n",
"\n",
"- `project_id` - Your Google Cloud PROJECT_ID\n",
"- `search_engine_id` - The ID of the data store you want to use. \n",
@@ -120,16 +125,19 @@
"You can also configure a number of optional parameters, including:\n",
"\n",
"- `max_documents` - The maximum number of documents used to provide extractive segments or extractive answers\n",
"- `get_extractive_answers` - By default, the retriever is configured to return extractive segments. Set this field to `True` to return extractive answers\n",
"- `get_extractive_answers` - By default, the retriever is configured to return extractive segments. Set this field to `True` to return extractive answers. This is used only when `engine_data_type` set to 0 (unstructured) \n",
"- `max_extractive_answer_count` - The maximum number of extractive answers returned in each search result.\n",
" At most 5 answers will be returned\n",
" At most 5 answers will be returned. This is used only when `engine_data_type` set to 0 (unstructured) \n",
"- `max_extractive_segment_count` - The maximum number of extractive segments returned in each search result.\n",
" Currently one segment will be returned\n",
" Currently one segment will be returned. This is used only when `engine_data_type` set to 0 (unstructured) \n",
"- `filter` - The filter expression that allows you filter the search results based on the metadata associated with the documents in the searched data store. \n",
"- `query_expansion_condition` - Specification to determine under which conditions query expansion should occur.\n",
" 0 - Unspecified query expansion condition. In this case, server behavior defaults to disabled.\n",
" 1 - Disabled query expansion. Only the exact search query is used, even if SearchResponse.total_size is zero.\n",
" 2 - Automatic query expansion built by the Search API.\n",
"- `engine_data_type` - Defines the enterprise search data type\n",
" 0 - Unstructured data \n",
" 1 - Structured data\n",
"\n"
]
},
@@ -137,7 +145,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure and use the retriever with extractve segments"
"### Configure and use the retriever for **unstructured** data with extractve segments "
]
},
{
@@ -182,7 +190,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure and use the retriever with extractve answers "
"### Configure and use the retriever for **unstructured** data with extractve answers "
]
},
{
@@ -213,12 +221,30 @@
" print(doc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure and use the retriever for **structured** data with extractve answers "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [
"retriever = GoogleCloudEnterpriseSearchRetriever(\n",
" project_id=PROJECT_ID,\n",
" search_engine_id=SEARCH_ENGINE_ID,\n",
" max_documents=3,\n",
" engine_data_type=1\n",
")\n",
"\n",
"result = retriever.get_relevant_documents(query)\n",
"for doc in result:\n",
" print(doc)"
]
}
],
"metadata": {

View File

@@ -1,15 +1,27 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "d63d56c2",
"metadata": {},
"source": [
"# GPT4All\n",
"\n",
"[GPT4All](https://gpt4all.io/index.html) is a free-to-use, locally running, privacy-aware chatbot. There is no GPU or internet required. It features popular models and its own models such as GPT4All Falcon, Wizard, etc.\n",
"\n",
"This notebook explains how to use [GPT4All embeddings](https://docs.gpt4all.io/gpt4all_python_embedding.html#gpt4all.gpt4all.Embed4All) with LangChain."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "46b7aa85",
"metadata": {},
"source": [
"## Install GPT4All's Python Bindings"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -17,7 +29,16 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install gpt4all"
"%pip install gpt4all > /dev/null"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "d80f4b92",
"metadata": {},
"source": [
"Note: you may need to restart the kernel to use updated packages."
]
},
{
@@ -72,6 +93,15 @@
"text = \"This is a test document.\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "eef36bde",
"metadata": {},
"source": [
"## Embed the Textual Data"
]
},
{
"cell_type": "code",
"execution_count": 4,
@@ -82,6 +112,15 @@
"query_result = gpt4all_embd.embed_query(text)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "12b24e69",
"metadata": {},
"source": [
"With embed_documents you can embed multiple pieces of text. You can also map these embeddings with [Nomic's Atlas](https://docs.nomic.ai/index.html) to see a visual representation of your data."
]
},
{
"cell_type": "code",
"execution_count": 5,

View File

@@ -9,13 +9,9 @@
"\n",
"NLP Cloud is an artificial intelligence platform that allows you to use the most advanced AI engines, and even train your own engines with your own data. \n",
"\n",
"The [embeddings](https://docs.nlpcloud.com/#embeddings) endpoint offers several models:\n",
"The [embeddings](https://docs.nlpcloud.com/#embeddings) endpoint offers the following model:\n",
"\n",
"* `paraphrase-multilingual-mpnet-base-v2`: Paraphrase Multilingual MPNet Base V2 is a very fast model based on Sentence Transformers that is perfectly suited for embeddings extraction in more than 50 languages (see the full list here).\n",
"\n",
"* `gpt-j`: GPT-J returns advanced embeddings. It might return better results than Sentence Transformers based models (see above) but it is also much slower.\n",
"\n",
"* `dolphin`: Dolphin returns advanced embeddings. It might return better results than Sentence Transformers based models (see above) but it is also much slower. It natively understands the following languages: Bulgarian, Catalan, Chinese, Croatian, Czech, Danish, Dutch, English, French, German, Hungarian, Italian, Japanese, Polish, Portuguese, Romanian, Russian, Serbian, Slovenian, Spanish, Swedish, and Ukrainian."
"* `paraphrase-multilingual-mpnet-base-v2`: Paraphrase Multilingual MPNet Base V2 is a very fast model based on Sentence Transformers that is perfectly suited for embeddings extraction in more than 50 languages (see the full list here)."
]
},
{
@@ -84,7 +80,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python 3.11.2 64-bit",
"language": "python",
"name": "python3"
},
@@ -98,7 +94,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.11.2"
},
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,

View File

@@ -0,0 +1,461 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# AINetwork Toolkit\n",
"\n",
"The AINetwork Toolkit is a set of tools for interacting with the AINetwork Blockchain. These tools allow you to transfer AIN, read and write values, create apps, and set permissions for specific paths within the blockchain database."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installing dependencies\n",
"\n",
"Before using the AINetwork Toolkit, you need to install the ain-py package. You can install it with pip:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install ain-py"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set environmental variables\n",
"\n",
"You need to set the `AIN_BLOCKCHAIN_ACCOUNT_PRIVATE_KEY` environmental variable to your AIN Blockchain Account Private Key."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"AIN_BLOCKCHAIN_ACCOUNT_PRIVATE_KEY\"] = \"\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get AIN Blockchain private key"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"address: 0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac\n",
"private_key: f5e2f359bb6b7836a2ac70815473d1a290c517f847d096f5effe818de8c2cf14\n",
"\n"
]
}
],
"source": [
"import os\n",
"\n",
"from ain.account import Account\n",
"\n",
"if os.environ.get(\"AIN_BLOCKCHAIN_ACCOUNT_PRIVATE_KEY\", None):\n",
" account = Account(os.environ[\"AIN_BLOCKCHAIN_ACCOUNT_PRIVATE_KEY\"])\n",
"else:\n",
" account = Account.create()\n",
" os.environ[\"AIN_BLOCKCHAIN_ACCOUNT_PRIVATE_KEY\"] = account.private_key\n",
" print(\n",
" f\"\"\"\n",
"address: {account.address}\n",
"private_key: {account.private_key}\n",
"\"\"\"\n",
" )\n",
"# IMPORTANT: If you plan to use this account in the future, make sure to save the\n",
"# private key in a secure place. Losing access to your private key means losing\n",
"# access to your account."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize the AINetwork Toolkit\n",
"\n",
"You can initialize the AINetwork Toolkit like this:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents.agent_toolkits.ainetwork.toolkit import AINetworkToolkit\n",
"\n",
"toolkit = AINetworkToolkit()\n",
"tools = toolkit.get_tools()\n",
"address = tools[0].interface.wallet.defaultAccount.address"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize the Agent with the AINetwork Toolkit\n",
"\n",
"You can initialize the agent with the AINetwork Toolkit like this:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents import initialize_agent, AgentType\n",
"\n",
"llm = ChatOpenAI(temperature=0)\n",
"agent = initialize_agent(\n",
" tools=tools,\n",
" llm=llm,\n",
" verbose=True,\n",
" agent=AgentType.OPENAI_FUNCTIONS,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example Usage\n",
"\n",
"Here are some examples of how you can use the agent with the AINetwork Toolkit:"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define App name to test"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"appName = f\"langchain_demo_{address.lower()}\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an app in the AINetwork Blockchain database"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `AINappOps` with `{'type': 'SET_ADMIN', 'appName': 'langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3m{\"tx_hash\": \"0x018846d6a9fc111edb1a2246ae2484ef05573bd2c584f3d0da155fa4b4936a9e\", \"result\": {\"gas_amount_total\": {\"bandwidth\": {\"service\": 4002, \"app\": {\"langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\": 2}}, \"state\": {\"service\": 1640}}, \"gas_cost_total\": 0, \"func_results\": {\"_createApp\": {\"op_results\": {\"0\": {\"path\": \"/apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\", \"result\": {\"code\": 0, \"bandwidth_gas_amount\": 1}}, \"1\": {\"path\": \"/apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\", \"result\": {\"code\": 0, \"bandwidth_gas_amount\": 1}}, \"2\": {\"path\": \"/manage_app/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac/config/admin\", \"result\": {\"code\": 0, \"bandwidth_gas_amount\": 1}}}, \"code\": 0, \"bandwidth_gas_amount\": 2000}}, \"code\": 0, \"bandwidth_gas_amount\": 2001, \"gas_amount_charged\": 5642}}\u001b[0m\u001b[32;1m\u001b[1;3mThe app with the name \"langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\" has been created in the AINetwork Blockchain database.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"The app with the name \"langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\" has been created in the AINetwork Blockchain database.\n"
]
}
],
"source": [
"print(\n",
" agent.run(\n",
" f\"Create an app in the AINetwork Blockchain database with the name {appName}\"\n",
" )\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set a value at a given path in the AINetwork Blockchain database"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `AINvalueOps` with `{'type': 'SET', 'path': '/apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac/object', 'value': {'1': 2, '34': 56}}`\n",
"\n",
"\n",
"\u001b[0m\u001b[33;1m\u001b[1;3m{\"tx_hash\": \"0x3d1a16d9808830088cdf4d37f90f4b1fa1242e2d5f6f983829064f45107b5279\", \"result\": {\"gas_amount_total\": {\"bandwidth\": {\"service\": 0, \"app\": {\"langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\": 1}}, \"state\": {\"service\": 0, \"app\": {\"langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\": 674}}}, \"gas_cost_total\": 0, \"code\": 0, \"bandwidth_gas_amount\": 1, \"gas_amount_charged\": 0}}\u001b[0m\u001b[32;1m\u001b[1;3mThe value {1: 2, '34': 56} has been set at the path /apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac/object.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"The value {1: 2, '34': 56} has been set at the path /apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac/object.\n"
]
}
],
"source": [
"print(\n",
" agent.run(f\"Set the value {{1: 2, '34': 56}} at the path /apps/{appName}/object .\")\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set permissions for a path in the AINetwork Blockchain database"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `AINruleOps` with `{'type': 'SET', 'path': '/apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac/user/$from', 'eval': 'auth.addr===$from'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[38;5;200m\u001b[1;3m{\"tx_hash\": \"0x37d5264e580f6a217a347059a735bfa9eb5aad85ff28a95531c6dc09252664d2\", \"result\": {\"gas_amount_total\": {\"bandwidth\": {\"service\": 0, \"app\": {\"langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\": 1}}, \"state\": {\"service\": 0, \"app\": {\"langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac\": 712}}}, \"gas_cost_total\": 0, \"code\": 0, \"bandwidth_gas_amount\": 1, \"gas_amount_charged\": 0}}\u001b[0m\u001b[32;1m\u001b[1;3mThe write permissions for the path `/apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac/user/$from` have been set with the eval string `auth.addr===$from`.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"The write permissions for the path `/apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac/user/$from` have been set with the eval string `auth.addr===$from`.\n"
]
}
],
"source": [
"print(\n",
" agent.run(\n",
" f\"Set the write permissions for the path /apps/{appName}/user/$from with the\"\n",
" \" eval string auth.addr===$from .\"\n",
" )\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the permissions for a path in the AINetwork Blockchain database"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `AINownerOps` with `{'type': 'GET', 'path': '/apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[33;1m\u001b[1;3m{\".owner\": {\"owners\": {\"0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac\": {\"branch_owner\": true, \"write_function\": true, \"write_owner\": true, \"write_rule\": true}}}}\u001b[0m\u001b[32;1m\u001b[1;3mThe permissions for the path /apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac are as follows:\n",
"\n",
"- Address: 0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac\n",
" - branch_owner: true\n",
" - write_function: true\n",
" - write_owner: true\n",
" - write_rule: true\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"The permissions for the path /apps/langchain_demo_0x5beb4defa2ccc274498416fd7cb34235dbc122ac are as follows:\n",
"\n",
"- Address: 0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac\n",
" - branch_owner: true\n",
" - write_function: true\n",
" - write_owner: true\n",
" - write_rule: true\n"
]
}
],
"source": [
"print(agent.run(f\"Retrieve the permissions for the path /apps/{appName}.\"))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get AIN from faucet"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"result\":\"0x0eb07b67b7d0a702cb60e865d3deafff3070d8508077ef793d69d6819fd92ea3\",\"time\":1692348112376}"
]
}
],
"source": [
"!curl http://faucet.ainetwork.ai/api/test/{address}/"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get AIN Balance"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `AINvalueOps` with `{'type': 'GET', 'path': '/accounts/0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac/balance'}`\n",
"\n",
"\n",
"\u001b[0m\u001b[33;1m\u001b[1;3m100\u001b[0m\u001b[32;1m\u001b[1;3mThe AIN balance of address 0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac is 100 AIN.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"The AIN balance of address 0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac is 100 AIN.\n"
]
}
],
"source": [
"print(agent.run(f\"Check AIN balance of {address}\"))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transfer AIN"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3m\n",
"Invoking: `AINtransfer` with `{'address': '0x19937b227b1b13f29e7ab18676a89ea3bdea9c5b', 'amount': 100}`\n",
"\n",
"\n",
"\u001b[0m\u001b[36;1m\u001b[1;3m{\"tx_hash\": \"0xa59d15d23373bcc00e413ac8ba18cb016bb3bdd54058d62606aec688c6ad3d2e\", \"result\": {\"gas_amount_total\": {\"bandwidth\": {\"service\": 3}, \"state\": {\"service\": 866}}, \"gas_cost_total\": 0, \"func_results\": {\"_transfer\": {\"op_results\": {\"0\": {\"path\": \"/accounts/0x5BEB4Defa2ccc274498416Fd7Cb34235DbC122Ac/balance\", \"result\": {\"code\": 0, \"bandwidth_gas_amount\": 1}}, \"1\": {\"path\": \"/accounts/0x19937B227b1b13f29e7AB18676a89EA3BDEA9C5b/balance\", \"result\": {\"code\": 0, \"bandwidth_gas_amount\": 1}}}, \"code\": 0, \"bandwidth_gas_amount\": 0}}, \"code\": 0, \"bandwidth_gas_amount\": 1, \"gas_amount_charged\": 869}}\u001b[0m\u001b[32;1m\u001b[1;3mThe transfer of 100 AIN to the address 0x19937b227b1b13f29e7ab18676a89ea3bdea9c5b was successful. The transaction hash is 0xa59d15d23373bcc00e413ac8ba18cb016bb3bdd54058d62606aec688c6ad3d2e.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"The transfer of 100 AIN to the address 0x19937b227b1b13f29e7ab18676a89ea3bdea9c5b was successful. The transaction hash is 0xa59d15d23373bcc00e413ac8ba18cb016bb3bdd54058d62606aec688c6ad3d2e.\n"
]
}
],
"source": [
"print(\n",
" agent.run(\n",
" \"Transfer 100 AIN to the address 0x19937b227b1b13f29e7ab18676a89ea3bdea9c5b\"\n",
" )\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,13 +1,12 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Amadeus Toolkit\n",
"# Amadeus\n",
"\n",
"This notebook walks you through connecting LangChain to the Amadeus travel information API\n",
"This notebook walks you through connecting LangChain to the `Amadeus` travel information API\n",
"\n",
"To use this toolkit, you will need to set up your credentials explained in the [Amadeus for developers getting started overview](https://developers.amadeus.com/get-started/get-started-with-self-service-apis-335). Once you've received a AMADEUS_CLIENT_ID and AMADEUS_CLIENT_SECRET, you can input them as environmental variables below."
]
@@ -22,7 +21,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -46,7 +44,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -234,7 +231,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -4,9 +4,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure Cognitive Services Toolkit\n",
"# Azure Cognitive Services\n",
"\n",
"This toolkit is used to interact with the Azure Cognitive Services API to achieve some multimodal capabilities.\n",
"This toolkit is used to interact with the `Azure Cognitive Services API` to achieve some multimodal capabilities.\n",
"\n",
"Currently There are four tools bundled in this toolkit:\n",
"- AzureCogsImageAnalysisTool: used to extract caption, objects, tags, and text from images. (Note: this tool is not available on Mac OS yet, due to the dependency on `azure-ai-vision` package, which is only supported on Windows and Linux currently.)\n",
@@ -264,9 +264,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -5,24 +5,14 @@
"id": "7094e328",
"metadata": {},
"source": [
"# CSV Agent\n",
"# CSV\n",
"\n",
"This notebook shows how to use agents to interact with a csv. It is mostly optimized for question answering.\n",
"This notebook shows how to use agents to interact with data in `CSV` format. It is mostly optimized for question answering.\n",
"\n",
"**NOTE: this agent calls the Pandas DataFrame agent under the hood, which in turn calls the Python agent, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously.**\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "827982c7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import create_csv_agent"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -32,7 +22,9 @@
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents.agent_types import AgentType"
"from langchain.agents.agent_types import AgentType\n",
"\n",
"from langchain.agents import create_csv_agent"
]
},
{
@@ -40,9 +32,9 @@
"id": "bd806175",
"metadata": {},
"source": [
"## Using ZERO_SHOT_REACT_DESCRIPTION\n",
"## Using `ZERO_SHOT_REACT_DESCRIPTION`\n",
"\n",
"This shows how to initialize the agent using the ZERO_SHOT_REACT_DESCRIPTION agent type. Note that this is an alternative to the above."
"This shows how to initialize the agent using the `ZERO_SHOT_REACT_DESCRIPTION` agent type. Note that this is an alternative to the above."
]
},
{
@@ -130,9 +122,7 @@
"cell_type": "code",
"execution_count": 5,
"id": "a96309be",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stderr",
@@ -305,7 +295,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -4,9 +4,10 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Github Toolkit\n",
"# Github\n",
"\n",
"The Github toolkit contains tools that enable an LLM agent to interact with a github repository. The tools are a wrapper for the [PyGitHub](https://github.com/PyGithub/PyGithub) library. \n",
"The `Github` toolkit contains tools that enable an LLM agent to interact with a github repository. \n",
"The tool is a wrapper for the [PyGitHub](https://github.com/PyGithub/PyGithub) library. \n",
"\n",
"## Quickstart\n",
"1. Install the pygithub library\n",
@@ -38,7 +39,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Install the pygithub library"
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Install the `pygithub` library "
]
},
{
@@ -58,7 +66,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Create a Github App\n",
"### 2. Create a Github App\n",
"\n",
"[Follow the instructions here](https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/registering-a-github-app) to create and register a Github app. Make sure your app has the following [repository permissions:](https://docs.github.com/en/rest/overview/permissions-required-for-github-apps?apiVersion=2022-11-28)\n",
"* Commit statuses (read only)\n",
@@ -71,7 +79,7 @@
"\n",
"Once the app has been registered, add it to the repository you wish the bot to act upon.\n",
"\n",
"## 3. Set Environmental Variables\n",
"### 3. Set Environmental Variables\n",
"\n",
"Before initializing your agent, the following environmental variables need to be set:\n",
"\n",
@@ -86,7 +94,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example Usage- Simple Agent"
"## Example: Simple Agent"
]
},
{
@@ -212,7 +220,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example Usage- Advanced Agent\n",
"## Example: Advanced Agent\n",
"\n",
"If your agent does not need to use all 8 tools, you can build tools individually to use. For this example, we'll make an agent that does not use the create_file, delete_file or create_pull_request tools, but can also use duckduckgo-search."
]
@@ -375,9 +383,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,9 +4,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Gmail Toolkit\n",
"# Gmail\n",
"\n",
"This notebook walks through connecting a LangChain email to the Gmail API.\n",
"This notebook walks through connecting a LangChain email to the `Gmail API`.\n",
"\n",
"To use this toolkit, you will need to set up your credentials explained in the [Gmail API docs](https://developers.google.com/gmail/api/quickstart/python#authorize_credentials_for_a_desktop_application). Once you've downloaded the `credentials.json` file, you can start using the Gmail API. Once this is done, we'll install the required libraries."
]
@@ -226,7 +226,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -2,7 +2,10 @@
sidebar_position: 0
---
# Agent toolkits
# Agents & Toolkits
Agents and Toolkits are placed in the same directory because they are always used together.
import DocCardList from "@theme/DocCardList";

View File

@@ -1,15 +1,15 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "245a954a",
"metadata": {},
"source": [
"# Jira\n",
"\n",
"This notebook goes over how to use the Jira tool.\n",
"The Jira tool allows agents to interact with a given Jira instance, performing actions such as searching for issues and creating issues, the tool wraps the atlassian-python-api library, for more see: https://atlassian-python-api.readthedocs.io/jira.html\n",
"This notebook goes over how to use the `Jira` toolkit.\n",
"\n",
"The `Jira` toolkit allows agents to interact with a given Jira instance, performing actions such as searching for issues and creating issues, the tool wraps the atlassian-python-api library, for more see: https://atlassian-python-api.readthedocs.io/jira.html\n",
"\n",
"To use this tool, you must first set as environment variables:\n",
" JIRA_API_TOKEN\n",
@@ -22,12 +22,12 @@
"execution_count": null,
"id": "961b3689",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-17T10:21:20.168639Z",
"start_time": "2023-04-17T10:21:18.698672Z"
},
"vscode": {
"languageId": "shellscript"
},
"ExecuteTime": {
"start_time": "2023-04-17T10:21:18.698672Z",
"end_time": "2023-04-17T10:21:20.168639Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "34bb5968",
"metadata": {
"ExecuteTime": {
"start_time": "2023-04-17T10:21:22.911233Z",
"end_time": "2023-04-17T10:21:23.730922Z"
"end_time": "2023-04-17T10:21:23.730922Z",
"start_time": "2023-04-17T10:21:22.911233Z"
}
},
"outputs": [],
@@ -58,21 +58,24 @@
{
"cell_type": "code",
"execution_count": 4,
"id": "b3050b55",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-17T10:22:42.505412Z",
"start_time": "2023-04-17T10:22:42.499447Z"
},
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"os.environ[\"JIRA_API_TOKEN\"] = \"abc\"\n",
"os.environ[\"JIRA_USERNAME\"] = \"123\"\n",
"os.environ[\"JIRA_INSTANCE_URL\"] = \"https://jira.atlassian.com\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"xyz\""
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-04-17T10:22:42.499447Z",
"end_time": "2023-04-17T10:22:42.505412Z"
}
},
"id": "b3050b55"
]
},
{
"cell_type": "code",
@@ -80,8 +83,8 @@
"id": "ac4910f8",
"metadata": {
"ExecuteTime": {
"start_time": "2023-04-17T10:22:44.664481Z",
"end_time": "2023-04-17T10:22:44.720538Z"
"end_time": "2023-04-17T10:22:44.720538Z",
"start_time": "2023-04-17T10:22:44.664481Z"
}
},
"outputs": [],
@@ -97,6 +100,17 @@
{
"cell_type": "code",
"execution_count": 9,
"id": "d5461370",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-17T10:23:38.121883Z",
"start_time": "2023-04-17T10:23:33.662454Z"
},
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
@@ -117,7 +131,9 @@
},
{
"data": {
"text/plain": "'A new issue has been created in project PW with the summary \"Make more fried rice\" and description \"Reminder to make more fried rice\".'"
"text/plain": [
"'A new issue has been created in project PW with the summary \"Make more fried rice\" and description \"Reminder to make more fried rice\".'"
]
},
"execution_count": 9,
"metadata": {},
@@ -126,20 +142,12 @@
],
"source": [
"agent.run(\"make a new issue in project PW to remind me to make more fried rice\")"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-04-17T10:23:33.662454Z",
"end_time": "2023-04-17T10:23:38.121883Z"
}
},
"id": "d5461370"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -153,7 +161,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
"version": "3.10.12"
},
"vscode": {
"interpreter": {
@@ -163,4 +171,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -5,9 +5,10 @@
"id": "85fb2c03-ab88-4c8c-97e3-a7f2954555ab",
"metadata": {},
"source": [
"# JSON Agent\n",
"# JSON\n",
"\n",
"This notebook showcases an agent designed to interact with large JSON/dict objects. This is useful when you want to answer questions about a JSON blob that's too large to fit in the context window of an LLM. The agent is able to iteratively explore the blob to find what it needs to answer the user's question.\n",
"This notebook showcases an agent interacting with large `JSON/dict` objects. \n",
"This is useful when you want to answer questions about a JSON blob that's too large to fit in the context window of an LLM. The agent is able to iteratively explore the blob to find what it needs to answer the user's question.\n",
"\n",
"In the below example, we are using the OpenAPI spec for the OpenAI API, which you can find [here](https://github.com/openai/openai-openapi/blob/master/openapi.yaml).\n",
"\n",
@@ -179,7 +180,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -1,15 +1,14 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# MultiOn Toolkit\n",
"# MultiOn\n",
"\n",
"This notebook walks you through connecting LangChain to the MultiOn Client in your browser\n",
"This notebook walks you through connecting LangChain to the `MultiOn` Client in your browser\n",
"\n",
"To use this toolkit, you will need to add MultiOn Extension to your browser as explained in the [MultiOn for Chrome](https://multion.notion.site/Download-MultiOn-ddddcfe719f94ab182107ca2612c07a5)."
"To use this toolkit, you will need to add `MultiOn Extension` to your browser as explained in the [MultiOn for Chrome](https://multion.notion.site/Download-MultiOn-ddddcfe719f94ab182107ca2612c07a5)."
]
},
{
@@ -47,7 +46,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -127,7 +125,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -1,13 +1,12 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Office365 Toolkit\n",
"# Office365\n",
"\n",
"This notebook walks through connecting LangChain to Office365 email and calendar.\n",
"This notebook walks through connecting LangChain to `Office365` email and calendar.\n",
"\n",
"To use this toolkit, you will need to set up your credentials explained in the [Microsoft Graph authentication and authorization overview](https://learn.microsoft.com/en-us/graph/auth/). Once you've received a CLIENT_ID and CLIENT_SECRET, you can input them as environmental variables below."
]
@@ -23,7 +22,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -42,7 +40,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -238,7 +235,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -5,9 +5,9 @@
"id": "85fb2c03-ab88-4c8c-97e3-a7f2954555ab",
"metadata": {},
"source": [
"# OpenAPI agents\n",
"# OpenAPI\n",
"\n",
"We can construct agents to consume arbitrary APIs, here APIs conformant to the OpenAPI/Swagger specification."
"We can construct agents to consume arbitrary APIs, here APIs conformant to the `OpenAPI`/`Swagger` specification."
]
},
{
@@ -271,9 +271,7 @@
"cell_type": "code",
"execution_count": 9,
"id": "38762cc0",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -449,9 +447,7 @@
"cell_type": "code",
"execution_count": 28,
"id": "3a9cc939",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -773,7 +769,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -7,7 +7,9 @@
"source": [
"# Natural Language APIs\n",
"\n",
"Natural Language API Toolkits (NLAToolkits) permit LangChain Agents to efficiently plan and combine calls across endpoints. This notebook demonstrates a sample composition of the Speak, Klarna, and Spoonacluar APIs.\n",
"`Natural Language API` Toolkits (`NLAToolkits`) permit LangChain Agents to efficiently plan and combine calls across endpoints. \n",
"\n",
"This notebook demonstrates a sample composition of the `Speak`, `Klarna`, and `Spoonacluar` APIs.\n",
"\n",
"For a detailed walkthrough of the OpenAPI chains wrapped within the NLAToolkit, see the [OpenAPI Operation Chain](/docs/use_cases/apis/openapi.html) notebook.\n",
"\n",
@@ -182,7 +184,7 @@
"id": "c61d92a8",
"metadata": {},
"source": [
"### Using Auth + Adding more Endpoints\n",
"### Use Auth and add more Endpoints\n",
"\n",
"Some endpoints may require user authentication via things like access tokens. Here we show how to pass in the authentication information via the `Requests` wrapper object.\n",
"\n",
@@ -420,7 +422,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -5,11 +5,11 @@
"id": "c81da886",
"metadata": {},
"source": [
"# Pandas Dataframe Agent\n",
"# Pandas Dataframe\n",
"\n",
"This notebook shows how to use agents to interact with a pandas dataframe. It is mostly optimized for question answering.\n",
"This notebook shows how to use agents to interact with a `Pandas DataFrame`. It is mostly optimized for question answering.\n",
"\n",
"**NOTE: this agent calls the Python agent under the hood, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously.**"
"**NOTE: this agent calls the `Python` agent under the hood, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously.**"
]
},
{
@@ -42,9 +42,9 @@
"id": "a62858e2",
"metadata": {},
"source": [
"## Using ZERO_SHOT_REACT_DESCRIPTION\n",
"## Using `ZERO_SHOT_REACT_DESCRIPTION`\n",
"\n",
"This shows how to initialize the agent using the ZERO_SHOT_REACT_DESCRIPTION agent type. Note that this is an alternative to the above."
"This shows how to initialize the agent using the `ZERO_SHOT_REACT_DESCRIPTION` agent type. Note that this is an alternative to the above."
]
},
{
@@ -212,7 +212,7 @@
"id": "c4bc0584",
"metadata": {},
"source": [
"### Multi DataFrame Example\n",
"## Multi DataFrame Example\n",
"\n",
"This next part shows how the agent can interact with multiple dataframes passed in as a list."
]
@@ -292,7 +292,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -4,17 +4,19 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# PlayWright Browser Toolkit\n",
"# PlayWright Browser\n",
"\n",
"This toolkit is used to interact with the browser. While other tools (like the Requests tools) are fine for static sites, Browser toolkits let your agent navigate the web and interact with dynamically rendered sites. Some tools bundled within the Browser toolkit include:\n",
"This toolkit is used to interact with the browser. While other tools (like the `Requests` tools) are fine for static sites, `PlayWright Browser` toolkits let your agent navigate the web and interact with dynamically rendered sites. \n",
"\n",
"- NavigateTool (navigate_browser) - navigate to a URL\n",
"- NavigateBackTool (previous_page) - wait for an element to appear\n",
"- ClickTool (click_element) - click on an element (specified by selector)\n",
"- ExtractTextTool (extract_text) - use beautiful soup to extract text from the current web page\n",
"- ExtractHyperlinksTool (extract_hyperlinks) - use beautiful soup to extract hyperlinks from the current web page\n",
"- GetElementsTool (get_elements) - select elements by CSS selector\n",
"- CurrentPageTool (current_page) - get the current page URL\n"
"Some tools bundled within the `PlayWright Browser` toolkit include:\n",
"\n",
"- `NavigateTool` (navigate_browser) - navigate to a URL\n",
"- `NavigateBackTool` (previous_page) - wait for an element to appear\n",
"- `ClickTool` (click_element) - click on an element (specified by selector)\n",
"- `ExtractTextTool` (extract_text) - use beautiful soup to extract text from the current web page\n",
"- `ExtractHyperlinksTool` (extract_hyperlinks) - use beautiful soup to extract hyperlinks from the current web page\n",
"- `GetElementsTool` (get_elements) - select elements by CSS selector\n",
"- `CurrentPageTool` (current_page) - get the current page URL\n"
]
},
{
@@ -327,7 +329,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -2,36 +2,40 @@
"cells": [
{
"cell_type": "markdown",
"id": "9363398d",
"metadata": {},
"source": [
"# PowerBI Dataset Agent\n",
"# PowerBI Dataset\n",
"\n",
"This notebook showcases an agent designed to interact with a Power BI Dataset. The agent is designed to answer more general questions about a dataset, as well as recover from errors.\n",
"This notebook showcases an agent interacting with a `Power BI Dataset`. The agent is answering more general questions about a dataset, as well as recover from errors.\n",
"\n",
"Note that, as this agent is in active development, all answers might not be correct. It runs against the [executequery endpoint](https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/execute-queries), which does not allow deletes.\n",
"\n",
"### Some notes\n",
"### Notes:\n",
"- It relies on authentication with the azure.identity package, which can be installed with `pip install azure-identity`. Alternatively you can create the powerbi dataset with a token as a string without supplying the credentials.\n",
"- You can also supply a username to impersonate for use with datasets that have RLS enabled. \n",
"- The toolkit uses a LLM to create the query from the question, the agent uses the LLM for the overall execution.\n",
"- Testing was done mostly with a `text-davinci-003` model, codex models did not seem to perform ver well."
],
"metadata": {},
"attachments": {},
"id": "9363398d"
]
},
{
"cell_type": "markdown",
"source": [
"## Initialization"
],
"id": "0725445e",
"metadata": {
"tags": []
},
"id": "0725445e"
"source": [
"## Initialization"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c82f33e9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.agents.agent_toolkits import create_pbi_agent\n",
"from langchain.agents.agent_toolkits import PowerBIToolkit\n",
@@ -39,16 +43,16 @@
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.agents import AgentExecutor\n",
"from azure.identity import DefaultAzureCredential"
],
"outputs": [],
"metadata": {
"tags": []
},
"id": "c82f33e9"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b2c5853",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"fast_llm = ChatOpenAI(\n",
" temperature=0.5, max_tokens=1000, model_name=\"gpt-3.5-turbo\", verbose=True\n",
@@ -69,99 +73,95 @@
" toolkit=toolkit,\n",
" verbose=True,\n",
")"
],
"outputs": [],
"metadata": {
"tags": []
},
"id": "0b2c5853"
]
},
{
"cell_type": "markdown",
"id": "80c92be3",
"metadata": {},
"source": [
"## Example: describing a table"
],
"metadata": {},
"id": "80c92be3"
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"agent_executor.run(\"Describe table1\")"
],
"outputs": [],
"id": "90f236cb",
"metadata": {
"tags": []
},
"id": "90f236cb"
"outputs": [],
"source": [
"agent_executor.run(\"Describe table1\")"
]
},
{
"cell_type": "markdown",
"id": "b464930f",
"metadata": {},
"source": [
"## Example: simple query on a table\n",
"In this example, the agent actually figures out the correct query to get a row count of the table."
],
"metadata": {},
"attachments": {},
"id": "b464930f"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b668c907",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent_executor.run(\"How many records are in table1?\")"
],
"outputs": [],
"metadata": {
"tags": []
},
"id": "b668c907"
]
},
{
"cell_type": "markdown",
"id": "f2229a2f",
"metadata": {},
"source": [
"## Example: running queries"
],
"metadata": {},
"id": "f2229a2f"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "865a420f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"agent_executor.run(\"How many records are there by dimension1 in table2?\")"
],
"outputs": [],
"metadata": {
"tags": []
},
"id": "865a420f"
]
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"agent_executor.run(\"What unique values are there for dimensions2 in table2\")"
],
"outputs": [],
"id": "120cd49a",
"metadata": {
"tags": []
},
"id": "120cd49a"
"outputs": [],
"source": [
"agent_executor.run(\"What unique values are there for dimensions2 in table2\")"
]
},
{
"cell_type": "markdown",
"id": "ac584fb2",
"metadata": {},
"source": [
"## Example: add your own few-shot prompts"
],
"metadata": {},
"attachments": {},
"id": "ac584fb2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffa66827",
"metadata": {},
"outputs": [],
"source": [
"# fictional example\n",
"few_shots = \"\"\"\n",
@@ -189,26 +189,27 @@
" toolkit=toolkit,\n",
" verbose=True,\n",
")"
],
"outputs": [],
"metadata": {},
"id": "ffa66827"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3be44685",
"metadata": {},
"outputs": [],
"source": [
"agent_executor.run(\"What was the maximum of value in revenue in dollars in 2022?\")"
],
"outputs": [],
"metadata": {},
"id": "3be44685"
]
}
],
"metadata": {
"interpreter": {
"hash": "397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.9.16 64-bit"
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -220,12 +221,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"interpreter": {
"hash": "397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b"
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -5,9 +5,9 @@
"id": "82a4c2cc-20ea-4b20-a565-63e905dee8ff",
"metadata": {},
"source": [
"# Python Agent\n",
"# Python\n",
"\n",
"This notebook showcases an agent designed to write and execute python code to answer a question."
"This notebook showcases an agent designed to write and execute `Python` code to answer a question."
]
},
{
@@ -32,7 +32,7 @@
"id": "ca30d64c",
"metadata": {},
"source": [
"## Using ZERO_SHOT_REACT_DESCRIPTION\n",
"## Using `ZERO_SHOT_REACT_DESCRIPTION`\n",
"\n",
"This shows how to initialize the agent using the ZERO_SHOT_REACT_DESCRIPTION agent type."
]
@@ -149,9 +149,7 @@
"cell_type": "code",
"execution_count": 5,
"id": "4b9f60e7-eb6a-4f14-8604-498d863d4482",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -271,7 +269,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -1,13 +1,12 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Spark Dataframe Agent\n",
"# Spark Dataframe\n",
"\n",
"This notebook shows how to use agents to interact with a Spark dataframe and Spark Connect. It is mostly optimized for question answering.\n",
"This notebook shows how to use agents to interact with a `Spark DataFrame` and `Spark Connect`. It is mostly optimized for question answering.\n",
"\n",
"**NOTE: this agent calls the Python agent under the hood, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously.**"
]
@@ -23,6 +22,13 @@
"os.environ[\"OPENAI_API_KEY\"] = \"...input your openai api key here...\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## `Spark DataFrame` example"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -225,11 +231,10 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Spark Connect Example"
"## `Spark Connect` example"
]
},
{
@@ -405,9 +410,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,9 +4,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Spark SQL Agent\n",
"# Spark SQL\n",
"\n",
"This notebook shows how to use agents to interact with a Spark SQL. Similar to [SQL Database Agent](https://python.langchain.com/docs/integrations/toolkits/sql_database), it is designed to address general inquiries about Spark SQL and facilitate error recovery.\n",
"This notebook shows how to use agents to interact with `Spark SQL`. Similar to [SQL Database Agent](https://python.langchain.com/docs/integrations/toolkits/sql_database), it is designed to address general inquiries about `Spark SQL` and facilitate error recovery.\n",
"\n",
"**NOTE: Note that, as this agent is in active development, all answers might not be correct. Additionally, it is not guaranteed that the agent won't perform DML statements on your Spark cluster given certain questions. Be careful running it on sensitive data!**"
]
@@ -163,7 +163,9 @@
},
{
"data": {
"text/plain": "'The titanic table has the following columns: PassengerId (INT), Survived (INT), Pclass (INT), Name (STRING), Sex (STRING), Age (DOUBLE), SibSp (INT), Parch (INT), Ticket (STRING), Fare (DOUBLE), Cabin (STRING), and Embarked (STRING). Here are some sample rows from the table: \\n\\n1. PassengerId: 1, Survived: 0, Pclass: 3, Name: Braund, Mr. Owen Harris, Sex: male, Age: 22.0, SibSp: 1, Parch: 0, Ticket: A/5 21171, Fare: 7.25, Cabin: None, Embarked: S\\n2. PassengerId: 2, Survived: 1, Pclass: 1, Name: Cumings, Mrs. John Bradley (Florence Briggs Thayer), Sex: female, Age: 38.0, SibSp: 1, Parch: 0, Ticket: PC 17599, Fare: 71.2833, Cabin: C85, Embarked: C\\n3. PassengerId: 3, Survived: 1, Pclass: 3, Name: Heikkinen, Miss. Laina, Sex: female, Age: 26.0, SibSp: 0, Parch: 0, Ticket: STON/O2. 3101282, Fare: 7.925, Cabin: None, Embarked: S'"
"text/plain": [
"'The titanic table has the following columns: PassengerId (INT), Survived (INT), Pclass (INT), Name (STRING), Sex (STRING), Age (DOUBLE), SibSp (INT), Parch (INT), Ticket (STRING), Fare (DOUBLE), Cabin (STRING), and Embarked (STRING). Here are some sample rows from the table: \\n\\n1. PassengerId: 1, Survived: 0, Pclass: 3, Name: Braund, Mr. Owen Harris, Sex: male, Age: 22.0, SibSp: 1, Parch: 0, Ticket: A/5 21171, Fare: 7.25, Cabin: None, Embarked: S\\n2. PassengerId: 2, Survived: 1, Pclass: 1, Name: Cumings, Mrs. John Bradley (Florence Briggs Thayer), Sex: female, Age: 38.0, SibSp: 1, Parch: 0, Ticket: PC 17599, Fare: 71.2833, Cabin: C85, Embarked: C\\n3. PassengerId: 3, Survived: 1, Pclass: 3, Name: Heikkinen, Miss. Laina, Sex: female, Age: 26.0, SibSp: 0, Parch: 0, Ticket: STON/O2. 3101282, Fare: 7.925, Cabin: None, Embarked: S'"
]
},
"execution_count": 4,
"metadata": {},
@@ -239,7 +241,9 @@
},
{
"data": {
"text/plain": "'The square root of the average age is approximately 5.45.'"
"text/plain": [
"'The square root of the average age is approximately 5.45.'"
]
},
"execution_count": 5,
"metadata": {},
@@ -253,6 +257,12 @@
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
@@ -305,7 +315,9 @@
},
{
"data": {
"text/plain": "'The oldest survived passenger is Barkworth, Mr. Algernon Henry Wilson, who was 80 years old.'"
"text/plain": [
"'The oldest survived passenger is Barkworth, Mr. Algernon Henry Wilson, who was 80 years old.'"
]
},
"execution_count": 6,
"metadata": {},
@@ -314,10 +326,7 @@
],
"source": [
"agent_executor.run(\"What's the name of the oldest survived passenger?\")"
],
"metadata": {
"collapsed": false
}
]
}
],
"metadata": {
@@ -336,9 +345,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -1,22 +1,21 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "0e499e90-7a6d-4fab-8aab-31a4df417601",
"metadata": {},
"source": [
"# SQL Database Agent\n",
"# SQL Database\n",
"\n",
"This notebook showcases an agent designed to interact with a sql databases. The agent builds off of [SQLDatabaseChain](https://python.langchain.com/docs/use_cases/tabular/sqlite) and is designed to answer more general questions about a database, as well as recover from errors.\n",
"This notebook showcases an agent designed to interact with a `SQL` databases. \n",
"The agent builds off of [SQLDatabaseChain](https://python.langchain.com/docs/use_cases/tabular/sqlite) and is designed to answer more general questions about a database, as well as recover from errors.\n",
"\n",
"Note that, as this agent is in active development, all answers might not be correct. Additionally, it is not guaranteed that the agent won't perform DML statements on your database given certain questions. Be careful running it on sensitive data!\n",
"\n",
"This uses the example Chinook database. To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the .db file in a notebooks folder at the root of this repository."
"This uses the example `Chinook` database. To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the .db file in a notebooks folder at the root of this repository."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ec927ac6-9b2a-4e8a-9a6e-3e429191875c",
"metadata": {
@@ -56,12 +55,11 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f74d1792",
"metadata": {},
"source": [
"## Using ZERO_SHOT_REACT_DESCRIPTION\n",
"## Using `ZERO_SHOT_REACT_DESCRIPTION`\n",
"\n",
"This shows how to initialize the agent using the ZERO_SHOT_REACT_DESCRIPTION agent type."
]
@@ -84,7 +82,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "971cc455",
"metadata": {},
@@ -110,7 +107,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "54c01168",
"metadata": {},
@@ -136,7 +132,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5a4a9455",
"metadata": {},
@@ -147,7 +142,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "36ae48c7-cb08-4fef-977e-c7d4b96a464b",
"metadata": {},
@@ -237,7 +231,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9abcfe8e-1868-42a4-8345-ad2d9b44c681",
"metadata": {},
@@ -312,7 +305,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6fbc26af-97e4-4a21-82aa-48bdc992da26",
"metadata": {},
@@ -495,7 +487,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7c7503b5-d9d9-4faa-b064-29fcdb5ff213",
"metadata": {},
@@ -639,7 +630,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -1,23 +1,21 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "18ada398-dce6-4049-9b56-fc0ede63da9c",
"metadata": {},
"source": [
"# Vectorstore Agent\n",
"# Vectorstore\n",
"\n",
"This notebook showcases an agent designed to retrieve information from one or more vectorstores, either with or without sources."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "eecb683b-3a46-4b9d-81a3-7caefbfec1a1",
"metadata": {},
"source": [
"## Create the Vectorstores"
"## Create Vectorstores"
]
},
{
@@ -95,7 +93,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f4814175-964d-42f1-aa9d-22801ce1e912",
"metadata": {},
@@ -128,7 +125,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8a38ad10",
"metadata": {},
@@ -217,7 +213,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7ca07707",
"metadata": {},
@@ -263,7 +258,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "71680984-edaf-4a63-90f5-94edbd263550",
"metadata": {},
@@ -422,7 +416,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Xorbits Agent"
"# Xorbits"
]
},
{
@@ -13,7 +13,7 @@
"source": [
"This notebook shows how to use agents to interact with [Xorbits Pandas](https://doc.xorbits.io/en/latest/reference/pandas/index.html) dataframe and [Xorbits Numpy](https://doc.xorbits.io/en/latest/reference/numpy/index.html) ndarray. It is mostly optimized for question answering.\n",
"\n",
"**NOTE: this agent calls the Python agent under the hood, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously.**"
"**NOTE: this agent calls the `Python` agent under the hood, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously.**"
]
},
{
@@ -734,9 +734,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -1,13 +1,14 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Atlas\n",
"\n",
"\n",
">[Atlas](https://docs.nomic.ai/index.html) is a platform for interacting with both small and internet scale unstructured datasets by `Nomic`. \n",
">[Atlas](https://docs.nomic.ai/index.html) is a platform by Nomic made for interacting with both small and internet scale unstructured datasets. It enables anyone to visualize, search, and share massive datasets in their browser.\n",
"\n",
"This notebook shows you how to use functionality related to the `AtlasDB` vectorstore."
]
@@ -49,6 +50,14 @@
"!pip install nomic"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Packages"
]
},
{
"cell_type": "code",
"execution_count": 6,
@@ -78,6 +87,14 @@
"ATLAS_TEST_API_KEY = \"7xDPkYXSYDc1_ErdTPIcoAR9RNd8YDlkS3nVNXcVoIMZ6\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare the Data"
]
},
{
"cell_type": "code",
"execution_count": 8,
@@ -96,6 +113,14 @@
"texts = [e.strip() for e in texts]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Map the Data using Nomic's Atlas"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -127,78 +152,21 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <strong><a href=\"https://atlas.nomic.ai/dashboard/project/ee2354a3-7f9a-4c6b-af43-b0cda09d7198\">test_index_1677255228.136989</strong></a>\n",
" <br>\n",
" A description for your project 508 datums inserted.\n",
" <br>\n",
" 1 index built.\n",
" <br><strong>Projections</strong>\n",
"<ul>\n",
"<li>test_index_1677255228.136989_index. Status Completed. <a target=\"_blank\" href=\"https://atlas.nomic.ai/map/ee2354a3-7f9a-4c6b-af43-b0cda09d7198/db996d77-8981-48a0-897a-ff2c22bbf541\">view online</a></li></ul><hr><script>\n",
" destroy = function() {\n",
" document.getElementById(\"iframedb996d77-8981-48a0-897a-ff2c22bbf541\").remove()\n",
" }\n",
" </script>\n",
"\n",
" <h4>Projection ID: db996d77-8981-48a0-897a-ff2c22bbf541</h4>\n",
" <div class=\"actions\">\n",
" <div id=\"hide\" class=\"action\" onclick=\"destroy()\">Hide embedded project</div>\n",
" <div class=\"action\" id=\"out\">\n",
" <a href=\"https://atlas.nomic.ai/map/ee2354a3-7f9a-4c6b-af43-b0cda09d7198/db996d77-8981-48a0-897a-ff2c22bbf541\" target=\"_blank\">Explore on atlas.nomic.ai</a>\n",
" </div>\n",
" </div>\n",
" \n",
" <iframe class=\"iframe\" id=\"iframedb996d77-8981-48a0-897a-ff2c22bbf541\" allow=\"clipboard-read; clipboard-write\" src=\"https://atlas.nomic.ai/map/ee2354a3-7f9a-4c6b-af43-b0cda09d7198/db996d77-8981-48a0-897a-ff2c22bbf541\">\n",
" </iframe>\n",
"\n",
" <style>\n",
" .iframe {\n",
" /* vh can be **very** large in vscode html. */\n",
" height: min(75vh, 66vw);\n",
" width: 100%;\n",
" }\n",
" </style>\n",
" \n",
" <style>\n",
" .actions {\n",
" display: block;\n",
" }\n",
" .action {\n",
" min-height: 18px;\n",
" margin: 5px;\n",
" transition: all 500ms ease-in-out;\n",
" }\n",
" .action:hover {\n",
" cursor: pointer;\n",
" }\n",
" #hide:hover::after {\n",
" content: \" X\";\n",
" }\n",
" #out:hover::after {\n",
" content: \"\";\n",
" }\n",
" </style>\n",
" "
],
"text/plain": [
"AtlasProject: <{'id': 'ee2354a3-7f9a-4c6b-af43-b0cda09d7198', 'owner': '9c29afbb-a002-4d49-958e-ecf5ae1351ac', 'project_name': 'test_index_1677255228.136989', 'creator': 'auth0|63efc4b5462246f4d9a6ecf2', 'description': 'A description for your project', 'opensearch_index_id': 'f61fb8dd-0abf-4f31-9130-41870e443902', 'is_public': True, 'project_fields': ['atlas_id', 'text'], 'unique_id_field': 'atlas_id', 'modality': 'text', 'total_datums_in_project': 508, 'created_timestamp': '2023-02-24T16:13:50.313363+00:00', 'atlas_indices': [{'id': 'b1b01833-0964-4597-a4bc-a2d60700949d', 'project_id': 'ee2354a3-7f9a-4c6b-af43-b0cda09d7198', 'index_name': 'test_index_1677255228.136989_index', 'indexed_field': 'text', 'created_timestamp': '2023-02-24T16:13:52.957101+00:00', 'updated_timestamp': '2023-02-24T16:14:03.469621+00:00', 'atoms': ['charchunk', 'document'], 'colorable_fields': [], 'embedders': [{'id': '7ec0868a-4eed-4414-a482-25cce9803e1b', 'atlas_index_id': 'b1b01833-0964-4597-a4bc-a2d60700949d', 'ready': True, 'model_name': 'NomicEmbed', 'hyperparameters': {'norm': 'both', 'batch_size': 20, 'polymerize_by': 'charchunk', 'dataset_buffer_size': 1000}}], 'nearest_neighbor_indices': [{'id': '86f8e3ff-e07c-4678-a4d7-144db4b0301d', 'index_name': 'NomicOrganize', 'ready': True, 'hyperparameters': {'dim': 384, 'space': 'l2'}, 'atom_strategies': ['document']}], 'projections': [{'id': 'db996d77-8981-48a0-897a-ff2c22bbf541', 'projection_name': 'NomicProject', 'ready': True, 'hyperparameters': {'spread': 1.0, 'n_epochs': 50, 'n_neighbors': 15}, 'atom_strategies': ['document'], 'created_timestamp': '2023-02-24T16:13:52.979561+00:00', 'updated_timestamp': '2023-02-24T16:14:03.466309+00:00'}]}], 'insert_update_delete_lock': False}>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"db.project"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a map with the result of this code. This map displays the texts of the State of the Union.\n",
"https://atlas.nomic.ai/map/3e4de075-89ff-486a-845c-36c23f30bb67/d8ce2284-8edb-4050-8b9b-9bb543d7f647"
]
}
],
"metadata": {

View File

@@ -6,7 +6,9 @@
"source": [
"# Azure Cognitive Search\n",
"\n",
"[Azure Cognitive Search](https://learn.microsoft.com/azure/search/search-what-is-azure-search) (formerly known as `Azure Search`) is a cloud search service that gives developers infrastructure, APIs, and tools for building a rich search experience over private, heterogeneous content in web, mobile, and enterprise applications.\n"
"[Azure Cognitive Search](https://learn.microsoft.com/azure/search/search-what-is-azure-search) (formerly known as `Azure Search`) is a cloud search service that gives developers infrastructure, APIs, and tools for building a rich search experience over private, heterogeneous content in web, mobile, and enterprise applications.\n",
"\n",
"Vector search is currently in public preview. It's available through the Azure portal, preview REST API and beta client libraries. [More info](https://learn.microsoft.com/en-us/azure/search/vector-search-overview) Beta client libraries are subject to potential breaking changes, please be sure to use the SDK package version identified below. azure-search-documents==11.4.0b8"
]
},
{
@@ -22,7 +24,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install azure-search-documents==11.4.0b6\n",
"!pip install azure-search-documents==11.4.0b8\n",
"!pip install azure-identity"
]
},
@@ -36,13 +38,13 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"import os\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.vectorstores.azuresearch import AzureSearch"
]
},
@@ -57,7 +59,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -79,7 +81,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -98,7 +100,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -151,7 +153,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 5,
"metadata": {},
"outputs": [
{
@@ -178,6 +180,41 @@
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Perform a vector similarity search with relevance scores\n",
" \n",
"Execute a pure vector similarity search using the similarity_search_with_relevance_scores() method:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.8441472),\n",
" (Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.8441472),\n",
" (Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \\n\\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \\n\\nWe can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling. \\n\\nWeve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \\n\\nWere putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \\n\\nWere securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.82153815),\n",
" (Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \\n\\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \\n\\nWe can do both. At our border, weve installed new technology like cutting-edge scanners to better detect drug smuggling. \\n\\nWeve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \\n\\nWere putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \\n\\nWere securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': 'C:\\\\repos\\\\langchain-fruocco-acs\\\\langchain\\\\docs\\\\extras\\\\modules\\\\state_of_the_union.txt'}),\n",
" 0.82153815)]\n"
]
}
],
"source": [
"docs_and_scores = vector_store.similarity_search_with_relevance_scores(query=\"What did the president say about Ketanji Brown Jackson\", k=4, score_threshold=0.80)\n",
"from pprint import pprint\n",
"pprint(docs_and_scores)"
]
},
{
"attachments": {},
"cell_type": "markdown",
@@ -190,7 +227,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 13,
"metadata": {},
"outputs": [
{
@@ -219,7 +256,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -254,7 +291,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
@@ -328,7 +365,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@@ -348,7 +385,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 20,
"metadata": {},
"outputs": [
{
@@ -371,7 +408,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 21,
"metadata": {},
"outputs": [
{
@@ -400,7 +437,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
@@ -494,7 +531,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 23,
"metadata": {},
"outputs": [
{
@@ -530,7 +567,7 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 24,
"metadata": {},
"outputs": [
{

View File

@@ -5,7 +5,7 @@
"id": "683953b3",
"metadata": {},
"source": [
"# ClickHouse Vector Search\n",
"# ClickHouse\n",
"\n",
"> [ClickHouse](https://clickhouse.com/) is the fastest and most resource efficient open-source database for real-time apps and analytics with full SQL support and a wide range of functions to assist users in writing analytical queries. Lately added data structures and distance search functions (like `L2Distance`) as well as [approximate nearest neighbor search indexes](https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes) enable ClickHouse to be used as a high performance and scalable vector database to store and search vectors with SQL.\n",
"\n",
@@ -198,8 +198,7 @@
"ExecuteTime": {
"end_time": "2023-06-03T08:28:58.252991Z",
"start_time": "2023-06-03T08:28:58.197560Z"
},
"scrolled": false
}
},
"outputs": [
{
@@ -246,9 +245,7 @@
"cell_type": "code",
"execution_count": 8,
"id": "54f4f561",
"metadata": {
"scrolled": false
},
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -395,7 +392,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -1,20 +1,18 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "2ce41f46-5711-4311-b04d-2fe233ac5b1b",
"metadata": {},
"source": [
"# DocArrayHnswSearch\n",
"# DocArray HnswSearch\n",
"\n",
">[DocArrayHnswSearch](https://docs.docarray.org/user_guide/storing/index_hnswlib/) is a lightweight Document Index implementation provided by [Docarray](https://docs.docarray.org/) that runs fully locally and is best suited for small- to medium-sized datasets. It stores vectors on disk in [hnswlib](https://github.com/nmslib/hnswlib), and stores all other data in [SQLite](https://www.sqlite.org/index.html).\n",
">[DocArrayHnswSearch](https://docs.docarray.org/user_guide/storing/index_hnswlib/) is a lightweight Document Index implementation provided by [Docarray](https://github.com/docarray/docarray) that runs fully locally and is best suited for small- to medium-sized datasets. It stores vectors on disk in [hnswlib](https://github.com/nmslib/hnswlib), and stores all other data in [SQLite](https://www.sqlite.org/index.html).\n",
"\n",
"This notebook shows how to use functionality related to the `DocArrayHnswSearch`."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7ee37d28",
"metadata": {},
@@ -57,7 +55,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8dbb6de2",
"metadata": {
@@ -103,7 +100,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ed6f905b-4853-4a44-9730-614aa8e22b78",
"metadata": {},
@@ -151,7 +147,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3febb987-e903-416f-af26-6897d84c8d61",
"metadata": {},
@@ -160,7 +155,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bb1df11a",
"metadata": {},
@@ -236,7 +230,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -1,20 +1,18 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "a3afefb0-7e99-4912-a222-c6b186da11af",
"metadata": {},
"source": [
"# DocArrayInMemorySearch\n",
"# DocArray InMemorySearch\n",
"\n",
">[DocArrayInMemorySearch](https://docs.docarray.org/user_guide/storing/index_in_memory/) is a document index provided by [Docarray](https://docs.docarray.org/) that stores documents in memory. It is a great starting point for small datasets, where you may not want to launch a database server.\n",
">[DocArrayInMemorySearch](https://docs.docarray.org/user_guide/storing/index_in_memory/) is a document index provided by [Docarray](https://github.com/docarray/docarray) that stores documents in memory. It is a great starting point for small datasets, where you may not want to launch a database server.\n",
"\n",
"This notebook shows how to use functionality related to the `DocArrayInMemorySearch`."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5031a3ec",
"metadata": {},
@@ -56,7 +54,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6e57a389-f637-4b8f-9ab2-759ae7485f78",
"metadata": {},
@@ -98,7 +95,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "efbb6684-3846-4332-a624-ddd4d75844c1",
"metadata": {},
@@ -146,7 +142,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "43896697-f99e-47b6-9117-47a25e9afa9c",
"metadata": {},
@@ -155,7 +150,6 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "414a9bc9",
"metadata": {},
@@ -224,7 +218,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.12"
}
},
"nbformat": 4,

View File

@@ -14,6 +14,16 @@
"This notebook shows how to use functionality related to the `Elasticsearch` database."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5bbffe2",
"metadata": {},
"outputs": [],
"source": [
"!pip install elasticsearch openai tiktoken langchain"
]
},
{
"cell_type": "markdown",
"id": "b66c12b2-2a07-4136-ac77-ce1c9fa7a409",
@@ -119,33 +129,6 @@
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d6197931-cbe5-460c-a5e6-b5eedb83887c",
"metadata": {
"id": "d6197931-cbe5-460c-a5e6-b5eedb83887c",
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: elasticsearch in /Users/joe/Library/Caches/pypoetry/virtualenvs/langchain-monorepo-ln7dNLl5-py3.10/lib/python3.10/site-packages (8.9.0)\n",
"Requirement already satisfied: elastic-transport<9,>=8 in /Users/joe/Library/Caches/pypoetry/virtualenvs/langchain-monorepo-ln7dNLl5-py3.10/lib/python3.10/site-packages (from elasticsearch) (8.4.0)\n",
"Requirement already satisfied: urllib3<2,>=1.26.2 in /Users/joe/Library/Caches/pypoetry/virtualenvs/langchain-monorepo-ln7dNLl5-py3.10/lib/python3.10/site-packages (from elastic-transport<9,>=8->elasticsearch) (1.26.16)\n",
"Requirement already satisfied: certifi in /Users/joe/Library/Caches/pypoetry/virtualenvs/langchain-monorepo-ln7dNLl5-py3.10/lib/python3.10/site-packages (from elastic-transport<9,>=8->elasticsearch) (2023.7.22)\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.2.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install elasticsearch"
]
},
{
"cell_type": "markdown",
"id": "ea167a29",
@@ -528,24 +511,89 @@
"\n",
"To use this, specify the model_id in `ElasticsearchStore` `ApproxRetrievalStrategy` constructor via the `query_model_id` argument.\n",
"\n",
"**NOTE** This requires the model to be deployed and running in Elasticsearch ml node. \n",
"\n",
"```python\n",
"**NOTE** This requires the model to be deployed and running in Elasticsearch ml node. See [notebook example](https://github.com/elastic/elasticsearch-labs/blob/main/notebooks/integrations/hugging-face/loading-model-from-hugging-face.ipynb) on how to deploy the model with eland.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a0c85e7",
"metadata": {},
"outputs": [],
"source": [
"APPROX_SELF_DEPLOYED_INDEX_NAME = \"test-approx-self-deployed\"\n",
"\n",
"# Note: This does not have an embedding function specified\n",
"# Instead, we will use the embedding model deployed in Elasticsearch\n",
"db = ElasticsearchStore( \n",
" es_url=\"http://localhost:9200\", \n",
" index_name=\"test\",\n",
" es_cloud_id=\"<your cloud id>\",\n",
" es_user=\"elastic\",\n",
" es_password=\"<your password>\", \n",
" index_name=APPROX_SELF_DEPLOYED_INDEX_NAME,\n",
" query_field=\"text_field\",\n",
" vector_query_field=\"vector_query_field.predicted_value\",\n",
" strategy=ElasticsearchStore.ApproxRetrievalStrategy(\n",
" query_model_id=\"sentence-transformers__all-minilm-l6-v2\"\n",
" )\n",
")\n",
"\n",
"# Perform search\n",
"db.similarity_search(\"hello world\", k=10)\n",
"```\n",
"# Setup a Ingest Pipeline to perform the embedding\n",
"# of the text field\n",
"db.client.ingest.put_pipeline(\n",
" id=\"test_pipeline\",\n",
" processors=[\n",
" {\n",
" \"inference\": {\n",
" \"model_id\": \"sentence-transformers__all-minilm-l6-v2\",\n",
" \"field_map\": {\"query_field\": \"text_field\"},\n",
" \"target_field\": \"vector_query_field\",\n",
" }\n",
" }\n",
" ],\n",
")\n",
"\n",
"# creating a new index with the pipeline,\n",
"# not relying on langchain to create the index\n",
"db.client.indices.create(\n",
" index=APPROX_SELF_DEPLOYED_INDEX_NAME,\n",
" mappings={\n",
" \"properties\": {\n",
" \"text_field\": {\"type\": \"text\"},\n",
" \"vector_query_field\": {\n",
" \"properties\": {\n",
" \"predicted_value\": {\n",
" \"type\": \"dense_vector\",\n",
" \"dims\": 384,\n",
" \"index\": True,\n",
" \"similarity\": \"l2_norm\",\n",
" }\n",
" }\n",
" },\n",
" }\n",
" },\n",
" settings={\"index\": {\"default_pipeline\": \"test_pipeline\"}},\n",
")\n",
"\n",
"db.from_texts([\"hello world\"], \n",
" es_cloud_id=\"<cloud id>\",\n",
" es_user=\"elastic\",\n",
" es_password=\"<cloud password>\", \n",
" index_name=APPROX_SELF_DEPLOYED_INDEX_NAME,\n",
" query_field=\"text_field\",\n",
" vector_query_field=\"vector_query_field.predicted_value\",\n",
" strategy=ElasticsearchStore.ApproxRetrievalStrategy(\n",
" query_model_id=\"sentence-transformers__all-minilm-l6-v2\"\n",
" ))\n",
"\n",
"# Perform search\n",
"db.similarity_search(\"hello world\", k=10)"
]
},
{
"cell_type": "markdown",
"id": "53959de6",
"metadata": {},
"source": [
"## SparseVectorRetrievalStrategy (ELSER)\n",
"This strategy uses Elasticsearch's sparse vector retrieval to retrieve the top-k results. We only support our own \"ELSER\" embedding model for now.\n",
"\n",

Some files were not shown because too many files have changed in this diff Show More