Compare commits

..

31 Commits

Author SHA1 Message Date
Chester Curme
d9d8735d9f x 2025-02-03 16:27:56 -05:00
Chester Curme
fb4adb444d x 2025-02-03 16:24:54 -05:00
Chester Curme
dd47b8c454 x 2025-02-03 16:21:30 -05:00
Chester Curme
1c634f9436 Revert "test extras"
This reverts commit 7a8d5586de.
2025-02-03 16:17:34 -05:00
Chester Curme
e939cd462a increment version 2025-02-03 16:12:28 -05:00
Chester Curme
bc24f60a39 update release workflows 2025-02-03 16:12:14 -05:00
Chester Curme
7a8d5586de test extras 2025-02-03 16:11:39 -05:00
Chester Curme
3898048b49 add optional dependencies 2025-02-03 15:44:44 -05:00
Chester Curme
cfa56be510 x 2025-02-03 15:21:46 -05:00
Chester Curme
fb79799571 x 2025-02-03 15:05:45 -05:00
Chester Curme
d9ce5f4464 lint 2025-02-03 14:43:05 -05:00
Chester Curme
d6e2af40eb x 2025-02-03 14:35:20 -05:00
Chester Curme
1a22baf999 x 2025-02-03 14:30:55 -05:00
Chester Curme
e20603e225 update dependency tests 2025-02-03 14:17:19 -05:00
Chester Curme
c71fc8b58a x 2025-02-03 13:32:57 -05:00
Chester Curme
1a4af623f1 x 2025-02-03 13:28:36 -05:00
Chester Curme
dfce027c57 update get_min_versions 2025-02-03 13:22:53 -05:00
Chester Curme
701387066c x 2025-02-03 12:59:43 -05:00
Chester Curme
ea838e80c7 x 2025-02-03 12:53:38 -05:00
Chester Curme
4dcc659f48 update scripts (todo: fix) 2025-02-03 12:48:38 -05:00
Chester Curme
dcbedef4d8 update 2025-02-03 12:46:21 -05:00
Chester Curme
070e12f886 update check_diff script 2025-02-03 11:50:58 -05:00
Chester Curme
aa7637b2e4 update workflows 2025-02-03 11:40:39 -05:00
Chester Curme
b7bdf0b81a update get_min_versions script 2025-02-03 11:28:41 -05:00
Chester Curme
e034999cb6 add action to setup uv and python 2025-02-03 11:28:26 -05:00
Chester Curme
a1a6ef10a9 update 2025-02-03 11:23:36 -05:00
Chester Curme
6693a0c80b todo: delete tool.pdm.dev-dependencies 2025-02-03 11:18:22 -05:00
Chester Curme
4202c1411b core 2025-02-03 11:14:44 -05:00
Chester Curme
10f677f2f7 remove tool.poetry 2025-02-03 10:53:46 -05:00
Chester Curme
f71cf387f0 update core 2025-02-03 10:49:46 -05:00
Chester Curme
b07e6be354 update 2025-02-02 14:35:19 -05:00
557 changed files with 64481 additions and 51076 deletions

View File

@@ -14,6 +14,8 @@ env:
runs:
using: composite
steps:
- uses: actions/checkout@v4
- name: Install uv and set the python version
uses: astral-sh/setup-uv@v5
with:

View File

@@ -39,7 +39,6 @@ IGNORED_PARTNERS = [
PY_312_MAX_PACKAGES = [
"libs/partners/huggingface", # https://github.com/pytorch/pytorch/issues/130249
"libs/partners/voyageai",
]
@@ -58,7 +57,9 @@ def dependents_graph() -> dict:
"""
dependents = defaultdict(set)
for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
# for path in glob.glob("./libs/**/pyproject.toml", recursive=True):
# TODO: fix this
for path in ["./libs/langchain/pyproject.toml", "./libs/core/pyproject.toml"]:
if "template" in path:
continue

View File

@@ -10,25 +10,26 @@ if __name__ == "__main__":
toml_data = tomllib.load(file)
# see if we're releasing an rc
version = toml_data["project"]["version"]
version = toml_data["tool"]["poetry"]["version"]
releasing_rc = "rc" in version or "dev" in version
# if not, iterate through dependencies and make sure none allow prereleases
if not releasing_rc:
dependencies = toml_data["project"]["dependencies"]
for dep_version in dependencies:
dependencies = toml_data["tool"]["poetry"]["dependencies"]
for lib in dependencies:
dep_version = dependencies[lib]
dep_version_string = (
dep_version["version"] if isinstance(dep_version, dict) else dep_version
)
if "rc" in dep_version_string:
raise ValueError(
f"Dependency {dep_version} has a prerelease version. Please remove this."
f"Dependency {lib} has a prerelease version. Please remove this."
)
if isinstance(dep_version, dict) and dep_version.get(
"allow-prereleases", False
):
raise ValueError(
f"Dependency {dep_version} has allow-prereleases set to true. Please remove this."
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
)

View File

@@ -12,9 +12,6 @@ on:
type: string
description: "Python version to use"
env:
UV_FROZEN: "true"
jobs:
build:
defaults:

View File

@@ -11,9 +11,6 @@ on:
type: string
description: "Python version to use"
env:
UV_FROZEN: "true"
jobs:
build:
defaults:
@@ -36,7 +33,7 @@ jobs:
- name: Install deps outside pyproject
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
shell: bash
run: VIRTUAL_ENV=.venv uv pip install "boto3<2" "google-cloud-aiplatform<2"
run: uv pip install "boto3<2" "google-cloud-aiplatform<2"
- name: Run integration tests
shell: bash
@@ -64,6 +61,8 @@ jobs:
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}

View File

@@ -18,8 +18,6 @@ env:
# This env var allows us to get inline annotations when ruff has complaints.
RUFF_OUTPUT_FORMAT: github
UV_FROZEN: "true"
jobs:
build:
name: "make lint #${{ inputs.python-version }}"
@@ -63,12 +61,12 @@ jobs:
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test
uv sync --group test
- name: Install unit+integration test dependencies
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
working-directory: ${{ inputs.working-directory }}
run: |
uv sync --inexact --group test --group test_integration
uv sync --group test --group test_integration
- name: Analysing the code with our lint
working-directory: ${{ inputs.working-directory }}

View File

@@ -21,8 +21,6 @@ on:
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
UV_NO_SYNC: "true"
jobs:
build:
@@ -217,7 +215,7 @@ jobs:
# sometimes a delay in availability on test pypi
run: |
uv venv
VIRTUAL_ENV=.venv uv pip install dist/*.whl
uv run pip install dist/*.whl
# Replace all dashes in the package name with underscores,
# since that's how Python imports packages with dashes in the name.
@@ -238,7 +236,7 @@ jobs:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
run: |
VIRTUAL_ENV=.venv uv pip install dist/*.whl
uv run pip install dist/*.whl
- name: Run unit tests
run: make tests
@@ -253,7 +251,7 @@ jobs:
working-directory: ${{ inputs.working-directory }}
id: min-version
run: |
VIRTUAL_ENV=.venv uv pip install packaging requests
uv run pip install packaging requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
@@ -264,7 +262,7 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS --editable .
uv run pip install --force-reinstall $MIN_VERSIONS --editable .
make tests
working-directory: ${{ inputs.working-directory }}
@@ -297,6 +295,8 @@ jobs:
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
@@ -308,7 +308,6 @@ jobs:
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -12,10 +12,6 @@ on:
type: string
description: "Python version to use"
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
jobs:
build:
defaults:
@@ -46,7 +42,7 @@ jobs:
id: min-version
shell: bash
run: |
VIRTUAL_ENV=.venv uv pip install packaging tomli requests
uv run pip install packaging tomli requests
python_version="$(uv run python --version | awk '{print $2}')"
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
@@ -57,7 +53,7 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
VIRTUAL_ENV=.venv uv pip install $MIN_VERSIONS
uv run pip install $MIN_VERSIONS
make tests
working-directory: ${{ inputs.working-directory }}

View File

@@ -9,7 +9,7 @@ on:
description: "Python version to use"
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -19,23 +19,25 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ inputs.python-version }} + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ inputs.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: core
- name: Install dependencies
shell: bash
run: uv sync --group test
run: poetry install --with test
- name: Install langchain editable
run: |
VIRTUAL_ENV=.venv uv pip install langchain-experimental -e libs/core libs/langchain libs/community
poetry run pip install langchain-experimental -e libs/core libs/langchain libs/community
- name: Check doc imports
shell: bash
run: |
uv run python docs/scripts/check_imports.py
poetry run python docs/scripts/check_imports.py
- name: Ensure the test did not create any additional files
shell: bash

View File

@@ -17,10 +17,6 @@ on:
type: string
description: "Pydantic version to test."
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
jobs:
build:
defaults:
@@ -43,7 +39,7 @@ jobs:
- name: Overwrite pydantic version
shell: bash
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
run: uv pip install pydantic~=${{ inputs.pydantic-version }}
- name: Run core tests
shell: bash

View File

@@ -14,8 +14,7 @@ on:
description: "Release from a non-master branch (danger!)"
env:
PYTHON_VERSION: "3.11"
UV_FROZEN: "true"
PYTHON_VERSION: "3.10"
jobs:
build:

View File

@@ -5,6 +5,7 @@ on:
schedule:
- cron: '0 13 * * *'
env:
POETRY_VERSION: "1.8.4"
PYTHON_VERSION: "3.11"
jobs:
@@ -45,18 +46,20 @@ jobs:
fi
done
- name: Setup python ${{ env.PYTHON_VERSION }}
uses: actions/setup-python@v5
id: setup-python
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
poetry-version: ${{ env.POETRY_VERSION }}
cache-key: api-docs
working-directory: langchain
- name: Install initial py deps
working-directory: langchain
run: |
python -m pip install -U uv
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
- name: Move libs with script
run: python langchain/.github/scripts/prep_api_docs_build.py
env:

View File

@@ -17,10 +17,6 @@ concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
UV_FROZEN: "true"
UV_NO_SYNC: "true"
jobs:
build:
runs-on: ubuntu-latest
@@ -133,14 +129,15 @@ jobs:
with:
python-version: ${{ matrix.job-configs.python-version }}
- name: Install dependencies and run extended tests
- name: Install dependencies
shell: bash
run: |
echo "Running extended tests, installing dependencies with uv..."
uv venv
uv sync --group test
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
VIRTUAL_ENV=.venv make extended_tests
uv pip install -r extended_testing_deps.txt
- name: Run extended tests
run: make extended_tests
- name: Ensure the tests did not create any additional files
shell: bash

View File

@@ -15,7 +15,7 @@ on:
- cron: '0 13 * * *'
env:
UV_FROZEN: "true"
POETRY_VERSION: "1.8.4"
jobs:
build:
@@ -25,10 +25,13 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
uses: "./.github/actions/poetry_setup"
with:
python-version: ${{ github.event.inputs.python_version || '3.11' }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: ${{ inputs.working-directory }}
cache-key: run-notebooks
- name: 'Authenticate to Google Cloud'
id: 'auth'
@@ -45,17 +48,17 @@ jobs:
- name: Install dependencies
run: |
uv sync --group dev --group test
poetry install --with dev,test
- name: Pre-download files
run: |
uv run python docs/scripts/cache_data.py
poetry run python docs/scripts/cache_data.py
curl -s https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql | sqlite3 docs/docs/how_to/Chinook.db
cp docs/docs/how_to/Chinook.db docs/docs/tutorials/Chinook.db
- name: Prepare notebooks
run: |
uv run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
poetry run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
- name: Run notebooks
env:

View File

@@ -14,9 +14,7 @@ on:
env:
POETRY_VERSION: "1.8.4"
UV_FROZEN: "true"
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
POETRY_LIBS: ("libs/partners/google-vertexai" "libs/partners/google-genai" "libs/partners/aws")
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/deepseek", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
jobs:
compute-matrix:
@@ -81,8 +79,7 @@ jobs:
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
mv langchain-aws/libs/aws langchain/libs/partners/aws
- name: Set up Python ${{ matrix.python-version }} with poetry
if: contains(env.POETRY_LIBS, matrix.working-directory)
- name: Set up Python ${{ matrix.python-version }}
uses: "./langchain/.github/actions/poetry_setup"
with:
python-version: ${{ matrix.python-version }}
@@ -90,12 +87,6 @@ jobs:
working-directory: langchain/${{ matrix.working-directory }}
cache-key: scheduled
- name: Set up Python ${{ matrix.python-version }} + uv
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
uses: "./langchain/.github/actions/uv_setup"
with:
python-version: ${{ matrix.python-version }}
- name: 'Authenticate to Google Cloud'
id: 'auth'
uses: google-github-actions/auth@v2
@@ -109,20 +100,12 @@ jobs:
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: Install dependencies (poetry)
if: contains(env.POETRY_LIBS, matrix.working-directory)
- name: Install dependencies
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
cd langchain/${{ matrix.working-directory }}
poetry install --with=test_integration,test
- name: Install dependencies (uv)
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
run: |
echo "Running scheduled tests, installing dependencies with uv..."
cd langchain/${{ matrix.working-directory }}
uv sync --group test --group test_integration
- name: Run integration tests
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
@@ -139,7 +122,6 @@ jobs:
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}

View File

@@ -97,6 +97,12 @@ repos:
entry: make -C libs/partners/openai format
files: ^libs/partners/openai/
pass_filenames: false
- id: pinecone
name: format partners/pinecone
language: system
entry: make -C libs/partners/pinecone format
files: ^libs/partners/pinecone/
pass_filenames: false
- id: prompty
name: format partners/prompty
language: system

View File

@@ -1,9 +1,5 @@
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
.EXPORT_ALL_VARIABLES:
UV_FROZEN = true
UV_NO_SYNC = true
## help: Show this help info.
help: Makefile
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
@@ -29,20 +25,20 @@ docs_clean:
## docs_linkcheck: Run linkchecker on the documentation.
docs_linkcheck:
uv run --no-group test linkchecker _dist/docs/ --ignore-url node_modules
poetry run linkchecker _dist/docs/ --ignore-url node_modules
## api_docs_build: Build the API Reference documentation.
api_docs_build:
uv run --no-group test python docs/api_reference/create_api_rst.py
cd docs/api_reference && uv run --no-group test make html
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
poetry run python docs/api_reference/create_api_rst.py
cd docs/api_reference && poetry run make html
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
API_PKG ?= text-splitters
api_docs_quick_preview:
uv run --no-group test python docs/api_reference/create_api_rst.py $(API_PKG)
cd docs/api_reference && uv run make html
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
poetry run python docs/api_reference/create_api_rst.py $(API_PKG)
cd docs/api_reference && poetry run make html
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
open docs/api_reference/_build/html/reference.html
## api_docs_clean: Clean the API Reference documentation build artifacts.
@@ -54,15 +50,15 @@ api_docs_clean:
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
api_docs_linkcheck:
uv run --no-group test linkchecker docs/api_reference/_build/html/index.html
poetry run linkchecker docs/api_reference/_build/html/index.html
## spell_check: Run codespell on the project.
spell_check:
uv run --no-group test codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml
## spell_fix: Run codespell on the project and fix the errors.
spell_fix:
uv run --no-group test codespell --toml pyproject.toml -w
poetry run codespell --toml pyproject.toml -w
######################
# LINTING AND FORMATTING
@@ -70,9 +66,9 @@ spell_fix:
## lint: Run linting on the project.
lint lint_package lint_tests:
uv run --group lint ruff check docs cookbook
uv run --group lint ruff format docs cookbook cookbook --diff
uv run --group lint ruff check --select I docs cookbook
poetry run ruff check docs cookbook
poetry run ruff format docs cookbook cookbook --diff
poetry run ruff check --select I docs cookbook
git --no-pager grep 'from langchain import' docs cookbook | grep -vE 'from langchain import (hub)' && echo "Error: no importing langchain from root in docs, except for hub" && exit 1 || exit 0
git --no-pager grep 'api.python.langchain.com' -- docs/docs ':!docs/docs/additional_resources/arxiv_references.mdx' ':!docs/docs/integrations/document_loaders/sitemap.ipynb' || exit 0 && \
@@ -81,8 +77,5 @@ lint lint_package lint_tests:
## format: Format the project files.
format format_diff:
uv run --group lint ruff format docs cookbook
uv run --group lint ruff check --select I --fix docs cookbook
update-package-downloads:
uv run python docs/scripts/packages_yml_get_downloads.py
poetry run ruff format docs cookbook
poetry run ruff check --select I --fix docs cookbook

View File

@@ -21,6 +21,7 @@ Notebook | Description
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools

View File

@@ -66,7 +66,7 @@
},
"outputs": [],
"source": [
"#!python3 -m pip install --upgrade langchain langchain-deeplake openai"
"#!python3 -m pip install --upgrade langchain deeplake openai"
]
},
{
@@ -666,26 +666,89 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 15,
"metadata": {
"tags": []
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your Deep Lake dataset has been successfully created!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" \r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset(path='hub://adilkhan/langchain-code', tensors=['embedding', 'id', 'metadata', 'text'])\n",
"\n",
" tensor htype shape dtype compression\n",
" ------- ------- ------- ------- ------- \n",
" embedding embedding (8244, 1536) float32 None \n",
" id text (8244, 1) str None \n",
" metadata json (8244, 1) str None \n",
" text text (8244, 1) str None \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": []
},
{
"data": {
"text/plain": [
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_deeplake.vectorstores import DeeplakeVectorStore\n",
"from langchain_community.vectorstores import DeepLake\n",
"\n",
"username = \"<USERNAME_OR_ORG>\"\n",
"\n",
"\n",
"db = DeeplakeVectorStore.from_documents(\n",
" documents=texts,\n",
" embedding=embeddings,\n",
" dataset_path=f\"hub://{username}/langchain-code\",\n",
" overwrite=True,\n",
"db = DeepLake.from_documents(\n",
" texts, embeddings, dataset_path=f\"hub://{username}/langchain-code\", overwrite=True\n",
")\n",
"db"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"`Optional`: You can also use Deep Lake's Managed Tensor Database as a hosting service and run queries there. In order to do so, it is necessary to specify the runtime parameter as {'tensor_db': True} during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# from langchain_community.vectorstores import DeepLake\n",
"\n",
"# db = DeepLake.from_documents(\n",
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
"# )\n",
"# db"
]
},
{
"attachments": {},
"cell_type": "markdown",
@@ -697,16 +760,24 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 17,
"metadata": {
"tags": []
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Deep Lake Dataset in hub://adilkhan/langchain-code already exists, loading from the storage\n"
]
}
],
"source": [
"db = DeeplakeVectorStore(\n",
"db = DeepLake(\n",
" dataset_path=f\"hub://{username}/langchain-code\",\n",
" read_only=True,\n",
" embedding_function=embeddings,\n",
" embedding=embeddings,\n",
")"
]
},
@@ -725,6 +796,36 @@
"retriever.search_kwargs[\"k\"] = 20"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also specify user defined functions using [Deep Lake filters](https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def filter(x):\n",
" # filter based on source code\n",
" if \"something\" in x[\"text\"].data()[\"value\"]:\n",
" return False\n",
"\n",
" # filter based on path e.g. extension\n",
" metadata = x[\"metadata\"].data()[\"value\"]\n",
" return \"only_this\" in metadata[\"source\"] or \"also_that\" in metadata[\"source\"]\n",
"\n",
"\n",
"### turn on below for custom filtering\n",
"# retriever.search_kwargs['filter'] = filter"
]
},
{
"cell_type": "code",
"execution_count": 20,
@@ -736,8 +837,10 @@
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"qa = RetrievalQA.from_llm(model, retriever=retriever)"
"model = ChatOpenAI(\n",
" model_name=\"gpt-3.5-turbo-0613\"\n",
") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},
{

View File

@@ -0,0 +1,273 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "707d13a7",
"metadata": {},
"source": [
"# Databricks\n",
"\n",
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
]
},
{
"cell_type": "markdown",
"id": "0076d072",
"metadata": {},
"source": [
"## Installation and Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "739b489b",
"metadata": {},
"outputs": [],
"source": [
"!pip install databricks-sql-connector"
]
},
{
"cell_type": "markdown",
"id": "73113163",
"metadata": {},
"source": [
"## Connecting to Databricks\n",
"\n",
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
"\n",
"### Syntax\n",
"```python\n",
"SQLDatabase.from_databricks(\n",
" catalog: str,\n",
" schema: str,\n",
" host: Optional[str] = None,\n",
" api_token: Optional[str] = None,\n",
" warehouse_id: Optional[str] = None,\n",
" cluster_id: Optional[str] = None,\n",
" engine_args: Optional[dict] = None,\n",
" **kwargs: Any)\n",
"```\n",
"### Required Parameters\n",
"* `catalog`: The catalog name in the Databricks database.\n",
"* `schema`: The schema name in the catalog.\n",
"\n",
"### Optional Parameters\n",
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
]
},
{
"cell_type": "markdown",
"id": "b11c7e48",
"metadata": {},
"source": [
"## Examples"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8102bca0",
"metadata": {},
"outputs": [],
"source": [
"# Connecting to Databricks with SQLDatabase wrapper\n",
"from langchain_community.utilities import SQLDatabase\n",
"\n",
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9dd36f58",
"metadata": {},
"outputs": [],
"source": [
"# Creating a OpenAI Chat LLM wrapper\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
]
},
{
"cell_type": "markdown",
"id": "5b5c5f1a",
"metadata": {},
"source": [
"### SQL Chain example\n",
"\n",
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "36f2270b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.utilities import SQLDatabaseChain\n",
"\n",
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4e2b5f25",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
"What is the average duration of taxi rides that start between midnight and 6am?\n",
"SQLQuery:\u001b[32;1m\u001b[1;3mSELECT AVG(UNIX_TIMESTAMP(tpep_dropoff_datetime) - UNIX_TIMESTAMP(tpep_pickup_datetime)) as avg_duration\n",
"FROM trips\n",
"WHERE HOUR(tpep_pickup_datetime) >= 0 AND HOUR(tpep_pickup_datetime) < 6\u001b[0m\n",
"SQLResult: \u001b[33;1m\u001b[1;3m[(987.8122786304605,)]\u001b[0m\n",
"Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db_chain.run(\n",
" \"What is the average duration of taxi rides that start between midnight and 6am?\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e496d5e5",
"metadata": {},
"source": [
"### SQL Database Agent example\n",
"\n",
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/tools/sql_database) for answering questions over a Databricks database."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9918e86a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import create_sql_agent\n",
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
"\n",
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c484a76e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n",
"Action Input: \u001b[0m\n",
"Observation: \u001b[38;5;200m\u001b[1;3mtrips\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
"Action: schema_sql_db\n",
"Action Input: trips\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3m\n",
"CREATE TABLE trips (\n",
"\ttpep_pickup_datetime TIMESTAMP, \n",
"\ttpep_dropoff_datetime TIMESTAMP, \n",
"\ttrip_distance FLOAT, \n",
"\tfare_amount FLOAT, \n",
"\tpickup_zip INT, \n",
"\tdropoff_zip INT\n",
") USING DELTA\n",
"\n",
"/*\n",
"3 rows from trips table:\n",
"tpep_pickup_datetime\ttpep_dropoff_datetime\ttrip_distance\tfare_amount\tpickup_zip\tdropoff_zip\n",
"2016-02-14 16:52:13+00:00\t2016-02-14 17:16:04+00:00\t4.94\t19.0\t10282\t10171\n",
"2016-02-04 18:44:19+00:00\t2016-02-04 18:46:00+00:00\t0.28\t3.5\t10110\t10110\n",
"2016-02-17 17:13:57+00:00\t2016-02-17 17:17:55+00:00\t0.7\t5.0\t10103\t10023\n",
"*/\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
"Action: query_checker_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
"Action: query_sql_db\n",
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m[(30.6, '0 00:43:31.000000000')]\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
"Final Answer: The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent.run(\"What is the longest trip distance and how long did it take?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -23,41 +23,7 @@
},
{
"cell_type": "markdown",
"id": "2498a0a1",
"metadata": {},
"source": [
"## Packages\n",
"\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet -U langchain-vdms langchain-experimental langchain-ollama\n",
"\n",
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" \"onnxruntime==1.17.0\" pillow pydantic lxml open_clip_torch"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "78ac6543",
"metadata": {},
"outputs": [],
"source": [
"# from dotenv import load_dotenv, find_dotenv\n",
"# load_dotenv(find_dotenv(), override=True);"
]
},
{
"cell_type": "markdown",
"id": "e5c8916e",
"id": "6a6b6e73",
"metadata": {},
"source": [
"## Start VDMS Server\n",
@@ -68,15 +34,15 @@
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1e6e2c15",
"execution_count": 1,
"id": "5f483872",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a701e5ac3523006e9540b5355e2d872d5d78383eab61562a675d5b9ac21fde65\n"
"a1b9206b08ef626e15b356bf9e031171f7c7eb8f956a2733f196f0109246fe2b\n"
]
}
],
@@ -84,11 +50,45 @@
"! docker run --rm -d -p 55559:55555 --name vdms_rag_nb intellabs/vdms:latest\n",
"\n",
"# Connect to VDMS Vector Store\n",
"from langchain_vdms.vectorstores import VDMS_Client\n",
"from langchain_community.vectorstores.vdms import VDMS_Client\n",
"\n",
"vdms_client = VDMS_Client(port=55559)"
]
},
{
"cell_type": "markdown",
"id": "2498a0a1",
"metadata": {},
"source": [
"## Packages\n",
"\n",
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet -U vdms langchain-experimental\n",
"\n",
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml open_clip_torch"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "78ac6543",
"metadata": {},
"outputs": [],
"source": [
"# from dotenv import load_dotenv, find_dotenv\n",
"# load_dotenv(find_dotenv(), override=True);"
]
},
{
"cell_type": "markdown",
"id": "1e94b3fb-8e3e-4736-be0a-ad881626c7bd",
@@ -115,12 +115,11 @@
"import requests\n",
"\n",
"# Folder to store pdf and extracted images\n",
"base_datapath = Path(\"./data/multimodal_files\").resolve()\n",
"datapath = base_datapath / \"images\"\n",
"datapath = Path(\"./data/multimodal_files\").resolve()\n",
"datapath.mkdir(parents=True, exist_ok=True)\n",
"\n",
"pdf_url = \"https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\"\n",
"pdf_path = str(base_datapath / pdf_url.split(\"/\")[-1])\n",
"pdf_path = str(datapath / pdf_url.split(\"/\")[-1])\n",
"with open(pdf_path, \"wb\") as f:\n",
" f.write(requests.get(pdf_url).content)"
]
@@ -186,8 +185,8 @@
"source": [
"import os\n",
"\n",
"from langchain_community.vectorstores import VDMS\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from langchain_vdms import VDMS\n",
"\n",
"# Create VDMS\n",
"vectorstore = VDMS(\n",
@@ -313,10 +312,10 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain_community.llms.ollama import Ollama\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from langchain_ollama.llms import OllamaLLM\n",
"\n",
"\n",
"def prompt_func(data_dict):\n",
@@ -341,8 +340,8 @@
" \"As an expert art critic and historian, your task is to analyze and interpret images, \"\n",
" \"considering their historical and cultural significance. Alongside the images, you will be \"\n",
" \"provided with related text to offer context. Both will be retrieved from a vectorstore based \"\n",
" \"on user-input keywords. Please use your extensive knowledge and analytical skills to provide a \"\n",
" \"comprehensive summary that includes:\\n\"\n",
" \"on user-input keywords. Please convert answers to english and use your extensive knowledge \"\n",
" \"and analytical skills to provide a comprehensive summary that includes:\\n\"\n",
" \"- A detailed description of the visual elements in the image.\\n\"\n",
" \"- The historical and cultural context of the image.\\n\"\n",
" \"- An interpretation of the image's symbolism and meaning.\\n\"\n",
@@ -360,7 +359,7 @@
" \"\"\"Multi-modal RAG chain\"\"\"\n",
"\n",
" # Multi-modal LLM\n",
" llm_model = OllamaLLM(\n",
" llm_model = Ollama(\n",
" verbose=True, temperature=0.5, model=\"llava\", base_url=\"http://localhost:11434\"\n",
" )\n",
"\n",
@@ -420,121 +419,6 @@
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"© 2017 LARRY D. MOORE\n",
"\n",
"contemporary criticism of the less-than- thoughtful circumstances under which Lange photographed Thomson, the pictures power to engage has not diminished. Artists in other countries have appropriated the image, changing the mothers features into those of other ethnicities, but keeping her expression and the positions of her clinging children. Long after anyone could help the Thompson family, this picture has resonance in another time of national crisis, unemployment and food shortages.\n",
"\n",
"A striking, but very different picture is a 1900 portrait of the legendary Hin-mah-too-yah- lat-kekt (Chief Joseph) of the Nez Percé people. The Bureau of American Ethnology in Washington, D.C., regularly arranged for its photographer, De Lancey Gill, to photograph Native American delegations that came to the capital to confer with officials about tribal needs and concerns. Although Gill described Chief Joseph as having “an air of gentleness and quiet reserve,” the delegate skeptically appraises the photographer, which is not surprising given that the United States broke five treaties with Chief Joseph and his father between 1855 and 1885.\n",
"\n",
"More than a glance, second looks may reveal new knowledge into complex histories.\n",
"\n",
"Anne Wilkes Tucker is the photography curator emeritus of the Museum of Fine Arts, Houston and curator of the “Not an Ostrich” exhibition.\n",
"\n",
"28\n",
"\n",
"28 LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"THEYRE WILLING TO HAVE MEENTERTAIN THEM DURING THE DAY,BUT AS SOON AS IT STARTSGETTING DARK, THEY ALLGO OFF, AND LEAVE ME! \n",
"ROSA PARKS: IN HER OWN WORDS\n",
"\n",
"COMIC ART: 120 YEARS OF PANELS AND PAGES\n",
"\n",
"SHALL NOT BE DENIED: WOMEN FIGHT FOR THE VOTE\n",
"\n",
"More information loc.gov/exhibits\n",
"Nuestra Sefiora de las Iguanas\n",
"\n",
"Graciela Iturbides 1979 portrait of Zobeida Díaz in the town of Juchitán in southeastern Mexico conveys the strength of women and reflects their important contributions to the economy. Díaz, a merchant, was selling iguanas to cook and eat, carrying them on her head, as is customary.\n",
"\n",
"GRACIELA ITURBIDE. “NUESTRA SEÑORA DE LAS IGUANAS.” 1979. GELATIN SILVER PRINT. © GRACIELA ITURBIDE, USED BY PERMISSION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
"\n",
"Iturbide requested permission to take a photograph, but this proved challenging because the iguanas were constantly moving, causing Díaz to laugh. The result, however, was a brilliant portrait that the inhabitants of Juchitán claimed with pride. They have reproduced it on posters and erected a statue honoring Díaz and her iguanas. The photo now appears throughout the world, inspiring supporters of feminism, womens rights and gender equality.\n",
"\n",
"—Adam Silvia is a curator in the Prints and Photographs Division.\n",
"\n",
"6\n",
"\n",
"6 LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"Migrant Mother is Florence Owens Thompson\n",
"\n",
"The iconic portrait that became the face of the Great Depression is also the most famous photograph in the collections of the Library of Congress.\n",
"\n",
"The Library holds the original source of the photo — a nitrate negative measuring 4 by 5 inches. Do you see a faint thumb in the bottom right? The photographer, Dorothea Lange, found the thumb distracting and after a few years had the negative altered to make the thumb almost invisible. Langes boss at the Farm Security Administration, Roy Stryker, criticized her action because altering a negative undermines the credibility of a documentary photo.\n",
"Shrimp Picker\n",
"\n",
"The photos and evocative captions of Lewis Hine served as source material for National Child Labor Committee reports and exhibits exposing abusive child labor practices in the United States in the first decades of the 20th century.\n",
"\n",
"LEWIS WICKES HINE. “MANUEL, THE YOUNG SHRIMP-PICKER, FIVE YEARS OLD, AND A MOUNTAIN OF CHILD-LABOR OYSTER SHELLS BEHIND HIM. HE WORKED LAST YEAR. UNDERSTANDS NOT A WORD OF ENGLISH. DUNBAR, LOPEZ, DUKATE COMPANY. LOCATION: BILOXI, MISSISSIPPI.” FEBRUARY 1911. NATIONAL CHILD LABOR COMMITTEE COLLECTION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
"\n",
"For 15 years, Hine\n",
"\n",
"crisscrossed the country, documenting the practices of the worst offenders. His effective use of photography made him one of the committee's greatest publicists in the campaign for legislation to ban child labor.\n",
"\n",
"Hine was a master at taking photos that catch attention and convey a message and, in this photo, he framed Manuel in a setting that drove home the boys small size and unsafe environment.\n",
"\n",
"Captions on photos of other shrimp pickers emphasized their long working hours as well as one hazard of the job: The acid from the shrimp made pickers hands sore and “eats the shoes off your feet.”\n",
"\n",
"Such images alerted viewers to all that workers, their families and the nation sacrificed when children were part of the labor force. The Library holds paper records of the National Child Labor Committee as well as over 5,000 photographs.\n",
"\n",
"—Barbara Natanson is head of the Reference Section in the Prints and Photographs Division.\n",
"\n",
"8\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"Intergenerational Portrait\n",
"\n",
"Raised on the Apsáalooke (Crow) reservation in Montana, photographer Wendy Red Star created her “Apsáalooke Feminist” self-portrait series with her daughter Beatrice. With a dash of wry humor, mother and daughter are their own first-person narrators.\n",
"\n",
"Red Star explains the significance of their appearance: “The dress has power: You feel strong and regal wearing it. In my art, the elk tooth dress specifically symbolizes Crow womanhood and the matrilineal line connecting me to my ancestors. As a mother, I spend hours searching for the perfect elk tooth dress materials to make a prized dress for my daughter.”\n",
"\n",
"In a world that struggles with cultural identities, this photograph shows us the power and beauty of blending traditional and contemporary styles.\n",
"American Gothic Product #216040262 Price: $24\n",
"\n",
"U.S. Capitol at Night Product #216040052 Price: $24\n",
"\n",
"Good Reading Ahead Product #21606142 Price: $24\n",
"\n",
"Gordon Parks created an iconic image with this 1942 photograph of cleaning woman Ella Watson.\n",
"\n",
"Snow blankets the U.S. Capitol in this classic image by Ernest L. Crandall.\n",
"\n",
"Start your new year out right with a poster promising good reading for months to come.\n",
"\n",
"▪ Order online: loc.gov/shop ▪ Order by phone: 888.682.3557\n",
"\n",
"26\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"LIBRARY OF CONGRESS MAGAZINE\n",
"\n",
"SUPPORT\n",
"\n",
"A PICTURE OF PHILANTHROPY Annenberg Foundation Gives $1 Million and a Photographic Collection to the Library.\n",
"\n",
"A major gift by Wallis Annenberg and the Annenberg Foundation in Los Angeles will support the effort to reimagine the visitor experience at the Library of Congress. The foundation also is donating 1,000 photographic prints from its Annenberg Space for Photography exhibitions to the Library.\n",
"\n",
"The Library is pursuing a multiyear plan to transform the experience of its nearly 2 million annual visitors, share more of its treasures with the public and show how Library collections connect with visitors own creativity and research. The project is part of a strategic plan established by Librarian of Congress Carla Hayden to make the Library more user-centered for Congress, creators and learners of all ages.\n",
"\n",
"A 2018 exhibition at the Annenberg Space for Photography in Los Angeles featured over 400 photographs from the Library. The Library is planning a future photography exhibition, based on the Annenberg-curated show, along with a documentary film on the Library and its history, produced by the Annenberg Space for Photography.\n",
"\n",
"“The nations library is honored to have the strong support of Wallis Annenberg and the Annenberg Foundation as we enhance the experience for our visitors,” Hayden said. “We know that visitors will find new connections to the Library through the incredible photography collections and countless other treasures held here to document our nations history and creativity.”\n",
"\n",
"To enhance the Librarys holdings, the foundation is giving the Library photographic prints for long-term preservation from 10 other exhibitions hosted at the Annenberg Space for Photography. The Library holds one of the worlds largest photography collections, with about 14 million photos and over 1 million images digitized and available online.\n",
"18 LIBRARY OF CONGRESS MAGAZINE\n"
]
}
],
"source": [
@@ -577,17 +461,10 @@
"name": "stdout",
"output_type": "stream",
"text": [
" The image is a black and white photograph by Dorothea Lange titled \"Destitute Pea Pickers in California. Mother of Seven Children. Age Thirty-Two. Nipomo, California.\" It was taken in March 1936 as part of the Farm Security Administration-Office of War Information Collection.\n",
"\n",
"The photograph features a woman with seven children, who appear to be in a state of poverty and hardship. The woman is seated, looking directly at the camera, while three of her children are standing behind her. They all seem to be dressed in ragged clothing, indicative of their impoverished condition.\n",
"\n",
"The historical context of this image is related to the Great Depression, which was a period of economic hardship in the United States that lasted from 1929 to 1939. During this time, many people struggled to make ends meet, and poverty was widespread. This photograph captures the plight of one such family during this difficult period.\n",
"\n",
"The symbolism of the image is multifaceted. The woman's direct gaze at the camera can be seen as a plea for help or an expression of desperation. The ragged clothing of the children serves as a stark reminder of the poverty and hardship experienced by many during this time.\n",
"\n",
"In terms of connections to the related text, it is mentioned that Florence Owens Thompson, the woman in the photograph, initially regretted having her picture taken. However, she later came to appreciate the importance of the image as a representation of the struggles faced by many during the Great Depression. The mention of Helena Zinkham suggests that she may have played a role in the creation or distribution of this photograph.\n",
"\n",
"Overall, this image is a powerful depiction of poverty and hardship during the Great Depression, capturing the resilience and struggles of one family amidst difficult times. \n"
" The image depicts a woman with several children. The woman appears to be of Cherokee heritage, as suggested by the text provided. The image is described as having been initially regretted by the subject, Florence Owens Thompson, due to her feeling that it did not accurately represent her leadership qualities.\n",
"The historical and cultural context of the image is tied to the Great Depression and the Dust Bowl, both of which affected the Cherokee people in Oklahoma. The photograph was taken during this period, and its subject, Florence Owens Thompson, was a leader within her community who worked tirelessly to help those affected by these crises.\n",
"The image's symbolism and meaning can be interpreted as a representation of resilience and strength in the face of adversity. The woman is depicted with multiple children, which could signify her role as a caregiver and protector during difficult times.\n",
"Connections between the image and the related text include Florence Owens Thompson's leadership qualities and her regretted feelings about the photograph. Additionally, the mention of Dorothea Lange, the photographer who took this photo, ties the image to its historical context and the broader narrative of the Great Depression and Dust Bowl in Oklahoma. \n"
]
}
],
@@ -614,17 +491,11 @@
"source": [
"! docker kill vdms_rag_nb"
]
},
{
"cell_type": "markdown",
"id": "fe4a98ee",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".test-venv",
"display_name": ".langchain-venv",
"language": "python",
"name": "python3"
},
@@ -638,7 +509,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -26,7 +26,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"76e78b89cee4d6d31154823f93592315df79c28410dfbfc87c9f70cbfdfa648b\n"
"2e44b44201c8778b462342ac97f5ccf05a4e02aa8a04505ecde97bf20dcc4cbb\n"
]
}
],
@@ -49,7 +49,7 @@
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet -U langchain-vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
"! pip install --quiet -U vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
]
},
{
@@ -63,16 +63,7 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/data1/cwlacewe/apps/cwlacewe_langchain/.langchain-venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"outputs": [],
"source": [
"import json\n",
"import os\n",
@@ -89,10 +80,10 @@
"from langchain_community.embeddings.sentence_transformer import (\n",
" SentenceTransformerEmbeddings,\n",
")\n",
"from langchain_community.vectorstores.vdms import VDMS, VDMS_Client\n",
"from langchain_core.callbacks.manager import CallbackManagerForLLMRun\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
"from langchain_vdms.vectorstores import VDMS, VDMS_Client\n",
"from transformers import (\n",
" AutoModelForCausalLM,\n",
" AutoTokenizer,\n",
@@ -372,7 +363,7 @@
"\t\tThere are 2 shoppers in this video. Shopper 1 is wearing a plaid shirt and a spectacle. Shopper 2 who is not completely captured in the frame seems to wear a black shirt and is moving away with his back turned towards the camera. There is a shelf towards the right of the camera frame. Shopper 2 is hanging an item back to a hanger and then quickly walks away in a similar fashion as shopper 2. Contents of the nearer side of the shelf with respect to camera seems to be camping lanterns and cleansing agents, arranged at the top. In the middle part of the shelf, various tools including grommets, a pocket saw, candles, and other helpful camping items can be observed. Midway through the shelf contains items which appear to be steel containers and items made up of plastic with red, green, orange, and yellow colors, while those at the bottom are packed in cardboard boxes. Contents at the farther part of the shelf are well stocked and organized but are not glaringly visible.\n",
"\n",
"\tMetadata:\n",
"\t\t{'fps': 24.0, 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
"\t\t{'fps': 24.0, 'id': 'c6e5f894-b905-46f5-ac9e-4487a9235561', 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
"Retrieved Top matching video!\n",
"\n",
"\n"
@@ -401,12 +392,18 @@
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading checkpoint shards: 100%|██████████| 2/2 [00:18<00:00, 9.01s/it]\n",
"WARNING:accelerate.big_modeling:Some parameters are on the meta device because they were offloaded to the cpu.\n"
]
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3edf8783e114487ca490d8dec5c46884",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
@@ -558,7 +555,7 @@
"\t\tA single shopper is seen in this video standing facing the shelf and in the bottom part of the frame. He's wearing a light-colored shirt and a spectacle. The shopper is carrying a red colored basket in his left hand. The entire basket is not clearly visible, but it does seem to contain something in a blue colored package which the shopper has just placed in the basket given his right hand was seen inside the basket. Then the shopper leans towards the shelf and checks out an item in orange package. He picks this single item with his right hand and proceeds to place the item in the basket. The entire shelf looks well stocked except for the top part of the shelf which is empty. The shopper has not picked any item from this part of the shelf. The rest of the shelf looks well stocked and does not need any restocking. The contents on the farther part of the shelf consists of items, majority of which are packed in black, yellow, and green packages. No other details are visible of these items.\n",
"\n",
"\tMetadata:\n",
"\t\t{'fps': 24.0, 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
"\t\t{'fps': 24.0, 'id': '37ddc212-994e-4db0-877f-5ed09965ab90', 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
"Retrieved Top matching video!\n",
"\n",
"\n"
@@ -588,7 +585,7 @@
"User : Find a man holding a red shopping basket\n",
"Assistant : Most relevant retrieved video is **clip9.mp4** \n",
"\n",
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the available information, I cannot confirm whether the basket is empty or contains items. However, the rest of the\n"
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the scene description, I can confirm that the person is indeed holding a red shopping basket.</s>\n"
]
}
],
@@ -658,7 +655,7 @@
],
"metadata": {
"kernelspec": {
"display_name": ".langchain-venv",
"display_name": ".venv",
"language": "python",
"name": "python3"
},
@@ -672,7 +669,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -528,12 +528,7 @@ def _get_package_version(package_dir: Path) -> str:
"Aborting the build."
)
exit(1)
try:
# uses uv
return pyproject["project"]["version"]
except KeyError:
# uses poetry
return pyproject["tool"]["poetry"]["version"]
return pyproject["tool"]["poetry"]["version"]
def _out_file_path(package_name: str) -> Path:

View File

@@ -1 +1 @@
eNrtVmlUFFcWJsGFmBk00XGJW9OikyDVVO8LommgwQ5ikxZUQAarq17TBV2LVdXQwDgKxhg1iZQyJkhGoyytiCjgoKgY0cRxQRj1iIe4xMkYiXNy1IgROaLOa5YRj/6cP5mxzuk6XfXuu/e7937v1pfvyQQcTzL0K5UkLQAOwwX4wK/P93BgiQvwwgflFBAcDFEaZ5kXX+LiyLYghyCwvCEkBGNJGcMCGiNlOEOFZMpDcAcmhMD/rBP0uCm1MUR2G5srpQDPY2mAlxqSc6U4AyPRgtQgjQdOp4QCEkySzmQAabCUY5wAvnfxgJMuTQmWUgwBnPBFGisgKgahSJqEVrzAAYySGuyYkwfBUgFQLEQuuDi4F5WhSz0OgBEwras+I0odDC+IVc9C3Y3hOIAeAY0zBEmnibvSckg2WEIAuxMTQAUESIOeQogVGQCwCOYkM0F57y5xD8ayThLHvOsh6TxDV/YlhAjZLHh+ucKbDQKzpwVxrwWCMJpD4rJhTWmJXKaRy+R73AgvYCTthEVCnBjEU872rB8cuMBieAZ0gvT1Syzv3Vw10IbhxbJYDLfMe8YlxuEOsQzjKI2qduB7zkULJAVET0Tc8+H6Fp+GU8rkCpmu+hnHfDaNi2U9bdj3zGYgcNkIzkAf4la0HGeYDBKIbXdTU3F7qo0Km2NCoy2kJWGJFTUlzVVl8Hi21pZqtfAul9nORlrM6a73c2h+NkcyiFyr1Gl1ehTVIXIZKoMpI2p9hs5BWGZHuMzuKDQyJtwSu0Rn5GJ182z0wki5PUuXoGc5U6SGRuPpeE1SGodRQlSmiiA0RIIuNsklk0U7+Sgnk8CkJ8oUiXGpcxRoVqgEonNlkkQYatQnLnFHxsforQ4NRrgzIq0uR1YCistiw91ah5GLizImpVnTFWzaAHgauRZB+xBqUJUO9V5V/dxwAjpNcIglcrliOwd4Fp4OsKIclkxw8fmlkIeg6YSn75hss8Q8pfDo0kjISbFhASCCJahaEgVsEgWqUMObQa0xqPSS6Nj4yoi+MPEvpGB1PIfRvB3S0NRPeQ/ucNEZgKiIeCHZG7xkh530woeHEgFuluEB0odKrFyIWHvnA2KOrO09WQjDpWE0mdMTVmzoYX1WjjuLwF0E4cjMolB9jkpJ2oALt+/t28JyjDcMBIRQvFiiU6ir+lb6eVcBc0UROYqg8gNuBJ5y4CQpEtaz5943pHixVA2Lvf95AwHOFZoXPaqebqCHB1pwgIKE9cZ+6kal1+sPvdio35USmui1+gPPWvFgIBq5guL3P2/Q52Ibyle6+60RkhDbAuFDqhpVaFDcrleplEoVhioBIVdDetlwvV0D1JimHs49EodevM1kGU5AeIDDiSxki23BFOb2zpgwpVyt1MBMQyUkjTtdBJjnskUy3hz4UAnLASeDEbtxO4JjuAMgvfwTPZGJc42x5oi6hchAIiEWtmeMix6a4WnSbi+fBzjYGLECdzIuAg5LDpRHRCFWY6K4V48Satyu0MltQKuzY3YkHI6hfm//oV2pd9J6MCfEnomLtQ5lmNQA85WGSigsTKeBber5ZuSVe3Ol07555dTktX4+PZcv/D158rG1mr6Ejrjyy+8WNM8PSDZOzX3Nujciz//mCMExLG+a5dzUUScL4v8sufPVmMJRMVHJX76+qvPWpO8OHrw4aLlIDF287QejML9M23LmWMGy+oZc5xpmX9aW7vPt3+/4adPu9WvzKNsq/cwv/ZiU2ytvVh59N8qylz3hG3WBEj8z1bfUcIGGKe9/U3f8w3unSieS72W13Qo6s0ZIbr6yKyBv88Rr0a/63DEcPuvZ+KDJv4C6WuDf0P7bmmP1fsv1JdKj+zuv+17Mo0Zbx06MW9f61b4QiTnc8caha/4rlb6/Kc3LuOabdfetW780PP4ov3PSVtPY/UPPr9oeZNa++1bS3biRQV30o0+OHeicEXWhwar8k+Hh/PLq5gmPmrb8vEnVVcedaDh7tmT48RoxbKrPrL913RsjFrnKa7cOu/GGa9Rl+vf6Oicw3UpTfH7kQn57x5yQC0Gr8zbc3dmlaDSt5W4u2tiYa7abAnc2LdvUVXy/sFjomHX39YBB3y6vqfGfuvr0kZiiY+7aJ0GhLW5V04wDqYF7hn0gu2W0nclVp7zZETJz8YILpeOF1rPC3L/u+rSmqePK4ccFtdcLu4d4G+br83hqVcci2L2XmuKlpnipKX4FmkKN/i9pCo32/1hTKJR2zEZo9Da72qbUqgGmVGJ2XKEiMB1QauzyX4WmACiw/zc1xfGnmuJja+On59ERDe3Th2wZX1hnJHONgjE8f+SE0atNYoZlfeKESzV/oT5LeDJRf1KzY3FZw4M7V5s6cpUdhT7oeufQOaoZH7VW3Du24/CspY+6Sx7Wtkx/FPbw/g/3p9zQah+u6j6/CYF64nKJX0sKs5LcBfXE8F49AaqvjiqmNlK529RvJjh3UrP5DXWl76SAnTOgnqgfd3B8xKthlxpbBvlc27GsxIL8/HVmAbJZHN3Qrq65UjZQTyDTvHqis5Upji4IDFD5/YFddbRoygSz78Uj6y6f7GQ9t+9NGnx7RvgK9vqkOWO2VQSm+JKOExGm7deLu7T+O5s7xiZkvffJg67vk4u+NfB3pixrnH7uevG5gM6o6HUzx57Ouf+FT/e/2s+nmOytRa0fKj7/bnvJNU5/opqcruRC1zcOqpr2x7Dme0m7Csfq3plVHDJykeptTzM57tAGwh6pON29u+gJObzefHG3uMUv4O9DCstcb5sXDd18asLx4qU7flL88yra8eOk2YvH+aVcXvH1mqz0/YE3Ji89Ulc5++KPlSX/+CIoefT0wsGzDp0eHNN8MtWnV0+8Jgua7NUT/wZqjsb/
eNrtVntUFNcZhxBTqqbBHGOCmrJdo4Iyy+x7FyTIYxGU5bE8BJXg7Mzd3ZGdmXVm9sGilGBMfCDHodFTtbGtwG6KgiAPH/isJdGqyenx5LGixJhGEa31UU0TPNK76xLx6J/9J61zzs6Ze7/v/r7X73771XgdgOVIhg7dRdI8YDGchwuuvsbLguV2wPHveCjAWxiiMTcnv6DBzpK+WRaet3HxcXGYjZQwNkBjpARnqDiHNA63YHwc/LZZQQCm0cgQFT53pZgCHIeZASeOFy2uFOMMNEXzcCEuAFariAIiTLSMKQfiWJGYZazAL7FzgBWvLIU7FEMAq3/LbOMRBYNQJE36NTmeBRgFBSbMygG4wQPKBkPg7awfAZWgK70WgBEwwP6QiEYLw/FC6+NO78ZwHEBUQOMMQdJmocXsJm2xIgKYrBgPmqGnNAikRGguB8CGYFbSATwPTwltmM1mJXHML49bxjH0rmBkCF9hA0+Km/0xITAPNC905kAnkjPjcitgdmmRVKLUSpRtLoTjMZK2wnQhVgz647EF5D2jBTYML4cgSLBygufh4dbROgwnNOkxPCf/MUiMxS1CE8ZSKkXH6H3WTvMkBQRvau6T5oLCR+bkEqlUom5/DJiroHGhKVCIvY8dBjxbgeAMxBD+iHpwhikngeC7XVaGm8qMVKIm362wVBQVuiVqLl3lLJlXnJeWZTKTejWPpiqcBTSjXJBv06F2vR6RquUqhVKJyrSIVIJKpBIpUpabW0igGUX2ihI3quTs2cYC3fzMZEVWXg6LqzPUWp2S0xcvo+zLFyhINDsr3VnAUvoinCjOIdm0PLTcapkvMeSlYOTCDJnDjmU7C3UyZ4IIemd3kERiSbFWlq4sn5e+HMtaaCgsTAc6uUuzSKZg7Sa1OWsBn6dWagupZFlxySj3UCWKoEEPVahCg/qf1hFuWAFt5i1Cg1Qm+5AFnA3eE7DKA1PG27maRshDcPqEN3hhduQseEThSY1pkJPCoQKLPVaEakXzMVokQ2VK+IqXq+Phzjx9wa7UoJmCp1KwvYDFaM4EaagbobwXt9jpckA0pz6V7If8ZIeV9LsP7yYCXDaGA0jQK2FXMWJ42CmQzLSOhzcLYVgzRpPugFnhUID1TrfLSeB2grA4nBSqdSvkpBHYcVNn8IiNZfxmoEMIxQkNSrm0NSgZ4V0zjBVFpDC10gMuBF5zYCUpEuYz8A62K05oVMJk73tSgYf9heYEryJQDfTwaA0WUJCwftuPYBRarfbg05VGoORQRavWHnhciwOjvZHKKG7fkwpBiB0ot8s1oo2QhOB7Ay7K5HIAUKmUwNUahRLTKgCOawmpwiRXy2SoSqnaD1sfiUMUfzFtDMsjHMBhb+YrBF8shbn8PSZRLlXKVTDSBBFJ41Y7AfLtxjTGHwOXILKxwMpgxO7UdCQVwy0AyQ/wT/CmlWQn6zNTu4uR0URCcmyBhi54aYajSZPJkw9YWBihGbcydgI2SxZ4IJYhuUTo1JhMarlWbsQx3KjACYCkwDY0gvYj7Rr9ndaLWaHvDlzosMgTxfEKhVycIKKwRI0Klinw7/G2xx8rbe4N7Y5aHx4SeMLgb3i41nCs7iw68eCV2b98Ux191RTTN27RvaMTfrHmuZ5od1dZ/c/qKF/dX/cMHpnm9c14RbT8Fnb5jOuyLyeyeun0bhHxXt697Ct7Z1RdWPHDzQVnL5Tezb5xZEXVpwm/3pnk/ofDuGmiY/gDYkXRofe7nVvFi7kdTTNr319y6sxnOwd/OFD8VW0a88rVN8pLT8/e9p1VU/bqtVlxqorv3Qbn5ulj2lcPjQ+5SM7Jz24Y8H6Z0u5Od48NXfxy352I6ptFM9OWhk8Vb40ukse0rCU+Gui5MWHi7DWvJ28cyHRXVodNmRvmmru7/+iqCpTJvBQRHl8T9kJbalbrOv046x++CXnxN0Vxm79wLXu3+k/NkZ3bb36j3dvdcscRNeNBrdqq4btmjv+8sfZXi2am3/tt6Iop38mXFEz6pK+/N/5cFFGPlWy//pf7s8bdNokbNnxovr/s3NWmxS3R4mttX+7eGJ1g6GCrxk+d2DdGQOKHIy8z/d5+67nh9t//POakztB1p7H4rUnbP57TlDS0u/1O3cdHxXPezVh5oY08mfCpN+rsvgPRwlbPrHCd43RVmL84YSHGQY04CX4/mySeTRLPJomf1CQhRf+XJgmZ7P94kjAaAQo0RpXRpFUbpRo4RCgJKQ7kOI5qVJhM9lOYJBSoxqg0/RcniT2PJolawym6D404eG1295zFq1viq0rXTdKN7Rxoj97oibCw06lU4fn9NcbnH3xXU4/HrAw5NIB2yLf6vs1/QZSxPiz8s4yiFvX3CaecfTnevvcGT112DLc7p1Sdr/r3/S5NvxaZlPl1XVLerY7BLrZFfeLv1zN2VtdL97d2M6pr27aB9qg1n5OKzKLKT76QMCcNb8Wutx8+f3nnBd0FjeG13tDD5pCQnOPqbzsnR/WGbl5vbux9DWy4ZHv9uYhjW94Jj5ym27y51yje1FHrWPOgRfv2jBfPi9KmhzVfdA+crOkUVUb+q6+ykvmqob40zRLhjjxm/12W0jf5RErqhFkpDWVnhl9uG9yRpafMp8ckleFTFg5drLv157Jb62J7PeOjGzpijMSV3qPb5dVRx90HXt2w+qXWu0v2VM7dNn7hzr9lZ83bIvSMO1nXtOXmrTlHejZNLqlf23F37PTCVW5D9t6NH8xQT9tTciXp+P0zldf13Q+ihtbmjk1skKycqx8EX5OxS917hif33HCFx16KkXUDXfdHF8M2vOS5DQqjS6+rhrom+rRDYx5OEf+cWpXyJpwi/gNh7aPV

View File

@@ -1 +1 @@
eNrtWE1v28gZ7qK3XHopemaJngqPREqkvgyhcPxRK15bie1d21kshNHwlTgWyWE4Q1ly6kPT3gsW/QPdOFZhuNldJGi3H+m5h/4B76G/ZV9SVGQjabfudaWDpJl55/143o9H4rPJECLJRfDBFQ8URJQpXMjk2SSCJzFI9esLH5QrnPOH7b3953HEr3/qKhXKRrFIQ14QIQSUF5jwi0OzyFyqivg99CBTc94Vzvj6F091H6SkfZB645OnOhNoKVB6Q3fB84S+pEfCA1zGEiL97NMl3RcOeLjRDxWxBPF5wFFKqgiorzdUFMNs1RFhZklvPNV5wLzYgU6cmpqKnZ1NXKAOhvibc1dIlby87fTnlDFAIxAw4fCgn/yxf8rDJc2BnkcVXKKrAWSQJJcDgJBQjw/hYnor+YKGoccZTc+Lx1IEV3loRI1DePf4Mg2QoHOBSl630YmVVvHhGNENNLNQMQvmFyMiFeWBh3ARj6I/F2F2/rebByFlA1RC8swlF9PLL2/KCJm82KasvXdLJY2Ym7ygkV+xXt3cj+JAcR+SyerDd83lh3Nz5YJZKtS+vKVYjgOWvOhRT8Kfb10GFY0JE6gj+b3xcoaPB0Ffuclzs2T9IQIZYgbhVxd4TcXy2TnmAv71z0leNJ+1t2ZJ/Pf3fnS+hnlJ3hyAs6QZtrYBXa1klGx8a9iVhmVrP9/ev1rNzeynabjWFIxUEYbpzrRqljWs1EiCasaqR2pf7kc0kD3MzfqsDibMjYMBOJer762AN2kFYHhpPFi8BEahkEByN5OrQ7I7bR/SWns1LTcioj4N+GlWDsmbrBROTkcnDosdxx2e+Eb91CrzLsSs9zq/EkYiNYMOEV8mz+1q+WV+MkvGJQZvENMghvnXEYkQG4/7HAHO3vMelsm5bRjGV+8KKDEA7PaJZWSvf9yUiMDHLKa252qser3+9/cLzVSVUaReu+0NphhuemOWfPnVuwK5is8MeTWaSRPuJNc/wUXHtAxq04ptOYzZdoXWzVIVKk433aOWWf0L5pYz1JImMxQRJhsYDiw1Tq6XfDpKG69ZNu1yBSNd1vJpsRd310Qag1zWwgg8QZ3PWY8wylwg04JMJmtHOyvbrdXLPXRyVYgBh99+/cH3Ox3W63T95tg7Nh/vr9aGh9tb1VYlsg7g8IBXH7daEW0/CTo9KQ6j+DAsWTViVsu1aq1uGDYxC0YB25asb3jllrUuN3ds2zg83tjqR+2W1SntPNo16pR93Pef+Gb7gdUblT92gw9XhOeuq634uBR2tz8c9Xfu70QPT7YPWuIgvL9a2ToqlQc7gxWMhiq3WVzWsDY54tvMW4Zgy5C0YcxGadYwy5qTYdAs3B6Py9omzvp24I2Xtb0UTMBP6sMeV9DcEQFc/w4xiIfcae625aZ5uq5Uf3DkrT8Odumj4/ajcIMWjh7cH4mT4cA+egAndSoe3QDBqJeIkeNQMaxaVoVz1/9Pr/50SG5OANKeckQyCYQMeK93sQcRNlByyTwROzjpI7hY3SC7K0fJ67rh2KxnMEZL3bJR6ZL77b0J9bCYhix55ZabesOyyvqy5tNmrYJ9k3HcLy/S4gv6X//ghw5VtKEhGzlIYCkhMqRDsjLqH8vtbfYRs4fjTfBjZ9R2ux/Fh+Ph4xi5TXSPccrkNwpzCi1kcwgFGM4tBajzLXjWe3mS4ECwiFElZi2lTAyUM+gojsza0JHWaOyp9GAsFfidHvoMUYiup7Z7YadaAqdKu7bFUpuuwMtT0uaBAyO9YSyhEk/RlG9z1qY4oLBRglTtnNpTVoceUjH6F8Sed7ake6KPA60rpxtLOhrn0u1gYMiNuRSSf07f2fLeve8OnHPsNrOfRQvE/nfEfrxA6w5oaZviZAHYXQBjNFgAdhfAWgu47gLXlEMXmN0Fs7GIF4DdBTAlHDpeQHYHyH62QOvb0Pp2gHSpRKh/RyCaR/lUR1D8UHWmTzX0Ri39ezRz9+2uiVgqoag330HBW1c7DijKvewZZ/Zcwnkri5dp7HAx3zh7j5WbCqZZwWj+iw7cyB5woqEwAoezWx4b6T+7NAn/4fjs7G1yP1lr76x/eu/eN5t/1lQ=
eNrtWE1vG8cZbtCbgV5z3ix6KjjkLrn8FIhCJu1KpiXKohKLMgxiODvLHWt3ZrszS5ESdKgToMdii/6BJLIYCIqTwEaSfrjnHvoHlEOv/Rt9d7mSKEhtgRwD6kBx3nk/n/dLo5ezMQ0lE/y9c8YVDTFRcJDxy1lIfxtRqT459alyhX2y1e3tfB6F7OJXrlKBbBQKOGB5EVCOWZ4IvzA2C8TFqgDfA4+mak6Gwp5e/P5I96mUeESl3tCeHelEgCmu4KC71POEntP0UHg0IUSShvrxc6D4wqZeQhoFClkC+YyzhFOqkGIfLlQY0avzQASpSaAf6YwTL7LpIEqMZpzHxzOXYhui/cOJK6SKX9/0/ytMCAVLlBNhMz6KvxwdsiCn2dTxsKJn4DSnKTrx2T6lAcIeG9PTuVT8NQ4CjxGc3BdeSMHPsyCRmgb09vVZEicC77iK33bBidX1wtYUgOaamS/X8+WvJ0gqzLgHyCEPgz+nQXr/18WLAJN9UIKyJManc+HXizxCxq82MOn2bqjEIXHjVzj0K9abRXoYccV8Gs9aW7fNZZfX5kp508xXv7mhWE45iV852JP0uxvCVIVTRAToiD81Xl/i41E+Um78uVkqfxFSGUAO6cenIKYi+fIEckH/+Y9ZVj+fdTuXSfzXz94/aUNe4nc7bpTTjLr2CHOtaBTL8NEoVRtGVfvNxs55KzOzk6ThQlN0ogp0nFDmdbOiQdGGkqpmpBxU+2YnxFw6kJsHl3UwI27E96l91rqzAt4lFQDhJfFAESM6CYSkKHMzPt9F2/NOQuvtN/NyQyIcYc4O03KI36WlcHA4ObBJZNvu+MA36odWiQ1pRJy3mUgQisQMOIR8CWiVrdfZzWUyziB4A5kGMsy/TFAI2HjMZwBw+pm1s4xPyoZhfH+bQYl9Co0/s4z05++LHCH1IYuJ7Ws1Vr1e/9vdTJeqSsBSr930BlJMF70xi778/jZDpuIzQ55PLrkRs+OLX8Jh4BSLtl21bFyt0KIJ+BeJ4xiOUylVLbNcH/4ZcssIaEmSGYgQkk0JzC41jS9yPp4kjdcsmeVSBSJd0bJx0YuGbZHEIFe0IKSewPZXrYeohYlLUS8tyHjW7m+ubqy3znrgZEuIfUb/+MN7Px8MiDMY+s1NeuhVzfKHT8f2w1310bTjrz1qq/JDN+wfblW6q/k8Czfue9teXiCzWqpY5bJRrCIzb+TNvIn6u9Ng2n8ixnUnKm+0ui2/WnRfPNmrjPoBvV+UIVvb9Iaj8VDtcY7tLn8kt54G651Do/9gyzI7D0YHFtmw9nqiUib8Sb3TGewOVyEarNxmYUWD2mSAbzNrGQQtg5KGMaFbsoZZ0ewUg2b+5nhc0dZg7He5N13RegmYFH5jn/aYos1NwenFnwCDaMzsJmnLzofYlx5pd1tBpz/5aPp4c69eHI/yT4u7lf3t/Q7bo4Pt8OnGAghGtYyMDIeKYdXSKrx2/Ud69e0uWpwAqDvfEvGMC8mZ45z2aAgNFJ8RT0Q2TPqQnkLOt1f78dua41RL9aJdw2a1bpQr6H63N8MeFNOYxG/cUlNvWFZJX9F83KxVoG/Sdfe706T4+OiHX/zbxgqn68jWG3qyGwlsRrTK1Z5Vn2yY/s5at7/bd7lv1LaCcfg4aD/Wc7oYvoApk0nkr7dpPp1DwEBgbikKOq/Aq+Qut+XiskQwECxkQHnVQEpOpaL+wAHXaBiAh4kJJ4BeInaxVqlbOFHtCkaSNf0sWaI2negNI6eDZoX1xlG2pHUMcwgGNGjIXe9yHQ4hdWDlghs88rzjnO6JEcytoZwTcjoYZ9IdgP+wAjOu5zk9W9Pp8d69nxxq1xCtpX/tLIG5BcwHS1Bug6KtiYMlLnfgQjBf4nIHLutLVO5AZb6tltDcAc1UREtc7sBFCRtPl8jcRubXS1AyUP4/DrpUItB/WkhcB3OkQ+x+oAbzl7reqCVvgUuvrqj1nK6Ewt4VwazmbkoObKow82RaaMlT277iBbhxZDNxTTi+w8iigjn2EMz/0AGE9H92YAhe+TYjNxw2kldMAvV/uT4+vkrhs3Z388Hze/f+A8TTXFg=

View File

@@ -1 +1 @@
eNrtWktz28Ydb5qbTz31jKDtpUNA4Puh4WQoyZYlWaJiypHdxMNZLhbESgAWxi74kEaHuv0C6PQLNFbEjkZxknGmjdO45x76BeRDP0v/C5AiFbmNkZmcAh8o7uL//O3/BXOfTgYk4JR571xQT5AAYQELHj2dBORJSLj445lLhM3M0912Z+9ZGNDL39pC+LyxtIR8qjOfeIjqmLlLg/wStpFYgu++Q2Ixpz1mjl///DfHqks4R33C1cZHxypmoMoTakPdI46juERBygE7JGpODZhDYD/kJFBPHudUl5nEgY2+L7QS01zqUUlFuA/iSddigYtA0LEqxr5kPODM63JsExcB3eIKaObfTMJxQH1pJDBtgm5FMEVIa6RqHXj9AHwLBJU2AysRoX+TM4YIvkpuIFFCf+6KoCL2pROz5mYWchFQr6+egIbQw7ZDPXJTLvL4kARSKrjKnAGYZ5PvCt694r8h/ERi9CSkATEB8an1ixofz8VsTqUmEljvgGABa2SaVFqDnN0FJCzkcALSPeQu8Eq1wNQQQUikblgT5Cbr2arLYudiNKmHndAk3VDGxIxtYhNkQjD+52e/OLUZF9Hz6wH2OcKYQBgQDzMTvIw+6x9RP6eYxHKQIOcQVR6Jwzc6PyTE15BDB+Qs4Yq+QL7vUIzk8yUZFxfTKNSk4zcfn8s40MA8T0QvW3zs4TZY0tpY2h1DOnhKXq/k9fwXI40LRD0HwltzEBh15sfP/7H4wEf4ECRp01SLzhLm54s0jEefbiPc7lwTiQJsR5+iwK2UXizuB6EnqEuiyeruTXXTh3N1RT1f0GtfXhMsPYo+i/804k/KXi4S2MSBQ9eS5I++7RGBdJne+kJ668nJ/v2aciKCsYYZ2BD9xXg+A9khXl/Y0bNyqf7XWfb+4QzYRMifnsKBkn//azItEp+0t+ax8MvTNTjc6NU+MXOKUVbukJ5SMApl+GiUK41SVVnf3rtYnarZk2d5CYk8EktkIHcSE5cVsD2ANGiGwtJqX+4FkGEW+Hd7FkwTbIfeITHPV98YRq9kGIF70h+oURoZ+YwTbWpmdPFQu5/US21j7UUSsxoL+sijR3FMRa/ieBoejYYmDk3THgxdo35UKtIeCbH11ZQFio5UAwZpLo+eVY368+mT2WGeg/OGljc0I//NSAsAG4e6FACOP6dFm0enZcMwvr5JICBhobxPSkb875+LFAEUR6ivoHsuplSv1799M9FMVBFI6tX6N9epAOsFMfmCy7++STAV8YnBL0Yzao2a0eWvYdEtVyrVWr1XqALG1ULP6lWtnkVwr0CKFaNoVV8mZUcT8jB9FsBhEwwdSoyjy5yLRjJ7m8V8GagNY1mZFp1O2Ftj0ge+rPgBcRgyP8eWhhE0By0JyGiy9mintb2xeg61W1tl7JCSP71+591uF1vdntu07naQvrJl7m1VyuPdD+/dGRyMxmzYfRTuj93tQs0/qFr7dw9b1Y0PtHy1WAMvDKOq5XVDh7TXcP1JpT00vNtVZ9UYhit0xNuP+vbDjYebv/PWibU58jbcJw/WwnIhWHf0tRX04LBTDYatUT3o3tt3xoPtVn1lrby9Pqp96G95R8MPSm4LvEHCbi4tKxCbUPh5c5oyGqSMJhMm3yjMEmZZMWMMmvr1Grus3IXm3vac8bLSkWAS+AulvkMFae4wj1z+GTAIB9Rsruq2l39QWa1zr1cbuX5xZ2d/H9+l44PyPUP3Udja2lm5XdDXj7YXQMgXy5oxxaFilGpxFM5N/4FW/e2htlgBtHbSaqKJx7hHLeusQwJIoOgcOyw0oV0E5Gz1jna/9Sj6qm6YZWzl62WzYJXMPNZW2p0JciCYBjh6YRebaqNUKqrLiouatQrkTTzU/P4sabWvf9U1kUANBZoatFpVlkgMBVJrjfoH4cpoY8Me992Ng53d+9YQ+/jI3XyACtAyp3024Vgoqnpch4AAQ90Ssn1fgVd54zikQUEoaTK8arITg6MUky506wDooDei0JHtnI+5IG7XAptJ4IPpUrfld6sFYlZRr1zCUqfNgDkZ0qhnkpHaMHIgxBHx1DQdzhAUKEgUT4qdj3LxWGZBRwf7vNBxYAxwWB8KWo8nGzkVlFNud8ExLqecmAoGkekUEC9v3frpwDnH7vhjVc3wenu8knk2Q+ztEftYbWQxlgqxfXuc4ZUCL8UEbzPAUgAGr/QZYGkA4xgGtwyyFJDhgA0zwNLE2JB6GWBpAEMZXunwGqIga5RpIHs/QyvVpJ/LJv1UiGVvkmnQkj8hZYClACz+vS0DLPu/ih8PsRWCUcizKEs1iGVv3ynfjBDPAEsDGAuF/JnEnF73yIB7W+CyV/CUlYxmmZkKMIsSJ3sHTwPZe9lElgqvkwyt70Pr+wFSuWC++hOBaO7lsbx76vqim1yPUhu1mrxoMbP3artQzamCCeRc7eTz5dx15q5JBKJOfOsyvuJkXhHDUaDQpGy+cfIGNYsCknMBf/6PDNiIL1yCIj8gJsXXTDbkJRF5DP/j8cnJ1fF+tNbeuf341q3/ArgMR1M=
eNrtWk1z28YZbtqbTz31jGJ66hAUQIIUSQ2nQ1ORbDkSJVGJJTsezmqxENYEsDB2wQ9pdKjbU2/o9A80VsSORnGScaaN07jnHvoH7EN/S94FQYks0TaTYwY6kNzdd9+PZ9+vFfB8MiAhp8x/75r6goQICxjw+PkkJM8iwsXvLz0iHGZd7Ha6By+ikL79tSNEwBsrKyigRRYQH9EiZt7KwFjBDhIr8DtwScLm4phZ43c/7Z6pHuEcnRCuNpTHZypmIMsXMFAPiOsqHlGQ8pT1iVpQ1JC5RK5EnITq+ROY8ZhFXDl1EgjNZJpHfZpQEh6AFNKzWeghye5MFeMg2f2UM7/HsUM8JEnnh5Js7qdFOA5pIBWWG7dADUUwRUjFpA5FuT8IwdJQ0MQC2E5EFGTtTjCD35IDEClRMGeZoGJqWjfZLmdSbbkIqX+inktJkY8dl/okiz3y+ZCEkjnYztwBaOqQZf67NzwyZJwnyD2LaEgseRypMQuin8xz25qxTxmx46cECzmDLItK1ZC7O4+PjVxOpBgfeQscpApYnpMII5IoAjMEeenMzbjHEounWFMfu5FFepF0oJu9E4cgC1z33z/5+YXDuIhfLrrj5whjAu5CfMwssDv+7OSUBgXFIraLBLkCF/RJ4uzxVZ+QQEMuHZDL6a74CxQELsVIrq9I37lOXVaTICwvX0lH0UA/X8SvW3zs4w5o0rq/sjuG4PEVo1ipFytfjDQuEPVdCAbNRaDUZZCs/31+IUC4D5y0NDDjy+nml/M0jMefbiPc6S6wRCF24k9R6FXNV/PzYeQL6pF40t5dFpcu3oorFw2juPrlAmNpUfxZ8tVIPil7PU/gEBeOX5umivjbYyJQUSaD4lwyKE7P9m8LwokIxxpmoEP8Z/3lDGSX+CfCiV9U6pW/zIL8d5ewTUT8+QUcKPnXPydpSvmk8+DWF35xsQ6HG785cKKCoteVLeQrJb1UgY9GebWh15TN7YPrdirmQJ7lW4j0kVghAzkzVXFNAd1DCItmJGyt9uVBCHFng33vz5xpgp3I7xPrqp3pRm+kG4F50h5IZxoZBYwTLVUzvj7U9qfZVbu//mrqsxoLT5BPTxOfit8k/jQ8HQ0tHFmWMxh6ev3ULNNjEmH7q3QLJCUpBhTSPB6/KJWNl+nK7DCvwHhdM3RNN74ZaSFg41KPAsDJZ5rieXxR0XX962UCAXELxWBi6snfP+YpQsifkIdB9i0bs16vf5tNNGNVBpL6av2bRSrAeo6NUfL418sEKYtPdH49mlFr1Irf/goGvZJhmTrGJWwghEplU1/Vy6vExAgZq2ULV19Pk48m5GEGLITDJhjqmRjHbwseGsnobZaNSrkKlq4padbpRsfrTNrA15QgJC5D1uftDa2NoH5o3cQh48n60U5r+377CtK61masT8kf3733s14P271jr/mMbT3ceWDX9PYWOr1LVksbe6xu7o3Mjeqwfuh27f2SMToqD1vhngaqVs1KRS/VNKOoF42ioT2q7fHRPUT65PTho3VkfETK9vr+Q4vaQ7HR2beKg5aoeofHoh+iUr10tHnYLYUP9gy7dHRsDLro3iNjR3/aPt3uf3BYRJsla5d99GwI1iDhNFfWFPBNqAS8mYaMBiGjyYAxGvosYNYUK8GgWVzMsWvKPWgFOr47XlO6EkwC35Dyu1SQ5g7zyds/AQbRgFpNapFKtCFabm209YG56zJ7v91iRx92quG2LsJwf8fZbFlbm50DNgeCUa1reopDVTdriRfeqv4DtfrroTafAbTOtNjEE59xn9r2ZZeEEEDxFXZZZEG5CMklnPl+6yj+qmbbq+V6uWzbVrmKcEW72+lOkAvONMDxK6fcVBumWVbXFA81a1WIm6QF+u3ltPi+U/5gIYGSqga1V5UpEkOC1Fq+eFQ97Rs1kwUty6ivf2iQ+xVW75+Ot3fVwqzkTnfMJdVikoeAAEPeErKe34JXmPVN822TBgnB1PRVzajBLj7mgng9G1QjYQAaShF20LNL2CrVqnUTSdYOo1jW9ceyFltkpDb0AjQmroD+6Sxt11QEeQgSNHAo3LZ3KgxCYkPlBjX8yHXPC6rLTiBvHfPpREEF4ZQ7PdCfyx4noXpSUNNqnwzv3PnRoXYL0dnHqprDsgTLtCnNgVkC5mO1kXtMFjAPnXEOyzIsigVG5bgs4wI35xyXDFw4hoYnR2YZGRyyYY5LhscMqZ/jkoELymHJhGWIwrwkZSDzmxyUrH63kPe7WcDkt6MMUOQTjByXZVySpzo5Lvlt+vsCc5dgFPHcZ7IamPzimH0NQDzHJQMXFgn5n3Fr+oQ/x+c/8clvj9lZhubhlIWLTYmbXx8zkPll3slkwXKeg5KC8v9xULlggfrjQuLWmDP5Gp8XiN70TRK1UavJh9UztW6mS9WCKphA7s2MYZiFxc09iwhEXZ74mnwbxLohBsRRZFF2O3GeIWaewRR+sOd/8ICJ5N00EBSExKJ4QWVdPmiXaP+X5fPzm1N8vN7Zef/JnTvfAT6lHnY=

View File

@@ -1 +1 @@
eNrtVU9v3EQUV4/c+AiutxKXzNpjr+3dlRBKWrUpTUkKgfCnaPU887Lrrj1jZsZpNiEHAhJctx+hiRIUVdALR245cOALhE/DzGY3CALiwKUSPdjWvHnz5r3fe7+fD093UOlCihsvCmFQATN2oZ8dnir8okFtvjmp0IwkP95Y/2DzqFHFxcbImFr3gyBHriQbE9UIU1TYbjRB0IbQNlSwJwU81W0mq6CSHMsAhBkpWReszUpoOJKdKCjEjhzjcS755OLLff/KZTBPyu97/uKWKIxiEiYkpv6S51eoNQxRW4/P9n0lS3S+jUbldpm0tQjjTJtYll6FHnhP7FX+wefuMOwOjF0Jd5yGUefgdITA7Z3fniwzhrWZnr8JdV0WDBwcwRMtxYvbl0HJ5qTGv9k/+9BeTpaH1mV6/mxFGhkHtB2nbRp7FQ+cgUmFrYWtgSBqh57UQQVM6lYUt1O7tq6g2KgFqko7XgliGNQT2wDRits0anedQz0pqrps3d6YbXhsexgoNGpCHNKtEofAJt7iwkUSZx+T5WqP3AHjsrdoJmEUJpv2SZPepz+B3dN8TFxLLqsiBZ+e30qjvMtitk26OaWkk3YY6fXyjAANgQIkEKfbPy4Oz2dmev4GGINVbd6mPyxgW0MxNKPpEY063yvUtZ0y/PpEGzCNPjxmNvNffzmdt/X5+oNFR767uDlLXJCV+SDc/yPDNVuMYJPpUS+lx7PKft5CvuSFiXcXc88VaV/9JOuHoXfv4ea1WOuNqRvbUjcM5La0gzx9HmXXco7D9MzaBM7YMT0bI9YEymIHL7xr2V0LSOOXuwSc0/uX+Nzn04tbYZpF0LVIctpNSCfKYtIDYATCBLpJTHudlP955l7+deRmxPnKYqgKMfztRrTvF9zv+5UeDnKuxoOQpqvvPVp9KuTK+JO1ZDt/1L3X7O1aAvnGBnSul3hbwyWFfNC6sD2x3FnyZ7y1tjlf7bRa4xW1LO3mQQzuOvfZp++vosK3tOWbLspyMmNd33ssHoutERiPS28iG4+BZSXY1dCrYFiwAsQ73rId99wqEHD34VLddHT1tZH1QFllcXrgo+AD0yjhzze0g1Qwm4doynLJSoCrp2+hcI24ojmNl3w5a/aVKcoODl7L3P9H5rIw/GeZyyFCyhIgeZZHpJOnnEDUoyRmSZhsdzLOu/RVkLn4X2SOvmoyB0jRYhESlqH9f8S8Q/JeRkkCFDEOwxCz6D/L3GoPa3V3vDfZqfDBR+8+3E3k1p3ktcwtZO535liL9g==
eNrtVMtuHEUUVZbs+IRKTyQ2U9PV7+mRUOQYCCEOdmBQIhM0qqm+/ch0V7W7qm13zCwwSLCdfEJs2ciKIBuW7LxgwQ+Yr6F6PGOEJkEIKdmETbfq3ltVt8655xye7kIlM8GvPc+4gooypRfy6eFpBTs1SPXdSQEqFdHx1ubnw6O6yi62UqVKOTDNMUSVYBNc1VxlBfRqiYFKha0eLegTweme7DFRmIWIIDcpV2klyoz1WE7rCPCubWZ8V0zgeCyi5uLrA+OqZLRoyhggY3mLTWwHEw87ltFFRgFS0gSkrvjywKhEDm1tLaFqs0zot3DVhoaQ56gARNFjfZUx/ardTPdHSq94u90itjs9TYFG+s7vT9YYg1LNzt+lZZlnjLZwmI+l4M/XLw/Fw6aEl+TPvtCX47VEl8zOn94SSjim1XO8nmujIjLbABMVdJaxmpp2jyAhzYIyITu20/P1WpfSiqUdWhW+i3LKE7NsNAG84/Qsqxe0BWWTFWXeWd+aJxCLE7MCVTW4RbqTQ0JZg5YXLps4e4jXiif4A6ra7jWaHrFIOLSJE1j97V+ozslogltKLl+Fs2h2fsMH4lq0H2M7cmLsuhHBNLYiHDDL9hjzfeZYPy83L2Zmdv4OVQqKUr1v/bSEbQN4otLZkWW7P1YgSz1l8O2JVFTV8vCY6c5//+10QeuzzbtLRn5YOcAh/sX1+WM4vrUYjs1albWmpiUVrws9kLNndvB3yl6sMKbTHOYDPzubAJSY5tkurBx+5y9INjR6nDWzo75NLtBK3UoPlvNiH9O26LNLaO5Es4sbtuv6fgw+jkPX05jaFIc+AzwmfY9SxwVmu8dzon4dpnUXkRB9QjlqOdOfgRMMrBDdvjecC+cbjWGV8eSPa/aBkUXGwChkMhpH1WRELNfasR5s3+/TDz9q1lL+6c7kfrpdGl1DaUTa0ku8deBSQgaVMtOcaO10jbludWyhVz2tOnglLS27xSEK9tvy+W9gfAwVvCe13mSW581cdQP0iD/iD1KqUCRQI2rEqFYl1asEFTTJWEb5TbSmx32sHYhG7S8S1fVWroZUohxV2llaPzCARyNVV9xYJGSLK2e6D17neVdbQPuegYaiZeNK5pbTNcR8SK5CdjCd/m9zb5PNha+2OS+I7D71CWZ9om1uTD08ZiTAzBuHACFxA4jftM05/87mvNdpcyT87zbngQ9uTFwMgcM0pi7DWtweDpyQeTEJ+v3Y+Webs8lLbM5ctTnbHW49bBI74+HYKne3NyaJ21dv3OZe4XJM7KG9TKWIC6SnVt5EtyuNW4TGAPFr9jhvOv0TTIuLpA==

View File

@@ -1 +1 @@
eNrtVs1u20YQbq9GD730rhI9FVqJlKhfwyhs2a4Vx5b/EP8UgbBaDkVaJJfmLmXJhg9N+wJ8hCaOFBiukyBBm/6k5x76Au6hD9En6FCSYRk24geodCDE3dmZb775ZodP+m0IhM29j89tT0JAmcQXET3pB3AQgpDf91yQFjdO12qbW8/CwL780pLSF+V0mvp2ivvgUTvFuJtua2lmUZnG/74DAzenDW50L7eOFReEoE0QSvmbY4VxjORJpaxY4DhcSSoBdwBfQwGBcvI4qbjcAAcXmr4kOieu7dloJWQA1FXKMgjhpG8BNRD6Px99empxIaOLm3BeUsYAj4PHuGF7zejH5pHtJxMGmA6VcIYgPBgkG521AHxCHbsNveGp6BX1fcdmNN5P7wvunY9AE9n14fb2WQydYIaejN7WEMRsNb3WRd68hJbKayntVYcISW3PQSKIQxFPzx/s/za+4VPWQidkVJOoNzx8MW7DRfR8hbLa5g2XNGBW9JwGbl5/M74ehJ60XYj6lbXb4Uab1+GyKS2TKr6+4Vh0PRY9N6kj4Ocbh0EGXcI4+oh+UHuM85YN0eW/9Toz6w13puvsa3tblWJ7Z2W5UM0H+jbsbNuFvWo1oLUDr24KvhOEO35GLxKtkC0WiiVVzREtpaYwZbKw6GSr+oJYWs3l1J39xeVmUKvq9czq+oZaouxR0z1wtdoD3exkH1new1nuWAtyOdzP+I2Vh53m6txqsHa4sl3l2/5cJb+8m8m2Vluz0wlEF7ZtY2ajJpa0owUpm61dZ2HP26Dr+7V1f5Gmdh/Mdfhhu5XbfQCHJcrXx+CppQxRRwjzql5U49/FlTYc8JrSip4W9RcBCB8bAL7rIWMyFE9OUYbw15/9USc8rS1fK/iz03mUZPR+G4xkQs0lFqGRyKiZHD7KuXxZzyW+Xtk6r4yibMUKvExI6Mg0tOOVYWNMJ7D9AgFyJpQmKb7eCqgnTJTlwlUL9JkVei0wzip3iv99LH6sbJwOdiSBjs8FkBHM6HyHbAzvBFKdfzPsNMKDJvXso0EnRO8HXXB41Dk0WGgYVvvQVUtHetZuQMjMt6MjfsDjMAiIuCJ6lteyF6OdKx2eYfIq0VSiar92SIDcOLZrI7+D5+hiEtFpDsl/d9tA8hbgFdbXB9VR/xi3CMBFAcexr93opVLp97uNrlxl0aRUvIkGSwzjaLSMK97dNhi5eKqK886VNbGN6PILfKmbmp4paEUwMoWCqheYWco3IKfpJWpmsmYRfsHa2gy9xMX0eYDFBoa3sOxGl0mXduI7Zyar5bJ5zHQ6YXvMCQ3YDBvzPM5BTCf8ABxOjZfMJIwyC8hQkFF/fnd1dqVa+WmHjCuL1PzhBOh7XHi2afY2IcDCRGfM4aGBl2cAvcoi2Zjdjd6WVCPHTC2DCtGzar5B5mqbfeogyDaL3ljZGaWs61llOuHSmWIe6zEYCN/24qS85t+fvDCopOXEsWIbeNvH04Ph7CCznea+PJBNL6ev+0eudrTr8xKbLxZae9VNHAS8sY/qHZ1IXc+b1EDfaMCwHySgz+vOvXOoEBSaTtQC0YrxfMFEbQZ1aeMYKis4KWjoyHijKyS4dRMxQ+Aj9Di26dcLGTAKtJHTWRzT4nh4OOFsz4COUlaT6MSRVCkfX404isLHAnix2+s5GI9AMENBEZ8XOs5JUnF4ExulIYYLSQWD28KqY2I4bkZWj0+mpv4/DF7TtTT4bJiQ9EGSPp8Q9GGCEkv8cMLRPRwx6k04uoej6oShexgaTr0JTffQ1OXhhKN7OJLcoN0JSx9m6asJQXcQdD8nipDcV8ZY+Wa+trrweGrqP/aerWg=
eNrtVs1u20YQbq/upZfeWaKnQiuTEvVDGUZhS05tq7Ic24ktp4GwWi5F2uQuy13KkgwfmvYFeOgDNHGkwnCdBAna9Cc999AXcA99iD5Bh5IMy3CA3lvpIGh3Z2a/+eabHT0admgoXM7ePXeZpCEmEhYifjQM6RcRFfLrgU+lw63Tzfr2zpModC8/dqQMRGl+HgdumgeUYTdNuD/f0eeJg+U8/A48Ogpz2uJW7/LzY9WnQuA2FWpJeXCsEg5XMQkL1aGex9WUoobco8lGJGionjyEHZ9b1Eu22oFEBke+y9zEUsiQYh8OZBjRk6FDsQUp/PXO+6cOFzK+uAnrGSaEQgDKCLdc1o6/b/fdIKVY1PawpGeAhdFR0vHZIaUBwp7boYOxV/wcB4HnEpyczx8Izs4n2JHsBfT28VkCH0GmTMav6gBiaW1+swf8MUVP58x07nkXCYld5gEhyMOAZxCMzn+ZPggwOYQgaFKbeDB2vpi24SJ+WsOkvn0jJA6JEz/FoZ83Xk7vhxGTrk/jYXnz9nWTw+vrsmldTxde3AgseozET23sCfrjDWcqwx4iHGLE32oDwvmhS+PLv5tNYjdb/uIG7XsFPXdvt2Pd2ZP3e1V/db0ic3ecsNHfzNeX0mk3rC17W16aI72QzRu5nJYpID2tpfW0jhp7vaDXuMs7ph3lauV62S9knIO7+/l2I6DLGRG6qxteq91pyX3GsFVn62JzN1ir9rXGyqahV1faRwapGfvbPJ8j7K5ZrTb3WksLCqCLOq61SCqieg/7wiOVejmoNrr3e59t7JuZTju9m9nLH24dVt192twKd2tT8LRCDmkThHnNKGrJ5+JKGx5lbenEj83MdyEVATQC/WoAjMlIPDoFGdI/fh9OOuJxvXqt4A9OKyDJ+M2OE6UUzVTWMVMyWiYHX6VsoaQVlE9rO+flyS07iQIvFUm7cp52kp1xZywo0IahoHIxkjYqvtgJMRM2yHLlqgWGxInYIbXOym8V/5tE/FDZJB1oS0S7ARcUTWDG53toa/w2oLXKy3GnIR62MXP7o06I34y64KjfPbJIZFlO58jXzL6RdVs0IvariUsQ8uQaAIR8ET/RC4WLycmVDs8geQ3pGtL0n7soBG4813eB39H35IES8WkOyH9920DyQwpP2dAYVUf7bdoipD4IOLn7Ooxhmuavbze6CpUFE7N4Ew2UmE6j0TO+eH3bYBLisSbOu1fWyLXiy49g0TSLhZZhmPmMlSsYtJhtFfMYG5m83crrOingn6C2LoEoSTEDHkKxKYHXWPbiy5SPu8mbs5jVc9k8ZLqguIx4kUW3o1aFJzmIBSUIqcex9ax8B5UxcSjaHgkyHlYaG0u1tfIPe2haWagejCfBkHHBXNsebNMQChOfEY9HFjyeIR1ArK2lRvyqaNuFrJnVzKJlmlouj5br20PsAcgOiV862UW1ZBhZdUHx8WIxD/UYDYYvB0lSrP3ne99YWOKScqy6llpSkylCYIagJSb3c5ly8YDZtGHUBPP31o+427eMGl5WUypvHYB6Jx7p67mTHukbDAj0g6QQ87pzU1dzZXqsIBCagTR4dYrgJXpCUr9pAzQaBoAwucIOmnaGWJli3jRwEtrhLkkGGswzl1m0q5a0lAqRJVZLx5NxpmLQNzQ+REhdTz0VFiG1I4EBBos87ySlerwN/dAS442UCpe7wmkCfpgqE6uHJ3Nz/zmirllZHf0VmHGROH4442HkqKzyoxkVYyoIZjMqxlSszYgYEzGeLzM2xmz0eDSjYkyF5BbuzcgYOX7yf+bh31NXheSBOpX8g0p9Y+Xh3Nw/AhlHvQ==

View File

@@ -1 +1 @@
eNptU39oG1Ucz5g/NqeuTFFEZPGcyrQvubRJf4QJdklrZ9cfayNbJ7O8vHvJ3XJ573r3LjbtZm2nICvIHgiDwQbaNKlZ3VLdrNP4g3VCtWX/+IuhiOCcSnX+IaIrjvqaJrWlO7jj3ff35/v5vMFMApuWRsmaMY0wbELExI/FBzMm7raxxV5KxzFTqZJqa+0IDdumdulhlTHD8rvd0NBckDDVpIaGXIjG3QmPO44tC0axlQpTJXlJ6ZPisKeL0RgmluT3yBXecqkUIvmf7ZNMqmPJL9kWNqVyCVExBGHCoGJdp9LBfSKcKlgXFqRDW8GgEqhQi9mgQtSSK+Vq6WBGxVARKL53lKVUajE+vmqy0xAhbDCACaKKRqL8rWivZpQ7FRzRIcNZ0ZfgAnSejWFsAKhrCZxezOI5aBi6huCC373fomSsOCdgSQOvdmcX0AABkTA+UVeaw92WFIskTtnl9bkqcj3AYlAjulgG0KEYKW0U/B8sdxgQxUQdUCSJpxeTTy2PoRYfaYaotWNFSWgilY9AM17lfWe53bQJ0+KYZwJtq9sVnf+3q3R5Klw14ysKW0mC+EgE6hYeX1ryUkpW8FIJ5CogeyZWlMbMTAJERQf+unyqtEAdkyhT+bBHlkdNbBlCe/hQWqQx2xpMCbLwzFSmKJg3WptKVA+lgoI2/uFurJQ7ZZ+zAYedorFPfPy+Kr/X63yqOTQWKDYJ3ZCl8ZAJiRURTNWXVJFBqk1iWMkGbqiHbPFOAE3heXHukj3V1buNnb5wc4tqqI17O3e172nE6vPDCQ3yrMflcUYpjer4NIoABJGKwSIyngl2ttQ17wiM7QHtNEyZBUIwylOEEpzuwKZYJs8indqKkKeJ04EG0F7Xyc/UyooPRWQIw0ptTQTVgu2C9RLKJRSpBW0X7t+A2KQpTBf+2Ty0zlF41op3fl55ta5p8smyl+c/9/98R+rNL9++l549MfIox989cOzI7zuPHa9vmuo/GtpwOHPrH30H8uvfX3dny7VfZr+abri29erc3+9u/HbyyoFXPMGbN/Tep3buutizJSc/vfe2mXPTh/N6y6atA4eO5ILZr58Z2teVTZOrs/Z1xz2DuU2Pv/fNr5HQXH7uqJHLvHb54m8/Td6k/Kl/dP2K9OloML/t/L+RB0/e/sKWmfM/vFjTCx6a3DjFXBcGPune8dn2c88l7mLb7v7rsSe6b5k4WyafuTzZOHo8Nz89e//m9T/2P1LfX30ycuLjAry1ji/M0P6mNQ7Hf3JxBh0=
eNptU39oG1UczxyDFRHmHE7UaYjzdy+5a9okjbNY06lb1zVNg7jKOl7v3uXOXN47770rzdoKdp3+Edj6/hjFMQRtenEh6xYrVNjmP60gstI5pG4yREE6EHQIQ9bhiC9ZUlu6++O4+37e98fn8/m+kVw/tIiO0YaCjii0gEz5D2EjOQu+b0NCR50UpBpWstHO7viEbenXntUoNUnY5wOm7gWIahY2ddkr45SvX/KlICEgAUm2Dyvpa8agJwUGDlGchIh4wm5JbGisd3tqh3jk3UGPhQ3Ivzw2gZaHozLmkyBaDmnQMLBn+GA5ByvQKMdkA9gKFPyCBvSkLTTwkqJfDHqGcxoECmfzi2tLVsOEsuK6Cc8CWYYmFSCSsaKjBDuTOKyb9W4FqgagMM9bI1iRgOWTEJoCMPR+6NzLYueAaRq6DMq47z2CUaE6qkDTJlwP58uMBE4UUTbTWpvDF01zQZFb9DaKXvHcgEAo0JHBJREMwEdyzAp+fjVgAjnJ6whVs5hzL3lq9RlM2GQHkDu715QElqyxSWClAo3Tq+OWjaiegiwXia5vVwX/b+f3SpI3WFxTmKSRzCZVYBBYXBF5JSXPffELYkAQpZk1pSG10oKMeQf2mThVE9CAKEE1NiGJoS8sSEy+g/CIw9OoTUay3Cx46btcdW0+72yvWZ3JtnHb2MW4Zte7xWb3XoDcvHETf4X9wbAYcL/ZES9Eqk3i93WpGLcAIip3andtK3KyZqMkVPKR++5Dvno3BF1hF/j3IVHq6oklgiFlX0iPEtK+FxC1SwWxiX4dsLzkldwJjBMGPBt5Q4gAWYNCd4UZy7Ud2N/asSdSeEeI4T5MiRAHCZZFGEGnG1pcTJaXDWwrfD0t6PD0WOsB9lVIVYP+5gbQBGCgUVZDwuvc9RrLFRbZ8m5X7uGHXEmLh+ZuP53Z7Ko8G5VjP7TPio/NlU4MLLxIz4jzGd/L+zb93bWlTrq7eELd89MQWLxSOhje8ULLjus3//q6LvXQ0YhBv/mZnv/j1qeL87PO0J2hQu+xhfnUprqnBnti2yb0zVsjZgb0Gc88sTAWGj355LaC/7RTuPSP82fs7d+/tXuXkm9d/fWTXZGL+8d3O8cnBx89KjRvn5oLnBpt6r2euTksfbQz9KN6Yfbf5x5uvnXY/ciRjx9Y7iGP7/rgtazswXXfP39j55XlL09evtNSXLrMjkeDWxevvqq/MvZbYODu+I3tLWOnS9Njt2emX1paftDlKpU2ukjb0nj7BpfrP/yBBQM=

View File

@@ -1 +1 @@
eNqdVXtsU9cZT5qtDRVqR1WVtgxxZ1HRh8/1vX5fZ2ZKYhKiYJzaDiRBNDq+99i+8X3lPhI7lD3CJDatr1sQLYVCWzt2m6RAQqCUNqjvBoa6jU1rXa2ok0bY1oKGEF27bmHHjjMSwV+7f9zX+c73/b7v9/2+M1joQ6rGy1L1KC/pSIWsjj80c7Cgol4DafrP8yLSkzKXawtFollD5YsPJnVd0Xw2G1R4UlaQBHmSlUVbH21jk1C34XdFQGU3uZjMZYrKFouINA0mkGbxbdpiYWUcSdItPksUCQIhIgISPXIKWawWVRYQ/m9oSLVs3Wy1iDKHBPwjoejAKQORl3hspekqgqLFF4eChqwWHYkKRq4bKt5LkdTWQhJBDqf1ZC4pa7p5YCHQg5BlEfaHJFbmeClhvpoY4BUrwaG4AHU0jOFJqFwGcziFkAKgwPeh/Owu8xBUFIFnYWnd1qPJ0mglHaBnFHT98nApF4Bzl3RzIoRB1LfY2jK4ohJBk26apA+lgaZDXhJwiYAAMZ68Ul5/Y/6CAtkUdgIqbJn52c0H5tvImjkUhGwossAlVNmkOQRV0e08PP+/akg6LyKz0Nh2fbjK4rVwDpK2k96xBY61jMSaQ2USXluwGelqBrAy9mG+SB2Yq4+ApISeNLM0bX9ZRZqC+wNty+NtuqEN5jAX6PRUodIoL4Va50g8W7U0F8C8mJMbEWclKBfRhGKEnbK78M3ncvucXqI5GB1trISJ3pCGsagKJS2OqVgzR3uBTRpSCnHDjTckfLJEOM6mBB+3JUBpRdYQqKAyRztAeFYhoCVweLa7gKwmoMQPlMOak2Xm+wfS/RxrcFyyr1+kmAGng48hg41PVLYoqlwKgwEBUTOzDOM9UFmZq/0wzpUCNAUo+nga4D5HAi/yuJ7le0WmmplzURR17HoDHSsLC7rgpMrXifkWKhIxaaXY19w4GYZ588ZGc64c2ITxMMcXWmloPhraLmrHrjeouHiJ0kbTc9aA58ziSvzRDTnG4XAih9PjgN64K+amXSwd57ysnXNDxsm+jpXPs9hLiUxFVnWgIRbPJD1jFq0iTJd05nfQLocbZ1pH8BIrGByKGLGAXMpBqyMUFQky5A6yccBCNonAbP+ZhUDn+vpgS+NwBINslOUUj57+tLqmu5uNd8dE/7o1VHOID7X3hqk1XeudKY3NeGLd4ZBmGC1xJRBq6TEeHpC0tSovA9rj8Hq8DEV5AU1SJFYpcDEpb5ILrW00WtJNVKC1IRTs9darQW8kJnUE6Hi/t51R1DUBt0RFpai7K6FCUW/qc3Kcm2v3BrsMkmwWtCZBbpd7Okl7Z1v3OjvVj7OBetJvqyNwb/K4vv6KQgBWCCjpg/bZ5/RRR3DlGvjJhdOwjliLx3lIEjJ1RKRUTISfUEQRXkf+9bKEijtxDYw+nvNT9UxnbzoQbWXCSTfk0qlA2Ej2t1MsGWxIe5L1altTfVci3GNXEvOK4KY9gKrUwU05veUuvAb9/0R1tAPMFzwIKbPnVkGSNYmPx/MRpGIBmcOsIBscHuwqyjc2gXB9pznBUJyLjdspDrkYbxzGQQMemXPe/jcecqVToQAF3GN9rHk46fBbfE6nw1JHiNDvdWM5lU+3n+VLPSkl3q9+Z8WvaqvKV81j4bef+D31vcnzD928f9nOXeTfvhr8fPA7Ny0ia8dGpo6sOml9Qizu0DeOzNSpZ8TxmHns63+cPX15i+Pys9W1Z2K3Nxx5uv18cGbmxOvLVs8Iz01v+f7Z20Z/8aM9D927evmJrd88uOGVd5dfbLsU+Th1zic/dbL4yw3V97Hhzc/IfecuHr//lPnXvU07Pr33N9/88dzyzlOe9+N7lqITZ59/Y1PzrdlP3j24uOrz3kd3hEYuPfLlix3+Hyz/4P5ld37buuSntR+tDEzd/cD4hHWD45W9aCJ7ZcWFmuSZt0BD1P7CrRdrm8cJMJVd/K/PHp8cW9F2crVlorb5nrev7A24ijdPNbQu6WnIdoOfLOr458P53FHP9GP7yaOPpx5Vtqenbengrtim7+78XZGjxy/HuNA9b13w7pvpjP152xc/3Pjlj7PBwS+urFw1PWSd+mw39+GZ019PD1wZ7Boy79t97O6DbeEjL5//KLN0/OO/3BU4OvXv13Y/M1H4E7fnqrl/0dBvHX8/dcsfcvtu2ffrm/I7/rOxiD7IwiX04tyh2DtPffXC2K7J3be1vLd96pN2jHLb7c7NkQsj6rbjO7ePvHpH8YFva6qqrl6tqbq0btXWTfj9v/DeoiM=
eNqdVX1sG+UZTxaJFnWoSFSDsqLezCRGydl39p3PjmVYcJI2TRwnsfM1VqLX7722r7mv3EccG0JZAG2ihepKNVGto6xxbMjSpPmAprRdB6JSK5Ao6YcwaKu0TlNBKfso65BAdO85zpqo/Wsn+c73Ps/7fPx+z++94cIA0nRBkSvHBdlAGoAGftGt4YKG+k2kG8/nJWSkFD7XGonGRkxNKG5KGYaq17hcQBWciopkIDihIrkGaBdMAcOF/6siKoXJxRU+U8w+5ZCQroMk0h01xBNPOaCCU8kGfnHEkCgSEiIAsV3pQ45qwqEpIrItpo40x9A2vCIpPBLtpaRqkIxCSoIs2J66oSEgYUMCiDrCCwaSVNyCYWp2BMpJDRVSCPC4wd25lKIb1sTKkicBhAjHRDJUeEFOWoeSWUGtJniUEIGBxnCdMioBYo31IaSSQBQGUH5xl3UYqKooQGDbXdt1RR4v90UaGRXdah6zOyIxCrJhzUZwEbWNrtYMxlYmaCfrd7KHB0ndAIIsYrBIEeB68mrJfmy5QQWwDwchy7xZ+cXNE8t9FN0aDQMYia4ICTSYskaBJnmZmeXrmikbgoSsQqj11nRl4810HidNO7mpFYH1jAyt0RINR1ZsRoaWIaGCY1i/oyaW8BGRnDRS1gjtdr+hIV3Fk4Key+NthqkP5zAX6MPThfLIHIw0LZH454p7c3WYF+tELGVWE5Sf2Apkwk25WXyr8XA1eGVzODYeKqeJ3ZaGqZgGZD2Bqahfor0AU6bch/ix0G0JP2ETjruxy8fTSaJBVdERWa7KGu8m2xe1QjbWzSxOF6loSSAL2VJa60SJ+XR2MM1Dk+dTA2mJ8mcZjxBHJkzMlreommKnwQWRkm6NeFhmomxZwn4M90qRNEVS9DuDJB50JAqSgPEs3cuC1a0cS1HU3K0OBlYYlnaBoUrXH5Z7aEjCpNm5b4Zh/H7/8ds7LYXyYBc/539npZeOlldDuyV97laHcoiDlD4+uORNCrxV/DF+6U1wHOulaR5RPOemkZv1+aCbA3EK8hSKe6mjWPwCxFFsMlVFM0gdQXw6GRmrWC2BQVtnQQ/Nery40wAhyFA0eRQ143WK3YMeIFQNiQrgJ0MNZAjAFCKjpfmzCnU9LbXhxtBYFBcZUpQ+Ae35tLKqtxcmeuNS0BfNMqlMZ0fWyekN3nTP5u62uuZEUghzBhVi0jFZYZuiaj1lhsMkzXm8DMtSbj9JOykn7aTJ3tbWDp7a0mlmerIUq5st8Vj91sZaprktokFuC+evZ/Vw93bJ7G9iBKqluSEd06RwJ+S7I4JW10b1iamtzva2x4HQtcU9YIKWdEe9O427AUYq6AoQeDYFjG+wrBASK4S09UHXUEv6CBB8CYOgc+VpGCC24IM9IouZABG1wUT4CSQUFQwUbFFkVNyLMTAHBD7Y0+13N7B9mxv6QXNXe0dHA6r3DPp+5mY0M8Elm5uMNo71d0i17u6eZSBQLJ7cMg5eivGVpvBm6f9nVW93k8sFT0bUxS9YQVZ0WUgk8lGkYQFZY1BUTB4f7BrKY87ba3usWV8iwXn8Hp8X0hwDeUQ+jo/MpWj/Ox5y9lehAEQ8YwPQmkl5go4ahvE4AoQEgj4vllPpO/eLvD2TcvJU5bGNO1dXlK4q/LtxY1f7uy9+Rq07/s0jT5ovN/0lPF38+dY1ZLWYfXh29k/xdZ8XnzlUfefn+xam/3pp5wZl4axzof6X+7iRfQ8FUcXw7CfDrS/xF7KvnDzyLRzCXT129cu/ScfWXDrpPRD6Z/9bn+3I3D2TU7+59MbXPf/uPHrxh7x2ve73z+6hjzonJi9+cGH7k2L2oHl/eM+F166NfvDE9N57r8X3fTR57VSilXt5XcPUCwfWV/wxuiO/v/Pyc5+89/T1XbP3jYy3iR+FKhy+V+7+Ecydnp9+9aWc9uuPr398kt39emMVt7rtzLOb5qo2nB6eJda6r6RV5e9XV8Wmd66+673aBvWBh7rCb98xfbb1+RfPXuHO9X2vc9veN8eu7lr/j8v+I/1vrZU3rvpuVxf/sBf9dP1vw+sfDLiy11+t/PaL/5zbFvvBo3MX9TNfrv2Un+vev/D+15vu+VeCKE4xDz7DLnw1f+j86T3N+xe6fvLm/edHtKe/XxS0exy/Mb7jPrxxPHLizMXJqY13jp71fDG/6nzOuWY3rDx3YEhYOH750cO/2m1NkY9Ms3dsvPIV3NTb+cL8qcTQzF5HILGj0maoqmJ+/L4Nj2G6/gt1fZuE

View File

@@ -1 +1 @@
eNqdVWtsHNUVdhpoU2FSUihUahGrVUod8F3P7Mw+zbZarxO/Ym/s3djYKKzuztzZGe/M3Mk89uGIhrokkZIINFFTIqgMdTa7rWOchAQCAUe8qhoRMGobVSZpaEgLgiY84qCUVm16d71ubCW/OtI+Zu6553zn+853Z7iUQbohYXXJuKSaSIecSW4Me7iko40WMsxHigoyRcwX1kVj8b2WLs3cI5qmZgQbGqAmubCGVCi5OKw0ZOgGToRmA/mvyaiSppDEfH5m/SanggwDppDhDD6wyclhUkk1nUGniGQZO+udOpYRubUMpDsf2lDvVDCPZPIgpZmAxUCRVIlEGaaOoOIMClA20EMlEUGeYH+sIGLDtCcWozkAOQ6R3UjlMC+pKfuZ1JCk1Tt4JMjQRGMEg4oqvdpjaYQ0AGUpg4pzu+yDUNNkiYPl9YZBA6vjVczAzGvo2uWxMnJAGlRN+0iUgAi3NazLE9pUB+3y0i76YA4YJpRUmfAAZEjwFLXK+ksLFzTIpUkSUJXELs5tnlgYgw17XyfkorFFKaHOifY+qCte9vDC57qlmpKC7FJk3bXlqotXyzEu2u3yH1qU2MirnL2vQvnRRZuRqecBh0kO+1fUxDw/MlJTpmiP+j2/1pGhkRlAPyuSXaZlDBeIFOjEVKk6DKPRjnkNz9TcUWgmstiTfYivd1AexxqUdLgpt4d8BT3eIMs4Wjrj45Fqlfh1VTgU16FqCESJ1fOqlzjRUtOIH4tcV+/Jst6kmTJ6MoMA5TRsIFBFZY/fD3rmXADamg/PDRfAegqq0lClrD1ZET47lMvynMXzYiarUIEhlpGSyOKEI9Utmo7LZQggoBj2Xh8bmKiuzFM/RnqlAE0Bij6WAzqhQpYUidBZ+a5a0bALHoqiXrg2wMRpRExbYqnKdXxhhI4Uolm59tU0bCAQePn6QfOpGBIS8C9GQxRFC9HQbsV44dqAaopRyhjPzUcDibdnVpKbBAVplnUzEAr+pJvxeb1ulmME5Pb7hCTjY+gXic0ljmQpi6lh3QQG4si5Y+btmXoF5so2CzG0h/GSThsdksrJFo9iVrIZl3swGh2ajmQM+QOcADjIiQjMzZ9dau7vCne2RcZiBGQE47SEdr23ZGkiwQmJpBIa6G9xZ1NCJBHvGWznk7pgxo127FtvxTw8k1VFRWDD3uxQphUTpXyM3+cPUBQDaBflIiYFjNjd0pfLr3Fb/lhfot9Mu30GN9gd7fatH8hBSxc3BuQ1HUJ3humQI76Bge6wIeDuDrNTNtlmvre/i17XHkvyeSiv1RK9am6wI632ZEk30BRDDY0OMpsS4TdUdQggDgFlf9BB97w/Gh18hYOQa/Fh2OhoJUd2VJXzjY5YmUxEfqGCYpKJQl1YRTM/JxxYGYkPyYkmd75zYC3l8WCTNSjezHSqOEp0s1oja1t9vWxTqqd9MN5ihheQ4KM9gKry4KVYf2UKr0L/P1E9fz9YaHgQ1ebeTSUVG6okCMUY0omB7DFOxhZPznUdFSNrQE+43z4SoHgPJ1B0QAhAvxCgQBM5Meez/e94KJRfCiUokxnLcPZhkQk5gyzLOBsdCgz5vcROlTfYT4vlmVRTv11SvGvHsprKtZR8rlzZ2fPqo3+gbpn86N6tAV/dzRu+PRRetvyt3d9rqtMvtH2y4XecnDqKTm5u6Xrv7u/seOMH2y5/OPmyb+Tx2prnXgNPn95Rtyl1Mbrt07N94EenLieWv38cD2aPbgo+8dHFoycfu3Ni13D2WyvPrf6yV/+sdvXbmdF9P1yx6sWJ/Vlr/ea67frKoV5+17hBv6+dSe+ffbbOl+/+29//OX7m8C9u0276sbvm4ce/eFIfWP2N002HjjlCWxzB1y5Yy2pCTz7y9LLwtjr5jZNr25+3z3/33yM7z/q06WnHli0HqG/+ZWppc+8H/9i46tIfl4cLn2eoD3c+NdFWm31n1vXLr+49M7j/9eNfrPzaqUt/umXm7NSI++GnuHNnizcEpyd3dP615dk3D46c1h6cPfHM9FuvTHXvufEnK/68x7N99N2762/f2jMV+k1/APfVts8OT92++8ry2Scuxx849enm86mmdt2On7tvFcA3TXMjv1/xn/T5Yx/Q1NcvRgd6bvV8dal2+wC952OW+n6kcFx67sJU44HSv8QNsd2Few69dKr1RNfMXRUxltZ8tnXjXkCU+S+tood0
eNqdVX1sE+cZTxapoKJJ1YrUKuqG65VqWvLad77z2RfXa12bAPlyiPPFgGWv7177jtzde7kPx06F2rLuowFKj34ghJoKEmzkZdBA2PjeAKWb0KZprbY2dGVbUbV+bIWKbG23MPbacUYi+Gv3x9n3Ps/7PL/n93ue991ayCDDlLFWPS5rFjKgYJEP09laMNCAjUzrmbyKLAmLY+3xROeobcjT35QsSzcbvF6oyx6sIw3KHgGr3gztFSRoecl/XUHlMGNJLOamNz3hVpFpwjQy3Q2uDU+4BUxSaRb5cEtIUbC73uU2sIJKC7aJDPeWTWRFxSJSSktp3QIsBqqsySVP0zIQVIkhBRUTbSlICIqkhp1jEjYt59BiVIehICCyH2kCFmUt7fwkPSTr9S4RpRRooSKBoqFyzU6xHyEdQEXOoPzcLuc1qOuKLMCS3bvZxNp4BTqwcjq63VwsoQekUM1yJuMERGSttz1H6NNctMfPe/yvZYFpQVlTCB9AgQRPXi/bTy006FDoJ0FARRonP7f50EIfbDoHWqEQTywKCQ1Bcg5AQ+XYowvXDVuzZBU5hWj77ekqxlvpGA9NewITiwKbOU1wDpQp/9mizcgyckDAJIazjzo0z4+CtLQlOft55qCBTJ30AvpenuyybHPrGJEC/fpXhUpT7I83z2t4ueq+sRiRxTnTKdn1Lop3NUHN5aN8fvJqYAINFOda3do5Hq1k6byjChOdBtTMFFFi1bzqBUGytX4kFqN31PtMSW9STAk9aUSAsjo2EaigcsZ7QcfcNIC1saNzzQWwkYaaPFRO65wpCz84lB0UBVsUpcygSvFDLCMnkS2kJitbdAOX0hBAQDWdUcYXPFSxzFNfJLVSgKYARZ/MAoNQociqTOgsvysjaTpjfoqijt/uYOF+RIa3wFLl5+xCDwOpRLNS7lthWJ7nT9/ZaT4UQ1z44GI0RFG0EA3tU83jtztUQuynzPHsvDeQRWf6IfLRB5mACAXex/j4QBAmRZ+PRwzHpAIslxJTgnCCzLkskCglMXVsWMBEAjl/rJwzXa/CbGnMwgztZzhSacgla4JiiyhhJ2O4VIMZcukGUjAUD0cbQRQKEgKJcv85hdj6tkjr2mgxQUBGMe6X0a5L1TV9fUKqL6mGWbuno7utqzmX7KBWb8br+mJJKt1p9+iJYAS2mP4Bri2JIuyaoJEGdIDhWL+f8nGA9lAe2kODQKRLTvfEsusYoynSRfvWs2vszdkhke7tZJt7u+wB2GrHcfeQKlJDEh5oirc1qauDba1NXXp0TbSbi6uretqTvDAY6Mlls6KtsVJvLkKqgZYU9oZcpDdlwm+4MiGATAgozQfdQM3PR8glljkIexYfhiHXGnJ0xzUlF3IlSmQi8gtVlJAtFG7DGpp+kXBgZ2Qx7FezJh9L+KW1nuaBboM2jP5MB90bibCbGwPxjl4qJa0aWN3S1DowuIAE2scDqsIDR7HBchfegv5/ovppL1g48CCuz91RBQ2bmpxK5RPIIAPkFAUF2yI51w2UJ5p3RNY7k8FUKsDwPo5LUSxPUX7wODkx56P973gYK10KBaiQHssIzlGJCbsbWJZxh1wqDAc5Mk7lm+zpfKkntfRU9Ysrti2tKj812zvODb9DLT/977rv2M81v9fKyZ6VPwQbXh65e9PbiB6e+dtB5x/PzLTs9Xzx2arMV0LKsjOfU9dTjzAf+GvuadzmX3rshfFafH3HlcLeq7Pvwzdnrz159sSWv6z4bOrdd41TW6jkruWTN54d/m1x53Atdr58YqS7eqVgvAKw9tdtU5O9Vixaq+76/ch1/v0dAw9781OPvOq5Pv3R2GVn3f1TtSNM1VNvfbLXaNjx86na/AvMG9/dfqRx4uwD1T96jHvw8dcld/Mvk77nhx8Y/Xj/n0aPzVR/8uF93/jwz3UzXwq2L2v59te+tfP71T/mLi6/fOwPI9eurHz2wKUll16/98lzdVda/vhSNXpo939q95z+4G3hrmtv+LXDTUtXHPx0o+/vv1t5oevqwz/Ys0TL1Eapicmvz9af9NX5j7Dcc3fd21T86kcRfrxugyrFxNGLVy/M/ubUYXXjjUf/WbNv+VDjpn89dengx+cvrP/FzNKbdmbP8WX17z3o4xDauOPckjcfffri7q591sTJG+xudyiFCf03b9ZUnb8xu/2emqqq/wK0XX0A

View File

@@ -1 +1 @@
eNrtWctu20YUbbdZdVOgS5boqtDIpEQ9DaOwLTsxEkeOH0icthBGM0NxbJJDzwwtyYEXTfsDXHXd1JEKw01bJOg7XXfRH3AX/Yh+QS8lObKR9KF1qYUgzty5j3MfhyIfDg+ZVFyEr5/xUDOJiYYLlTwcSnYQM6U/GQRMe4KebDS3tj+PJT9/19M6UvW5ORzxvIhYiHmeiGDu0J4jHtZz8Dvy2UjNSVvQ/vmnD8yAKYU7TJn19x+YRIClUJt1c5v5vhEwAxt7Yp+ZOVMKn8F6rJg0jz/MmYGgzIeFTqSRI1DAQw5SSkuGA7OuZcwurloiGpk06w9MHhI/pqwVpzbHYsc5U7MgggB1LGHNylvHQ49hCtH/8dobJ55QOnlyNaKvMCEMDLOQCMrDTvJl54hHOYMy18eanUIcIRvhlZzuMxYh7PNDNhifSr7GUeRzgtP9uT0lwrNJ3Ej3I/by9mkaNAKHQ508a4ITi2tzG32APjTsfNnO21/3kNKYhz5giXwM/gyi0f5PlzciTPZBCZqkNRmMDz+5LCNU8ngdk+bWFZVYEi95jGVQdp5eXpdxqHnAkuHyxsvmJptTc8W8XchXv7miWPVDkjx2sa/Yd1cOMy37iAjQkXxmDYgQ+5wl53+2WsRttYOFWyvW9SZv7hxsWiv3bzv7ivQr7dZmU8Xxmhs1mmt78Z2jUN2QXCC7UqxWqjXLqiI7b+UhZFSq7Vc92ryxHK/1Vq3GzaXm+kF1Ua5Xt9rhvYbtdqs7tUiuNMqhtR1ul+93JA706qFDaZnuVNfvx/n8dV+t+mJH7O3mC7sbrVsFqztvgHfxIacL1mJt96DX2L5Z2/TKmPb2G5ux192xSH59qVfxFuXG6uL9zuZeIepccq9sV5A18bBsOVUr/Ty5qA2fhR3tJZ/bJfsLyVQEFc0+HgBkOlYPT6AO2W+/Difd9Kh5c1rCb540oCaT53cZzRlWyVhlbaNgFUrwVS+V6yXbuL6+fbY8MbOdluC5oVlPz7HDdGXcRfMGtLBUTC/E2kXVb7YlDpULdbly0QND4sXhPqOny6+s/udp9UNq03igmRHrRUIxNHEzObuHNsdzBa01no5bDQnZwSE/GrVC8nzUBt2jXpeSmFLvsBtYtSOnyNssJu6zyZFIitQMOIQClZzYVs1+Mtm6qMRTiN5CtoUs+8cegr5nPg84IDz6nkw3OFsC+L9/WUDDQII5OHRG+bF+uSwhWQAlnBqfqnFqtdrPrxa6UFUEkVql9uNVKQD7khq7EKjvXxaYqHhkqbPehTTiNDl/By5aNsYVWnZsWrHLAAUp1+y2XXAYcZyS7VScHyC5nICWNJuRkJBtRmCU635yngtwL506C0W7VCxDpPPGZHxuxe2GSGNQ80YkmS8w/Yq4iGDiMTSuyGTY2L29uL62/O09dLm0UHM8jJNhKFTIXXewxSQkJjklvogpjE/JBsuraHNxN3lWs2iJuEWnVGtXqy520VJza4h9cPKQJE+94oJZd5yiOW8EeKFahnyMWOWjQRpU2Pn9rVOKNa4bMPYpMEVKQQQICC32Onv9u/3Npe7OjTtyxbWPogOvqA5uNSv9AEhEtPegfCcn8lPSyo8KHAQINIRmoPOid23rlYSEoNAcZFWQXU25CQLlhLU0Bwqrm8AVOPZ1utFXwEAtF3xmMgLXU9tu1KoUGK3gdskhqU1PwOExTfKQsh4wVQ6U+BqnxDahRwyVDwkIU7VTMk3pk7nAeeBfGPs+UJ4vOtApbTVeyJlgnCuvBYEB4UykgGUnPDm6vHbt/wPnFLu7Xt/M8PrveBkUos0AmwEw7bEMsFkAUwRIIoNsBsiIFN0MsFlqrMvDDLBZAMMZXrPh1cUyI8pZIHvvg/CDrMhmQWyJEQx/mjPMZmnM7G5sRqbEKgNsFsBErNO/6Okzswy4WYDLbslmnGQ868yZAHM587N7slkgeztD69/Q+neATKVFZP5PIJpG+cAEUIJIt8avMMAfO31ofeHvdLmaM7XQ2H+xUqjlrp5tUaYx90eveEdvIegLWYgNx5SL6cLxK6xcVjBOC4TzDzpgYfQuFwxFklFOrnhspc/b0yz8zfbx8Yvsvt9o3l758Nq1vwCNNtHn
eNrtWVtv28gV7r7mqS+LvrJEnwpRJiVSEm0YheNLLr7IFzmxkw2E0XAoTkxymJmhLjb80LR/gD+hG0daGN7sLhK0223T5wLtH3Af+iP6C3oo0ZEMc9v3Bf0geM6cOZdvvnMORb0e9wgXlIWfXdFQEo6whIVIXo85eRUTIX8/Coj0mHOx2zxovYk5vf61J2UkFhcWUETLLCIhomXMgoWesYA9JBfg/8gnEzMXHeYMry/O1IAIgbpEqIvK8zMVM3AVSlioLeL7SkAUpLxkJ0QtKSpnPkl3YkG4ev4CJAFziJ+KupHUTKYFNKSpppCcoAA2JI/Jp3WbRRPfID9TaYj92CHtOPWeaZ6DqiRBBMnKmKdSvayfjz2CHIDi3z/7+YXHhEze3U7vG4QxAf8kxMyhYTf5untKo5LiENdHklxCTiGZgJdcnhASacinPTKankq+RVHkU4zS/YWXgoVXGQaaHEbk7vZlmr0GMYcy+dCEIFYeLewO4R5CxShbdtn6dqAJiWjoA7CajyCeUTTZ/8v8RoTwCRjRsjtORtPD7+Z1mEjebiPcPLhlEnHsJW8RD2rm+3k5j0NJA5KMV3fvuss2Z+6qZcMo17+7ZVgMQ5y8dZEvyJ9uHSaSDzXMwEbyB32EGTuhJLn+T7uN3XYnWG4cnJre8MnhabkuNmr94wdHe2tbbpdu16W+avZbIbM2D6J1Pd7e1ox6tWZall6xNaOsl42yobV3dw8d/eGTeHh8qlsi3um01h8/WjG39poc1x/W7XVLbB+9DOJXmybVd7Y2+i0ebD/BzlGT8rU9/cT3Hpf39+4j+vRhpRejnf7heqW/pEB0cY86y8dHdmXDOnmw8QptPd0/PNwg69VB41nF5LFb725tyr26ZR8GK5Wj47nwdEvX9CzCmm429PTv3Q03fBJ2pZe8MWrmV5yICFhNfjcCyGQsXl8AD8k//z7OSuvL5uaMwp9frAEnk48tLy4puq08RqFS0SsWfCxW64uGrjzYbl2tZm5aKQWvFUkGcoH0Usm0kpYUqGcuiFyOpas1vmtxFAoXeLl+UwNj7MXhCXEuV3PZ/zFlP1xtmg+UtUYGERNEy8JMro60/WmT0R6tvZ+WmsZ4F4X0dFIKycdJGfRPB30Hx47j9fqBbp+aVdohMXY/ZEcizlI3EJAWiORNpdJ4l+3cEPESktc1A7A2fhhoUPfEpwEFgCefWacTyYUF6H9/V0FCa4KeODYn16P/bV6DkwAYnPqemTFt2/5rvtKNqSqo2HX7h9tagPWcGaMSiO/vKmQmvtTF1eBGW6NOcv0rWLSrSLfqtY7V6diogg3TMWqGU23oVaNh6VbD/jPcLcVgJb3MiHG4bIKhrcthcl0K0CBtOstVw6rWINMlJWugB3FnjaU5iCUl4sRnyPlmdUNbRdgj2sGEkMl47XhnZfvR6h+PtHlmac1pP07GIRMhdd3RAeFwMckl9lnsQPfkZAS29leOkw8N161XbdPsdKodEztEu988GCMfguzh5L1XXVYXTbOqLikBWm7U4D4mE+a3ozSpsPuvX/zDQRJNGr+jLqrpOMIwjLSVUD5r7HNhDPq7veiZd/+YbQah6a1EtLaullTWeQnszU6UZwOsPOE3KGCoB0nA5k3pVvXSzVyaH0saEM3U9LpmNOCUGAoYNG0XQiM8gghTF27UdivYqTRqtolS0x6jOJ2Mz9Nx5ZCBugi2wbJE6uJZNg5VBPyGwgcLpdn4VGHBiQvDDcIIY98/L6k+60I9dMRUUFLBORVeG+KHsZJpvSip2UCcLO/d+8mhNoPoqTdUC1juwKI4kFSBy11cpEcKXHJwERj6dIHMXWQwZ/0ClxzG9GlY4JKDCypgyYWlj3gxknKQ+U0BSg5dvgi/KOooB5j7BCP41lxAk8OZ4tEuf1AjUeCSgwuLZfqVO33TVeCTg0/xfJffZWhRTnm4uJT4xQNeDjK/LEDJQPn/OKhCskj9aSExS+ZMhdyDSLan7/jBrZG+7r0JayZulFTJJPI/SSp26fbZtkMkor6YUC19Te980oUUUOxQNhOc53iZNzBFH9L5HzZAMPmtExxFnDgU34pYT99Up2D/yPb5+adLfL7W3Fl/ce/efwHj3HJ7

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNp9Vg1sE9cdh9CIbZoKdB2FrixXtxtblbPPn7GdpltiJ8FhTpw4IQkpzZ7vnn0X31fu3cV2sqwt0HXqWNtjVTe129pBsKsQAgg6KEmAjFQqtBtrx5CCtApNaM1EVxWKVlE02LuzDc4S7WSf7t3/6/f/vq25AaggThKXjnGiChVAq/iA9K05BfZrEKnbswJUWYkZibRE23drCjf7CKuqMvLbbEDmrJIMRcBZaUmwDdhtNAtUG36WeWiqGYlJTObCsm1DFgEiBBIQWfw9QxZawqZE1eK3dGIBok7hgLgeESzkEqz6vcdFAl/5e1TSFBr6CXv+GBLjkiIAQ7efiGqDGYJDhGe943HLYkKORYSaoAIFDrCGYIyXRAYuJulcRNJEaYg5CU6kWYgIxEoKDhmhsphgoLFUWhSJh9gvDUHFMryl0iJIDOTxi4Sski6JFDiRM7ggknF4YG9ev8U/ZFEzsiHYhySxF2H1AsB8pSfMc+eJgYhWONlAhoVqRZQycUDCMEyYicMkIgYQZAhJ5DP4ZtIT3AAUCWT6iSoJIDIEzanQpBXeGjoYK7YuKzi7isoZWRuyANPIQuPtWBIUAEgLMVQSKZaj8/H+/2gMkyqnmvHLe2S8yIcFqQonJizDlRaM1kwIWhyJUcQJbD4URIQUN41EI/WBUEMocNu/PKA+DeOLZ0yWPH4DAI6FgEryUdBnWC5iC9xGcBseUBSQsQwPG5nt1zgFMrjOixErxbxlnhrI/K+fUqwP0io+A4bhDBHAR0qyEAc8gtiKCISFKowYYVm/qmjQgILPEAhFoRwLAYNb/cMlq0ZYCan6+Pz23Q9oGuIihSItMTjW+r7EICdXEgyM80CFo7hnRWgOB300CaFMAh4nL5uX0g8AWeY52vTSZlTtWKHHScOxheRRo0ZIPBBEVT/cgkHUhmyRDJ4zImG3euxW+4E0iVTAiTyeGyQPMJ6sbNInSgkyoJNYCVmYYXo2LzxeyiMhfU8Y0C3ReSqBQrP6HqAIHteh0veKJqqcAPVcILLQXIF4x5zTandYvQfnKUYZkdb3mEF/q5TAQh7nkcxPU30iBlVgNealtWReWmWgIHhknk2oKhmSlrBp/XdUlpakJAf12au9vXS8NybUdDs76+0+r+COdgxGumJMCrbI0YBHSfY7+EiHS+sOJUErnY4FUgnSXuX0VvmoKqebtFspK44UaVXbEl3ugbpw7SYqCJrrI43xwRiAbdoAG2psSFDhDbW8VAU43ueNuewQdDUGqbiXjjWk3GHkVtLWzeIPaiWqzdvPB5iOViWsdGRSrdUERqcNcEyNK+iKapvSkXZ3fZKFDg6m6xpDstCJegN9nU2ovmHD4EYPH0kpqXAJPIfLTlIFhB7K5aWMa7xYUjwUEyqr7/b6fG8UJ+m2LA6ZqqGtI7h84Xvv5AoLZ1fLxjuVv3okiEtZn+qETCVBuYkGGCMclMNNOOx+h9vv9BCN4faxQMFM+6KVe7BdwX0dx5msL3ZKjmY1MQmZ0cCiPTJl9AjOpAEfrwcSpmUJQbKASh/rItvyq5YMBQ/lG5KUlAQQuUHTrD5lNktqMJ1iaI1h2IGUQPkGXU4uBjU6frgggqe1YQYDIgWk767yeccLlGK5jmJfKdJOkZT9WJpUcCh4TuBwPM17Yd8jfcSNg310IYMqJSH+Msi5zGxQx0s58FLFBWvYvqPG5fP5JhdnKqpyYhaf03VsPheCpWjsDgEdXchQULGLQmPpIjfJMfrsw/jQC6qq3LgrPJCCTqeT9lH45/ABr8cbhx6Xx/NWfliSqpFMGa9xEkEaf9yoGX22UgBpYzTVOO1upwd7Wm0sfF5jYFSLBSXDB1RNyArkJcDsp+MkDfBeJvP1p+eC3c214VDg911kaSGRLXL+wyonSkjk4vFsFCo4MfoozUsag2esArOBBrKttls/7KMYd9znise8HtpJebxkHZ5eRW23y27EGNA5wGPsA7R+iHXWWPwul9NSTQigxuvBaTI/v57O5pfn20tPVPzsS0vMaxn+37q1o21a/DV17+RnXz8/cans/bKJjX/Y16o8d66n5cG6J24stSX5dz3C6F9vDpXzq3dl22yPTWacr6w9EZ1Z8+L2nU/PpVdOdZw+8vkntZ99fOXK0JGzTz56+vylB177/JN/sS+sm3no1AMfRravOL+PmupY887c2tV3Z062usmrE3//cfTSxJfnfh50f7D5Gzv3hQY/eIl5lX+Vf+7hqYkD1YGympc+/lZsx8G/XHv+sTdnUt+Z/fbNX12bq5FWnbl8D31xx/3rT06trzh690rb65T/9d+OvfbIxQu36jpru6e3PTQuPXr5xQtW6iqf+kW2o2NaKO8v31pW8bUvvnLml64/9Z5Ndj/7x4vX14RXNG35x0d7W+Dmy+9N9356efLB8PG96xTp2tzp5TSoO7uK3h+tOJX76Q9/80/hjW2+Xf+Ovn2je8XLUtefK6eemr5rfNPYDcvNuv0vr/F+90TfvXfdt+7MM8fOnV0eipcH9557cuJ601Bz87H/VFwvX1kmfL+759mdMx/NvPvKqStNt94cEDKOr37zby33dC2vq7q5feYnK/qOr/v0xPDJ4+KGI3Nju68/dX/PfWvPbK0Y6Fn6vu+LZUaWli0hn/jRZDN+/i9JH4XO
eNp9VmtsFNcV5lVBUlTVFaRJq8J4i00CnvU8dtdeI5eYtY0XsL1g1w8K3dydubMz9ryYO+PdtbEiIJUquT86aUSjVCQh2LvIGAewRQ0uRFUT59WSkLSJjExTwQ+qFIggoQ1Ugt6ZXZt17XalHc3c8/rO+c499+7PdEEDSZq6cEhSTWgAzsQfyN6fMeAeCyLzubQCTVHj+yONTc1HLEOaXCeapo4qSkuBLnk1HapA8nKaUtpFl3IiMEvxuy5D101/TONTlxaf7PEoECEQh8hTQfykx8NpOJZq4g9PKzYhNhkSUNciQoRSXDQ37lIJ/Ms+mzTL4GAFQWc/w6qgGQpwvFcQTVZ3ipAQEVjL7PLMZ8TMY7QFGlCRgOgYxmRN5eF8luw8li5Kx4wlJJUTISKQqBm4aIQpYoGDxlNCeAxNhk5mFoKGp3c3XlE0HsrOUlw3SZ9GKpIquZoQ6bhKMJoNgjV6PGZKd607kKZGEY6iAEc1/9NRy3vlIeIMSXcwOoZVKkq4kCDhICBcFrGMiAEEeUJT5RR+uPK41AVVArkpoxICqDzBSSZ0ZblVxwfvdRDoBubaMCWXwx4PcMPMB6AZW4McCG0ujhIiIUpctvz/H5Eb1pTMbDmzeblLuRIh05DUuKcXL2HYLknofwFymjuOUYSrEaEJbqymSE0oXBsOzaSaxdVhYZhCylXJpuHiwHVR0CyGci7d+DMoQzNA8oACwwApT2+vS/keSzIg7+yD6RrOwr/7v7xBfm7iWqwDcqazAnhecuyAHMmnRwAygk44FSjzOXIqxzn9ZhoWdHHhFQiUGdOMCAGPB8NfFxT0ixoy7eHZm/11wHEQNzNUOY3HJNjH492SXkLwUJCBCQfxBlehO0rswU4IdRLImNl01so+AXRdljg341Kns4dyA4F0MpwrHnQaiMTjQzXt0UYMoipcGknhqaQStNcf9PpPJElkAkmV8ZQhZYDxpHVXPp4v0AHXiZ2QuYlnp7PGw/k6GrIH6gHX2DTLJTA40R4AhhLwjeSvG5ZqSgq0M6HI3HA54cNwrJemvWUnZzlGKZWzB9yin8kXiFDGdJLZ2WuPx6AJvM509eZNV68ODAR/OysmNI0UyWk4tH2YSnOa1ilBe/J2NMoJ0ZhSabG8Gd0mhONt4Y4Ohm5goqEWth5GNm+uE7tam6JaVO+uboHeKp0i6TI24PP7GRa/eikv7aVJDSBBqKna1hII8F6l29fQyYFYCtS30+3xiKTxfG1bNayFlhBSpGqG3hRvSWBgotKhCfFkZHu54vXHuxEjJzq3b02KrfFWocanb99AYHRWl8RX/phNQBElqsq2dDFiOxXepjE7+IDFbe8oDwXrYQ1VTdV5YUphO9vz4NG+IEnlEAYoXznl/IanW0qGatwU7SNBn//o9MA9kMYlMy20vx+3L/zjO5nc8fRa49aHnf9YfzVuZftcs2iVEFSQ2IJnPEMxfvyo8FEVLE1srm8eCuXCNM/buSebDbzJBcxkzfROyXCipXZCfjA07x455+wRzKQDH58kJEzqGoJkDpU91EbuyB7MZLh6JLshSc2IA1XqdsPa59zNkuhOJnjO4nmxK6FQwW4fK8WgxQmjORM8zZ0wGBCpIPtIoLxsOCeZbtdBnCtmniIp+mySNHApZEmRcD3dZ+52gOx+Py722FwFU+uE+B6R8blsUOfzNfABjBvWif3QjS8YDP5ufqVpVyxWCbK+s7O1EMxHQzMKGpurkHPxGoWGktPapMTbk2vwR1SgWY71lZcFIFPO4I7meMEP+CAb5HmGCVLCmey8JE2HTB0f+SSCHL4KmSl7skQBSWc0VbK0nw3gTDc4lwPZ4mGTFavWnBzQBkI3oKwB/vVQLRkC+Ogmm9z+szPV7Q1V9eHQ6TYyv5HIRj17DcuoGlIlQUg3QQMTYw9ysmbxeMYaMI197ahqt0fLBaGMhYyfjnEB/E6Tm/D0mvY203b9zoDOABlj7+LsEZGt9FT4fKxnA6GAyvIApsm9rO1LZ0/VtxYeX923bIH7W4z/Dx78Yse4epX69vU7K98MfNq2r2jjlaPjZmt/MNO3aF9h6+3iFe/+cv2u5X94sKquq+SJM4uHwckR9sUnbhYWLKoLFT59Y82xT37zVQbeOXHvTsPlA/eTU+eVZ99QP6v0/1v/7Ab4hJ16f/26+7HLT37afWDbhZefWRlh/jk4eSN2btfx22/tXbAzc/Gr0Ql01pS2Hvxo78ulH99VXlIuXD/0w58VPHrrhWWFb4JkzystV5euiH34vWJy4snvP3fl1JolS+L3Hnnn8adOjS4fKWi+wFz6/b3DS6Srq5cXrSiaWvp8S2TFsdXtLQeLlh2cmHqBWl9V8P6PdpccTr4n9F272sw8c7lm8u1Th+hrd29duTg2sfRf3/nga/jTXw2MHVv03t/lL9ae+pJ69e3qn1873Hdz3aqv/7bzg5XjZaN7jiZ6Pzpw65u1vo3f/cb1tpce+cfNPmugVeLDxQ2XlhT95Vt36n5w7NeHissWPh/+/Av1frp3S8Ppu6vvFkQerTwyvPfp+s8rbo09duKND589vnvnquWhqc0TpwffDTy+99WPe/98fhANfPmne+pThcHiV1xOFi8Ye7H0IokJ+g+b7YS9

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
eNrtVn1wVNUVTxREQSrDRxUZ4RGa1cK+3beb7G6y6wPSkA80X23YEkdjfPv27u5z3777ePfuV5BWIjINhQ5PPlIm1AoJCQQCIpSxok1Q0xJrDDJlmC0j0trWtiPDlPpRinR63m4WJINTp+O0OpLZP/LuPffc3/md3zn3tHTHkEYkrOTukRSKNEGk8EE2tnRraFkUEbqqK4JoCPs7KsqWdEQ1KbUuRKnqtlqRYolLYUlFfkmwYC1ojVsFVbKoIXWBqmGVl5QAzneVqkIQGd/EJCnp9agmm1Q1/a9fIkLEJwWjgnGpSQNXGhIp4U1UojIifJWgBEtDgqSYAliLCJR/lIBdBiMP8LRkpw/7k/3dIST4IY5VPV6CNLYkiBSqpwou42PuMUATQB2UaCjqs4g4Yg1i2U8i8G1dmrWzfnNfiSgilbJlioj9khLUe4PNkmpm/CggCxR1Zbb1jrnWuT2lWFFQGoveE0ZIZQVZiqGdGiIqUIie6CJUoFHS0gmu0FAu2x1BhAAd+6txDPmZOgQhKYBUTmbxr+4Rr/jcIcqYoJ0yFtP06KkfZYP4YlC/F7BSgM/KSAnSkL6N606woiCGkN4jqjabjWNAUl2QEJCY3l1ZUqfhRHLviA2bIUfvBhuWyiSdyJVAmQasP/Pp8vuCkfCl0d/rR7Py2157fxbv6ZypPzcYFyEFmqDAOY2yBIlANE3qKTYiJFg4wds4Z0FRocvGeSClohz1o/qobxGOADPEw6gakrHg36Wh9HmK9dSvlzN5QQ1H1Tw3kxePNClIzjMzeeCvCfzBopMrLOI4WEKKX8WgAQKLD8IpSI9xJssX7AhhxMo4GAQ20hmPXM54zGZFMaCaLIAgkBDh4wWiJYMCjA01KIjGsRZuQpqGNRMB3UWEJoiOt4Kp9ZOm1qtMrTYLZ+HymBWNzIqsglOmSJwFSxYlqAUtkwS/xSCAdTpcxT6/zxVwsHGtOaYcAoWPVAZNqojFarql6t0KJooUCIyugE5VIKQzJmjA+OJR6TcvgbgoKxDWq1AtSijymxvYcqzFBc2P/CyUFMXmUozDEjKXRKFSNKk5reYDWQwgchUTKdNCIH2ypCAPE5CgaoUI4o2AQDFRmVoMce8GcLJknJNUfU9xkcVmKwIqbDZnbwa04VbDsp6ao2pSDCRpZiKAC3zEQH7+zMKIbLjeDHUslSKGllP5aR8ePyIin2eEDaIIYUJHVoyuwRXldcBZ6CbPZiNA2VroNGqh07hDf2kpMMFwDqYc+Rg7Z3cwtmJ3QYHbbmMqqpdcbkTPZ1wyEYkQMzPyYVy855Mp0vsEVZWlTJ+1GjR4GDEkaARRPkoDbFGvkEkL1EgQEX2HL0kRGd3/OuxOZwcIXU89DDrOaKuJ4v9YAQFBkqMaagqMPL6wB9pzwA6JwrWEjNpZsS/BwkrkirI6F5XVPNADaCE7hhI2phqWVpezVQLkpSTtguccLDDFGkx56gQa4q2eSiixWkVOetIFjzxlCRXaH+HrowowW8xUC9oIs3Y3x8HPYDYVHeWZrZCxT5CvdUGmQfBXt+n/8tqqCoQX1/Heend1ibsKJUAOFCvuQrul0OlmXTaL3e6OFXqYkauZEefMNTGkFtRkih3Kx4eqQJyUB2I5WxZ5feZ0PZBcL1EE70DCUw2ihsbOFzg57qrHaiB3/Kwf3pyT/rtx0/ra2leZSQN9E8bVvrX5X6e++9S6cftm8slS99efowvdJxwz+g4/MXinWLX2ocffbk/e+yfzTMf08MuT+Uk35y+a/bSrEn/rJ2W/KdhzgTt4iXuv/dLYFxbvnDBvjLbOPKb4fOp3Ne88Fv5Z6SF77i3rN3Mrg385cdddR1obBp1Pz3OdfiD34yNm9rR6Cv/2D5PF2tbiJ4cazty7Xa/u2zBUE/so2vtCyeIL/WMf3rfxTH7F3nZFRqfirNi/xXxg/+GZE/52MNm3Y+ubkwe83mmPbHmn/HvVbbOHvL/wvr3gV+Mvnagv3npmSfkMPP9d8g/788dXP9RfGhvccPyOY9MvDU899+L8nCk5E9cO5ObkfPrDjT/j3Ajd1ZA7MaGEKgvGUJqgvMnIOPSd65PhNSdD9bMORZ8Xuf+f2e9/HuaXfrrbnx7rAoD68iPaLYaiShj5rw9+n+PgF/FFipqvD35fjcHv+pD3VRzyZlwZ8rzrj9S8wt26umngtbHrX161UD6uTDl5/qbDiV3t5Z01rY33bUnEj9fsbvia/sG7w+eG57dP6Qk3/vWflfcF8FrHT2/84+B7w10VtfbbD7edfEu5+OJLa7Y5L+4OTLx9eIPjzsI3bpn23PfDNrV1Ox768/t940tySr7TMSfQYhIrxNdmPcPOPTh1+cqbGn9Q8u1dO8es3PRY+cTW2Y5JtuVzXRe3Pbuw7dE1N3zk/cBy2wFX7ocrblUuMDOKXp+Iz7r0eS1Pbjpf88ikZnrPN9pWL2t5v6zYd5t47NDj+dsmvMFWTn9zSv0vQ/ef/X3duA/r7nbRV8cfvePuLW39jqPHoj9+ZfgG35FN07Y+taZxZuPgg2fb58xKfbz57+NOLj/nPQhT378BkGvf4Q==
eNrtVt1uG0UUpu/AA4wWYdrKY69/4ri2VlWU/oqkjZRULVCIxrvH9jSzO9uZWcdu1QtKxR1IK/UBgKRNCf0BgRBcILhBQgIewFzwLJzZtUMStWqBgoqUKIqyZ87MfOc735xzbm4NQGkuo0P3eWRAMd/gh759c0vB1QS0uXU3BNOXwcbpkysbieLjD/rGxK1yGaLSOl/jMQSclaTqldfLLOaluB8fj5WMPR515auz8zHrgf3WBR5l9kSJQhxn/wZcs7DDewmzlxYUHqXAN9orGG4EaG+BRb35PuNRoStVyIx3RaNfjtFDeGq02ZHB6IetPrAA47i1fUGDonM9iEw6ru3gI4ctaI2oe9z0k07Jl2G5J0WgQ/wuX5z6lY88mvN9iA09Gfky4FEvfdC7xuMiCaArmIG7+XK6cbR8dHteRhFkWNLtNYCYMsEHcE+BjpFCeO+uNswk+uYmHgW/HqJbIWiNdHyxKAcQkCXAkCJEKkZT/O/fRfiYkHTrzNySksPRwyH1md8Hmh+VbmGSqBF62//z7ju+kBruCelnNKbjD6fBvhgp2prEkG77caVScQnG8BDxGwydCoh6pp9+7GaJfBcpU8j6R0+W3wsW3P9Gf7/8NJXfJ+dfn+L9/aWXNwM8Nv3uIgRFUq2R874hVbdaJ5VGy51t1avk9OLKA5aDUkgH6PROZ2RA35+m0IxiSL9ncSx4rsCyZalN/D5TGoyXmC5tfmsT66MznoHwlKEafMynGaVjGrIhRWBexW3UmvXZittGjfgiCWA56ZyQISZAt0msQEgWfDm9F7MXS81zzeMGwSNoky5HSbEQPBQDRSoSYUoWzwZegDLbRkTUl3KNw+3xpYuLp+gC04ZaWrX2qjWKBFBLQHuJmb5Xbp/BxJ2PxKid4YX2yWGMItHechIhYXVyTg4mhFVbrou/lrBxsu9kelrIDhOPuyCPz9sr5r957cJpkGeXvAvLrcW51gIMUUBGRpjFUr3RorOVUrXaGtTbZHI1mRxOHothfPwcmHWp1rASdWCBo1Q9t+S6lSny5Xz3MrK9zA3gaxm2FzGVKH+v1nDdnYf/jX34bpOEXOsimXzETOsHebmjBg9HrY9fzfzbAWjfc6yDUyR9qc3Eku90pkVyXAjXqU0zDE0JrnIWlGwYdKZbP9aodzrdDu1fOTYTbA6YQpmd3fe0iisKmKFM0wuRUYk2+AQu0VNSrTMVQEAxbCOL85lWinMJViHFr2UC31+VNy3UjQhEOn7nOnEUWIGvGum0iLMeruICxuGgyldRhGhsuPWm66Kpy7hACle7k76La8jwDK7oJNPNvpUbD/J77RNQEq97JVZ8gA+4SEIMAPU+wBoQ5IbJo3IfDSmeEgKVcdbb080TJ8+98RnGILh9RzxO7x9rliqVZsnFv41Pc/zUyHT8M4bTUzKJnxoKREEssbJrNL6Fu7DM2j3TuocrbA2okL0eUp8JLdyp3INKGQYIRR/HKgEs9NZrfilHgc62qke5EldBKakKGjkI2SqWD6+MruXdruU9ruUKxuQ65Mbb5MbXQ7q7ZO3QsRVJHfFu9/PpKkxr76atvftb1Ua10djTrH479ON1p8OM38eqHgswyIvjFJ2sPzit645tQdr+M1ubmZ1tVBtTIw+c1tRWdCL0cYtO1nrwhJ3eg0dNIIRYx5FVx7JnUPS4Yo8R6Jlk6cAs7LP1TShs+X/cGnY7NAuj0G5kgqQiHsdWFVpxaaW5gtWiXmm5tTfRQTCbm4GFXKnWmzW3NlOvoTkjBW3N+rFm0ekmQmSZd57cpvGrvDs4XDFP24P6CWCYNfeMn12dedKN7SmWKRbJCPvQX0RxA3+ePHPIZxx5MSX2ueoCDGPB7Dw9NF7BlmF8rQdD7T8aauNnnfueVxKe79j6n8M/GEwPBtODwfSFHUwDMxtVDwbTg8H0eQ6mzdq+wfSrf3swnXSr3VbCNWFEy65BuQLJMmzjJqbPDOmDiDXpMp8LjhoFtILtrNBTmYKJ7BLBVA/IdEol2dSryeGFhUV9xPpKsqum6xKZsxfudd9z5A6EItlB+ZomiUa9Mg06v1CMCE4wSrCYrGPvQ2A4gORw9gLBELGNgmKiOOkGyDUJpJ+EmA3CIiZG2pIQBUQnYcimr7NoO4/pSIO1xi7a7rfjXrocXc7n0D8AkSIW2A==

View File

@@ -1 +1 @@
eNrtWAt0E2UWbuX9EhaoAl1gKEtUyCSTtGnahAGypS2PvpZSqQulTmb+JEMnM8PMpE2oXaUCR14uAcrjFF1LSwuF8l6OCG5bKCtFscjKcrKsyMKCLiuyiyIignsnaUAQV84eD6yH5uScZP7H/e/97nfv/50prSlEkswKfOQmlleQRNEKPMgrSmskNNODZGVOtRspLoGpTE2eXOmR2IDsUhTRotcjXlfEFrAiYlhKJ0hOfZGeElmd6BJHc6yskDKiJNqlkSVREkQSfjnWzSqkQRP+laXQEpKjeCftolhe4xAkN6WQM2SB14Q8IcEJyVdlFxhfQ40LUQx4O6c2R0YSbnMiXvEHYm96gT2puiaDb05WcXnsOlpw650Cx8hwoEs/JbxO/9QWG00jUcGTeVpgWN7pr3POYkUtxiAHRymoOjTtrxyuH16bJPA8Cvriry1ASMQpji1E6yUkiwAUerFaVijFI5dWgSl0OBKvcSNZppxoW7pQiBgsC0FIPHjK+cL+z6ulb9lcR3OCjNZzAk0FnwNKOIj7CfBm8EgBJ3EO8U7F5a8garw4TdEu5K+lRYPBQGBAj2qAHejirxlny5IEr29z6xo8BIG/BtbgCicH0zUbgJEA29e+n0oPJNSfDJfeORim0trMiWF/T0ZE7VZxpQFoieJhn6TgMqIBTsXnD+BuyovDDtJAxMcmxJkNhBUSR3MeBmV77GMFNyAjWzFRQpxAMRskFNyvCP7A28VYjFMSPGKMBYspcufziIvRYjFgLx/swWA8EZdAEDCEeEYUINMyDE6FXR6JU/eE8YIZqgDhnOB0AhrBvLpv5rXQoEeFALU8GoJAlJssiqV1IS9gsZpzHilFglSQjyRJkDQysMtN5UN0pB6W6r+9VH/bUr1BR+iIGKwkDysJ8zSgcRfhsBJHXkWHZrIUo1MBwONN5kQ7Yzc7THiByxhn3AU8buW/4hMRLojBJuiv4QWZZx2OO3leJVKyXFVISYD4+DvSr50McSk4JeM5vCJ5ZAUx2lw8RZCKKIlBDA6FowjaJEEoYJHW5oF6kNhZwdLfEfaBYSGtMhtqB5A+juWRFXOwUJuUG5FqQMAYD6foVHJvBOc4Vt3Hiv5NiQk6gyEBoDAY4utCTqtmJYHzB4aKElsIlNRibvALbBQC/ZjQQCttiLoQdLgChQVcDgwL2rAySKbJGDVsIIVLkJXWEbU3EAkxlbAXesbWcAQoXAtVai1UqWf435wCSGCECUtBdsxIGE2YIdESG2sxGrDU9Mk3283rIZOYm5VlLdb6oB686dsp8tdTosixoZ6pV2GwYlD20AUU0qM48IQ6KpQWqBEnkv3r7D4FyQBVqE3gLOPfbRY4Nm6Wj3d7EoymOIFws2wi5Za86M5mWGkkEiqhHvyB6UD3EAXzFeEHC8VBsZxHQvmO1lsV5oCiJpiRPeCdLN8xU7LFi8OI+xYBq8YmZzxTC0FBElXCLA/kTklPwdMoSJ8taIIkTDgAiquAWrMoxUXqreOgEjN5zmcN9gVkTfaKLBCGzPbwkIBELJ2SWhNgtBAEfNUEBDx3WMZTOcFOcXc7INRHyNt79v94bFoqEsZnkTnZlnSbJQ15gTWKwFvijLq4eAtuNuiMRkthnBVrPRprNY7d1YfA6IxQT4Aqs6O04OUAwBKGsOfZod3ZAHI2qyAyjfJa04H70P/J2HiCuO3majoyeGHniOCnXfrL6Zn7ie7zvplwdujwzvHu5N2fHir7U1Pj2399f9L5OU1RpbpvSrqIHzdvP7nFOVeftu+0cVWUg2GvRHbfOzEmes2/eubteamLc9KE6s9G7hhle4qclnWB2f/zkrIZ7WdttS1HFX9emt3vrbSu59CIhjMXOpqu78766sbln2ms2xZVlAzoe73p17OnFx9cKC8vSzr7yG9PW6ymg3VL59Jc7NSkgV/+s4M83TbjhNzz0PnoxqmXX7lRHGM5PWIV9Xy/eWc+zR01YXe7pxc+eu6xyIiI77+KF/+wqgvevSzvEIaZk0Sguvosa1g+OA6XgEYUg3+hfVFuO+v0BItTI4EpCS49mdQorMIBIdKgJpPa9F6r3nv5HkTQfYT+wSjB/zMQfuoasW+bRvwRNSI9Q3QybRrx4dCI3xV/8fFt4u/hE38HIrveUn9lSzIzm7BeB+q7dcr8YMWNE08vXdxpyyDSl2R5bLsyxnLMFF2/58XmAXTaomkvfFjuG3lOO8jUv2Bfb7JX52Fjh7xqHif88pXk92M3XSV2Xic+Kb/e4Y3x67uNaC8t1rZPvBT4W8aZ5wp+n7TLGNllyQpitvMfxwYObJyf2xz/6gjzyWciv27U4ifFE8Jf/t6bzpyfOPdw7qmRa/3p9csOZxRe8dS9YRt/taHD9C3LTw1L3VzOc+hEEU43rNbu2LZnULd/7/TVr1vzXu8DOTlRz64+k/Kb9JVDDuf8IefD0W91vX4sO3HNqckp0cKoj+Qvja8fnTetIamwednRfkf6X2/pe3HvqIg+ET0WHfivulG4R90I3VWlu6xBXpGj1FeNXoXUqBmHvtOmDO+qDMV7FUU/FrgPRvvd9zDb1F2burul7hLNRndcm7p7WNVdQmybunsY1V30LXWXs6QxQ323l3/gUIcl++aM4Y7yfY5f6rjHu6E8pSpjft6E1d6ioxkbcx/1X/6o5WLLqPI+tQV5578aN8EhLDL9rt3Z5k9aqlMzjY/vWXn8A/7a3jcXVMRf2+jo8XjLMtOAuHe7RG1/vsAgzl8rHP748/qutgjbpMqhjlINnUofGvwaPnxn3+LZHfNesv1qw/r2s8ueS+kxf4ipl6F4uPlaxdYxK2cseORKzmVdzx3myC9KuvNXseiEd3oIF8z+EaVzyy5lPNtrlvLkL1bOm1n6eXKivSd9ZNcLwyq6vYuP6/9en+w/uiZeOJ3V6YusJ8xKU9eD/Z5YvbLBdPCIZ9X+lkfsjWVRa5YuyBuU1zz1QvnQwYGvV3zW6XjxxZydIPf+A38YqDU=
eNrtWF1vG8cVrf9D2+fBFmETg0PukhRJk1gYguM4QSXbgGw4nxWGu7PLqWZn1jOz/LDChzhB3lKAQNHntlKsRLGTFi2K5qFoXwoUaPsD2If8ltzZJVlKsGOnVZ04ICCI3Jm7d86998y9B7x7NKBKMynO3WfCUEUCAw/6l3ePFL2dUW3eu5dQ05fhwZXLNw4yxWa6b0zaqVapqAzZHktpyEhFqrg6rJKUVdJ+epEzbXxNiQr6Ja1SJVMfPjlLmPG90uJTq8LE50TEQZ8wUYqkSojxf6alKBVIfAChxoc9GY7/etSnJAS07x3f1FThzZgKM53VlyjQ8xaaBmwxM/2sVwlkUo0lDzUc2K/eWthVX/hsMwhoavBlEciQiXj6IL7D0jIKacSJofeK7enB+er540tSCJpjmR7vUZpiwtmAfqSoTiFR9N172hCT6buH4Ir+6xw+SqjWJKa/25YDGqLrFEISgJSPF/jfvwfwIe3To5c3rys5Gn86wgEJ+hQXrqZHUApsuD4O/nP2hwGXmn7EZUDy55lZBPs0C3E0Rzo9DlLP81wESD8FlAYCxJyK2PSnv3bzcr0DiVGQ2189mkrfSAjPDJf++fcFlX5z7ScLvF987weHIbid/vkWDcuoVkfXAoNqbq2BvGbHbXUaHrqyfeMBKUApSAfV0w97Y0P1/UWhzDil07+QNOWsYFPVZqmLIHGQR+NnJsLtz235AjAGHwBPGaxpAFUz4+kMJ2SEAZjvuc16u9Hy3C4wIeBZSHey3osygQLoLkoV5ZKEv1+cGzJwpFnBX3iBM0G7KGJAHJJQH0qOIRUZNxWL5wAOADIdAyIcSLnH6C9mr97afglvEW2wTavWfq2OIQHYJqB7nZi+X+2+DIW7Jvi4m+Ol3cujlIFbfycTkLAGuioH84TVOq4LfzZhs+yUZ3yFyx7hDzugiM8/Sdn/8titK1S+ct2/udPZ3uxs0REQyEjRadQqjWYHt7xKrdYZNLpofjSaO0cPxTC7eJWaoVR70FV6dCu/G27Fdb0F8p3i7R3I9g4z1N8io+42lBLo79ebrru83n+y19tto4RpXUbzh5Ro/aBoXdiAc+D67LncvhtSHfiONXDKqC+1ma8UbzqLhjcrJUNsy0xHpkJvMxJWbBh4I2pcaDZ6vaiH9y7UAnU4IApo9sqpq1W+oSgxmGh8UxiVaQNX4FX8klRDokIaYgjbyPKlnCvlzQx6jWJ3coKf7rCHFuqBoHw6++k+chS1BN810ukgZ5jswgbE4QDLd4GEsNh0G23XhaWIMA4p3I3mkxL2IMMbsKOznDendiYPinPtFVASjvtRqtgALnAZJRAA8H0APSAsFuaXyv1shMFLQrFM82k8PXzx8tXXPoEYOLP3iKXT+xfaFc9rV1z43/y4wI+NnM7+AeHESmbpY0OhIkwl9G8Ni2/AW5ni9p1F34Mdskcxl3EMqc+Jliz788Cr0gFA0RehS1CS+MN6UClQgLHt3aJg4i5VSqqShhwkZBfah18F0+qqafWEadWDmFwHTd5Ckz+O8GrLWqbjSEgtWBT9drFLF7330Pbe0wPpoOa2IXnFhMAsnH7eqpFICjYexnovaInBbeHWSUsxcmJy/fvcD/cdoJaA75Ckfcdy1X6edzrOTaFoIGPB7sCQT4ktF8inDsonUsWZTMpOj5igD3Mj5bAFrzhlxyJjIqPWi1YyiqC5OR1vdcPBb7/twNv5sMrtctxMRNI+GWkI7zNbtY0ykC6G/l7QzbGzD+XDz1ndgVSlqT1m1QAOKPw6nTf2HQHe3LJjmOEWwRbYXZr7SYE1LHQ6rfpGq9WsNSdvTSaPnugfPF4c5iPcRvNc65J1bp91iYl8HThYStP8KwwLkvRYnOUXuKTAFWTcaL+Uw9T+EuVaNn4N2fjzJ9BcT7FEZysov2XBPetS8/trqbmWmt9dqZnuNYcba6m5lppnKTWbzVMa8m/7DxOCS3VnR1AuLhcCa7G4KrrKX6XQ5hAS6OOQVcdmzwDp59rNar4sLwdU4dRa3yTctv+H7cG0s4rRKFg3MoOkAh7HdhXsudhr34Bu0fA6bv11MODE1mZgIXu1Rrvu1jcadVjOkwJr7caFdtmJMs7zyjuPHtPwVF0NDnbM494B/oR0lA/3PD8rk3k+ja0XmykiQPUH5GuimEy+SvLKJ5S8UBJ7XXWJjlJO7I+tI+OXbBuG27oWtf+TqE2fVPedVRHOVrY+dfjfdWFaWwvTtTB9doXp4E5jY7AWpmthepbCtF0/JUz/8P8WpvNptbqKmEYEaRkZoCtFeYVt3Mj0iUF9ylONIhIwzoCjFFapnaw0VjmDkYwQJyqmaKFSUa56NXp+a2tbv2BtJVrp6bqCNu2BJ81PuFxCKKMlyh9rlGngK9FUFwfyMQIFozhJ0RBmHwADAVLAOQkEQoQxShXh5fk0gFyjUAZZAtVARBA+1jYJIkQ6SxKyuJ1lO3lMTxroNXbTTr+leeVN8WahQ78EN9bjsA==

View File

@@ -74,8 +74,6 @@ As an example, query decomposition can simply be accomplished using prompting an
These can then be run sequentially or in parallel on a downstream retrieval system.
```python
from typing import List
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage

View File

@@ -125,7 +125,7 @@ prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
parser = StrOutputParser()
chain = prompt | model | parser
async for event in chain.astream_events({"topic": "parrot"}):
async for event in chain.astream_events({"topic": "parrot"}, version="v2"):
kind = event["event"]
if kind == "on_chat_model_stream":
print(event, end="|", flush=True)

View File

@@ -3,11 +3,16 @@
This guide walks through how to run the repository locally and check in your first code.
For a [development container](https://containers.dev/), see the [.devcontainer folder](https://github.com/langchain-ai/langchain/tree/master/.devcontainer).
## Dependency Management: `uv` and other env/dependency managers
## Dependency Management: Poetry and other env/dependency managers
This project utilizes [uv](https://docs.astral.sh/uv/) v0.5+ as a dependency manager.
This project utilizes [Poetry](https://python-poetry.org/) v1.7.1+ as a dependency manager.
Install `uv`: **[documentation on how to install it](https://docs.astral.sh/uv/getting-started/installation/)**.
❗Note: *Before installing Poetry*, if you use `Conda`, create and activate a new Conda env (e.g. `conda create -n langchain python=3.9`)
Install Poetry: **[documentation on how to install it](https://python-poetry.org/docs/#installation)**.
❗Note: If you use `Conda` or `Pyenv` as your environment/package manager, after installing Poetry,
tell Poetry to use the virtualenv python environment (`poetry config virtualenvs.prefer-active-python true`)
## Different packages
@@ -32,7 +37,7 @@ cd libs/community
Install langchain-community development requirements (for running langchain, running examples, linting, formatting, tests, and coverage):
```bash
uv sync
poetry install --with lint,typing,test,test_integration
```
Then verify dependency installation:
@@ -41,6 +46,12 @@ Then verify dependency installation:
make test
```
If during installation you receive a `WheelFileValidationError` for `debugpy`, please make sure you are running
Poetry v1.6.1+. This bug was present in older versions of Poetry (e.g. 1.4.1) and has been resolved in newer releases.
If you are still seeing this bug on v1.6.1+, you may also try disabling "modern installation"
(`poetry config installer.modern-installation false`) and re-installing requirements.
See [this `debugpy` issue](https://github.com/microsoft/debugpy/issues/1246) for more details.
## Testing
**Note:** In `langchain`, `langchain-community`, and `langchain-experimental`, some test dependencies are optional. See the following section about optional dependencies.
@@ -68,6 +79,7 @@ If you are only developing `langchain_core` or `langchain_community`, you can si
```bash
cd libs/core
poetry install --with test
make test
```
@@ -75,6 +87,7 @@ Or:
```bash
cd libs/community
poetry install --with test
make test
```
@@ -166,7 +179,7 @@ ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogy
`langchain-core` and partner packages **do not use** optional dependencies in this way.
You'll notice that `pyproject.toml` and `uv.lock` are **not** touched when you add optional dependencies below.
You'll notice that `pyproject.toml` and `poetry.lock` are **not** touched when you add optional dependencies below.
If you're adding a new dependency to Langchain, assume that it will be an optional dependency, and
that most users won't have it installed.
@@ -183,10 +196,18 @@ test makes use of lightweight fixtures to test the logic of the code.
## Adding a Jupyter Notebook
If you are adding a Jupyter Notebook example, you'll want to run with `test` dependencies:
If you are adding a Jupyter Notebook example, you'll want to install the optional `dev` dependencies.
To install dev dependencies:
```bash
uv run --group test jupyter notebook
poetry install --with dev
```
When you run `uv sync`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.
Launch a notebook:
```bash
poetry run jupyter notebook
```
When you run `poetry install`, the `langchain` package is installed as editable in the virtualenv, so your new logic can be imported into the notebook.

View File

@@ -270,7 +270,7 @@
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs overrideParams={{openai: {model: \"gpt-4\"}}} />\n"
"<ChatModelTabs openaiParams={`model=\"gpt-4\"`} />\n"
]
},
{

View File

@@ -127,18 +127,20 @@
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5a03086e-2813-4cb1-b12b-d00e7eeba122",
"metadata": {},
"execution_count": 11,
"id": "27bd1dfd-8ae2-49d6-b526-97180c81b5f4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_start', 'data': {'input': 'Write me a 1 verse song about goldfish on the moon'}, 'name': 'ChatAnthropic', 'tags': [], 'run_id': '1d430164-52b1-4d00-8c00-b16460f7737e', 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-haiku-20240307', 'ls_model_type': 'chat', 'ls_temperature': None, 'ls_max_tokens': 1024}, 'parent_ids': []}\n",
"{'event': 'on_chat_model_stream', 'run_id': '1d430164-52b1-4d00-8c00-b16460f7737e', 'name': 'ChatAnthropic', 'tags': [], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-haiku-20240307', 'ls_model_type': 'chat', 'ls_temperature': None, 'ls_max_tokens': 1024}, 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-1d430164-52b1-4d00-8c00-b16460f7737e', usage_metadata={'input_tokens': 21, 'output_tokens': 2, 'total_tokens': 23, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})}, 'parent_ids': []}\n",
"{'event': 'on_chat_model_stream', 'run_id': '1d430164-52b1-4d00-8c00-b16460f7737e', 'name': 'ChatAnthropic', 'tags': [], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-haiku-20240307', 'ls_model_type': 'chat', 'ls_temperature': None, 'ls_max_tokens': 1024}, 'data': {'chunk': AIMessageChunk(content=\"Here's\", additional_kwargs={}, response_metadata={}, id='run-1d430164-52b1-4d00-8c00-b16460f7737e')}, 'parent_ids': []}\n",
"{'event': 'on_chat_model_stream', 'run_id': '1d430164-52b1-4d00-8c00-b16460f7737e', 'name': 'ChatAnthropic', 'tags': [], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-haiku-20240307', 'ls_model_type': 'chat', 'ls_temperature': None, 'ls_max_tokens': 1024}, 'data': {'chunk': AIMessageChunk(content=' a short one-verse song', additional_kwargs={}, response_metadata={}, id='run-1d430164-52b1-4d00-8c00-b16460f7737e')}, 'parent_ids': []}\n",
"{'event': 'on_chat_model_start', 'run_id': '08da631a-12a0-4f07-baee-fc9a175ad4ba', 'name': 'ChatAnthropic', 'tags': [], 'metadata': {}, 'data': {'input': 'Write me a 1 verse song about goldfish on the moon'}}\n",
"{'event': 'on_chat_model_stream', 'run_id': '08da631a-12a0-4f07-baee-fc9a175ad4ba', 'tags': [], 'metadata': {}, 'name': 'ChatAnthropic', 'data': {'chunk': AIMessageChunk(content='Here', id='run-08da631a-12a0-4f07-baee-fc9a175ad4ba')}}\n",
"{'event': 'on_chat_model_stream', 'run_id': '08da631a-12a0-4f07-baee-fc9a175ad4ba', 'tags': [], 'metadata': {}, 'name': 'ChatAnthropic', 'data': {'chunk': AIMessageChunk(content=\"'s\", id='run-08da631a-12a0-4f07-baee-fc9a175ad4ba')}}\n",
"{'event': 'on_chat_model_stream', 'run_id': '08da631a-12a0-4f07-baee-fc9a175ad4ba', 'tags': [], 'metadata': {}, 'name': 'ChatAnthropic', 'data': {'chunk': AIMessageChunk(content=' a', id='run-08da631a-12a0-4f07-baee-fc9a175ad4ba')}}\n",
"...Truncated\n"
]
}
@@ -150,7 +152,7 @@
"idx = 0\n",
"\n",
"async for event in chat.astream_events(\n",
" \"Write me a 1 verse song about goldfish on the moon\"\n",
" \"Write me a 1 verse song about goldfish on the moon\", version=\"v1\"\n",
"):\n",
" idx += 1\n",
" if idx >= 5: # Truncate the output\n",
@@ -176,7 +178,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@@ -22,7 +22,7 @@
"2. LangChain [Runnables](/docs/concepts/runnables);\n",
"3. By sub-classing from [BaseTool](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.base.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n",
"\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.convert.tool.html). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.structured.StructuredTool.html#langchain_core.tools.structured.StructuredTool.from_function) class method.\n",
"Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.structured.StructuredTool.html#langchain_core.tools.structured.StructuredTool.from_function) class method.\n",
"\n",
"In this guide we provide an overview of these methods.\n",
"\n",

View File

@@ -354,7 +354,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{openai: {model: \"gpt-4-0125-preview\", kwargs: \"temperature=0\"}}}\n",
" openaiParams={`model=\"gpt-4-0125-preview\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -179,7 +179,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{openai: {model: \"gpt-4o\", kwargs: \"temperature=0\"}}}\n",
" openaiParams={`model=\"gpt-4o\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -167,7 +167,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{fireworks: {model: \"accounts/fireworks/models/firefunction-v1\", kwargs: \"temperature=0\"}}}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n",
"\n",
"We can use the `bind_tools()` method to handle converting\n",

View File

@@ -99,6 +99,8 @@
"\n",
"prompt = ChatPromptTemplate.from_template(\"what is {a} + {b}\")\n",
"\n",
"chain1 = prompt | model\n",
"\n",
"chain = (\n",
" {\n",
" \"a\": itemgetter(\"foo\") | RunnableLambda(length_function),\n",

View File

@@ -68,7 +68,7 @@
"\n",
"### Formatting prompts\n",
"\n",
"Some providers have [chat model](/docs/concepts/chat_models) wrappers that takes care of formatting your input prompt for the specific local model you're using. However, if you are prompting local models with a [text-in/text-out LLM](/docs/concepts/text_llms) wrapper, you may need to use a prompt tailored for your specific model.\n",
"Some providers have [chat model](/docs/concepts/chat_models) wrappers that takes care of formatting your input prompt for the specific local model you're using. However, if you are prompting local models with a [text-in/text-out LLM](/docs/concepts/text_llms) wrapper, you may need to use a prompt tailed for your specific model.\n",
"\n",
"This can [require the inclusion of special tokens](https://huggingface.co/blog/llama2#how-to-prompt-llama-2). [Here's an example for LLaMA 2](https://smith.langchain.com/hub/rlm/rag-prompt-llama).\n",
"\n",

View File

@@ -512,6 +512,44 @@
"db.run(query)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "fcdd8432-07a4-4609-8214-b1591dd94950",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SELECT DISTINCT Genre.Name\n",
"FROM Genre\n",
"JOIN Track ON Genre.GenreId = Track.GenreId\n",
"JOIN Album ON Track.AlbumId = Album.AlbumId\n",
"JOIN Artist ON Album.ArtistId = Artist.ArtistId\n",
"WHERE Artist.Name = 'Elenis Moriset'\n"
]
},
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Without retrieval\n",
"query = query_chain.invoke(\n",
" {\"question\": \"What are all the genres of elenis moriset songs\", \"proper_nouns\": \"\"}\n",
")\n",
"print(query)\n",
"db.run(query)"
]
},
{
"cell_type": "code",
"execution_count": 14,

View File

@@ -720,13 +720,22 @@
},
{
"cell_type": "code",
"execution_count": 13,
"id": "bab5f910-fee0-4a94-9f05-b469006333b8",
"execution_count": 14,
"id": "c00df46e-7f6b-4e06-8abf-801898c8d57f",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/eugene/src/langchain/libs/core/langchain_core/_api/beta_decorator.py:87: LangChainBetaWarning: This API is in beta and may change in the future.\n",
" warn_beta(\n"
]
}
],
"source": [
"events = []\n",
"async for event in model.astream_events(\"hello\"):\n",
"async for event in model.astream_events(\"hello\", version=\"v2\"):\n",
" events.append(event)"
]
},
@@ -737,7 +746,15 @@
"source": [
":::note\n",
"\n",
"For `langchain-core<0.3.37`, set the `version` kwarg explicitly (e.g., `model.astream_events(\"hello\", version=\"v2\")`).\n",
"Hey what's that funny version=\"v2\" parameter in the API?! 😾\n",
"\n",
"This is a **beta API**, and we're almost certainly going to make some changes to it (in fact, we already have!)\n",
"\n",
"This version parameter will allow us to minimize such breaking changes to your code. \n",
"\n",
"In short, we are annoying you now, so we don't have to annoy you later.\n",
"\n",
"`v2` is only available for langchain-core>=0.2.0.\n",
"\n",
":::"
]
@@ -752,8 +769,8 @@
},
{
"cell_type": "code",
"execution_count": 14,
"id": "c4a2f5dc-2c75-4be4-a8ca-b5b84a3cdbef",
"execution_count": 15,
"id": "ce31b525-f47d-4828-85a7-912ce9f2e79b",
"metadata": {},
"outputs": [
{
@@ -763,38 +780,23 @@
" 'data': {'input': 'hello'},\n",
" 'name': 'ChatAnthropic',\n",
" 'tags': [],\n",
" 'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',\n",
" 'metadata': {'ls_provider': 'anthropic',\n",
" 'ls_model_name': 'claude-3-sonnet-20240229',\n",
" 'ls_model_type': 'chat',\n",
" 'ls_temperature': 0.0,\n",
" 'ls_max_tokens': 1024},\n",
" 'parent_ids': []},\n",
" 'run_id': 'a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3',\n",
" 'metadata': {}},\n",
" {'event': 'on_chat_model_stream',\n",
" 'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',\n",
" 'data': {'chunk': AIMessageChunk(content='Hello', id='run-a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3')},\n",
" 'run_id': 'a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3',\n",
" 'name': 'ChatAnthropic',\n",
" 'tags': [],\n",
" 'metadata': {'ls_provider': 'anthropic',\n",
" 'ls_model_name': 'claude-3-sonnet-20240229',\n",
" 'ls_model_type': 'chat',\n",
" 'ls_temperature': 0.0,\n",
" 'ls_max_tokens': 1024},\n",
" 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66', usage_metadata={'input_tokens': 8, 'output_tokens': 4, 'total_tokens': 12, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})},\n",
" 'parent_ids': []},\n",
" 'metadata': {}},\n",
" {'event': 'on_chat_model_stream',\n",
" 'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',\n",
" 'data': {'chunk': AIMessageChunk(content='!', id='run-a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3')},\n",
" 'run_id': 'a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3',\n",
" 'name': 'ChatAnthropic',\n",
" 'tags': [],\n",
" 'metadata': {'ls_provider': 'anthropic',\n",
" 'ls_model_name': 'claude-3-sonnet-20240229',\n",
" 'ls_model_type': 'chat',\n",
" 'ls_temperature': 0.0,\n",
" 'ls_max_tokens': 1024},\n",
" 'data': {'chunk': AIMessageChunk(content='Hello! How can', additional_kwargs={}, response_metadata={}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66')},\n",
" 'parent_ids': []}]"
" 'metadata': {}}]"
]
},
"execution_count": 14,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -805,7 +807,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 16,
"id": "76cfe826-ee63-4310-ad48-55a95eb3b9d6",
"metadata": {},
"outputs": [
@@ -813,30 +815,20 @@
"data": {
"text/plain": [
"[{'event': 'on_chat_model_stream',\n",
" 'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',\n",
" 'data': {'chunk': AIMessageChunk(content='?', id='run-a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3')},\n",
" 'run_id': 'a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3',\n",
" 'name': 'ChatAnthropic',\n",
" 'tags': [],\n",
" 'metadata': {'ls_provider': 'anthropic',\n",
" 'ls_model_name': 'claude-3-sonnet-20240229',\n",
" 'ls_model_type': 'chat',\n",
" 'ls_temperature': 0.0,\n",
" 'ls_max_tokens': 1024},\n",
" 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66', usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12, 'input_token_details': {}})},\n",
" 'parent_ids': []},\n",
" 'metadata': {}},\n",
" {'event': 'on_chat_model_end',\n",
" 'data': {'output': AIMessageChunk(content='Hello! How can I assist you today?', additional_kwargs={}, response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66', usage_metadata={'input_tokens': 8, 'output_tokens': 16, 'total_tokens': 24, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})},\n",
" 'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',\n",
" 'data': {'output': AIMessageChunk(content='Hello! How can I assist you today?', id='run-a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3')},\n",
" 'run_id': 'a81e4c0f-fc36-4d33-93bc-1ac25b9bb2c3',\n",
" 'name': 'ChatAnthropic',\n",
" 'tags': [],\n",
" 'metadata': {'ls_provider': 'anthropic',\n",
" 'ls_model_name': 'claude-3-sonnet-20240229',\n",
" 'ls_model_type': 'chat',\n",
" 'ls_temperature': 0.0,\n",
" 'ls_max_tokens': 1024},\n",
" 'parent_ids': []}]"
" 'metadata': {}}]"
]
},
"execution_count": 15,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -857,7 +849,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 17,
"id": "4328c56c-a303-427b-b1f2-f354e9af555c",
"metadata": {},
"outputs": [],
@@ -872,6 +864,7 @@
" \"output a list of the countries france, spain and japan and their populations in JSON format. \"\n",
" 'Use a dict with an outer key of \"countries\" which contains a list of countries. '\n",
" \"Each country should have the key `name` and `population`\",\n",
" version=\"v2\",\n",
" )\n",
"]"
]
@@ -954,26 +947,29 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Chat model chunk: ''\n",
"Chat model chunk: '{'\n",
"Parser chunk: {}\n",
"Chat model chunk: '\\n \"countries'\n",
"Chat model chunk: '\": [\\n '\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '\"'\n",
"Chat model chunk: 'countries'\n",
"Chat model chunk: '\":'\n",
"Chat model chunk: ' ['\n",
"Parser chunk: {'countries': []}\n",
"Chat model chunk: '{\\n \"'\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '{'\n",
"Parser chunk: {'countries': [{}]}\n",
"Chat model chunk: 'name\": \"France'\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '\"'\n",
"Chat model chunk: 'name'\n",
"Chat model chunk: '\":'\n",
"Chat model chunk: ' \"'\n",
"Parser chunk: {'countries': [{'name': ''}]}\n",
"Chat model chunk: 'France'\n",
"Parser chunk: {'countries': [{'name': 'France'}]}\n",
"Chat model chunk: '\",\\n \"'\n",
"Chat model chunk: 'population\": 67'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67}]}\n",
"Chat model chunk: '413'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413}]}\n",
"Chat model chunk: '000\\n },'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}]}\n",
"Chat model chunk: '\\n {'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {}]}\n",
"Chat model chunk: '\\n \"name\":'\n",
"Chat model chunk: '\",'\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '\"'\n",
"Chat model chunk: 'population'\n",
"...\n"
]
}
@@ -985,6 +981,7 @@
" \"output a list of the countries france, spain and japan and their populations in JSON format. \"\n",
" 'Use a dict with an outer key of \"countries\" which contains a list of countries. '\n",
" \"Each country should have the key `name` and `population`\",\n",
" version=\"v2\",\n",
"):\n",
" kind = event[\"event\"]\n",
" if kind == \"on_chat_model_stream\":\n",
@@ -1026,24 +1023,24 @@
{
"cell_type": "code",
"execution_count": 20,
"id": "42145735-25e8-4e67-b081-b0c15ea45dd1",
"id": "4f0b581b-be63-4663-baba-c6d2b625cdf9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_parser_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'my_parser', 'tags': ['seq:step:2'], 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'metadata': {}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': []}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France'}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain'}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}\n",
"{'event': 'on_parser_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'my_parser', 'tags': ['seq:step:2'], 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': []}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{'name': ''}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{'name': 'France'}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {'name': ''}]}}, 'run_id': 'e058d750-f2c2-40f6-aa61-10f84cd671a9', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}}\n",
"...\n"
]
}
@@ -1058,6 +1055,7 @@
" \"output a list of the countries france, spain and japan and their populations in JSON format. \"\n",
" 'Use a dict with an outer key of \"countries\" which contains a list of countries. '\n",
" \"Each country should have the key `name` and `population`\",\n",
" version=\"v2\",\n",
" include_names=[\"my_parser\"],\n",
"):\n",
" print(event)\n",
@@ -1079,24 +1077,24 @@
{
"cell_type": "code",
"execution_count": 21,
"id": "2a7d8fe0-47ca-4ab4-9c10-b34e3f6106ee",
"id": "096cd904-72f0-4ebe-a8b7-d0e730faea7f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'model', 'tags': ['seq:step:1'], 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c', usage_metadata={'input_tokens': 56, 'output_tokens': 1, 'total_tokens': 57, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\\n \"countries', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\": [\\n ', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{\\n \"', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='name\": \"France', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\",\\n \"', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='population\": 67', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='413', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='000\\n },', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}\n",
"{'event': 'on_chat_model_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'model', 'tags': ['seq:step:1'], 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\\n ', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\"', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='countries', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\":', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' [', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\\n ', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\\n ', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\"', id='run-db246792-2a91-4eb3-a14b-29658947065d')}, 'run_id': 'db246792-2a91-4eb3-a14b-29658947065d', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {}}\n",
"...\n"
]
}
@@ -1109,6 +1107,7 @@
"max_events = 0\n",
"async for event in chain.astream_events(\n",
" 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`',\n",
" version=\"v2\",\n",
" include_types=[\"chat_model\"],\n",
"):\n",
" print(event)\n",
@@ -1137,24 +1136,24 @@
{
"cell_type": "code",
"execution_count": 22,
"id": "c237c218-5fd6-4146-ac68-020a038cf582",
"id": "26bac0d2-76d9-446e-b346-82790236b88d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chain_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'RunnableSequence', 'tags': ['my_chain'], 'run_id': '58d1302e-36ce-4df7-a3cb-47cb73d57e44', 'metadata': {}, 'parent_ids': []}\n",
"{'event': 'on_chat_model_start', 'data': {'input': {'messages': [[HumanMessage(content='output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`', additional_kwargs={}, response_metadata={})]]}}, 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b', usage_metadata={'input_tokens': 56, 'output_tokens': 1, 'total_tokens': 57, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_parser_start', 'data': {}, 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'run_id': '75604c84-e1e6-494a-8b2a-950f45d932e8', 'metadata': {}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b')}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_parser_stream', 'run_id': '75604c84-e1e6-494a-8b2a-950f45d932e8', 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'metadata': {}, 'data': {'chunk': {}}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_chain_stream', 'run_id': '58d1302e-36ce-4df7-a3cb-47cb73d57e44', 'name': 'RunnableSequence', 'tags': ['my_chain'], 'metadata': {}, 'data': {'chunk': {}}, 'parent_ids': []}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\\n \"countries', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b')}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\": [\\n ', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b')}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_parser_stream', 'run_id': '75604c84-e1e6-494a-8b2a-950f45d932e8', 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'metadata': {}, 'data': {'chunk': {'countries': []}}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}\n",
"{'event': 'on_chain_stream', 'run_id': '58d1302e-36ce-4df7-a3cb-47cb73d57e44', 'name': 'RunnableSequence', 'tags': ['my_chain'], 'metadata': {}, 'data': {'chunk': {'countries': []}}, 'parent_ids': []}\n",
"{'event': 'on_chain_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'RunnableSequence', 'tags': ['my_chain'], 'run_id': 'fd68dd64-7a4d-4bdb-a0c2-ee592db0d024', 'metadata': {}}\n",
"{'event': 'on_chat_model_start', 'data': {'input': {'messages': [[HumanMessage(content='output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`')]]}}, 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'run_id': 'efd3c8af-4be5-4f6c-9327-e3f9865dd1cd', 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{', id='run-efd3c8af-4be5-4f6c-9327-e3f9865dd1cd')}, 'run_id': 'efd3c8af-4be5-4f6c-9327-e3f9865dd1cd', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {}}\n",
"{'event': 'on_parser_start', 'data': {}, 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'run_id': 'afde30b9-beac-4b36-b4c7-dbbe423ddcdb', 'metadata': {}}\n",
"{'event': 'on_parser_stream', 'data': {'chunk': {}}, 'run_id': 'afde30b9-beac-4b36-b4c7-dbbe423ddcdb', 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'metadata': {}}\n",
"{'event': 'on_chain_stream', 'data': {'chunk': {}}, 'run_id': 'fd68dd64-7a4d-4bdb-a0c2-ee592db0d024', 'name': 'RunnableSequence', 'tags': ['my_chain'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\\n ', id='run-efd3c8af-4be5-4f6c-9327-e3f9865dd1cd')}, 'run_id': 'efd3c8af-4be5-4f6c-9327-e3f9865dd1cd', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\"', id='run-efd3c8af-4be5-4f6c-9327-e3f9865dd1cd')}, 'run_id': 'efd3c8af-4be5-4f6c-9327-e3f9865dd1cd', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='countries', id='run-efd3c8af-4be5-4f6c-9327-e3f9865dd1cd')}, 'run_id': 'efd3c8af-4be5-4f6c-9327-e3f9865dd1cd', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\":', id='run-efd3c8af-4be5-4f6c-9327-e3f9865dd1cd')}, 'run_id': 'efd3c8af-4be5-4f6c-9327-e3f9865dd1cd', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {}}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' [', id='run-efd3c8af-4be5-4f6c-9327-e3f9865dd1cd')}, 'run_id': 'efd3c8af-4be5-4f6c-9327-e3f9865dd1cd', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {}}\n",
"...\n"
]
}
@@ -1165,6 +1164,7 @@
"max_events = 0\n",
"async for event in chain.astream_events(\n",
" 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of \"countries\" which contains a list of countries. Each country should have the key `name` and `population`',\n",
" version=\"v2\",\n",
" include_tags=[\"my_chain\"],\n",
"):\n",
" print(event)\n",
@@ -1263,40 +1263,40 @@
{
"cell_type": "code",
"execution_count": 25,
"id": "2c83701e-b801-429f-b2ac-47ed44d2d11a",
"id": "b08215cd-bffa-4e76-aaf3-c52ee34f152c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Chat model chunk: ''\n",
"Chat model chunk: '{'\n",
"Parser chunk: {}\n",
"Chat model chunk: '\\n \"countries'\n",
"Chat model chunk: '\": [\\n '\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '\"'\n",
"Chat model chunk: 'countries'\n",
"Chat model chunk: '\":'\n",
"Chat model chunk: ' ['\n",
"Parser chunk: {'countries': []}\n",
"Chat model chunk: '{\\n \"'\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '{'\n",
"Parser chunk: {'countries': [{}]}\n",
"Chat model chunk: 'name\": \"France'\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '\"'\n",
"Chat model chunk: 'name'\n",
"Chat model chunk: '\":'\n",
"Chat model chunk: ' \"'\n",
"Parser chunk: {'countries': [{'name': ''}]}\n",
"Chat model chunk: 'France'\n",
"Parser chunk: {'countries': [{'name': 'France'}]}\n",
"Chat model chunk: '\",\\n \"'\n",
"Chat model chunk: 'population\": 67'\n",
"Chat model chunk: '\",'\n",
"Chat model chunk: '\\n '\n",
"Chat model chunk: '\"'\n",
"Chat model chunk: 'population'\n",
"Chat model chunk: '\":'\n",
"Chat model chunk: ' '\n",
"Chat model chunk: '67'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67}]}\n",
"Chat model chunk: '413'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413}]}\n",
"Chat model chunk: '000\\n },'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}]}\n",
"Chat model chunk: '\\n {'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {}]}\n",
"Chat model chunk: '\\n \"name\":'\n",
"Chat model chunk: ' \"Spain\",'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain'}]}\n",
"Chat model chunk: '\\n \"population\":'\n",
"Chat model chunk: ' 47'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47}]}\n",
"Chat model chunk: '351'\n",
"Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351}]}\n",
"...\n"
]
}
@@ -1308,6 +1308,7 @@
" \"output a list of the countries france, spain and japan and their populations in JSON format. \"\n",
" 'Use a dict with an outer key of \"countries\" which contains a list of countries. '\n",
" \"Each country should have the key `name` and `population`\",\n",
" version=\"v2\",\n",
"):\n",
" kind = event[\"event\"]\n",
" if kind == \"on_chat_model_stream\":\n",
@@ -1375,7 +1376,7 @@
" return reverse_word.invoke(word)\n",
"\n",
"\n",
"async for event in bad_tool.astream_events(\"hello\"):\n",
"async for event in bad_tool.astream_events(\"hello\", version=\"v2\"):\n",
" print(event)"
]
},
@@ -1411,7 +1412,7 @@
" return reverse_word.invoke(word, {\"callbacks\": callbacks})\n",
"\n",
"\n",
"async for event in correct_tool.astream_events(\"hello\"):\n",
"async for event in correct_tool.astream_events(\"hello\", version=\"v2\"):\n",
" print(event)"
]
},
@@ -1453,7 +1454,7 @@
"\n",
"await reverse_and_double.ainvoke(\"1234\")\n",
"\n",
"async for event in reverse_and_double.astream_events(\"1234\"):\n",
"async for event in reverse_and_double.astream_events(\"1234\", version=\"v2\"):\n",
" print(event)"
]
},
@@ -1494,7 +1495,7 @@
"\n",
"await reverse_and_double.ainvoke(\"1234\")\n",
"\n",
"async for event in reverse_and_double.astream_events(\"1234\"):\n",
"async for event in reverse_and_double.astream_events(\"1234\", version=\"v2\"):\n",
" print(event)"
]
},
@@ -1527,7 +1528,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.9.1"
}
},
"nbformat": 4,

View File

@@ -87,6 +87,13 @@
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Failed to batch ingest runs: LangSmithRateLimitError('Rate limit exceeded for https://api.smith.langchain.com/runs/batch. HTTPError(\\'429 Client Error: Too Many Requests for url: https://api.smith.langchain.com/runs/batch\\', \\'{\"detail\":\"Monthly unique traces usage limit exceeded\"}\\')')\n"
]
}
],
"source": [

View File

@@ -200,12 +200,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{\n",
" fireworks: {\n",
" model: \"accounts/fireworks/models/firefunction-v1\",\n",
" kwargs: \"temperature=0\",\n",
" }\n",
" }}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -33,7 +33,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{fireworks: {model: \"accounts/fireworks/models/firefunction-v1\", kwargs: \"temperature=0\"}}}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -46,7 +46,7 @@
"\n",
"<ChatModelTabs\n",
" customVarName=\"llm\"\n",
" overrideParams={{fireworks: {model: \"accounts/fireworks/models/firefunction-v1\", kwargs: \"temperature=0\"}}}\n",
" fireworksParams={`model=\"accounts/fireworks/models/firefunction-v1\", temperature=0`}\n",
"/>\n"
]
},

View File

@@ -131,11 +131,13 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"stream = special_summarization_tool.astream_events({\"long_text\": LONG_TEXT})\n",
"stream = special_summarization_tool.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
"async for event in stream:\n",
" if event[\"event\"] == \"on_chat_model_end\":\n",
@@ -154,7 +156,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -188,19 +190,21 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', additional_kwargs={}, response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-337ac14e-8da8-4c6d-a69f-1573f93b651e', usage_metadata={'input_tokens': 182, 'output_tokens': 19, 'total_tokens': 201, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\", additional_kwargs={}, response_metadata={})]]}}, 'run_id': '337ac14e-8da8-4c6d-a69f-1573f93b651e', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['225beaa6-af73-4c91-b2d3-1afbbb88d53e']}\n"
"{'event': 'on_chat_model_end', 'data': {'output': AIMessage(content='Bee defies physics; Barry chooses outfit for graduation day.', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-d23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', usage_metadata={'input_tokens': 182, 'output_tokens': 16, 'total_tokens': 198}), 'input': {'messages': [[HumanMessage(content=\"You are an expert writer. Summarize the following text in 10 words or less:\\n\\n\\nNARRATOR:\\n(Black screen with text; The sound of buzzing bees can be heard)\\nAccording to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don't care what humans think is impossible.\\nBARRY BENSON:\\n(Barry is picking out a shirt)\\nYellow, black. Yellow, black. Yellow, black. Yellow, black. Ooh, black and yellow! Let's shake it up a little.\\nJANET BENSON:\\nBarry! Breakfast is ready!\\nBARRY:\\nComing! Hang on a second.\\n\")]]}}, 'run_id': 'd23abc80-0dce-4f74-9d7b-fb98ca4f2a9e', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['f25c41fe-8972-4893-bc40-cecf3922c1fa']}\n"
]
}
],
"source": [
"stream = special_summarization_tool_with_config.astream_events({\"long_text\": LONG_TEXT})\n",
"stream = special_summarization_tool_with_config.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
"async for event in stream:\n",
" if event[\"event\"] == \"on_chat_model_end\":\n",
@@ -218,24 +222,33 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', usage_metadata={'input_tokens': 182, 'output_tokens': 2, 'total_tokens': 184, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})}, 'run_id': 'f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['51858043-b301-4b76-8abb-56218e405283']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', additional_kwargs={}, response_metadata={}, id='run-f5e049f7-4e98-4236-87ab-8cd1ce85a2d5')}, 'run_id': 'f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['51858043-b301-4b76-8abb-56218e405283']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' defies physics;', additional_kwargs={}, response_metadata={}, id='run-f5e049f7-4e98-4236-87ab-8cd1ce85a2d5')}, 'run_id': 'f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['51858043-b301-4b76-8abb-56218e405283']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry chooses outfit for', additional_kwargs={}, response_metadata={}, id='run-f5e049f7-4e98-4236-87ab-8cd1ce85a2d5')}, 'run_id': 'f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['51858043-b301-4b76-8abb-56218e405283']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation day.', additional_kwargs={}, response_metadata={}, id='run-f5e049f7-4e98-4236-87ab-8cd1ce85a2d5')}, 'run_id': 'f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['51858043-b301-4b76-8abb-56218e405283']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', usage_metadata={'input_tokens': 0, 'output_tokens': 17, 'total_tokens': 17, 'input_token_details': {}})}, 'run_id': 'f5e049f7-4e98-4236-87ab-8cd1ce85a2d5', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['51858043-b301-4b76-8abb-56218e405283']}\n"
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 182, 'output_tokens': 0, 'total_tokens': 182})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='Bee', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' def', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='ies physics', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=';', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' Barry', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' cho', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='oses outfit', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' for', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' graduation', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content=' day', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='.', id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42')}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n",
"{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-f24ab147-0b82-4e63-810a-b12bd8d1fb42', usage_metadata={'input_tokens': 0, 'output_tokens': 16, 'total_tokens': 16})}, 'run_id': 'f24ab147-0b82-4e63-810a-b12bd8d1fb42', 'name': 'ChatAnthropic', 'tags': ['seq:step:2'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-5-sonnet-20240620', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['385f3612-417c-4a70-aae0-cce3a5ba6fb6']}\n"
]
}
],
"source": [
"stream = special_summarization_tool_with_config.astream_events({\"long_text\": LONG_TEXT})\n",
"stream = special_summarization_tool_with_config.astream_events(\n",
" {\"long_text\": LONG_TEXT}, version=\"v2\"\n",
")\n",
"\n",
"async for event in stream:\n",
" if event[\"event\"] == \"on_chat_model_stream\":\n",
@@ -277,7 +290,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
"version": "3.11.9"
}
},
"nbformat": 4,

View File

@@ -91,7 +91,7 @@
"\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs overrideParams={{openai: {model: \"gpt-4\"}}} />\n",
"<ChatModelTabs openaiParams={`model=\"gpt-4\"`} />\n",
"\n",
"To illustrate the idea, we'll use `phi3` via Ollama, which does **NOT** have native support for tool calling. If you'd like to use `Ollama` as well follow [these instructions](/docs/integrations/chat/ollama/)."
]

View File

@@ -1,206 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Abso\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# ChatAbso\n",
"\n",
"This will help you getting started with ChatAbso [chat models](https://python.langchain.com/docs/concepts/chat_models/). For detailed documentation of all ChatAbso features and configurations head to the [API reference](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html).\n",
"\n",
"- You can find the full documentation for the Abso router [here] (https://abso.ai)\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/abso) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatAbso](https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html) | [langchain-abso](https://python.langchain.com/api_reference/en/latest/abso_api_reference.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-abso?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-abso?style=flat-square&label=%20) |\n",
"\n",
"## Setup\n",
"To access ChatAbso models you'll need to create an OpenAI account, get an API key, and install the `langchain-abso` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"- TODO: Update with relevant info.\n",
"\n",
"Head to (TODO: link) to sign up to ChatAbso and generate an API key. Once you've done this set the ABSO_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain ChatAbso integration lives in the `langchain-abso` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-abso"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_abso import ChatAbso\n",
"\n",
"llm = ChatAbso(fast_model=\"gpt-4o\", slow_model=\"o3-mini\")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatAbso features and configurations head to the API reference: https://python.langchain.com/api_reference/en/latest/chat_models/langchain_abso.chat_models.ChatAbso.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,275 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: AzureAIChatCompletionsModel\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# AzureAIChatCompletionsModel\n",
"\n",
"This will help you getting started with AzureAIChatCompletionsModel [chat models](/docs/concepts/chat_models). For detailed documentation of all AzureAIChatCompletionsModel features and configurations head to the [API reference](https://python.langchain.com/api_reference/azure_ai/chat_models/langchain_azure_ai.chat_models.AzureAIChatCompletionsModel.html)\n",
"\n",
"The AzureAIChatCompletionsModel class uses the Azure AI Foundry SDK. AI Foundry has several chat models including AzureOpenAI, Cohere, Llama, Phi-3/4, and DeepSeek-R1 to name a few. You can find information about their latest models and their costs, context windows, and supported input types in the [Azure docs](https://learn.microsoft.com/azure/ai-studio/how-to/model-catalog-overview).\n",
"\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"\n",
"| Class | Package | Local | Serializable | [JS support](https://v03.api.js.langchain.com/classes/_langchain_openai.AzureChatOpenAI.html) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [AzureAIChatCompletionsModel](https://python.langchain.com/api_reference/azure_ai/chat_models/langchain_azure_ai.chat_models.AzureAIChatCompletionsModel.html) | [langchain-azure-ai](https://python.langchain.com/api_reference/langchain_azure_ai/index.html) | ❌ | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-azure-ai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-azure-ai?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅| \n",
"\n",
"## Setup\n",
"\n",
"To access AzureAIChatCompletionsModel models you'll need to create an [Azure account](https://azure.microsoft.com/pricing/purchase-options/azure-account), get an API key, and install the `langchain-azure-ai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"\n",
"Head to the [Azure docs](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/develop/sdk-overview?tabs=sync&pivots=programming-language-python) to see how to create your deployment and generate an API key. Once your model is deployed you click the 'get endpoint' button in AI Foundry. This will show you your endpoint and api key. Once you've done this set the AZURE_INFERENCE_CREDENTIAL and AZURE_INFERENCE_ENDPOINT environment variables:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"AZURE_INFERENCE_CREDENTIAL\"):\n",
" os.environ[\"AZURE_INFERENCE_CREDENTIAL\"] = getpass.getpass(\n",
" \"Enter your AzureAIChatCompletionsModel API key: \"\n",
" )\n",
"\n",
"if not os.getenv(\"AZURE_INFERENCE_ENDPOINT\"):\n",
" os.environ[\"AZURE_INFERENCE_ENDPOINT\"] = getpass.getpass(\n",
" \"Enter your model endpoint: \"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "72ee0c4b-9764-423a-9dbf-95129e185210",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a15d341e-3e26-4ca3-830b-5aab30ed66de",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "0730d6a1-c893-4840-9817-5e5251676d5d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain AzureAIChatCompletionsModel integration lives in the `langchain-azure-ai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d6238-1f87-422a-b135-f5abbb8652fc",
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-azure-ai"
]
},
{
"cell_type": "markdown",
"id": "a38cde65-254d-4219-a441-068766c0d4b5",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae",
"metadata": {},
"outputs": [],
"source": [
"from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel\n",
"\n",
"llm = AzureAIChatCompletionsModel(\n",
" model_name=\"gpt-4\",\n",
" temperature=0,\n",
" max_tokens=None,\n",
" timeout=None,\n",
" max_retries=2,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore programmer.\", additional_kwargs={}, response_metadata={'model': 'gpt-4o-2024-05-13', 'token_usage': {'input_tokens': 31, 'output_tokens': 4, 'total_tokens': 35}, 'finish_reason': 'stop'}, id='run-c082dffd-b1de-4b3f-943f-863836663ddb-0', usage_metadata={'input_tokens': 31, 'output_tokens': 4, 'total_tokens': 35})"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d86145b3-bfef-46e8-b227-4dda5c9c2705",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"J'adore programmer.\n"
]
}
],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "18e2bfc0-7e78-4528-a73f-499ac150dca8",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', additional_kwargs={}, response_metadata={'model': 'gpt-4o-2024-05-13', 'token_usage': {'input_tokens': 26, 'output_tokens': 5, 'total_tokens': 31}, 'finish_reason': 'stop'}, id='run-01ba6587-6ff4-4554-8039-13204a7d95db-0', usage_metadata={'input_tokens': 26, 'output_tokens': 5, 'total_tokens': 31})"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all AzureAIChatCompletionsModel features and configurations head to the API reference: https://python.langchain.com/api_reference/azure_ai/chat_models/langchain_azure_ai.chat_models.AzureAIChatCompletionsModel.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain-3-9",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -509,7 +509,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatDatabricks features and configurations head to the API reference: https://api-docs.databricks.com/python/databricks-ai-bridge/latest/databricks_langchain.html#databricks_langchain.ChatDatabricks"
"For detailed documentation of all ChatDatabricks features and configurations head to the API reference: https://python.langchain.com/api_reference/databricks/chat_models/langchain_databricks.chat_models.ChatDatabricks.html"
]
}
],

View File

@@ -31,7 +31,7 @@
"\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/deepseek) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatDeepSeek](https://python.langchain.com/api_reference/deepseek/chat_models/langchain_deepseek.chat_models.ChatDeepSeek.html) | [langchain-deepseek](https://python.langchain.com/api_reference/deepseek/) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-deepseek?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-deepseek?style=flat-square&label=%20) |\n",
"| [ChatDeepSeek](https://python.langchain.com/api_reference/deepseek/chat_models/langchain_deepseek.chat_models.ChatDeepSeek.html) | [langchain-deepseek-official](https://python.langchain.com/api_reference/deepseek/) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-deepseek-official?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-deepseek-official?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
@@ -40,7 +40,7 @@
"\n",
"## Setup\n",
"\n",
"To access DeepSeek models you'll need to create a/an DeepSeek account, get an API key, and install the `langchain-deepseek` integration package.\n",
"To access DeepSeek models you'll need to create a/an DeepSeek account, get an API key, and install the `langchain-deepseek-official` integration package.\n",
"\n",
"### Credentials\n",
"\n",
@@ -87,7 +87,7 @@
"source": [
"### Installation\n",
"\n",
"The LangChain DeepSeek integration lives in the `langchain-deepseek` package:"
"The LangChain DeepSeek integration lives in the `langchain-deepseek-official` package:"
]
},
{
@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install -qU langchain-deepseek"
"%pip install -qU langchain-deepseek-official"
]
},
{

View File

@@ -210,7 +210,7 @@
"id": "96ed13d4",
"metadata": {},
"source": [
"Instead of `model_id`, you can also pass the `deployment_id` of the previously [deployed model with reference to a Prompt Template](https://cloud.ibm.com/apidocs/watsonx-ai#deployments-text-chat)."
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described in [Working with TuneExperiment and PromptTuner](https://ibm.github.io/watsonx-ai-python-sdk/pt_working_with_class_and_prompt_tuner.html)."
]
},
{
@@ -228,31 +228,6 @@
")"
]
},
{
"cell_type": "markdown",
"id": "3d29767c",
"metadata": {},
"source": [
"For certain requirements, there is an option to pass the IBM's [`APIClient`](https://ibm.github.io/watsonx-ai-python-sdk/base.html#apiclient) object into the `ChatWatsonx` class."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ae9531e",
"metadata": {},
"outputs": [],
"source": [
"from ibm_watsonx_ai import APIClient\n",
"\n",
"api_client = APIClient(...)\n",
"\n",
"chat = ChatWatsonx(\n",
" model_id=\"ibm/granite-34b-code-instruct\",\n",
" watsonx_client=api_client,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f571001d",
@@ -473,7 +448,9 @@
"source": [
"## Tool calling\n",
"\n",
"### ChatWatsonx.bind_tools()"
"### ChatWatsonx.bind_tools()\n",
"\n",
"Please note that `ChatWatsonx.bind_tools` is on beta state, so we recommend using `mistralai/mistral-large` model."
]
},
{
@@ -586,7 +563,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "langchain_ibm",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},

View File

@@ -17,7 +17,7 @@ If you'd like to contribute an integration, see [Contributing integrations](/doc
import ChatModelTabs from "@theme/ChatModelTabs";
<ChatModelTabs overrideParams={{openai: {model: "gpt-4o-mini"}}} />
<ChatModelTabs openaiParams={`model="gpt-4o-mini"`} />
```python
model.invoke("Hello, world!")

View File

@@ -19,7 +19,7 @@
"source": [
"# ChatSambaNovaCloud\n",
"\n",
"This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://docs.sambanova.ai/cloud/docs/get-started/overview).\n",
"This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/chat_models/). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.ChatSambaNovaCloud.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaNova Cloud](https://cloud.sambanova.ai/) is a platform for performing inference with open-source models\n",
"\n",
@@ -28,7 +28,7 @@
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatSambaNovaCloud](https://docs.sambanova.ai/cloud/docs/get-started/overview) | [langchain-sambanova](https://python.langchain.com/docs/integrations/providers/sambanova/) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"| [ChatSambaNovaCloud](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.ChatSambaNovaCloud.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
@@ -545,7 +545,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all SambaNovaCloud features and configurations head to the API reference: https://docs.sambanova.ai/cloud/docs/get-started/overview"
"For detailed documentation of all ChatSambaNovaCloud features and configurations head to the API reference: https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.ChatSambaNovaCloud.html"
]
}
],

View File

@@ -19,7 +19,7 @@
"source": [
"# ChatSambaStudio\n",
"\n",
"This will help you getting started with SambaStudio [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://docs.sambanova.ai/sambastudio/latest/index.html).\n",
"This will help you getting started with SambaStudio [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.chat_models.sambanova.ChatSambaStudio.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaStudio](https://docs.sambanova.ai/sambastudio/latest/sambastudio-intro.html) SambaStudio is a rich, GUI-based platform that provides the functionality to train, deploy, and manage models in SambaNova [DataScale](https://sambanova.ai/products/datascale) systems.\n",
"\n",
@@ -28,7 +28,7 @@
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatSambaStudio](https://docs.sambanova.ai/sambastudio/latest/index.html) | [langchain-sambanova](https://python.langchain.com/docs/integrations/providers/sambanova/) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"| [ChatSambaStudio](https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.chat_models.sambanova.ChatSambaStudio.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_sambanova?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_sambanova?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
@@ -483,7 +483,7 @@
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all SambaStudio features and configurations head to the API reference: https://docs.sambanova.ai/sambastudio/latest/api-ref-landing.html"
"For detailed documentation of all ChatSambaStudio features and configurations head to the API reference: https://python.langchain.com/api_reference/sambanova/chat_models/langchain_sambanova.sambanova.chat_models.ChatSambaStudio.html"
]
}
],

View File

@@ -2,9 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "xwiDq5fOuoRn"
},
"metadata": {},
"source": [
"# Apify Dataset\n",
"\n",
@@ -22,63 +20,33 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qRW2-mokuoRp",
"tags": []
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-apify langchain-openai"
"%pip install --upgrade --quiet apify-client"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8jRVq16LuoRq"
},
"metadata": {},
"source": [
"First, import `ApifyDatasetLoader` into your source code:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "umXQHqIJuoRq"
},
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_apify import ApifyDatasetLoader\n",
"from langchain_community.document_loaders import ApifyDatasetLoader\n",
"from langchain_core.documents import Document"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NjGwKy59vz1X"
},
"source": [
"Find your [Apify API token](https://console.apify.com/account/integrations) and [OpenAI API key](https://platform.openai.com/account/api-keys) and initialize these into environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "AvzNtyCxwDdr"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"APIFY_API_TOKEN\"] = \"your-apify-api-token\"\n",
"os.environ[\"OPENAI_API_KEY\"] = \"your-openai-api-key\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d1O-KL48uoRr"
},
"metadata": {},
"source": [
"Then provide a function that maps Apify dataset record fields to LangChain `Document` format.\n",
"\n",
@@ -96,10 +64,8 @@
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "m1SpA7XZuoRr"
},
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"loader = ApifyDatasetLoader(\n",
@@ -112,10 +78,8 @@
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "0hWX7ABsuoRs"
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = loader.load()"
@@ -123,9 +87,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"id": "EJCVFVKNuoRs"
},
"metadata": {},
"source": [
"## An example with question answering\n",
"\n",
@@ -134,26 +96,21 @@
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "sNisJKzZuoRt"
},
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator\n",
"from langchain_apify import ApifyWrapper\n",
"from langchain_community.utilities import ApifyWrapper\n",
"from langchain_core.documents import Document\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain_openai import OpenAI\n",
"from langchain_openai.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "qcfmnbdDuoRu"
},
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"loader = ApifyDatasetLoader(\n",
@@ -166,47 +123,27 @@
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "8b0xzKJxuoRv"
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"index = VectorstoreIndexCreator(\n",
" vectorstore_cls=InMemoryVectorStore, embedding=OpenAIEmbeddings()\n",
").from_loaders([loader])"
"index = VectorstoreIndexCreator(embedding=OpenAIEmbeddings()).from_loaders([loader])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "7zPXGsVFwUGA"
},
"outputs": [],
"source": [
"llm = ChatOpenAI(model=\"gpt-4o-mini\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "ecWrdM4guoRv"
},
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"query = \"What is Apify?\"\n",
"result = index.query_with_sources(query, llm=llm)"
"result = index.query_with_sources(query, llm=OpenAI())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QH8r44e9uoRv",
"outputId": "361fe050-f75d-4d5a-c327-5e7bd190fba5"
},
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
@@ -225,9 +162,6 @@
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
@@ -247,5 +181,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 0
}
"nbformat_minor": 4
}

View File

@@ -443,7 +443,6 @@
"llm = HuggingFaceEndpoint(\n",
" repo_id=GEN_MODEL_ID,\n",
" huggingfacehub_api_token=HF_TOKEN,\n",
" task=\"text-generation\",\n",
")"
]
},

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -55,7 +55,7 @@
"metadata": {},
"outputs": [],
"source": [
"loader = ReadTheDocsLoader(\"rtdocs\")"
"loader = ReadTheDocsLoader(\"rtdocs\", features=\"html.parser\")"
]
},
{

View File

@@ -88,13 +88,13 @@
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"\n",
"documents = TextLoader(\"../document_loaders/example_data/state_of_the_union.txt\").load()\n",
"documents = TextLoader(\"../../modules/state_of_the_union.txt\").load()\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
"texts = text_splitter.split_documents(documents)\n",
"for idx, text in enumerate(texts):\n",
" text.metadata[\"id\"] = idx\n",
"\n",
"embedding = OpenAIEmbeddings(model=\"text-embedding-3-large\")\n",
"embedding = OpenAIEmbeddings(model=\"text-embedding-ada-002\")\n",
"retriever = FAISS.from_documents(texts, embedding).as_retriever(search_kwargs={\"k\": 20})"
]
},
@@ -114,22 +114,25 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-02-17 04:37:08,458 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Document 1:\n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny. \n",
"\n",
"Six days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n",
"\n",
"He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n",
"\n",
"He met the Ukrainian people.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 2:\n",
"\n",
"Together with our allies we are right now enforcing powerful economic sanctions. \n",
"\n",
"We are cutting off Russias largest banks from the international financial system. \n",
@@ -138,22 +141,12 @@
"\n",
"We are choking off Russias access to technology that will sap its economic strength and weaken its military for years to come.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 2:\n",
"Document 3:\n",
"\n",
"And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights further isolating Russia and adding an additional squeeze on their economy. The Ruble has lost 30% of its value. \n",
"\n",
"The Russian stock market has lost 40% of its value and trading remains suspended. Russias economy is reeling and Putin alone is to blame.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 3:\n",
"\n",
"And now that he has acted the free world is holding him accountable. \n",
"\n",
"Along with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. \n",
"\n",
"We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever. \n",
"\n",
"Together with our allies we are right now enforcing powerful economic sanctions.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 4:\n",
"\n",
"I spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression. \n",
@@ -174,24 +167,50 @@
"----------------------------------------------------------------------------------------------------\n",
"Document 6:\n",
"\n",
"And now that he has acted the free world is holding him accountable. \n",
"\n",
"Along with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland. \n",
"\n",
"We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever. \n",
"\n",
"Together with our allies we are right now enforcing powerful economic sanctions.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 7:\n",
"\n",
"To all Americans, I will be honest with you, as Ive always promised. A Russian dictator, invading a foreign country, has costs around the world. \n",
"\n",
"And Im taking robust action to make sure the pain of our sanctions is targeted at Russias economy. And I will use every tool at our disposal to protect American businesses and consumers. \n",
"\n",
"Tonight, I can announce that the United States has worked with 30 other countries to release 60 Million barrels of oil from reserves around the world.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 7:\n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny. \n",
"\n",
"Six days ago, Russias Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n",
"\n",
"He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n",
"\n",
"He met the Ukrainian people.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 8:\n",
"\n",
"And we remain clear-eyed. The Ukrainians are fighting back with pure courage. But the next few days weeks, months, will be hard on them. \n",
"\n",
"Putin has unleashed violence and chaos. But while he may make gains on the battlefield he will pay a continuing high price over the long run. \n",
"\n",
"And a proud Ukrainian people, who have known 30 years of independence, have repeatedly shown that they will not tolerate anyone who tries to take their country backwards.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 9:\n",
"\n",
"Tonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \n",
"\n",
"The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs. \n",
"\n",
"We are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 10:\n",
"\n",
"America will lead that effort, releasing 30 Million barrels from our own Strategic Petroleum Reserve. And we stand ready to do more if necessary, unified with our allies. \n",
"\n",
"These steps will help blunt gas prices here at home. And I know the news about whats happening can seem alarming. \n",
"\n",
"But I want you to know that we are going to be okay. \n",
"\n",
"When the history of this era is written Putins war on Ukraine will have left Russia weaker and the rest of the world stronger.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 11:\n",
"\n",
"They keep moving. \n",
"\n",
"And the costs and the threats to America and the world keep rising. \n",
@@ -206,39 +225,51 @@
"\n",
"He rejected repeated efforts at diplomacy.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 9:\n",
"Document 12:\n",
"\n",
"Our forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies in the event that Putin decides to keep moving west. \n",
"\n",
"For that purpose weve mobilized American ground forces, air squadrons, and ship deployments to protect NATO countries including Poland, Romania, Latvia, Lithuania, and Estonia. \n",
"\n",
"As I have made crystal clear the United States and our Allies will defend every inch of territory of NATO countries with the full force of our collective power.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 13:\n",
"\n",
"While it shouldnt have taken something so terrible for people around the world to see whats at stake now everyone sees it clearly. \n",
"\n",
"We see the unity among leaders of nations and a more unified Europe a more unified West. And we see unity among the people who are gathering in cities in large crowds around the world even in Russia to demonstrate their support for Ukraine.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 10:\n",
"Document 14:\n",
"\n",
"America will lead that effort, releasing 30 Million barrels from our own Strategic Petroleum Reserve. And we stand ready to do more if necessary, unified with our allies. \n",
"He met the Ukrainian people. \n",
"\n",
"These steps will help blunt gas prices here at home. And I know the news about whats happening can seem alarming. \n",
"From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. \n",
"\n",
"But I want you to know that we are going to be okay. \n",
"Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n",
"\n",
"When the history of this era is written Putins war on Ukraine will have left Russia weaker and the rest of the world stronger.\n",
"In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 11:\n",
"Document 15:\n",
"\n",
"Tonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \n",
"In the battle between democracy and autocracy, democracies are rising to the moment, and the world is clearly choosing the side of peace and security. \n",
"\n",
"The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs. \n",
"This is a real test. Its going to take time. So let us continue to draw inspiration from the iron will of the Ukrainian people. \n",
"\n",
"We are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.\n",
"To our fellow Ukrainian Americans who forge a deep bond that connects our two nations we stand with you. \n",
"\n",
"Putin may circle Kyiv with tanks, but he will never gain the hearts and souls of the Ukrainian people.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 12:\n",
"Document 16:\n",
"\n",
"And we remain clear-eyed. The Ukrainians are fighting back with pure courage. But the next few days weeks, months, will be hard on them. \n",
"Together with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance. \n",
"\n",
"Putin has unleashed violence and chaos. But while he may make gains on the battlefield he will pay a continuing high price over the long run. \n",
"We are giving more than $1 Billion in direct assistance to Ukraine. \n",
"\n",
"And a proud Ukrainian people, who have known 30 years of independence, have repeatedly shown that they will not tolerate anyone who tries to take their country backwards.\n",
"And we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering. \n",
"\n",
"Let me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 13:\n",
"Document 17:\n",
"\n",
"Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world. \n",
"\n",
@@ -250,17 +281,7 @@
"\n",
"And the costs and the threats to America and the world keep rising.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 14:\n",
"\n",
"Together with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance. \n",
"\n",
"We are giving more than $1 Billion in direct assistance to Ukraine. \n",
"\n",
"And we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering. \n",
"\n",
"Let me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 15:\n",
"Document 18:\n",
"\n",
"It fueled our efforts to vaccinate the nation and combat COVID-19. It delivered immediate economic relief for tens of millions of Americans. \n",
"\n",
@@ -268,56 +289,25 @@
"\n",
"And as my Dad used to say, it gave people a little breathing room.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 16:\n",
"\n",
"In the battle between democracy and autocracy, democracies are rising to the moment, and the world is clearly choosing the side of peace and security. \n",
"\n",
"This is a real test. Its going to take time. So let us continue to draw inspiration from the iron will of the Ukrainian people. \n",
"\n",
"To our fellow Ukrainian Americans who forge a deep bond that connects our two nations we stand with you. \n",
"\n",
"Putin may circle Kyiv with tanks, but he will never gain the hearts and souls of the Ukrainian people.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 17:\n",
"\n",
"He met the Ukrainian people. \n",
"\n",
"From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. \n",
"\n",
"Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n",
"\n",
"In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 18:\n",
"\n",
"Our forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies in the event that Putin decides to keep moving west. \n",
"\n",
"For that purpose weve mobilized American ground forces, air squadrons, and ship deployments to protect NATO countries including Poland, Romania, Latvia, Lithuania, and Estonia. \n",
"\n",
"As I have made crystal clear the United States and our Allies will defend every inch of territory of NATO countries with the full force of our collective power.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 19:\n",
"\n",
"I understand. \n",
"My administration is providing assistance with job training and housing, and now helping lower-income veterans get VA care debt-free. \n",
"\n",
"I remember when my Dad had to leave our home in Scranton, Pennsylvania to find work. I grew up in a family where if the price of food went up, you felt it. \n",
"Our troops in Iraq and Afghanistan faced many dangers. \n",
"\n",
"Thats why one of the first things I did as President was fight to pass the American Rescue Plan. \n",
"One was stationed at bases and breathing in toxic smoke from “burn pits” that incinerated wastes of war—medical and hazard material, jet fuel, and more. \n",
"\n",
"Because people were hurting. We needed to act, and we did. \n",
"When they came home, many of the worlds fittest and best trained warriors were never the same. \n",
"\n",
"Few pieces of legislation have done more in a critical moment in our history to lift us out of crisis.\n",
"Headaches. Numbness. Dizziness.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 20:\n",
"\n",
"And as my Dad used to say, it gave people a little breathing room. \n",
"Every Administration says theyll do it, but we are actually doing it. \n",
"\n",
"And unlike the $2 Trillion tax cut passed in the previous administration that benefitted the top 1% of Americans, the American Rescue Plan helped working people—and left no one behind. \n",
"We will buy American to make sure everything from the deck of an aircraft carrier to the steel on highway guardrails are made in America. \n",
"\n",
"And it worked. It created jobs. Lots of jobs. \n",
"\n",
"In fact—our economy created over 6.5 Million new jobs just last year, more jobs created in one year \n",
"than ever before in the history of America.\n"
"But to compete for the best jobs of the future, we also need to level the playing field with China and other competitors.\n"
]
}
],
@@ -466,35 +456,34 @@
"----------------------------------------------------------------------------------------------------\n",
"Document 2:\n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 3:\n",
"\n",
"We cannot let this happen. \n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 4:\n",
"\n",
"As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n",
"\n",
"While it often appears that we never agree, that isnt true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 3:\n",
"\n",
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since shes been nominated, shes received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
"\n",
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 4:\n",
"\n",
"He met the Ukrainian people. \n",
"\n",
"From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. \n",
"\n",
"Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n",
"\n",
"In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 5:\n",
"\n",
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"But that trickle-down theory led to weaker economic growth, lower wages, bigger deficits, and the widest gap between those at the top and everyone else in nearly a century. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"Vice President Harris and I ran for office with a new economic vision for America. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution. \n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny.\n",
"Invest in America. Educate Americans. Grow the workforce. Build the economy from the bottom up \n",
"and the middle out, not from the top down.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 6:\n",
"\n",
@@ -512,14 +501,6 @@
"----------------------------------------------------------------------------------------------------\n",
"Document 7:\n",
"\n",
"So thats my plan. It will grow the economy and lower costs for families. \n",
"\n",
"So what are we waiting for? Lets get this done. And while youre at it, confirm my nominees to the Federal Reserve, which plays a critical role in fighting inflation. \n",
"\n",
"My plan will not only lower costs to give families a fair shot, it will lower the deficit.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 8:\n",
"\n",
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
"\n",
"Ive worked on these issues a long time. \n",
@@ -528,15 +509,7 @@
"\n",
"So lets not abandon our streets. Or choose between safety and equal justice.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 9:\n",
"\n",
"So lets not abandon our streets. Or choose between safety and equal justice. \n",
"\n",
"Lets come together to protect our communities, restore trust, and hold law enforcement accountable. \n",
"\n",
"Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 10:\n",
"Document 8:\n",
"\n",
"As Ive told Xi Jinping, it is never a good bet to bet against the American people. \n",
"\n",
@@ -544,18 +517,60 @@
"\n",
"And well do it all to withstand the devastating effects of the climate crisis and promote environmental justice.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 9:\n",
"\n",
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution. \n",
"\n",
"And with an unwavering resolve that freedom will always triumph over tyranny.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 10:\n",
"\n",
"As Ohio Senator Sherrod Brown says, “Its time to bury the label “Rust Belt.” \n",
"\n",
"Its time. \n",
"\n",
"But with all the bright spots in our economy, record job growth and higher wages, too many families are struggling to keep up with the bills. \n",
"\n",
"Inflation is robbing them of the gains they might otherwise feel. \n",
"\n",
"I get it. Thats why my top priority is getting prices under control.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 11:\n",
"\n",
"Lets pass the Paycheck Fairness Act and paid leave. \n",
"Im also calling on Congress: pass a law to make sure veterans devastated by toxic exposures in Iraq and Afghanistan finally get the benefits and comprehensive health care they deserve. \n",
"\n",
"Raise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n",
"And fourth, lets end cancer as we know it. \n",
"\n",
"Lets increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls Americas best-kept secret: community colleges. \n",
"This is personal to me and Jill, to Kamala, and to so many of you. \n",
"\n",
"And lets pass the PRO Act when a majority of workers want to form a union—they shouldnt be stopped.\n",
"Cancer is the #2 cause of death in Americasecond only to heart disease.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 12:\n",
"\n",
"Headaches. Numbness. Dizziness. \n",
"\n",
"A cancer that would put them in a flag-draped coffin. \n",
"\n",
"I know. \n",
"\n",
"One of those soldiers was my son Major Beau Biden. \n",
"\n",
"We dont know for sure if a burn pit was the cause of his brain cancer, or the diseases of so many of our troops. \n",
"\n",
"But Im committed to finding out everything we can. \n",
"\n",
"Committed to military families like Danielle Robinson from Ohio. \n",
"\n",
"The widow of Sergeant First Class Heath Robinson.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 13:\n",
"\n",
"He will never extinguish their love of freedom. He will never weaken the resolve of the free world. \n",
"\n",
"We meet tonight in an America that has lived through two of the hardest years this nation has ever faced. \n",
@@ -566,105 +581,73 @@
"\n",
"I understand.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 13:\n",
"\n",
"Well I know this nation. \n",
"\n",
"We will meet the test. \n",
"\n",
"To protect freedom and liberty, to expand fairness and opportunity. \n",
"\n",
"We will save democracy. \n",
"\n",
"As hard as these times have been, I am more optimistic about America today than I have been my whole life. \n",
"\n",
"Because I see the future that is within our grasp. \n",
"\n",
"Because I know there is simply nothing beyond our capacity. \n",
"\n",
"We are the only nation on Earth that has always turned every crisis we have faced into an opportunity.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 14:\n",
"\n",
"If we want to go forward—not backward—we must protect access to health care. Preserve a womans right to choose. And lets continue to advance maternal health care in America. \n",
"When we invest in our workers, when we build the economy from the bottom up and the middle out together, we can do something we havent done in a long time: build a better America. \n",
"\n",
"And for our LGBTQ+ Americans, lets finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong.\n",
"For more than two years, COVID-19 has impacted every decision in our lives and the life of the nation. \n",
"\n",
"And I know youre tired, frustrated, and exhausted. \n",
"\n",
"But I also know this.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 15:\n",
"\n",
"He met the Ukrainian people. \n",
"My plan to fight inflation will lower your costs and lower the deficit. \n",
"\n",
"From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. \n",
"17 Nobel laureates in economics say my plan will ease long-term inflationary pressures. Top business leaders and most Americans support my plan. And heres the plan: \n",
"\n",
"Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \n",
"\n",
"In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.\n",
"First cut the cost of prescription drugs. Just look at insulin. One in ten Americans has diabetes. In Virginia, I met a 13-year-old boy named Joshua Davis.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 16:\n",
"\n",
"Tonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \n",
"And soon, well strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n",
"\n",
"The U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs. \n",
"So tonight Im offering a Unity Agenda for the Nation. Four big things we can do together. \n",
"\n",
"We are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.\n",
"First, beat the opioid epidemic. \n",
"\n",
"There is so much we can do. Increase funding for prevention, treatment, harm reduction, and recovery.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 17:\n",
"\n",
"Its not only the right thing to do—its the economically smart thing to do. \n",
"My plan will not only lower costs to give families a fair shot, it will lower the deficit. \n",
"\n",
"Thats why immigration reform is supported by everyone from labor unions to religious leaders to the U.S. Chamber of Commerce. \n",
"The previous Administration not only ballooned the deficit with tax cuts for the very wealthy and corporations, it undermined the watchdogs whose job was to keep pandemic relief funds from being wasted. \n",
"\n",
"Lets get it done once and for all. \n",
"But in my administration, the watchdogs have been welcomed back. \n",
"\n",
"Advancing liberty and justice also requires protecting the rights of women. \n",
"\n",
"The constitutional right affirmed in Roe v. Wade—standing precedent for half a century—is under attack as never before.\n",
"Were going after the criminals who stole billions in relief money meant for small businesses and millions of Americans.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 18:\n",
"\n",
"Smartphones. The Internet. Technology we have yet to invent. \n",
"So lets not abandon our streets. Or choose between safety and equal justice. \n",
"\n",
"But thats just the beginning. \n",
"Lets come together to protect our communities, restore trust, and hold law enforcement accountable. \n",
"\n",
"Intels CEO, Pat Gelsinger, who is here tonight, told me they are ready to increase their investment from \n",
"$20 billion to $100 billion. \n",
"\n",
"That would be one of the biggest investments in manufacturing in American history. \n",
"\n",
"And all theyre waiting for is for you to pass this bill. \n",
"\n",
"So lets not wait any longer. Send it to my desk. Ill sign it. \n",
"\n",
"And we will really take off.\n",
"Thats why the Justice Department required body cameras, banned chokeholds, and restricted no-knock warrants for its officers.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 19:\n",
"\n",
"And as my Dad used to say, it gave people a little breathing room. \n",
"I understand. \n",
"\n",
"And unlike the $2 Trillion tax cut passed in the previous administration that benefitted the top 1% of Americans, the American Rescue Plan helped working people—and left no one behind. \n",
"I remember when my Dad had to leave our home in Scranton, Pennsylvania to find work. I grew up in a family where if the price of food went up, you felt it. \n",
"\n",
"And it worked. It created jobs. Lots of jobs. \n",
"Thats why one of the first things I did as President was fight to pass the American Rescue Plan. \n",
"\n",
"In fact—our economy created over 6.5 Million new jobs just last year, more jobs created in one year \n",
"than ever before in the history of America.\n",
"Because people were hurting. We needed to act, and we did. \n",
"\n",
"Few pieces of legislation have done more in a critical moment in our history to lift us out of crisis.\n",
"----------------------------------------------------------------------------------------------------\n",
"Document 20:\n",
"\n",
"The only nation that can be defined by a single word: possibilities. \n",
"\n",
"So on this night, in our 245th year as a nation, I have come to report on the State of the Union. \n",
"\n",
"And my report is this: the State of the Union is strong—because you, the American people, are strong. \n",
"\n",
"We are stronger today than we were a year ago. \n",
"\n",
"And we will be stronger a year from now than we are today. \n",
"\n",
"Now is our moment to meet and overcome the challenges of our time. \n",
"\n",
"And we will, as one people. \n",
"\n",
"One America.\n"
"One America. \n",
"\n",
"The United States of America. \n",
"\n",
"May God bless you all. May God protect our troops.\n"
]
}
],
@@ -683,14 +666,14 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from langchain.retrievers.contextual_compression import ContextualCompressionRetriever\n",
"from langchain_community.document_compressors.rankllm_rerank import RankLLMRerank\n",
"\n",
"compressor = RankLLMRerank(top_n=3, model=\"gpt\", gpt_model=\"gpt-4o-mini\")\n",
"compressor = RankLLMRerank(top_n=3, model=\"gpt\", gpt_model=\"gpt-3.5-turbo\")\n",
"compression_retriever = ContextualCompressionRetriever(\n",
" base_compressor=compressor, base_retriever=retriever\n",
")"
@@ -719,11 +702,9 @@
"----------------------------------------------------------------------------------------------------\n",
"Document 3:\n",
"\n",
"We cannot let this happen. \n",
"As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n",
"\n",
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.\n"
"While it often appears that we never agree, that isnt true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.\n"
]
},
{
@@ -748,29 +729,17 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_2153001/1437145854.py:10: LangChainDeprecationWarning: The method `Chain.__call__` was deprecated in langchain 0.1.0 and will be removed in 1.0. Use :meth:`~invoke` instead.\n",
" chain({\"query\": query})\n",
"2025-02-17 04:30:00,016 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
" 0%| | 0/1 [00:00<?, ?it/s]2025-02-17 04:30:01,649 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"100%|██████████| 1/1 [00:01<00:00, 1.63s/it]\n",
"2025-02-17 04:30:02,415 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
]
},
{
"data": {
"text/plain": [
"{'query': 'What did the president say about Ketanji Brown Jackson',\n",
" 'result': \"The President mentioned that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and comes from a family of public school educators and police officers. He also highlighted her as a consensus builder and noted the broad range of support she has received since being nominated.\"}"
" 'result': \"The President mentioned that Ketanji Brown Jackson is one of the nation's top legal minds and that she will continue Justice Breyer's legacy of excellence. He highlighted her background as a former top litigator in private practice and a former federal public defender, as well as coming from a family of public school educators and police officers. He also mentioned that since her nomination, she has received broad support from various groups, including the Fraternal Order of Police and former judges appointed by Democrats and Republicans.\"}"
]
},
"execution_count": 22,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}

View File

@@ -195,7 +195,7 @@
"id": "96ed13d4",
"metadata": {},
"source": [
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described in [Working with TuneExperiment and PromptTuner](https://ibm.github.io/watsonx-ai-python-sdk/pt_tune_experiment_run.html)."
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described [here](https://ibm.github.io/watsonx-ai-python-sdk/pt_working_with_class_and_prompt_tuner.html)."
]
},
{
@@ -420,7 +420,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "langchain_ibm",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},

View File

@@ -65,7 +65,7 @@
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install llama-cpp-python"
]
},
{
@@ -81,7 +81,7 @@
"metadata": {},
"outputs": [],
"source": [
"!CMAKE_ARGS=\"-DGGML_CUDA=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
"!CMAKE_ARGS=\"-DLLAMA_CUBLAS=on\" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir"
]
},
{
@@ -149,9 +149,9 @@
"\n",
"```\n",
"set FORCE_CMAKE=1\n",
"set CMAKE_ARGS=-DGGML_CUDA=OFF\n",
"set CMAKE_ARGS=-DLLAMA_CUBLAS=OFF\n",
"```\n",
"If you have an NVIDIA GPU make sure `DGGML_CUDA` is set to `ON`\n",
"If you have an NVIDIA GPU make sure `DLLAMA_CUBLAS` is set to `ON`\n",
"\n",
"#### Compiling and installing\n",
"\n",

View File

@@ -135,7 +135,6 @@
" compartment_id=\"MY_OCID\",\n",
" auth_type=\"SECURITY_TOKEN\",\n",
" auth_profile=\"MY_PROFILE\", # replace with your profile name\n",
" auth_file_location=\"MY_CONFIG_FILE_LOCATION\", # replace with file location where profile name configs present\n",
")"
]
},
@@ -160,7 +159,6 @@
" service_endpoint=\"https://inference.generativeai.us-chicago-1.oci.oraclecloud.com\",\n",
" compartment_id=\"DEDICATED_COMPARTMENT_OCID\",\n",
" auth_profile=\"MY_PROFILE\", # replace with your profile name,\n",
" auth_file_location=\"MY_CONFIG_FILE_LOCATION\", # replace with file location where profile name configs present\n",
" provider=\"MODEL_PROVIDER\", # e.g., \"cohere\" or \"meta\"\n",
" context_size=\"MODEL_CONTEXT_SIZE\", # e.g., 128000\n",
")"

View File

@@ -104,8 +104,8 @@
"\n",
"import boto3\n",
"from langchain.chains.question_answering import load_qa_chain\n",
"from langchain_aws.llms import SagemakerEndpoint\n",
"from langchain_aws.llms.sagemaker_endpoint import LLMContentHandler\n",
"from langchain_community.llms import SagemakerEndpoint\n",
"from langchain_community.llms.sagemaker_endpoint import LLMContentHandler\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"query = \"\"\"How long was Elizabeth hospitalized?\n",
@@ -174,8 +174,8 @@
"from typing import Dict\n",
"\n",
"from langchain.chains.question_answering import load_qa_chain\n",
"from langchain_aws.llms import SagemakerEndpoint\n",
"from langchain_aws.llms.sagemaker_endpoint import LLMContentHandler\n",
"from langchain_community.llms import SagemakerEndpoint\n",
"from langchain_community.llms.sagemaker_endpoint import LLMContentHandler\n",
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"query = \"\"\"How long was Elizabeth hospitalized?\n",

View File

@@ -1,14 +0,0 @@
# Abso
[Abso](https://abso.ai/#router) is an open-source LLM proxy that automatically routes requests between fast and slow models based on prompt complexity. It uses various heuristics to chose the proper model. It's very fast and has low latency.
## Installation and setup
```bash
pip install langchain-abso
```
## Chat Model
See usage details [here](/docs/integrations/chat/abso)

View File

@@ -14,34 +14,20 @@ blogs, or knowledge bases.
## Installation and Setup
- Install the LangChain Apify package for Python with:
```bash
pip install langchain-apify
```
- Install the Apify API client for Python with `pip install apify-client`
- Get your [Apify API token](https://console.apify.com/account/integrations) and either set it as
an environment variable (`APIFY_API_TOKEN`) or pass it as `apify_api_token` in the constructor.
an environment variable (`APIFY_API_TOKEN`) or pass it to the `ApifyWrapper` as `apify_api_token` in the constructor.
## Tool
You can use the `ApifyActorsTool` to use Apify Actors with agents.
```python
from langchain_apify import ApifyActorsTool
```
See [this notebook](/docs/integrations/tools/apify_actors) for example usage.
For more information on how to use this tool, visit [the Apify integration documentation](https://docs.apify.com/platform/integrations/langgraph).
## Wrapper
## Utility
You can use the `ApifyWrapper` to run Actors on the Apify platform.
```python
from langchain_apify import ApifyWrapper
from langchain_community.utilities import ApifyWrapper
```
For more information on how to use this wrapper, see [the Apify integration documentation](https://docs.apify.com/platform/integrations/langchain).
For more information on this wrapper, see [the API reference](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.apify.ApifyWrapper.html).
## Document loader
@@ -49,10 +35,7 @@ For more information on how to use this wrapper, see [the Apify integration docu
You can also use our `ApifyDatasetLoader` to get data from Apify dataset.
```python
from langchain_apify import ApifyDatasetLoader
from langchain_community.document_loaders import ApifyDatasetLoader
```
For a more detailed walkthrough of this loader, see [this notebook](/docs/integrations/document_loaders/apify_dataset).
Source code for this integration can be found in the [LangChain Apify repository](https://github.com/apify/langchain-apify).

View File

@@ -1,59 +0,0 @@
# Azure AI
All functionality related to [Azure AI Foundry](https://learn.microsoft.com/en-us/azure/developer/python/get-started) and its related projects.
Integration packages for Azure AI, Dynamic Sessions, SQL Server are maintained in
the [langchain-azure](https://github.com/langchain-ai/langchain-azure) repository.
## Chat models
We recommend developers start with the (`langchain-azure-ai`) to access all the models available in [Azure AI Foundry](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/model-catalog-overview).
### Azure AI Chat Completions Model
Access models like Azure OpenAI, DeepSeek R1, Cohere, Phi and Mistral using the `AzureAIChatCompletionsModel` class.
```bash
pip install -U langchain-azure-ai
```
Configure your API key and Endpoint.
```bash
export AZURE_INFERENCE_CREDENTIAL=your-api-key
export AZURE_INFERENCE_ENDPOINT=your-endpoint
```
```python
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
llm = AzureAIChatCompletionsModel(
model_name="gpt-4o",
api_version="2024-05-01-preview",
)
llm.invoke('Tell me a joke and include some emojis')
```
## Embedding models
### Azure AI model inference for embeddings
```bash
pip install -U langchain-azure-ai
```
Configure your API key and Endpoint.
```bash
export AZURE_INFERENCE_CREDENTIAL=your-api-key
export AZURE_INFERENCE_ENDPOINT=your-endpoint
```
```python
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
embed_model = AzureAIEmbeddingsModel(
model_name="text-embedding-ada-002"
)
```

View File

@@ -1,27 +0,0 @@
# Cognee
Cognee implements scalable, modular ECL (Extract, Cognify, Load) pipelines that allow
you to interconnect and retrieve past conversations, documents, and audio
transcriptions while reducing hallucinations, developer effort, and cost.
Cognee merges graph and vector databases to uncover hidden relationships and new
patterns in your data. You can automatically model, load and retrieve entities and
objects representing your business domain and analyze their relationships, uncovering
insights that neither vector stores nor graph stores alone can provide.
Try it in a Google Colab <a href="https://colab.research.google.com/drive/1g-Qnx6l_ecHZi0IOw23rg0qC4TYvEvWZ?usp=sharing">notebook</a> or have a look at the <a href="https://docs.cognee.ai">documentation</a>.
If you have questions, join cognee <a href="https://discord.gg/NQPKmU5CCg">Discord</a> community.
Have you seen cognee's <a href="https://github.com/topoteretes/cognee-starter">starter repo</a>? Check it out!
## Installation and Setup
```bash
pip install langchain-cognee
```
## Retrievers
See detail on available retrievers [here](/docs/integrations/retrievers/cognee).

View File

@@ -103,7 +103,14 @@ See [MLflow LangChain Integration](/docs/integrations/providers/mlflow_tracking)
SQLDatabase
-----------
To connect to Databricks SQL or query structured data, see the [Databricks structured retriever tool documentation](https://docs.databricks.com/en/generative-ai/agent-framework/structured-retrieval-tools.html#table-query-tool) and to create an agent using the above created SQL UDF see [Databricks UC Integration](https://docs.unitycatalog.io/ai/integrations/langchain/).
You can connect to Databricks SQL using the SQLDatabase wrapper of LangChain.
```
from langchain.sql_database import SQLDatabase
db = SQLDatabase.from_databricks(catalog="samples", schema="nyctaxi")
```
See [Databricks SQL Agent](https://docs.databricks.com/en/large-language-models/langchain.html#databricks-sql-agent) for how to connect Databricks SQL with your LangChain Agent as a powerful querying tool.
Open Models
-----------

View File

@@ -1,16 +0,0 @@
# Deeplake
[Deeplake](https://www.deeplake.ai/) is a database optimized for AI and deep learning
applications.
## Installation and Setup
```bash
pip install langchain-deeplake
```
## Vector stores
See detail on available vector stores
[here](/docs/integrations/vectorstores/activeloop_deeplake).

View File

@@ -1,65 +0,0 @@
# Discord
> [Discord](https://discord.com/) is an instant messaging, voice, and video communication platform widely used by communities of all types.
## Installation and Setup
Install the `langchain-discord-shikenso` package:
```bash
pip install langchain-discord-shikenso
```
You must provide a bot token via environment variable so the tools can authenticate with the Discord API:
```bash
export DISCORD_BOT_TOKEN="your-discord-bot-token"
```
If `DISCORD_BOT_TOKEN` is not set, the tools will raise a `ValueError` when instantiated.
---
## Tools
Below is a snippet showing how you can read and send messages in Discord. For more details, see the [documentation for Discord tools](/docs/integrations/tools/discord).
```python
from langchain_discord.tools.discord_read_messages import DiscordReadMessages
from langchain_discord.tools.discord_send_messages import DiscordSendMessage
# Create tool instances
read_tool = DiscordReadMessages()
send_tool = DiscordSendMessage()
# Example: Read the last 3 messages from channel 1234567890
read_result = read_tool({"channel_id": "1234567890", "limit": 3})
print(read_result)
# Example: Send a message to channel 1234567890
send_result = send_tool({"channel_id": "1234567890", "message": "Hello from Markdown example!"})
print(send_result)
```
---
## Toolkit
`DiscordToolkit` groups multiple Discord-related tools into a single interface. For a usage example, see [the Discord toolkit docs](/docs/integrations/tools/discord).
```python
from langchain_discord.toolkits import DiscordToolkit
toolkit = DiscordToolkit()
tools = toolkit.get_tools()
read_tool = tools[0] # DiscordReadMessages
send_tool = tools[1] # DiscordSendMessage
```
---
## Future Integrations
Additional integrations (e.g., document loaders, chat loaders) could be added for Discord.
Check the [Discord Developer Docs](https://discord.com/developers/docs/intro) for more information, and watch for updates or advanced usage examples in the [langchain_discord GitHub repo](https://github.com/Shikenso-Analytics/langchain-discord).

View File

@@ -1,4 +1,4 @@
# Discord (community loader)
# Discord
>[Discord](https://discord.com/) is a VoIP and instant messaging social platform. Users have the ability to communicate
> with voice calls, video calls, text messaging, media and files in private chats or as part of communities called

View File

@@ -0,0 +1,34 @@
# FalkorDB
>[FalkorDB](https://www.falkordb.com/) is a creator of the [FalkorDB](https://docs.falkordb.com/),
> a low-latency Graph Database that delivers knowledge to GenAI.
## Installation and Setup
See [installation instructions here](/docs/integrations/graphs/falkordb/).
## Graphs
See a [usage example](/docs/integrations/graphs/falkordb).
```python
from langchain_community.graphs import FalkorDBGraph
```
## Chains
See a [usage example](/docs/integrations/graphs/falkordb).
```python
from langchain_community.chains.graph_qa.falkordb import FalkorDBQAChain
```
## Memory
See a [usage example](/docs/integrations/memory/falkordb_chat_message_history).
```python
from langchain_falkordb import FalkorDBChatMessageHistory
```

Some files were not shown because too many files have changed in this diff Show More