mirror of
https://github.com/hwchase17/langchain.git
synced 2026-02-07 09:40:07 +00:00
Compare commits
1 Commits
langchain-
...
erick/core
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4671ad8227 |
4
.github/CODEOWNERS
vendored
4
.github/CODEOWNERS
vendored
@@ -1,2 +1,2 @@
|
||||
/.github/ @baskaryan @ccurme
|
||||
/libs/packages.yml @ccurme
|
||||
/.github/ @efriis @baskaryan @ccurme
|
||||
/libs/packages.yml @efriis
|
||||
|
||||
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -26,4 +26,4 @@ Additional guidelines:
|
||||
- Changes should be backwards compatible.
|
||||
- If you are adding something to community, do not re-import it in langchain.
|
||||
|
||||
If no one reviews your PR within a few days, please @-mention one of baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
|
||||
If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
|
||||
|
||||
21
.github/actions/uv_setup/action.yml
vendored
21
.github/actions/uv_setup/action.yml
vendored
@@ -1,21 +0,0 @@
|
||||
# TODO: https://docs.astral.sh/uv/guides/integration/github/#caching
|
||||
|
||||
name: uv-install
|
||||
description: Set up Python and uv
|
||||
|
||||
inputs:
|
||||
python-version:
|
||||
description: Python version, supporting MAJOR.MINOR only
|
||||
required: true
|
||||
|
||||
env:
|
||||
UV_VERSION: "0.5.25"
|
||||
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: ${{ inputs.python-version }}
|
||||
36
.github/scripts/check_diff.py
vendored
36
.github/scripts/check_diff.py
vendored
@@ -7,8 +7,6 @@ from typing import Dict, List, Set
|
||||
from pathlib import Path
|
||||
import tomllib
|
||||
|
||||
from packaging.requirements import Requirement
|
||||
|
||||
from get_min_versions import get_min_version_from_toml
|
||||
|
||||
|
||||
@@ -32,14 +30,10 @@ IGNORED_PARTNERS = [
|
||||
# specifically in huggingface jobs
|
||||
# https://github.com/langchain-ai/langchain/issues/25558
|
||||
"huggingface",
|
||||
# prompty exhibiting issues with numpy for Python 3.13
|
||||
# https://github.com/langchain-ai/langchain/actions/runs/12651104685/job/35251034969?pr=29065
|
||||
"prompty",
|
||||
]
|
||||
|
||||
PY_312_MAX_PACKAGES = [
|
||||
"libs/partners/huggingface", # https://github.com/pytorch/pytorch/issues/130249
|
||||
"libs/partners/voyageai",
|
||||
]
|
||||
|
||||
|
||||
@@ -64,17 +58,15 @@ def dependents_graph() -> dict:
|
||||
|
||||
# load regular and test deps from pyproject.toml
|
||||
with open(path, "rb") as f:
|
||||
pyproject = tomllib.load(f)
|
||||
pyproject = tomllib.load(f)["tool"]["poetry"]
|
||||
|
||||
pkg_dir = "libs" + "/".join(path.split("libs")[1].split("/")[:-1])
|
||||
for dep in [
|
||||
*pyproject["project"]["dependencies"],
|
||||
*pyproject["dependency-groups"]["test"],
|
||||
*pyproject["dependencies"].keys(),
|
||||
*pyproject["group"]["test"]["dependencies"].keys(),
|
||||
]:
|
||||
requirement = Requirement(dep)
|
||||
package_name = requirement.name
|
||||
if "langchain" in dep:
|
||||
dependents[package_name].add(pkg_dir)
|
||||
dependents[dep].add(pkg_dir)
|
||||
continue
|
||||
|
||||
# load extended deps from extended_testing_deps.txt
|
||||
@@ -125,7 +117,8 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
py_versions = ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
# custom logic for specific directories
|
||||
elif dir_ == "libs/partners/milvus":
|
||||
# milvus doesn't allow 3.12 because they declare deps in funny way
|
||||
# milvus poetry doesn't allow 3.12 because they
|
||||
# declare deps in funny way
|
||||
py_versions = ["3.9", "3.11"]
|
||||
|
||||
elif dir_ in PY_312_MAX_PACKAGES:
|
||||
@@ -152,17 +145,17 @@ def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]:
|
||||
def _get_pydantic_test_configs(
|
||||
dir_: str, *, python_version: str = "3.11"
|
||||
) -> List[Dict[str, str]]:
|
||||
with open("./libs/core/uv.lock", "rb") as f:
|
||||
core_uv_lock_data = tomllib.load(f)
|
||||
for package in core_uv_lock_data["package"]:
|
||||
with open("./libs/core/poetry.lock", "rb") as f:
|
||||
core_poetry_lock_data = tomllib.load(f)
|
||||
for package in core_poetry_lock_data["package"]:
|
||||
if package["name"] == "pydantic":
|
||||
core_max_pydantic_minor = package["version"].split(".")[1]
|
||||
break
|
||||
|
||||
with open(f"./{dir_}/uv.lock", "rb") as f:
|
||||
dir_uv_lock_data = tomllib.load(f)
|
||||
with open(f"./{dir_}/poetry.lock", "rb") as f:
|
||||
dir_poetry_lock_data = tomllib.load(f)
|
||||
|
||||
for package in dir_uv_lock_data["package"]:
|
||||
for package in dir_poetry_lock_data["package"]:
|
||||
if package["name"] == "pydantic":
|
||||
dir_max_pydantic_minor = package["version"].split(".")[1]
|
||||
break
|
||||
@@ -308,8 +301,9 @@ if __name__ == "__main__":
|
||||
f"Unknown lib: {file}. check_diff.py likely needs "
|
||||
"an update for this new library!"
|
||||
)
|
||||
elif file.startswith("docs/") or file in ["pyproject.toml", "uv.lock"]: # docs or root uv files
|
||||
docs_edited = True
|
||||
elif any(file.startswith(p) for p in ["docs/", "cookbook/"]):
|
||||
if file.startswith("docs/"):
|
||||
docs_edited = True
|
||||
dirs_to_run["lint"].add(".")
|
||||
|
||||
dependents = dependents_graph()
|
||||
|
||||
11
.github/scripts/check_prerelease_dependencies.py
vendored
11
.github/scripts/check_prerelease_dependencies.py
vendored
@@ -10,25 +10,26 @@ if __name__ == "__main__":
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
# see if we're releasing an rc
|
||||
version = toml_data["project"]["version"]
|
||||
version = toml_data["tool"]["poetry"]["version"]
|
||||
releasing_rc = "rc" in version or "dev" in version
|
||||
|
||||
# if not, iterate through dependencies and make sure none allow prereleases
|
||||
if not releasing_rc:
|
||||
dependencies = toml_data["project"]["dependencies"]
|
||||
for dep_version in dependencies:
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
for lib in dependencies:
|
||||
dep_version = dependencies[lib]
|
||||
dep_version_string = (
|
||||
dep_version["version"] if isinstance(dep_version, dict) else dep_version
|
||||
)
|
||||
|
||||
if "rc" in dep_version_string:
|
||||
raise ValueError(
|
||||
f"Dependency {dep_version} has a prerelease version. Please remove this."
|
||||
f"Dependency {lib} has a prerelease version. Please remove this."
|
||||
)
|
||||
|
||||
if isinstance(dep_version, dict) and dep_version.get(
|
||||
"allow-prereleases", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Dependency {dep_version} has allow-prereleases set to true. Please remove this."
|
||||
f"Dependency {lib} has allow-prereleases set to true. Please remove this."
|
||||
)
|
||||
|
||||
41
.github/scripts/get_min_versions.py
vendored
41
.github/scripts/get_min_versions.py
vendored
@@ -1,4 +1,3 @@
|
||||
from collections import defaultdict
|
||||
import sys
|
||||
from typing import Optional
|
||||
|
||||
@@ -8,7 +7,6 @@ else:
|
||||
# for python 3.10 and below, which doesnt have stdlib tomllib
|
||||
import tomli as tomllib
|
||||
|
||||
from packaging.requirements import Requirement
|
||||
from packaging.specifiers import SpecifierSet
|
||||
from packaging.version import Version
|
||||
|
||||
@@ -96,23 +94,6 @@ def get_minimum_version(package_name: str, spec_string: str) -> Optional[str]:
|
||||
return str(min(valid_versions)) if valid_versions else None
|
||||
|
||||
|
||||
def _check_python_version_from_requirement(
|
||||
requirement: Requirement, python_version: str
|
||||
) -> bool:
|
||||
if not requirement.marker:
|
||||
return True
|
||||
else:
|
||||
marker_str = str(requirement.marker)
|
||||
if "python_version" or "python_full_version" in marker_str:
|
||||
python_version_str = "".join(
|
||||
char
|
||||
for char in marker_str
|
||||
if char.isdigit() or char in (".", "<", ">", "=", ",")
|
||||
)
|
||||
return check_python_version(python_version, python_version_str)
|
||||
return True
|
||||
|
||||
|
||||
def get_min_version_from_toml(
|
||||
toml_path: str,
|
||||
versions_for: str,
|
||||
@@ -124,10 +105,8 @@ def get_min_version_from_toml(
|
||||
with open(toml_path, "rb") as file:
|
||||
toml_data = tomllib.load(file)
|
||||
|
||||
dependencies = defaultdict(list)
|
||||
for dep in toml_data["project"]["dependencies"]:
|
||||
requirement = Requirement(dep)
|
||||
dependencies[requirement.name].append(requirement)
|
||||
# Get the dependencies from tool.poetry.dependencies
|
||||
dependencies = toml_data["tool"]["poetry"]["dependencies"]
|
||||
|
||||
# Initialize a dictionary to store the minimum versions
|
||||
min_versions = {}
|
||||
@@ -142,11 +121,17 @@ def get_min_version_from_toml(
|
||||
if lib in dependencies:
|
||||
if include and lib not in include:
|
||||
continue
|
||||
requirements = dependencies[lib]
|
||||
for requirement in requirements:
|
||||
if _check_python_version_from_requirement(requirement, python_version):
|
||||
version_string = str(requirement.specifier)
|
||||
break
|
||||
# Get the version string
|
||||
version_string = dependencies[lib]
|
||||
|
||||
if isinstance(version_string, dict):
|
||||
version_string = version_string["version"]
|
||||
if isinstance(version_string, list):
|
||||
version_string = [
|
||||
vs
|
||||
for vs in version_string
|
||||
if check_python_version(python_version, vs["python"])
|
||||
][0]["version"]
|
||||
|
||||
# Use parse_version to get the minimum supported version from version_string
|
||||
min_version = get_minimum_version(lib, version_string)
|
||||
|
||||
24
.github/scripts/prep_api_docs_build.py
vendored
24
.github/scripts/prep_api_docs_build.py
vendored
@@ -64,29 +64,19 @@ def main():
|
||||
try:
|
||||
# Load packages configuration
|
||||
package_yaml = load_packages_yaml()
|
||||
|
||||
# Clean target directories
|
||||
clean_target_directories([
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if p["repo"].startswith("langchain-ai/")
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
])
|
||||
|
||||
# Move libraries to their new locations
|
||||
move_libraries([
|
||||
packages = [
|
||||
p
|
||||
for p in package_yaml["packages"]
|
||||
if not p.get("disabled", False)
|
||||
and p["repo"].startswith("langchain-ai/")
|
||||
and p["repo"] != "langchain-ai/langchain"
|
||||
])
|
||||
]
|
||||
|
||||
# Delete ones without a pyproject.toml
|
||||
for partner in Path("langchain/libs/partners").iterdir():
|
||||
if partner.is_dir() and not (partner / "pyproject.toml").exists():
|
||||
print(f"Removing {partner} as it does not have a pyproject.toml")
|
||||
shutil.rmtree(partner)
|
||||
# Clean target directories
|
||||
clean_target_directories(packages)
|
||||
|
||||
# Move libraries to their new locations
|
||||
move_libraries(packages)
|
||||
|
||||
print("Library sync completed successfully!")
|
||||
|
||||
|
||||
15
.github/workflows/_compile_integration_test.yml
vendored
15
.github/workflows/_compile_integration_test.yml
vendored
@@ -13,7 +13,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -22,22 +22,25 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 20
|
||||
name: "uv run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
name: "poetry run pytest -m compile tests/integration_tests #${{ inputs.python-version }}"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: compile-integration
|
||||
|
||||
- name: Install integration dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test --group test_integration
|
||||
run: poetry install --with=test_integration,test
|
||||
|
||||
- name: Check integration tests compile
|
||||
shell: bash
|
||||
run: uv run pytest -m compile tests/integration_tests
|
||||
run: poetry run pytest -m compile tests/integration_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
|
||||
15
.github/workflows/_integration_test.yml
vendored
15
.github/workflows/_integration_test.yml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -24,19 +24,22 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test --group test_integration
|
||||
run: poetry install --with test,test_integration
|
||||
|
||||
- name: Install deps outside pyproject
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
|
||||
shell: bash
|
||||
run: VIRTUAL_ENV=.venv uv pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
|
||||
|
||||
- name: Run integration tests
|
||||
shell: bash
|
||||
@@ -64,6 +67,8 @@ jobs:
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
|
||||
47
.github/workflows/_lint.yml
vendored
47
.github/workflows/_lint.yml
vendored
@@ -13,13 +13,12 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.8.4"
|
||||
WORKDIR: ${{ inputs.working-directory == '' && '.' || inputs.working-directory }}
|
||||
|
||||
# This env var allows us to get inline annotations when ruff has complaints.
|
||||
RUFF_OUTPUT_FORMAT: github
|
||||
|
||||
UV_FROZEN: "true"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: "make lint #${{ inputs.python-version }}"
|
||||
@@ -28,10 +27,25 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: lint-with-extras
|
||||
|
||||
- name: Check Poetry File
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry check
|
||||
|
||||
- name: Check lock file
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
poetry lock --check
|
||||
|
||||
- name: Install dependencies
|
||||
# Also installs dev/lint/test/typing dependencies, to ensure we have
|
||||
@@ -44,7 +58,17 @@ jobs:
|
||||
# It doesn't matter how you change it, any change will cause a cache-bust.
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --group lint --group typing
|
||||
poetry install --with lint,typing
|
||||
|
||||
- name: Get .mypy_cache to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache
|
||||
key: mypy-lint-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
@@ -63,12 +87,21 @@ jobs:
|
||||
if: ${{ ! startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --inexact --group test
|
||||
poetry install --with test
|
||||
- name: Install unit+integration test dependencies
|
||||
if: ${{ startsWith(inputs.working-directory, 'libs/partners/') }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv sync --inexact --group test --group test_integration
|
||||
poetry install --with test,test_integration
|
||||
|
||||
- name: Get .mypy_cache_test to speed up mypy
|
||||
uses: actions/cache@v4
|
||||
env:
|
||||
SEGMENT_DOWNLOAD_TIMEOUT_MIN: "2"
|
||||
with:
|
||||
path: |
|
||||
${{ env.WORKDIR }}/.mypy_cache_test
|
||||
key: mypy-test-${{ runner.os }}-${{ runner.arch }}-py${{ inputs.python-version }}-${{ inputs.working-directory }}-${{ hashFiles(format('{0}/poetry.lock', inputs.working-directory)) }}
|
||||
|
||||
- name: Analysing the code with our lint
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
182
.github/workflows/_release.yml
vendored
182
.github/workflows/_release.yml
vendored
@@ -21,8 +21,7 @@ on:
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -37,10 +36,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
# We want to keep this build stage *separate* from the release stage,
|
||||
# so that there's no sharing of permissions between them.
|
||||
@@ -54,7 +56,7 @@ jobs:
|
||||
# > from the publish job.
|
||||
# https://github.com/pypa/gh-action-pypi-publish#non-goals
|
||||
- name: Build project for distribution
|
||||
run: uv build
|
||||
run: poetry build
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
@@ -65,18 +67,11 @@ jobs:
|
||||
|
||||
- name: Check Version
|
||||
id: check-version
|
||||
shell: python
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
import os
|
||||
import tomllib
|
||||
with open("pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
pkg_name = data["project"]["name"]
|
||||
version = data["project"]["version"]
|
||||
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
|
||||
f.write(f"pkg-name={pkg_name}\n")
|
||||
f.write(f"version={version}\n")
|
||||
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
|
||||
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
|
||||
release-notes:
|
||||
needs:
|
||||
- build
|
||||
@@ -100,32 +95,15 @@ jobs:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
# Handle regular versions and pre-release versions differently
|
||||
if [[ "$VERSION" == *"-"* ]]; then
|
||||
# This is a pre-release version (contains a hyphen)
|
||||
# Extract the base version without the pre-release suffix
|
||||
BASE_VERSION=${VERSION%%-*}
|
||||
# Look for the latest release of the same base version
|
||||
REGEX="^$PKG_NAME==$BASE_VERSION\$"
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
|
||||
|
||||
# If no exact base version match, look for the latest release of any kind
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
|
||||
fi
|
||||
else
|
||||
# Regular version handling
|
||||
PREV_TAG="$PKG_NAME==${VERSION%.*}.$(( ${VERSION##*.} - 1 ))"; [[ "${VERSION##*.}" -eq 0 ]] && PREV_TAG=""
|
||||
PREV_TAG="$PKG_NAME==${VERSION%.*}.$(( ${VERSION##*.} - 1 ))"; [[ "${VERSION##*.}" -eq 0 ]] && PREV_TAG=""
|
||||
|
||||
# backup case if releasing e.g. 0.3.0, looks up last release
|
||||
# note if last release (chronologically) was e.g. 0.1.47 it will get
|
||||
# that instead of the last 0.2 release
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
echo $REGEX
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P $REGEX || true) | head -1)
|
||||
fi
|
||||
# backup case if releasing e.g. 0.3.0, looks up last release
|
||||
# note if last release (chronologically) was e.g. 0.1.47 it will get
|
||||
# that instead of the last 0.2 release
|
||||
if [ -z "$PREV_TAG" ]; then
|
||||
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
|
||||
echo $REGEX
|
||||
PREV_TAG=$(git tag --sort=-creatordate | (grep -P $REGEX || true) | head -1)
|
||||
fi
|
||||
|
||||
# if PREV_TAG is empty, let it be empty
|
||||
@@ -206,11 +184,13 @@ jobs:
|
||||
# - The package is published, and it breaks on the missing dependency when
|
||||
# used in the real world.
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
@@ -233,18 +213,16 @@ jobs:
|
||||
# - attempt install again after 5 seconds if it fails because there is
|
||||
# sometimes a delay in availability on test pypi
|
||||
run: |
|
||||
uv venv
|
||||
VIRTUAL_ENV=.venv uv pip install dist/*.whl
|
||||
poetry run pip install dist/*.whl
|
||||
|
||||
# Replace all dashes in the package name with underscores,
|
||||
# since that's how Python imports packages with dashes in the name.
|
||||
# also remove _official suffix
|
||||
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g | sed s/_official//g)"
|
||||
IMPORT_NAME="$(echo "$PKG_NAME" | sed s/-/_/g)"
|
||||
|
||||
uv run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
|
||||
poetry run python -c "import $IMPORT_NAME; print(dir($IMPORT_NAME))"
|
||||
|
||||
- name: Import test dependencies
|
||||
run: uv sync --group test
|
||||
run: poetry install --with test --no-root
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Overwrite the local version of the package with the built version
|
||||
@@ -255,7 +233,7 @@ jobs:
|
||||
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
|
||||
VERSION: ${{ needs.build.outputs.version }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install dist/*.whl
|
||||
poetry run pip install dist/*.whl
|
||||
|
||||
- name: Run unit tests
|
||||
run: make tests
|
||||
@@ -264,15 +242,15 @@ jobs:
|
||||
- name: Check for prerelease versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
uv run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
poetry run python $GITHUB_WORKSPACE/.github/scripts/check_prerelease_dependencies.py pyproject.toml
|
||||
|
||||
- name: Get minimum versions
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
id: min-version
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install packaging requests
|
||||
python_version="$(uv run python --version | awk '{print $2}')"
|
||||
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
|
||||
poetry run pip install packaging requests
|
||||
python_version="$(poetry run python --version | awk '{print $2}')"
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
@@ -281,12 +259,12 @@ jobs:
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install --force-reinstall $MIN_VERSIONS --editable .
|
||||
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Import integration test dependencies
|
||||
run: uv sync --group test --group test_integration
|
||||
run: poetry install --with test,test_integration
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Run integration tests
|
||||
@@ -314,6 +292,8 @@ jobs:
|
||||
NOMIC_API_KEY: ${{ secrets.NOMIC_API_KEY }}
|
||||
WATSONX_APIKEY: ${{ secrets.WATSONX_APIKEY }}
|
||||
WATSONX_PROJECT_ID: ${{ secrets.WATSONX_PROJECT_ID }}
|
||||
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
|
||||
PINECONE_ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}
|
||||
ASTRA_DB_API_ENDPOINT: ${{ secrets.ASTRA_DB_API_ENDPOINT }}
|
||||
ASTRA_DB_APPLICATION_TOKEN: ${{ secrets.ASTRA_DB_APPLICATION_TOKEN }}
|
||||
ASTRA_DB_KEYSPACE: ${{ secrets.ASTRA_DB_KEYSPACE }}
|
||||
@@ -325,93 +305,15 @@ jobs:
|
||||
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
run: make integration_tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
# Test select published packages against new core
|
||||
test-prior-published-packages-against-new-core:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
partner: [openai, anthropic]
|
||||
fail-fast: false # Continue testing other partners if one fails
|
||||
env:
|
||||
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
|
||||
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
|
||||
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
|
||||
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
# We implement this conditional as Github Actions does not have good support
|
||||
# for conditionally needing steps. https://github.com/actions/runner/issues/491
|
||||
- name: Check if libs/core
|
||||
run: |
|
||||
if [ "${{ startsWith(inputs.working-directory, 'libs/core') }}" != "true" ]; then
|
||||
echo "Not in libs/core. Exiting successfully."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
- name: Set up Python + uv
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
uses: "./.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
with:
|
||||
name: dist
|
||||
path: ${{ inputs.working-directory }}/dist/
|
||||
|
||||
- name: Test against ${{ matrix.partner }}
|
||||
if: startsWith(inputs.working-directory, 'libs/core')
|
||||
run: |
|
||||
# Identify latest tag
|
||||
LATEST_PACKAGE_TAG="$(
|
||||
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
|
||||
| awk '{print $2}' \
|
||||
| sed 's|refs/tags/||' \
|
||||
| sort -Vr \
|
||||
| head -n 1
|
||||
)"
|
||||
echo "Latest package tag: $LATEST_PACKAGE_TAG"
|
||||
|
||||
# Shallow-fetch just that single tag
|
||||
git fetch --depth=1 origin tag "$LATEST_PACKAGE_TAG"
|
||||
|
||||
# Checkout the latest package files
|
||||
rm -rf $GITHUB_WORKSPACE/libs/partners/${{ matrix.partner }}/*
|
||||
cd $GITHUB_WORKSPACE/libs/partners/${{ matrix.partner }}
|
||||
git checkout "$LATEST_PACKAGE_TAG" -- .
|
||||
|
||||
# Print as a sanity check
|
||||
echo "Version number from pyproject.toml: "
|
||||
cat pyproject.toml | grep "version = "
|
||||
|
||||
# Run tests
|
||||
uv sync --group test --group test_integration
|
||||
uv pip install ../../core/dist/*.whl
|
||||
make integration_tests
|
||||
|
||||
publish:
|
||||
needs:
|
||||
- build
|
||||
- release-notes
|
||||
- test-pypi-publish
|
||||
- pre-release-checks
|
||||
- test-prior-published-packages-against-new-core
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
# This permission is used for trusted publishing:
|
||||
@@ -428,10 +330,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
@@ -467,10 +372,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
|
||||
20
.github/workflows/_test.yml
vendored
20
.github/workflows/_test.yml
vendored
@@ -13,8 +13,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -27,14 +26,17 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
id: setup-python
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test --dev
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Run core tests
|
||||
shell: bash
|
||||
@@ -46,9 +48,9 @@ jobs:
|
||||
id: min-version
|
||||
shell: bash
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install packaging tomli requests
|
||||
python_version="$(uv run python --version | awk '{print $2}')"
|
||||
min_versions="$(uv run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
|
||||
poetry run pip install packaging tomli requests
|
||||
python_version="$(poetry run python --version | awk '{print $2}')"
|
||||
min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)"
|
||||
echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT"
|
||||
echo "min-versions=$min_versions"
|
||||
|
||||
@@ -57,7 +59,7 @@ jobs:
|
||||
env:
|
||||
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install $MIN_VERSIONS
|
||||
poetry run pip install $MIN_VERSIONS
|
||||
make tests
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
|
||||
14
.github/workflows/_test_doc_imports.yml
vendored
14
.github/workflows/_test_doc_imports.yml
vendored
@@ -9,7 +9,7 @@ on:
|
||||
description: "Python version to use"
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -19,23 +19,25 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Install langchain editable
|
||||
run: |
|
||||
VIRTUAL_ENV=.venv uv pip install langchain-experimental -e libs/core libs/langchain libs/community
|
||||
poetry run pip install langchain-experimental -e libs/core libs/langchain libs/community
|
||||
|
||||
- name: Check doc imports
|
||||
shell: bash
|
||||
run: |
|
||||
uv run python docs/scripts/check_imports.py
|
||||
poetry run python docs/scripts/check_imports.py
|
||||
|
||||
- name: Ensure the test did not create any additional files
|
||||
shell: bash
|
||||
|
||||
14
.github/workflows/_test_pydantic.yml
vendored
14
.github/workflows/_test_pydantic.yml
vendored
@@ -18,8 +18,7 @@ on:
|
||||
description: "Pydantic version to test."
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -32,18 +31,21 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ inputs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: core
|
||||
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: uv sync --group test
|
||||
run: poetry install --with test
|
||||
|
||||
- name: Overwrite pydantic version
|
||||
shell: bash
|
||||
run: VIRTUAL_ENV=.venv uv pip install pydantic~=${{ inputs.pydantic-version }}
|
||||
run: poetry run pip install pydantic~=${{ inputs.pydantic-version }}
|
||||
|
||||
- name: Run core tests
|
||||
shell: bash
|
||||
|
||||
26
.github/workflows/_test_release.yml
vendored
26
.github/workflows/_test_release.yml
vendored
@@ -14,8 +14,8 @@ on:
|
||||
description: "Release from a non-master branch (danger!)"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.11"
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -29,10 +29,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: release
|
||||
|
||||
# We want to keep this build stage *separate* from the release stage,
|
||||
# so that there's no sharing of permissions between them.
|
||||
@@ -46,7 +49,7 @@ jobs:
|
||||
# > from the publish job.
|
||||
# https://github.com/pypa/gh-action-pypi-publish#non-goals
|
||||
- name: Build project for distribution
|
||||
run: uv build
|
||||
run: poetry build
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
|
||||
- name: Upload build
|
||||
@@ -57,18 +60,11 @@ jobs:
|
||||
|
||||
- name: Check Version
|
||||
id: check-version
|
||||
shell: python
|
||||
shell: bash
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
run: |
|
||||
import os
|
||||
import tomllib
|
||||
with open("pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
pkg_name = data["project"]["name"]
|
||||
version = data["project"]["version"]
|
||||
with open(os.environ["GITHUB_OUTPUT"], "a") as f:
|
||||
f.write(f"pkg-name={pkg_name}\n")
|
||||
f.write(f"version={version}\n")
|
||||
echo pkg-name="$(poetry version | cut -d ' ' -f 1)" >> $GITHUB_OUTPUT
|
||||
echo version="$(poetry version --short)" >> $GITHUB_OUTPUT
|
||||
|
||||
publish:
|
||||
needs:
|
||||
|
||||
13
.github/workflows/api_doc_build.yml
vendored
13
.github/workflows/api_doc_build.yml
vendored
@@ -5,6 +5,7 @@ on:
|
||||
schedule:
|
||||
- cron: '0 13 * * *'
|
||||
env:
|
||||
POETRY_VERSION: "1.8.4"
|
||||
PYTHON_VERSION: "3.11"
|
||||
|
||||
jobs:
|
||||
@@ -45,18 +46,20 @@ jobs:
|
||||
fi
|
||||
done
|
||||
|
||||
- name: Setup python ${{ env.PYTHON_VERSION }}
|
||||
uses: actions/setup-python@v5
|
||||
id: setup-python
|
||||
- name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
cache-key: api-docs
|
||||
working-directory: langchain
|
||||
|
||||
- name: Install initial py deps
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m pip install -U uv
|
||||
python -m uv pip install --upgrade --no-cache-dir pip setuptools pyyaml
|
||||
|
||||
|
||||
- name: Move libs with script
|
||||
run: python langchain/.github/scripts/prep_api_docs_build.py
|
||||
env:
|
||||
@@ -69,7 +72,7 @@ jobs:
|
||||
- name: Install dependencies
|
||||
working-directory: langchain
|
||||
run: |
|
||||
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}") --overrides ./docs/vercel_overrides.txt
|
||||
python -m uv pip install $(ls ./libs/partners | xargs -I {} echo "./libs/partners/{}")
|
||||
python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental libs/standard-tests
|
||||
python -m uv pip install -r docs/api_reference/requirements.txt
|
||||
|
||||
|
||||
25
.github/workflows/check_diffs.yml
vendored
25
.github/workflows/check_diffs.yml
vendored
@@ -5,7 +5,6 @@ on:
|
||||
push:
|
||||
branches: [master]
|
||||
pull_request:
|
||||
merge_group:
|
||||
|
||||
# If another push to the same PR or branch happens while this workflow is still running,
|
||||
# cancel the earlier run in favor of the next run.
|
||||
@@ -18,8 +17,7 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
UV_NO_SYNC: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -128,19 +126,24 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python ${{ matrix.job-configs.python-version }} + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python ${{ matrix.job-configs.python-version }} + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.job-configs.python-version }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ matrix.job-configs.working-directory }}
|
||||
cache-key: extended
|
||||
|
||||
- name: Install dependencies and run extended tests
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Running extended tests, installing dependencies with uv..."
|
||||
uv venv
|
||||
uv sync --group test
|
||||
VIRTUAL_ENV=.venv uv pip install -r extended_testing_deps.txt
|
||||
VIRTUAL_ENV=.venv make extended_tests
|
||||
echo "Running extended tests, installing dependencies with poetry..."
|
||||
poetry install --with test
|
||||
poetry run pip install uv
|
||||
poetry run uv pip install -r extended_testing_deps.txt
|
||||
|
||||
- name: Run extended tests
|
||||
run: make extended_tests
|
||||
|
||||
- name: Ensure the tests did not create any additional files
|
||||
shell: bash
|
||||
|
||||
15
.github/workflows/run_notebooks.yml
vendored
15
.github/workflows/run_notebooks.yml
vendored
@@ -15,7 +15,7 @@ on:
|
||||
- cron: '0 13 * * *'
|
||||
|
||||
env:
|
||||
UV_FROZEN: "true"
|
||||
POETRY_VERSION: "1.8.4"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
@@ -25,10 +25,13 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python + uv
|
||||
uses: "./.github/actions/uv_setup"
|
||||
- name: Set up Python + Poetry ${{ env.POETRY_VERSION }}
|
||||
uses: "./.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ github.event.inputs.python_version || '3.11' }}
|
||||
poetry-version: ${{ env.POETRY_VERSION }}
|
||||
working-directory: ${{ inputs.working-directory }}
|
||||
cache-key: run-notebooks
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
@@ -45,17 +48,17 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv sync --group dev --group test
|
||||
poetry install --with dev,test
|
||||
|
||||
- name: Pre-download files
|
||||
run: |
|
||||
uv run python docs/scripts/cache_data.py
|
||||
poetry run python docs/scripts/cache_data.py
|
||||
curl -s https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql | sqlite3 docs/docs/how_to/Chinook.db
|
||||
cp docs/docs/how_to/Chinook.db docs/docs/tutorials/Chinook.db
|
||||
|
||||
- name: Prepare notebooks
|
||||
run: |
|
||||
uv run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
|
||||
poetry run python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells --working-directory ${{ github.event.inputs.working-directory || 'all' }}
|
||||
|
||||
- name: Run notebooks
|
||||
env:
|
||||
|
||||
25
.github/workflows/scheduled_test.yml
vendored
25
.github/workflows/scheduled_test.yml
vendored
@@ -14,9 +14,7 @@ on:
|
||||
|
||||
env:
|
||||
POETRY_VERSION: "1.8.4"
|
||||
UV_FROZEN: "true"
|
||||
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/xai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
|
||||
POETRY_LIBS: ("libs/partners/google-vertexai" "libs/partners/google-genai" "libs/partners/aws")
|
||||
DEFAULT_LIBS: '["libs/partners/openai", "libs/partners/anthropic", "libs/partners/fireworks", "libs/partners/groq", "libs/partners/mistralai", "libs/partners/google-vertexai", "libs/partners/google-genai", "libs/partners/aws"]'
|
||||
|
||||
jobs:
|
||||
compute-matrix:
|
||||
@@ -81,8 +79,7 @@ jobs:
|
||||
mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai
|
||||
mv langchain-aws/libs/aws langchain/libs/partners/aws
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} with poetry
|
||||
if: contains(env.POETRY_LIBS, matrix.working-directory)
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: "./langchain/.github/actions/poetry_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
@@ -90,12 +87,6 @@ jobs:
|
||||
working-directory: langchain/${{ matrix.working-directory }}
|
||||
cache-key: scheduled
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }} + uv
|
||||
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
|
||||
uses: "./langchain/.github/actions/uv_setup"
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: 'Authenticate to Google Cloud'
|
||||
id: 'auth'
|
||||
uses: google-github-actions/auth@v2
|
||||
@@ -109,20 +100,12 @@ jobs:
|
||||
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
|
||||
aws-region: ${{ secrets.AWS_REGION }}
|
||||
|
||||
- name: Install dependencies (poetry)
|
||||
if: contains(env.POETRY_LIBS, matrix.working-directory)
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with poetry..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
poetry install --with=test_integration,test
|
||||
|
||||
- name: Install dependencies (uv)
|
||||
if: "!contains(env.POETRY_LIBS, matrix.working-directory)"
|
||||
run: |
|
||||
echo "Running scheduled tests, installing dependencies with uv..."
|
||||
cd langchain/${{ matrix.working-directory }}
|
||||
uv sync --group test --group test_integration
|
||||
|
||||
- name: Run integration tests
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
@@ -134,12 +117,10 @@ jobs:
|
||||
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
|
||||
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
|
||||
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${{ secrets.HUGGINGFACEHUB_API_TOKEN }}
|
||||
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
|
||||
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
||||
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
|
||||
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
|
||||
GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }}
|
||||
|
||||
@@ -1,123 +0,0 @@
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: core
|
||||
name: format core
|
||||
language: system
|
||||
entry: make -C libs/core format
|
||||
files: ^libs/core/
|
||||
pass_filenames: false
|
||||
- id: community
|
||||
name: format community
|
||||
language: system
|
||||
entry: make -C libs/community format
|
||||
files: ^libs/community/
|
||||
pass_filenames: false
|
||||
- id: langchain
|
||||
name: format langchain
|
||||
language: system
|
||||
entry: make -C libs/langchain format
|
||||
files: ^libs/langchain/
|
||||
pass_filenames: false
|
||||
- id: standard-tests
|
||||
name: format standard-tests
|
||||
language: system
|
||||
entry: make -C libs/standard-tests format
|
||||
files: ^libs/standard-tests/
|
||||
pass_filenames: false
|
||||
- id: text-splitters
|
||||
name: format text-splitters
|
||||
language: system
|
||||
entry: make -C libs/text-splitters format
|
||||
files: ^libs/text-splitters/
|
||||
pass_filenames: false
|
||||
- id: anthropic
|
||||
name: format partners/anthropic
|
||||
language: system
|
||||
entry: make -C libs/partners/anthropic format
|
||||
files: ^libs/partners/anthropic/
|
||||
pass_filenames: false
|
||||
- id: chroma
|
||||
name: format partners/chroma
|
||||
language: system
|
||||
entry: make -C libs/partners/chroma format
|
||||
files: ^libs/partners/chroma/
|
||||
pass_filenames: false
|
||||
- id: couchbase
|
||||
name: format partners/couchbase
|
||||
language: system
|
||||
entry: make -C libs/partners/couchbase format
|
||||
files: ^libs/partners/couchbase/
|
||||
pass_filenames: false
|
||||
- id: exa
|
||||
name: format partners/exa
|
||||
language: system
|
||||
entry: make -C libs/partners/exa format
|
||||
files: ^libs/partners/exa/
|
||||
pass_filenames: false
|
||||
- id: fireworks
|
||||
name: format partners/fireworks
|
||||
language: system
|
||||
entry: make -C libs/partners/fireworks format
|
||||
files: ^libs/partners/fireworks/
|
||||
pass_filenames: false
|
||||
- id: groq
|
||||
name: format partners/groq
|
||||
language: system
|
||||
entry: make -C libs/partners/groq format
|
||||
files: ^libs/partners/groq/
|
||||
pass_filenames: false
|
||||
- id: huggingface
|
||||
name: format partners/huggingface
|
||||
language: system
|
||||
entry: make -C libs/partners/huggingface format
|
||||
files: ^libs/partners/huggingface/
|
||||
pass_filenames: false
|
||||
- id: mistralai
|
||||
name: format partners/mistralai
|
||||
language: system
|
||||
entry: make -C libs/partners/mistralai format
|
||||
files: ^libs/partners/mistralai/
|
||||
pass_filenames: false
|
||||
- id: nomic
|
||||
name: format partners/nomic
|
||||
language: system
|
||||
entry: make -C libs/partners/nomic format
|
||||
files: ^libs/partners/nomic/
|
||||
pass_filenames: false
|
||||
- id: ollama
|
||||
name: format partners/ollama
|
||||
language: system
|
||||
entry: make -C libs/partners/ollama format
|
||||
files: ^libs/partners/ollama/
|
||||
pass_filenames: false
|
||||
- id: openai
|
||||
name: format partners/openai
|
||||
language: system
|
||||
entry: make -C libs/partners/openai format
|
||||
files: ^libs/partners/openai/
|
||||
pass_filenames: false
|
||||
- id: prompty
|
||||
name: format partners/prompty
|
||||
language: system
|
||||
entry: make -C libs/partners/prompty format
|
||||
files: ^libs/partners/prompty/
|
||||
pass_filenames: false
|
||||
- id: qdrant
|
||||
name: format partners/qdrant
|
||||
language: system
|
||||
entry: make -C libs/partners/qdrant format
|
||||
files: ^libs/partners/qdrant/
|
||||
pass_filenames: false
|
||||
- id: voyageai
|
||||
name: format partners/voyageai
|
||||
language: system
|
||||
entry: make -C libs/partners/voyageai format
|
||||
files: ^libs/partners/voyageai/
|
||||
pass_filenames: false
|
||||
- id: root
|
||||
name: format docs, cookbook
|
||||
language: system
|
||||
entry: make format
|
||||
files: ^(docs|cookbook)/
|
||||
pass_filenames: false
|
||||
36
Makefile
36
Makefile
@@ -1,8 +1,5 @@
|
||||
.PHONY: all clean help docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck spell_check spell_fix lint lint_package lint_tests format format_diff
|
||||
|
||||
.EXPORT_ALL_VARIABLES:
|
||||
UV_FROZEN = true
|
||||
|
||||
## help: Show this help info.
|
||||
help: Makefile
|
||||
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
|
||||
@@ -28,20 +25,20 @@ docs_clean:
|
||||
|
||||
## docs_linkcheck: Run linkchecker on the documentation.
|
||||
docs_linkcheck:
|
||||
uv run --no-group test linkchecker _dist/docs/ --ignore-url node_modules
|
||||
poetry run linkchecker _dist/docs/ --ignore-url node_modules
|
||||
|
||||
## api_docs_build: Build the API Reference documentation.
|
||||
api_docs_build:
|
||||
uv run --no-group test python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && uv run --no-group test make html
|
||||
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
poetry run python docs/api_reference/create_api_rst.py
|
||||
cd docs/api_reference && poetry run make html
|
||||
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
|
||||
API_PKG ?= text-splitters
|
||||
|
||||
api_docs_quick_preview:
|
||||
uv run --no-group test python docs/api_reference/create_api_rst.py $(API_PKG)
|
||||
cd docs/api_reference && uv run make html
|
||||
uv run --no-group test python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
poetry run python docs/api_reference/create_api_rst.py $(API_PKG)
|
||||
cd docs/api_reference && poetry run make html
|
||||
poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/
|
||||
open docs/api_reference/_build/html/reference.html
|
||||
|
||||
## api_docs_clean: Clean the API Reference documentation build artifacts.
|
||||
@@ -53,15 +50,15 @@ api_docs_clean:
|
||||
|
||||
## api_docs_linkcheck: Run linkchecker on the API Reference documentation.
|
||||
api_docs_linkcheck:
|
||||
uv run --no-group test linkchecker docs/api_reference/_build/html/index.html
|
||||
poetry run linkchecker docs/api_reference/_build/html/index.html
|
||||
|
||||
## spell_check: Run codespell on the project.
|
||||
spell_check:
|
||||
uv run --no-group test codespell --toml pyproject.toml
|
||||
poetry run codespell --toml pyproject.toml
|
||||
|
||||
## spell_fix: Run codespell on the project and fix the errors.
|
||||
spell_fix:
|
||||
uv run --no-group test codespell --toml pyproject.toml -w
|
||||
poetry run codespell --toml pyproject.toml -w
|
||||
|
||||
######################
|
||||
# LINTING AND FORMATTING
|
||||
@@ -69,9 +66,9 @@ spell_fix:
|
||||
|
||||
## lint: Run linting on the project.
|
||||
lint lint_package lint_tests:
|
||||
uv run --group lint ruff check docs cookbook
|
||||
uv run --group lint ruff format docs cookbook cookbook --diff
|
||||
uv run --group lint ruff check --select I docs cookbook
|
||||
poetry run ruff check docs cookbook
|
||||
poetry run ruff format docs cookbook cookbook --diff
|
||||
poetry run ruff check --select I docs cookbook
|
||||
git --no-pager grep 'from langchain import' docs cookbook | grep -vE 'from langchain import (hub)' && echo "Error: no importing langchain from root in docs, except for hub" && exit 1 || exit 0
|
||||
|
||||
git --no-pager grep 'api.python.langchain.com' -- docs/docs ':!docs/docs/additional_resources/arxiv_references.mdx' ':!docs/docs/integrations/document_loaders/sitemap.ipynb' || exit 0 && \
|
||||
@@ -80,8 +77,5 @@ lint lint_package lint_tests:
|
||||
|
||||
## format: Format the project files.
|
||||
format format_diff:
|
||||
uv run --group lint ruff format docs cookbook
|
||||
uv run --group lint ruff check --select I --fix docs cookbook
|
||||
|
||||
update-package-downloads:
|
||||
uv run python docs/scripts/packages_yml_get_downloads.py
|
||||
poetry run ruff format docs cookbook
|
||||
poetry run ruff check --select I --fix docs cookbook
|
||||
|
||||
176
README.md
176
README.md
@@ -1,12 +1,6 @@
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: light)" srcset="docs/static/img/logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: dark)" srcset="docs/static/img/logo-light.svg">
|
||||
<img alt="LangChain Logo" src="docs/static/img/logo-dark.svg" width="80%">
|
||||
</picture>
|
||||
# 🦜️🔗 LangChain
|
||||
|
||||
<div>
|
||||
<br>
|
||||
</div>
|
||||
⚡ Build context-aware reasoning applications ⚡
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/releases)
|
||||
[](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
|
||||
@@ -18,65 +12,131 @@
|
||||
[](https://codespaces.new/langchain-ai/langchain)
|
||||
[](https://twitter.com/langchainai)
|
||||
|
||||
> [!NOTE]
|
||||
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
|
||||
|
||||
LangChain is a framework for building LLM-powered applications. It helps you chain
|
||||
together interoperable components and third-party integrations to simplify AI
|
||||
application development — all while future-proofing decisions as the underlying
|
||||
technology evolves.
|
||||
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
|
||||
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
|
||||
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
|
||||
|
||||
## Quick Install
|
||||
|
||||
With pip:
|
||||
|
||||
```bash
|
||||
pip install -U langchain
|
||||
pip install langchain
|
||||
```
|
||||
|
||||
To learn more about LangChain, check out
|
||||
[the docs](https://python.langchain.com/docs/introduction/). If you’re looking for more
|
||||
advanced customization or agent orchestration, check out
|
||||
[LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building
|
||||
controllable agent workflows.
|
||||
With conda:
|
||||
|
||||
## Why use LangChain?
|
||||
```bash
|
||||
conda install langchain -c conda-forge
|
||||
```
|
||||
|
||||
LangChain helps developers build applications powered by LLMs through a standard
|
||||
interface for models, embeddings, vector stores, and more.
|
||||
## 🤔 What is LangChain?
|
||||
|
||||
Use LangChain for:
|
||||
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and
|
||||
external / internal systems, drawing from LangChain’s vast library of integrations with
|
||||
model providers, tools, vector stores, retrievers, and more.
|
||||
- **Model interoperability**. Swap models in and out as your engineering team
|
||||
experiments to find the best choice for your application’s needs. As the industry
|
||||
frontier evolves, adapt quickly — LangChain’s abstractions keep you moving without
|
||||
losing momentum.
|
||||
**LangChain** is a framework for developing applications powered by large language models (LLMs).
|
||||
|
||||
## LangChain’s ecosystem
|
||||
While the LangChain framework can be used standalone, it also integrates seamlessly
|
||||
with any LangChain product, giving developers a full suite of tools when building LLM
|
||||
applications.
|
||||
For these applications, LangChain simplifies the entire application lifecycle:
|
||||
|
||||
To improve your LLM application development, pair LangChain with:
|
||||
- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel), [components](https://python.langchain.com/docs/concepts/), and [third-party integrations](https://python.langchain.com/docs/integrations/providers/).
|
||||
Use [LangGraph](https://langchain-ai.github.io/langgraph/) to build stateful agents with first-class streaming and human-in-the-loop support.
|
||||
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
|
||||
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/).
|
||||
|
||||
- [LangSmith](http://www.langchain.com/langsmith) - Helpful for agent evals and
|
||||
observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain
|
||||
visibility in production, and improve performance over time.
|
||||
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can
|
||||
reliably handle complex tasks with LangGraph, our low-level agent orchestration
|
||||
framework. LangGraph offers customizable architecture, long-term memory, and
|
||||
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
|
||||
Uber, Klarna, and GitLab.
|
||||
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/#langgraph-platform) - Deploy
|
||||
and scale agents effortlessly with a purpose-built deployment platform for long
|
||||
running, stateful workflows. Discover, reuse, configure, and share agents across
|
||||
teams — and iterate quickly with visual prototyping in
|
||||
[LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
|
||||
### Open-source libraries
|
||||
|
||||
## Additional resources
|
||||
- [Tutorials](https://python.langchain.com/docs/tutorials/): Simple walkthroughs with
|
||||
guided examples on getting started with LangChain.
|
||||
- [How-to Guides](https://python.langchain.com/docs/how_to/): Quick, actionable code
|
||||
snippets for topics such as tool calling, RAG use cases, and more.
|
||||
- [Conceptual Guides](https://python.langchain.com/docs/concepts/): Explanations of key
|
||||
concepts behind the LangChain framework.
|
||||
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
|
||||
navigating base packages and integrations for LangChain.
|
||||
- **`langchain-core`**: Base abstractions and LangChain Expression Language.
|
||||
- **`langchain-community`**: Third party integrations.
|
||||
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
|
||||
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
|
||||
- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph).
|
||||
|
||||
### Productionization:
|
||||
|
||||
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
|
||||
|
||||
### Deployment:
|
||||
|
||||
- **[LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
|
||||
|
||||

|
||||

|
||||
|
||||
## 🧱 What can you build with LangChain?
|
||||
|
||||
**❓ Question answering with RAG**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/tutorials/rag/)
|
||||
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
|
||||
|
||||
**🧱 Extracting structured output**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/tutorials/extraction/)
|
||||
- End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/)
|
||||
|
||||
**🤖 Chatbots**
|
||||
|
||||
- [Documentation](https://python.langchain.com/docs/tutorials/chatbot/)
|
||||
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
|
||||
|
||||
And much more! Head to the [Tutorials](https://python.langchain.com/docs/tutorials/) section of the docs for more.
|
||||
|
||||
## 🚀 How does LangChain help?
|
||||
|
||||
The main value props of the LangChain libraries are:
|
||||
|
||||
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
|
||||
2. **Off-the-shelf chains**: built-in assemblages of components for accomplishing higher-level tasks
|
||||
|
||||
Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.
|
||||
|
||||
## LangChain Expression Language (LCEL)
|
||||
|
||||
LCEL is a key part of LangChain, allowing you to build and organize chains of processes in a straightforward, declarative manner. It was designed to support taking prototypes directly into production without needing to alter any code. This means you can use LCEL to set up everything from basic "prompt + LLM" setups to intricate, multi-step workflows.
|
||||
|
||||
- **[Overview](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits
|
||||
- **[Interface](https://python.langchain.com/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects
|
||||
- **[Primitives](https://python.langchain.com/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes
|
||||
- **[Cheatsheet](https://python.langchain.com/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns
|
||||
|
||||
## Components
|
||||
|
||||
Components fall into the following **modules**:
|
||||
|
||||
**📃 Model I/O**
|
||||
|
||||
This includes [prompt management](https://python.langchain.com/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/docs/concepts/#output-parsers).
|
||||
|
||||
**📚 Retrieval**
|
||||
|
||||
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/docs/concepts/#retrievers) it for use in the generation step.
|
||||
|
||||
**🤖 Agents**
|
||||
|
||||
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents.
|
||||
|
||||
## 📖 Documentation
|
||||
|
||||
Please see [here](https://python.langchain.com) for full documentation, which includes:
|
||||
|
||||
- [Introduction](https://python.langchain.com/docs/introduction/): Overview of the framework and the structure of the docs.
|
||||
- [Tutorials](https://python.langchain.com/docs/tutorials/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
|
||||
- [How-to guides](https://python.langchain.com/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
|
||||
- [Conceptual guide](https://python.langchain.com/docs/concepts/): Conceptual explanations of the key parts of the framework.
|
||||
- [API Reference](https://python.langchain.com/api_reference/): Thorough documentation of every class and method.
|
||||
|
||||
## 🌐 Ecosystem
|
||||
|
||||
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
|
||||
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
|
||||
- [🦜🕸️ LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/#langgraph-platform): Deploy LLM applications built with LangGraph into production.
|
||||
|
||||
## 💁 Contributing
|
||||
|
||||
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
|
||||
|
||||
For detailed information on how to contribute, see [here](https://python.langchain.com/docs/contributing/).
|
||||
|
||||
## 🌟 Contributors
|
||||
|
||||
[](https://github.com/langchain-ai/langchain/graphs/contributors)
|
||||
|
||||
@@ -21,6 +21,7 @@ Notebook | Description
|
||||
[code-analysis-deeplake.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/code-analysis-deeplake.ipynb) | Analyze its own code base with the help of gpt and activeloop's deep lake.
|
||||
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval.ipynb) | Build a custom agent that can interact with ai plugins by retrieving tools and creating natural language wrappers around openapi endpoints.
|
||||
[custom_agent_with_plugin_retri...](https://github.com/langchain-ai/langchain/tree/master/cookbook/custom_agent_with_plugin_retrieval_using_plugnplai.ipynb) | Build a custom agent with plugin retrieval functionality, utilizing ai plugins from the `plugnplai` directory.
|
||||
[databricks_sql_db.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/databricks_sql_db.ipynb) | Connect to databricks runtimes and databricks sql.
|
||||
[deeplake_semantic_search_over_...](https://github.com/langchain-ai/langchain/tree/master/cookbook/deeplake_semantic_search_over_chat.ipynb) | Perform semantic search and question-answering over a group chat using activeloop's deep lake with gpt4.
|
||||
[elasticsearch_db_qa.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/elasticsearch_db_qa.ipynb) | Interact with elasticsearch analytics databases in natural language and build search queries via the elasticsearch dsl API.
|
||||
[extraction_openai_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/extraction_openai_tools.ipynb) | Structured Data Extraction with OpenAI Tools
|
||||
@@ -49,7 +50,7 @@ Notebook | Description
|
||||
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
|
||||
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
|
||||
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
|
||||
[rag_upstage_document_parse_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_document_parse_groundedness_check.ipynb) | End-to-end RAG example using Upstage Document Parse and Groundedness Check.
|
||||
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check.
|
||||
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
|
||||
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
|
||||
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
|
||||
|
||||
@@ -31,8 +31,8 @@
|
||||
"source": [
|
||||
"# Optional\n",
|
||||
"import os\n",
|
||||
"# os.environ['LANGSMITH_TRACING'] = 'true' # enables tracing\n",
|
||||
"# os.environ['LANGSMITH_API_KEY'] = <your-api-key>"
|
||||
"# os.environ['LANGCHAIN_TRACING_V2'] = 'true' # enables tracing\n",
|
||||
"# os.environ['LANGCHAIN_API_KEY'] = <your-api-key>"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -66,7 +66,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!python3 -m pip install --upgrade langchain langchain-deeplake openai"
|
||||
"#!python3 -m pip install --upgrade langchain deeplake openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -666,26 +666,89 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Your Deep Lake dataset has been successfully created!\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" \r"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Dataset(path='hub://adilkhan/langchain-code', tensors=['embedding', 'id', 'metadata', 'text'])\n",
|
||||
"\n",
|
||||
" tensor htype shape dtype compression\n",
|
||||
" ------- ------- ------- ------- ------- \n",
|
||||
" embedding embedding (8244, 1536) float32 None \n",
|
||||
" id text (8244, 1) str None \n",
|
||||
" metadata json (8244, 1) str None \n",
|
||||
" text text (8244, 1) str None \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": []
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_deeplake.vectorstores import DeeplakeVectorStore\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"username = \"<USERNAME_OR_ORG>\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"db = DeeplakeVectorStore.from_documents(\n",
|
||||
" documents=texts,\n",
|
||||
" embedding=embeddings,\n",
|
||||
" dataset_path=f\"hub://{username}/langchain-code\",\n",
|
||||
" overwrite=True,\n",
|
||||
"db = DeepLake.from_documents(\n",
|
||||
" texts, embeddings, dataset_path=f\"hub://{username}/langchain-code\", overwrite=True\n",
|
||||
")\n",
|
||||
"db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`Optional`: You can also use Deep Lake's Managed Tensor Database as a hosting service and run queries there. In order to do so, it is necessary to specify the runtime parameter as {'tensor_db': True} during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"# db = DeepLake.from_documents(\n",
|
||||
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
|
||||
"# )\n",
|
||||
"# db"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
@@ -697,16 +760,24 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Deep Lake Dataset in hub://adilkhan/langchain-code already exists, loading from the storage\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db = DeeplakeVectorStore(\n",
|
||||
"db = DeepLake(\n",
|
||||
" dataset_path=f\"hub://{username}/langchain-code\",\n",
|
||||
" read_only=True,\n",
|
||||
" embedding_function=embeddings,\n",
|
||||
" embedding=embeddings,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -725,6 +796,36 @@
|
||||
"retriever.search_kwargs[\"k\"] = 20"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also specify user defined functions using [Deep Lake filters](https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def filter(x):\n",
|
||||
" # filter based on source code\n",
|
||||
" if \"something\" in x[\"text\"].data()[\"value\"]:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" # filter based on path e.g. extension\n",
|
||||
" metadata = x[\"metadata\"].data()[\"value\"]\n",
|
||||
" return \"only_this\" in metadata[\"source\"] or \"also_that\" in metadata[\"source\"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### turn on below for custom filtering\n",
|
||||
"# retriever.search_kwargs['filter'] = filter"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
@@ -736,8 +837,10 @@
|
||||
"from langchain.chains import ConversationalRetrievalChain\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
|
||||
"qa = RetrievalQA.from_llm(model, retriever=retriever)"
|
||||
"model = ChatOpenAI(\n",
|
||||
" model_name=\"gpt-3.5-turbo-0613\"\n",
|
||||
") # 'ada' 'gpt-3.5-turbo-0613' 'gpt-4',\n",
|
||||
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
273
cookbook/databricks_sql_db.ipynb
Normal file
273
cookbook/databricks_sql_db.ipynb
Normal file
@@ -0,0 +1,273 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "707d13a7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Databricks\n",
|
||||
"\n",
|
||||
"This notebook covers how to connect to the [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the SQLDatabase wrapper of LangChain.\n",
|
||||
"It is broken into 3 parts: installation and setup, connecting to Databricks, and examples."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0076d072",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Installation and Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "739b489b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install databricks-sql-connector"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "73113163",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Connecting to Databricks\n",
|
||||
"\n",
|
||||
"You can connect to [Databricks runtimes](https://docs.databricks.com/runtime/index.html) and [Databricks SQL](https://www.databricks.com/product/databricks-sql) using the `SQLDatabase.from_databricks()` method.\n",
|
||||
"\n",
|
||||
"### Syntax\n",
|
||||
"```python\n",
|
||||
"SQLDatabase.from_databricks(\n",
|
||||
" catalog: str,\n",
|
||||
" schema: str,\n",
|
||||
" host: Optional[str] = None,\n",
|
||||
" api_token: Optional[str] = None,\n",
|
||||
" warehouse_id: Optional[str] = None,\n",
|
||||
" cluster_id: Optional[str] = None,\n",
|
||||
" engine_args: Optional[dict] = None,\n",
|
||||
" **kwargs: Any)\n",
|
||||
"```\n",
|
||||
"### Required Parameters\n",
|
||||
"* `catalog`: The catalog name in the Databricks database.\n",
|
||||
"* `schema`: The schema name in the catalog.\n",
|
||||
"\n",
|
||||
"### Optional Parameters\n",
|
||||
"There following parameters are optional. When executing the method in a Databricks notebook, you don't need to provide them in most of the cases.\n",
|
||||
"* `host`: The Databricks workspace hostname, excluding 'https://' part. Defaults to 'DATABRICKS_HOST' environment variable or current workspace if in a Databricks notebook.\n",
|
||||
"* `api_token`: The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. Defaults to 'DATABRICKS_TOKEN' environment variable or a temporary one is generated if in a Databricks notebook.\n",
|
||||
"* `warehouse_id`: The warehouse ID in the Databricks SQL.\n",
|
||||
"* `cluster_id`: The cluster ID in the Databricks Runtime. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to.\n",
|
||||
"* `engine_args`: The arguments to be used when connecting Databricks.\n",
|
||||
"* `**kwargs`: Additional keyword arguments for the `SQLDatabase.from_uri` method."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b11c7e48",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Examples"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "8102bca0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Connecting to Databricks with SQLDatabase wrapper\n",
|
||||
"from langchain_community.utilities import SQLDatabase\n",
|
||||
"\n",
|
||||
"db = SQLDatabase.from_databricks(catalog=\"samples\", schema=\"nyctaxi\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "9dd36f58",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Creating a OpenAI Chat LLM wrapper\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"llm = ChatOpenAI(temperature=0, model_name=\"gpt-4\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5b5c5f1a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### SQL Chain example\n",
|
||||
"\n",
|
||||
"This example demonstrates the use of the [SQL Chain](https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html) for answering a question over a Databricks database."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "36f2270b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.utilities import SQLDatabaseChain\n",
|
||||
"\n",
|
||||
"db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "4e2b5f25",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
|
||||
"What is the average duration of taxi rides that start between midnight and 6am?\n",
|
||||
"SQLQuery:\u001b[32;1m\u001b[1;3mSELECT AVG(UNIX_TIMESTAMP(tpep_dropoff_datetime) - UNIX_TIMESTAMP(tpep_pickup_datetime)) as avg_duration\n",
|
||||
"FROM trips\n",
|
||||
"WHERE HOUR(tpep_pickup_datetime) >= 0 AND HOUR(tpep_pickup_datetime) < 6\u001b[0m\n",
|
||||
"SQLResult: \u001b[33;1m\u001b[1;3m[(987.8122786304605,)]\u001b[0m\n",
|
||||
"Answer:\u001b[32;1m\u001b[1;3mThe average duration of taxi rides that start between midnight and 6am is 987.81 seconds.\u001b[0m\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The average duration of taxi rides that start between midnight and 6am is 987.81 seconds.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"db_chain.run(\n",
|
||||
" \"What is the average duration of taxi rides that start between midnight and 6am?\"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e496d5e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### SQL Database Agent example\n",
|
||||
"\n",
|
||||
"This example demonstrates the use of the [SQL Database Agent](/docs/integrations/tools/sql_database) for answering questions over a Databricks database."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "9918e86a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import create_sql_agent\n",
|
||||
"from langchain_community.agent_toolkits import SQLDatabaseToolkit\n",
|
||||
"\n",
|
||||
"toolkit = SQLDatabaseToolkit(db=db, llm=llm)\n",
|
||||
"agent = create_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "c484a76e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||
"\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n",
|
||||
"Action Input: \u001b[0m\n",
|
||||
"Observation: \u001b[38;5;200m\u001b[1;3mtrips\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mI should check the schema of the trips table to see if it has the necessary columns for trip distance and duration.\n",
|
||||
"Action: schema_sql_db\n",
|
||||
"Action Input: trips\u001b[0m\n",
|
||||
"Observation: \u001b[33;1m\u001b[1;3m\n",
|
||||
"CREATE TABLE trips (\n",
|
||||
"\ttpep_pickup_datetime TIMESTAMP, \n",
|
||||
"\ttpep_dropoff_datetime TIMESTAMP, \n",
|
||||
"\ttrip_distance FLOAT, \n",
|
||||
"\tfare_amount FLOAT, \n",
|
||||
"\tpickup_zip INT, \n",
|
||||
"\tdropoff_zip INT\n",
|
||||
") USING DELTA\n",
|
||||
"\n",
|
||||
"/*\n",
|
||||
"3 rows from trips table:\n",
|
||||
"tpep_pickup_datetime\ttpep_dropoff_datetime\ttrip_distance\tfare_amount\tpickup_zip\tdropoff_zip\n",
|
||||
"2016-02-14 16:52:13+00:00\t2016-02-14 17:16:04+00:00\t4.94\t19.0\t10282\t10171\n",
|
||||
"2016-02-04 18:44:19+00:00\t2016-02-04 18:46:00+00:00\t0.28\t3.5\t10110\t10110\n",
|
||||
"2016-02-17 17:13:57+00:00\t2016-02-17 17:17:55+00:00\t0.7\t5.0\t10103\t10023\n",
|
||||
"*/\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mThe trips table has the necessary columns for trip distance and duration. I will write a query to find the longest trip distance and its duration.\n",
|
||||
"Action: query_checker_sql_db\n",
|
||||
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
|
||||
"Observation: \u001b[31;1m\u001b[1;3mSELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mThe query is correct. I will now execute it to find the longest trip distance and its duration.\n",
|
||||
"Action: query_sql_db\n",
|
||||
"Action Input: SELECT trip_distance, tpep_dropoff_datetime - tpep_pickup_datetime as duration FROM trips ORDER BY trip_distance DESC LIMIT 1\u001b[0m\n",
|
||||
"Observation: \u001b[36;1m\u001b[1;3m[(30.6, '0 00:43:31.000000000')]\u001b[0m\n",
|
||||
"Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
|
||||
"Final Answer: The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'The longest trip distance is 30.6 miles and it took 43 minutes and 31 seconds.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"agent.run(\"What is the longest trip distance and how long did it take?\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -115,7 +115,7 @@
|
||||
"\n",
|
||||
"PROMPT_TEMPLATE = \"\"\"Given an input question, create a syntactically correct Elasticsearch query to run. Unless the user specifies in their question a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n",
|
||||
"\n",
|
||||
"Unless told to do not query for all the columns from a specific index, only ask for a few relevant columns given the question.\n",
|
||||
"Unless told to do not query for all the columns from a specific index, only ask for a the few relevant columns given the question.\n",
|
||||
"\n",
|
||||
"Pay attention to use only the column names that you can see in the mapping description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which index. Return the query as valid json.\n",
|
||||
"\n",
|
||||
|
||||
@@ -86,15 +86,15 @@
|
||||
"\n",
|
||||
"Environment Variables:\n",
|
||||
"- USER_AGENT: Specifies the user agent string to be used.\n",
|
||||
"- LANGSMITH_TRACING: Enables or disables tracing for LangChain.\n",
|
||||
"- LANGSMITH_API_KEY: API key for accessing LangChain services.\n",
|
||||
"- LANGCHAIN_TRACING_V2: Enables or disables tracing for LangChain.\n",
|
||||
"- LANGCHAIN_API_KEY: API key for accessing LangChain services.\n",
|
||||
"- TAVILY_API_KEY: API key for accessing Tavily services.\n",
|
||||
"\"\"\"\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"USER_AGENT\"] = \"myagent\"\n",
|
||||
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"os.environ[\"LANGSMITH_API_KEY\"] = \"xxxx\"\n",
|
||||
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"os.environ[\"LANGCHAIN_API_KEY\"] = \"xxxx\"\n",
|
||||
"os.environ[\"TAVILY_API_KEY\"] = \"tvly-xxxx\""
|
||||
]
|
||||
},
|
||||
|
||||
@@ -124,8 +124,8 @@
|
||||
"# Optional-- If you want to enable Langsmith -- good for debugging\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass()"
|
||||
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -156,7 +156,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Ensure you have an HF_TOKEN in your development environment:\n",
|
||||
"# Ensure you have an HF_TOKEN in your development enviornment:\n",
|
||||
"# access tokens can be created or copied from the Hugging Face platform (https://huggingface.co/docs/hub/en/security-tokens)\n",
|
||||
"\n",
|
||||
"# Load MongoDB's embedded_movies dataset from Hugging Face\n",
|
||||
|
||||
@@ -23,41 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2498a0a1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Packages\n",
|
||||
"\n",
|
||||
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install --quiet -U langchain-vdms langchain-experimental langchain-ollama\n",
|
||||
"\n",
|
||||
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
|
||||
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" \"onnxruntime==1.17.0\" pillow pydantic lxml open_clip_torch"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "78ac6543",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from dotenv import load_dotenv, find_dotenv\n",
|
||||
"# load_dotenv(find_dotenv(), override=True);"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e5c8916e",
|
||||
"id": "6a6b6e73",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Start VDMS Server\n",
|
||||
@@ -68,15 +34,15 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "1e6e2c15",
|
||||
"execution_count": 1,
|
||||
"id": "5f483872",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"a701e5ac3523006e9540b5355e2d872d5d78383eab61562a675d5b9ac21fde65\n"
|
||||
"a1b9206b08ef626e15b356bf9e031171f7c7eb8f956a2733f196f0109246fe2b\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -84,11 +50,45 @@
|
||||
"! docker run --rm -d -p 55559:55555 --name vdms_rag_nb intellabs/vdms:latest\n",
|
||||
"\n",
|
||||
"# Connect to VDMS Vector Store\n",
|
||||
"from langchain_vdms.vectorstores import VDMS_Client\n",
|
||||
"from langchain_community.vectorstores.vdms import VDMS_Client\n",
|
||||
"\n",
|
||||
"vdms_client = VDMS_Client(port=55559)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2498a0a1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Packages\n",
|
||||
"\n",
|
||||
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install --quiet -U vdms langchain-experimental\n",
|
||||
"\n",
|
||||
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
|
||||
"! pip install --quiet pdf2image \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml open_clip_torch"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "78ac6543",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from dotenv import load_dotenv, find_dotenv\n",
|
||||
"# load_dotenv(find_dotenv(), override=True);"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1e94b3fb-8e3e-4736-be0a-ad881626c7bd",
|
||||
@@ -115,12 +115,11 @@
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"# Folder to store pdf and extracted images\n",
|
||||
"base_datapath = Path(\"./data/multimodal_files\").resolve()\n",
|
||||
"datapath = base_datapath / \"images\"\n",
|
||||
"datapath = Path(\"./data/multimodal_files\").resolve()\n",
|
||||
"datapath.mkdir(parents=True, exist_ok=True)\n",
|
||||
"\n",
|
||||
"pdf_url = \"https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\"\n",
|
||||
"pdf_path = str(base_datapath / pdf_url.split(\"/\")[-1])\n",
|
||||
"pdf_path = str(datapath / pdf_url.split(\"/\")[-1])\n",
|
||||
"with open(pdf_path, \"wb\") as f:\n",
|
||||
" f.write(requests.get(pdf_url).content)"
|
||||
]
|
||||
@@ -186,8 +185,8 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain_community.vectorstores import VDMS\n",
|
||||
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
|
||||
"from langchain_vdms import VDMS\n",
|
||||
"\n",
|
||||
"# Create VDMS\n",
|
||||
"vectorstore = VDMS(\n",
|
||||
@@ -313,10 +312,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_community.llms.ollama import Ollama\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_ollama.llms import OllamaLLM\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def prompt_func(data_dict):\n",
|
||||
@@ -341,8 +340,8 @@
|
||||
" \"As an expert art critic and historian, your task is to analyze and interpret images, \"\n",
|
||||
" \"considering their historical and cultural significance. Alongside the images, you will be \"\n",
|
||||
" \"provided with related text to offer context. Both will be retrieved from a vectorstore based \"\n",
|
||||
" \"on user-input keywords. Please use your extensive knowledge and analytical skills to provide a \"\n",
|
||||
" \"comprehensive summary that includes:\\n\"\n",
|
||||
" \"on user-input keywords. Please convert answers to english and use your extensive knowledge \"\n",
|
||||
" \"and analytical skills to provide a comprehensive summary that includes:\\n\"\n",
|
||||
" \"- A detailed description of the visual elements in the image.\\n\"\n",
|
||||
" \"- The historical and cultural context of the image.\\n\"\n",
|
||||
" \"- An interpretation of the image's symbolism and meaning.\\n\"\n",
|
||||
@@ -360,7 +359,7 @@
|
||||
" \"\"\"Multi-modal RAG chain\"\"\"\n",
|
||||
"\n",
|
||||
" # Multi-modal LLM\n",
|
||||
" llm_model = OllamaLLM(\n",
|
||||
" llm_model = Ollama(\n",
|
||||
" verbose=True, temperature=0.5, model=\"llava\", base_url=\"http://localhost:11434\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
@@ -420,121 +419,6 @@
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"© 2017 LARRY D. MOORE\n",
|
||||
"\n",
|
||||
"contemporary criticism of the less-than- thoughtful circumstances under which Lange photographed Thomson, the picture’s power to engage has not diminished. Artists in other countries have appropriated the image, changing the mother’s features into those of other ethnicities, but keeping her expression and the positions of her clinging children. Long after anyone could help the Thompson family, this picture has resonance in another time of national crisis, unemployment and food shortages.\n",
|
||||
"\n",
|
||||
"A striking, but very different picture is a 1900 portrait of the legendary Hin-mah-too-yah- lat-kekt (Chief Joseph) of the Nez Percé people. The Bureau of American Ethnology in Washington, D.C., regularly arranged for its photographer, De Lancey Gill, to photograph Native American delegations that came to the capital to confer with officials about tribal needs and concerns. Although Gill described Chief Joseph as having “an air of gentleness and quiet reserve,” the delegate skeptically appraises the photographer, which is not surprising given that the United States broke five treaties with Chief Joseph and his father between 1855 and 1885.\n",
|
||||
"\n",
|
||||
"More than a glance, second looks may reveal new knowledge into complex histories.\n",
|
||||
"\n",
|
||||
"Anne Wilkes Tucker is the photography curator emeritus of the Museum of Fine Arts, Houston and curator of the “Not an Ostrich” exhibition.\n",
|
||||
"\n",
|
||||
"28\n",
|
||||
"\n",
|
||||
"28 LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"THEYRE WILLING TO HAVE MEENTERTAIN THEM DURING THE DAY,BUT AS SOON AS IT STARTSGETTING DARK, THEY ALLGO OFF, AND LEAVE ME! \n",
|
||||
"ROSA PARKS: IN HER OWN WORDS\n",
|
||||
"\n",
|
||||
"COMIC ART: 120 YEARS OF PANELS AND PAGES\n",
|
||||
"\n",
|
||||
"SHALL NOT BE DENIED: WOMEN FIGHT FOR THE VOTE\n",
|
||||
"\n",
|
||||
"More information loc.gov/exhibits\n",
|
||||
"Nuestra Sefiora de las Iguanas\n",
|
||||
"\n",
|
||||
"Graciela Iturbide’s 1979 portrait of Zobeida Díaz in the town of Juchitán in southeastern Mexico conveys the strength of women and reflects their important contributions to the economy. Díaz, a merchant, was selling iguanas to cook and eat, carrying them on her head, as is customary.\n",
|
||||
"\n",
|
||||
"GRACIELA ITURBIDE. “NUESTRA SEÑORA DE LAS IGUANAS.” 1979. GELATIN SILVER PRINT. © GRACIELA ITURBIDE, USED BY PERMISSION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
|
||||
"\n",
|
||||
"Iturbide requested permission to take a photograph, but this proved challenging because the iguanas were constantly moving, causing Díaz to laugh. The result, however, was a brilliant portrait that the inhabitants of Juchitán claimed with pride. They have reproduced it on posters and erected a statue honoring Díaz and her iguanas. The photo now appears throughout the world, inspiring supporters of feminism, women’s rights and gender equality.\n",
|
||||
"\n",
|
||||
"—Adam Silvia is a curator in the Prints and Photographs Division.\n",
|
||||
"\n",
|
||||
"6\n",
|
||||
"\n",
|
||||
"6 LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"‘Migrant Mother’ is Florence Owens Thompson\n",
|
||||
"\n",
|
||||
"The iconic portrait that became the face of the Great Depression is also the most famous photograph in the collections of the Library of Congress.\n",
|
||||
"\n",
|
||||
"The Library holds the original source of the photo — a nitrate negative measuring 4 by 5 inches. Do you see a faint thumb in the bottom right? The photographer, Dorothea Lange, found the thumb distracting and after a few years had the negative altered to make the thumb almost invisible. Lange’s boss at the Farm Security Administration, Roy Stryker, criticized her action because altering a negative undermines the credibility of a documentary photo.\n",
|
||||
"Shrimp Picker\n",
|
||||
"\n",
|
||||
"The photos and evocative captions of Lewis Hine served as source material for National Child Labor Committee reports and exhibits exposing abusive child labor practices in the United States in the first decades of the 20th century.\n",
|
||||
"\n",
|
||||
"LEWIS WICKES HINE. “MANUEL, THE YOUNG SHRIMP-PICKER, FIVE YEARS OLD, AND A MOUNTAIN OF CHILD-LABOR OYSTER SHELLS BEHIND HIM. HE WORKED LAST YEAR. UNDERSTANDS NOT A WORD OF ENGLISH. DUNBAR, LOPEZ, DUKATE COMPANY. LOCATION: BILOXI, MISSISSIPPI.” FEBRUARY 1911. NATIONAL CHILD LABOR COMMITTEE COLLECTION. PRINTS AND PHOTOGRAPHS DIVISION.\n",
|
||||
"\n",
|
||||
"For 15 years, Hine\n",
|
||||
"\n",
|
||||
"crisscrossed the country, documenting the practices of the worst offenders. His effective use of photography made him one of the committee's greatest publicists in the campaign for legislation to ban child labor.\n",
|
||||
"\n",
|
||||
"Hine was a master at taking photos that catch attention and convey a message and, in this photo, he framed Manuel in a setting that drove home the boy’s small size and unsafe environment.\n",
|
||||
"\n",
|
||||
"Captions on photos of other shrimp pickers emphasized their long working hours as well as one hazard of the job: The acid from the shrimp made pickers’ hands sore and “eats the shoes off your feet.”\n",
|
||||
"\n",
|
||||
"Such images alerted viewers to all that workers, their families and the nation sacrificed when children were part of the labor force. The Library holds paper records of the National Child Labor Committee as well as over 5,000 photographs.\n",
|
||||
"\n",
|
||||
"—Barbara Natanson is head of the Reference Section in the Prints and Photographs Division.\n",
|
||||
"\n",
|
||||
"8\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"Intergenerational Portrait\n",
|
||||
"\n",
|
||||
"Raised on the Apsáalooke (Crow) reservation in Montana, photographer Wendy Red Star created her “Apsáalooke Feminist” self-portrait series with her daughter Beatrice. With a dash of wry humor, mother and daughter are their own first-person narrators.\n",
|
||||
"\n",
|
||||
"Red Star explains the significance of their appearance: “The dress has power: You feel strong and regal wearing it. In my art, the elk tooth dress specifically symbolizes Crow womanhood and the matrilineal line connecting me to my ancestors. As a mother, I spend hours searching for the perfect elk tooth dress materials to make a prized dress for my daughter.”\n",
|
||||
"\n",
|
||||
"In a world that struggles with cultural identities, this photograph shows us the power and beauty of blending traditional and contemporary styles.\n",
|
||||
"‘American Gothic’ Product #216040262 Price: $24\n",
|
||||
"\n",
|
||||
"U.S. Capitol at Night Product #216040052 Price: $24\n",
|
||||
"\n",
|
||||
"Good Reading Ahead Product #21606142 Price: $24\n",
|
||||
"\n",
|
||||
"Gordon Parks created an iconic image with this 1942 photograph of cleaning woman Ella Watson.\n",
|
||||
"\n",
|
||||
"Snow blankets the U.S. Capitol in this classic image by Ernest L. Crandall.\n",
|
||||
"\n",
|
||||
"Start your new year out right with a poster promising good reading for months to come.\n",
|
||||
"\n",
|
||||
"▪ Order online: loc.gov/shop ▪ Order by phone: 888.682.3557\n",
|
||||
"\n",
|
||||
"26\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"LIBRARY OF CONGRESS MAGAZINE\n",
|
||||
"\n",
|
||||
"SUPPORT\n",
|
||||
"\n",
|
||||
"A PICTURE OF PHILANTHROPY Annenberg Foundation Gives $1 Million and a Photographic Collection to the Library.\n",
|
||||
"\n",
|
||||
"A major gift by Wallis Annenberg and the Annenberg Foundation in Los Angeles will support the effort to reimagine the visitor experience at the Library of Congress. The foundation also is donating 1,000 photographic prints from its Annenberg Space for Photography exhibitions to the Library.\n",
|
||||
"\n",
|
||||
"The Library is pursuing a multiyear plan to transform the experience of its nearly 2 million annual visitors, share more of its treasures with the public and show how Library collections connect with visitors’ own creativity and research. The project is part of a strategic plan established by Librarian of Congress Carla Hayden to make the Library more user-centered for Congress, creators and learners of all ages.\n",
|
||||
"\n",
|
||||
"A 2018 exhibition at the Annenberg Space for Photography in Los Angeles featured over 400 photographs from the Library. The Library is planning a future photography exhibition, based on the Annenberg-curated show, along with a documentary film on the Library and its history, produced by the Annenberg Space for Photography.\n",
|
||||
"\n",
|
||||
"“The nation’s library is honored to have the strong support of Wallis Annenberg and the Annenberg Foundation as we enhance the experience for our visitors,” Hayden said. “We know that visitors will find new connections to the Library through the incredible photography collections and countless other treasures held here to document our nation’s history and creativity.”\n",
|
||||
"\n",
|
||||
"To enhance the Library’s holdings, the foundation is giving the Library photographic prints for long-term preservation from 10 other exhibitions hosted at the Annenberg Space for Photography. The Library holds one of the world’s largest photography collections, with about 14 million photos and over 1 million images digitized and available online.\n",
|
||||
"18 LIBRARY OF CONGRESS MAGAZINE\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -577,17 +461,10 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" The image is a black and white photograph by Dorothea Lange titled \"Destitute Pea Pickers in California. Mother of Seven Children. Age Thirty-Two. Nipomo, California.\" It was taken in March 1936 as part of the Farm Security Administration-Office of War Information Collection.\n",
|
||||
"\n",
|
||||
"The photograph features a woman with seven children, who appear to be in a state of poverty and hardship. The woman is seated, looking directly at the camera, while three of her children are standing behind her. They all seem to be dressed in ragged clothing, indicative of their impoverished condition.\n",
|
||||
"\n",
|
||||
"The historical context of this image is related to the Great Depression, which was a period of economic hardship in the United States that lasted from 1929 to 1939. During this time, many people struggled to make ends meet, and poverty was widespread. This photograph captures the plight of one such family during this difficult period.\n",
|
||||
"\n",
|
||||
"The symbolism of the image is multifaceted. The woman's direct gaze at the camera can be seen as a plea for help or an expression of desperation. The ragged clothing of the children serves as a stark reminder of the poverty and hardship experienced by many during this time.\n",
|
||||
"\n",
|
||||
"In terms of connections to the related text, it is mentioned that Florence Owens Thompson, the woman in the photograph, initially regretted having her picture taken. However, she later came to appreciate the importance of the image as a representation of the struggles faced by many during the Great Depression. The mention of Helena Zinkham suggests that she may have played a role in the creation or distribution of this photograph.\n",
|
||||
"\n",
|
||||
"Overall, this image is a powerful depiction of poverty and hardship during the Great Depression, capturing the resilience and struggles of one family amidst difficult times. \n"
|
||||
" The image depicts a woman with several children. The woman appears to be of Cherokee heritage, as suggested by the text provided. The image is described as having been initially regretted by the subject, Florence Owens Thompson, due to her feeling that it did not accurately represent her leadership qualities.\n",
|
||||
"The historical and cultural context of the image is tied to the Great Depression and the Dust Bowl, both of which affected the Cherokee people in Oklahoma. The photograph was taken during this period, and its subject, Florence Owens Thompson, was a leader within her community who worked tirelessly to help those affected by these crises.\n",
|
||||
"The image's symbolism and meaning can be interpreted as a representation of resilience and strength in the face of adversity. The woman is depicted with multiple children, which could signify her role as a caregiver and protector during difficult times.\n",
|
||||
"Connections between the image and the related text include Florence Owens Thompson's leadership qualities and her regretted feelings about the photograph. Additionally, the mention of Dorothea Lange, the photographer who took this photo, ties the image to its historical context and the broader narrative of the Great Depression and Dust Bowl in Oklahoma. \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -614,17 +491,11 @@
|
||||
"source": [
|
||||
"! docker kill vdms_rag_nb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fe4a98ee",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".test-venv",
|
||||
"display_name": ".langchain-venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -638,7 +509,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.10"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -71,9 +71,9 @@
|
||||
"# Optional: LangSmith API keys\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"os.environ[\"LANGSMITH_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
|
||||
"os.environ[\"LANGSMITH_API_KEY\"] = \"api_key\""
|
||||
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
|
||||
"os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.smith.langchain.com\"\n",
|
||||
"os.environ[\"LANGCHAIN_API_KEY\"] = \"api_key\""
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -29,7 +29,7 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"LANGSMITH_PROJECT\"] = \"movie-qa\""
|
||||
"os.environ[\"LANGCHAIN_PROJECT\"] = \"movie-qa\""
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -4,8 +4,8 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# RAG using Upstage Document Parse and Groundedness Check\n",
|
||||
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Document Parse and Groundedness Check."
|
||||
"# RAG using Upstage Layout Analysis and Groundedness Check\n",
|
||||
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Layout Analysis and Groundedness Check."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -23,16 +23,16 @@
|
||||
"from langchain_core.runnables.base import RunnableSerializable\n",
|
||||
"from langchain_upstage import (\n",
|
||||
" ChatUpstage,\n",
|
||||
" UpstageDocumentParseLoader,\n",
|
||||
" UpstageEmbeddings,\n",
|
||||
" UpstageGroundednessCheck,\n",
|
||||
" UpstageLayoutAnalysisLoader,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"model = ChatUpstage()\n",
|
||||
"\n",
|
||||
"files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n",
|
||||
"\n",
|
||||
"loader = UpstageDocumentParseLoader(file_path=files, split=\"element\")\n",
|
||||
"loader = UpstageLayoutAnalysisLoader(file_path=files, split=\"element\")\n",
|
||||
"\n",
|
||||
"docs = loader.load()\n",
|
||||
"\n",
|
||||
@@ -233,7 +233,7 @@ Question: {input}"""
|
||||
|
||||
_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.
|
||||
|
||||
Never query for all the columns from a specific table, only ask for a few relevant columns given the question.
|
||||
Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.
|
||||
|
||||
Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
|
||||
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"76e78b89cee4d6d31154823f93592315df79c28410dfbfc87c9f70cbfdfa648b\n"
|
||||
"2e44b44201c8778b462342ac97f5ccf05a4e02aa8a04505ecde97bf20dcc4cbb\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -49,7 +49,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install --quiet -U langchain-vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
|
||||
"! pip install --quiet -U vdms langchain-experimental sentence-transformers opencv-python open_clip_torch torch accelerate"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -63,16 +63,7 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/data1/cwlacewe/apps/cwlacewe_langchain/.langchain-venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
@@ -89,10 +80,10 @@
|
||||
"from langchain_community.embeddings.sentence_transformer import (\n",
|
||||
" SentenceTransformerEmbeddings,\n",
|
||||
")\n",
|
||||
"from langchain_community.vectorstores.vdms import VDMS, VDMS_Client\n",
|
||||
"from langchain_core.callbacks.manager import CallbackManagerForLLMRun\n",
|
||||
"from langchain_core.runnables import ConfigurableField\n",
|
||||
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
|
||||
"from langchain_vdms.vectorstores import VDMS, VDMS_Client\n",
|
||||
"from transformers import (\n",
|
||||
" AutoModelForCausalLM,\n",
|
||||
" AutoTokenizer,\n",
|
||||
@@ -372,7 +363,7 @@
|
||||
"\t\tThere are 2 shoppers in this video. Shopper 1 is wearing a plaid shirt and a spectacle. Shopper 2 who is not completely captured in the frame seems to wear a black shirt and is moving away with his back turned towards the camera. There is a shelf towards the right of the camera frame. Shopper 2 is hanging an item back to a hanger and then quickly walks away in a similar fashion as shopper 2. Contents of the nearer side of the shelf with respect to camera seems to be camping lanterns and cleansing agents, arranged at the top. In the middle part of the shelf, various tools including grommets, a pocket saw, candles, and other helpful camping items can be observed. Midway through the shelf contains items which appear to be steel containers and items made up of plastic with red, green, orange, and yellow colors, while those at the bottom are packed in cardboard boxes. Contents at the farther part of the shelf are well stocked and organized but are not glaringly visible.\n",
|
||||
"\n",
|
||||
"\tMetadata:\n",
|
||||
"\t\t{'fps': 24.0, 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
|
||||
"\t\t{'fps': 24.0, 'id': 'c6e5f894-b905-46f5-ac9e-4487a9235561', 'total_frames': 120.0, 'video': 'clip16.mp4'}\n",
|
||||
"Retrieved Top matching video!\n",
|
||||
"\n",
|
||||
"\n"
|
||||
@@ -401,12 +392,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Loading checkpoint shards: 100%|██████████| 2/2 [00:18<00:00, 9.01s/it]\n",
|
||||
"WARNING:accelerate.big_modeling:Some parameters are on the meta device because they were offloaded to the cpu.\n"
|
||||
]
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "3edf8783e114487ca490d8dec5c46884",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
"text/plain": [
|
||||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@@ -558,7 +555,7 @@
|
||||
"\t\tA single shopper is seen in this video standing facing the shelf and in the bottom part of the frame. He's wearing a light-colored shirt and a spectacle. The shopper is carrying a red colored basket in his left hand. The entire basket is not clearly visible, but it does seem to contain something in a blue colored package which the shopper has just placed in the basket given his right hand was seen inside the basket. Then the shopper leans towards the shelf and checks out an item in orange package. He picks this single item with his right hand and proceeds to place the item in the basket. The entire shelf looks well stocked except for the top part of the shelf which is empty. The shopper has not picked any item from this part of the shelf. The rest of the shelf looks well stocked and does not need any restocking. The contents on the farther part of the shelf consists of items, majority of which are packed in black, yellow, and green packages. No other details are visible of these items.\n",
|
||||
"\n",
|
||||
"\tMetadata:\n",
|
||||
"\t\t{'fps': 24.0, 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
|
||||
"\t\t{'fps': 24.0, 'id': '37ddc212-994e-4db0-877f-5ed09965ab90', 'total_frames': 162.0, 'video': 'clip10.mp4'}\n",
|
||||
"Retrieved Top matching video!\n",
|
||||
"\n",
|
||||
"\n"
|
||||
@@ -588,7 +585,7 @@
|
||||
"User : Find a man holding a red shopping basket\n",
|
||||
"Assistant : Most relevant retrieved video is **clip9.mp4** \n",
|
||||
"\n",
|
||||
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the available information, I cannot confirm whether the basket is empty or contains items. However, the rest of the\n"
|
||||
"I see a person standing in front of a well-stocked shelf, they are wearing a light-colored shirt and glasses, and they have a red shopping basket in their left hand. They are leaning forward and picking up an item from the shelf with their right hand. The item is packaged in a blue-green box. Based on the scene description, I can confirm that the person is indeed holding a red shopping basket.</s>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -658,7 +655,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".langchain-venv",
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -672,7 +669,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.10"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -144,8 +144,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# import os\n",
|
||||
"# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
|
||||
"# os.environ[\"LANGSMITH_PROJECT\"] = \"default\" # Make sure this session actually exists."
|
||||
"# os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\"\n",
|
||||
"# os.environ[\"LANGCHAIN_SESSION\"] = \"default\" # Make sure this session actually exists."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -13,21 +13,28 @@ OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
|
||||
|
||||
PYTHON = .venv/bin/python
|
||||
|
||||
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec sh -c ' \
|
||||
for dir; do \
|
||||
if find "$$dir" -maxdepth 1 -type f \( -name "pyproject.toml" -o -name "setup.py" \) | grep -q .; then \
|
||||
echo "$$dir"; \
|
||||
fi \
|
||||
done' sh {} + | grep -vE "airbyte|ibm|databricks" | tr '\n' ' ')
|
||||
|
||||
PORT ?= 3001
|
||||
|
||||
clean:
|
||||
rm -rf build
|
||||
|
||||
install-vercel-deps:
|
||||
yum -y -q update
|
||||
yum -y -q install gcc bzip2-devel libffi-devel zlib-devel wget tar gzip rsync -y
|
||||
yum -y update
|
||||
yum install gcc bzip2-devel libffi-devel zlib-devel wget tar gzip rsync -y
|
||||
|
||||
install-py-deps:
|
||||
python3 -m venv .venv
|
||||
$(PYTHON) -m pip install -q --upgrade pip
|
||||
$(PYTHON) -m pip install -q --upgrade uv
|
||||
$(PYTHON) -m uv pip install -q --pre -r vercel_requirements.txt
|
||||
$(PYTHON) -m uv pip install -q --pre $$($(PYTHON) scripts/partner_deps_list.py) --overrides vercel_overrides.txt
|
||||
$(PYTHON) -m pip install --upgrade pip
|
||||
$(PYTHON) -m pip install --upgrade uv
|
||||
$(PYTHON) -m uv pip install --pre -r vercel_requirements.txt
|
||||
$(PYTHON) -m uv pip install --pre --editable $(PARTNER_DEPS_LIST)
|
||||
|
||||
generate-files:
|
||||
mkdir -p $(INTERMEDIATE_DIR)
|
||||
@@ -53,7 +60,6 @@ copy-infra:
|
||||
cp package.json $(OUTPUT_NEW_DIR)
|
||||
cp sidebars.js $(OUTPUT_NEW_DIR)
|
||||
cp -r static $(OUTPUT_NEW_DIR)
|
||||
cp -r ../libs/cli/langchain_cli/integration_template $(OUTPUT_NEW_DIR)/src/theme
|
||||
cp yarn.lock $(OUTPUT_NEW_DIR)
|
||||
|
||||
render:
|
||||
@@ -75,7 +81,6 @@ build: install-py-deps generate-files copy-infra render md-sync append-related
|
||||
vercel-build: install-vercel-deps build generate-references
|
||||
rm -rf docs
|
||||
mv $(OUTPUT_NEW_DOCS_DIR) docs
|
||||
cp -r ../libs/cli/langchain_cli/integration_template src/theme
|
||||
rm -rf build
|
||||
mkdir static/api_reference
|
||||
git clone --depth=1 https://github.com/langchain-ai/langchain-api-docs-html.git
|
||||
|
||||
@@ -328,7 +328,7 @@ html[data-theme=dark] .MathJax_SVG * {
|
||||
}
|
||||
|
||||
.bd-sidebar-primary {
|
||||
width: max-content; /* Adjust this value to your preference */
|
||||
width: 22%; /* Adjust this value to your preference */
|
||||
line-height: 1.4;
|
||||
}
|
||||
|
||||
|
||||
@@ -87,18 +87,6 @@ class Beta(BaseAdmonition):
|
||||
def setup(app):
|
||||
app.add_directive("example_links", ExampleLinksDirective)
|
||||
app.add_directive("beta", Beta)
|
||||
app.connect("autodoc-skip-member", skip_private_members)
|
||||
|
||||
|
||||
def skip_private_members(app, what, name, obj, skip, options):
|
||||
if skip:
|
||||
return True
|
||||
if hasattr(obj, "__doc__") and obj.__doc__ and ":private:" in obj.__doc__:
|
||||
return True
|
||||
if name == "__init__" and obj.__objclass__ is object:
|
||||
# dont document default init
|
||||
return True
|
||||
return None
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
@@ -128,7 +116,6 @@ extensions = [
|
||||
"_extensions.gallery_directive",
|
||||
"sphinx_design",
|
||||
"sphinx_copybutton",
|
||||
"sphinxcontrib.googleanalytics",
|
||||
]
|
||||
source_suffix = [".rst", ".md"]
|
||||
|
||||
@@ -268,8 +255,6 @@ html_show_sourcelink = False
|
||||
# Set canonical URL from the Read the Docs Domain
|
||||
html_baseurl = os.environ.get("READTHEDOCS_CANONICAL_URL", "")
|
||||
|
||||
googleanalytics_id = "G-9B66JQQH2F"
|
||||
|
||||
# Tell Jinja2 templates the build is running on Read the Docs
|
||||
if os.environ.get("READTHEDOCS", "") == "True":
|
||||
html_context["READTHEDOCS"] = True
|
||||
|
||||
@@ -72,21 +72,14 @@ def _load_module_members(module_path: str, namespace: str) -> ModuleMembers:
|
||||
Returns:
|
||||
list: A list of loaded module objects.
|
||||
"""
|
||||
|
||||
classes_: List[ClassInfo] = []
|
||||
functions: List[FunctionInfo] = []
|
||||
module = importlib.import_module(module_path)
|
||||
|
||||
if ":private:" in (module.__doc__ or ""):
|
||||
return ModuleMembers(classes_=[], functions=[])
|
||||
|
||||
for name, type_ in inspect.getmembers(module):
|
||||
if not hasattr(type_, "__module__"):
|
||||
continue
|
||||
if type_.__module__ != module_path:
|
||||
continue
|
||||
if ":private:" in (type_.__doc__ or ""):
|
||||
continue
|
||||
|
||||
if inspect.isclass(type_):
|
||||
# The type of the class is used to select a template
|
||||
@@ -528,12 +521,7 @@ def _get_package_version(package_dir: Path) -> str:
|
||||
"Aborting the build."
|
||||
)
|
||||
exit(1)
|
||||
try:
|
||||
# uses uv
|
||||
return pyproject["project"]["version"]
|
||||
except KeyError:
|
||||
# uses poetry
|
||||
return pyproject["tool"]["poetry"]["version"]
|
||||
return pyproject["tool"]["poetry"]["version"]
|
||||
|
||||
|
||||
def _out_file_path(package_name: str) -> Path:
|
||||
|
||||
@@ -9,4 +9,3 @@ pyyaml
|
||||
sphinx-design
|
||||
sphinx-copybutton
|
||||
beautifulsoup4
|
||||
sphinxcontrib-googleanalytics
|
||||
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1 +1 @@
|
||||
eNrtVmlUFFcWJsGFmBk00XGJW9OikyDVVO8LommgwQ5ikxZUQAarq17TBV2LVdXQwDgKxhg1iZQyJkhGoyytiCjgoKgY0cRxQRj1iIe4xMkYiXNy1IgROaLOa5YRj/6cP5mxzuk6XfXuu/e7937v1pfvyQQcTzL0K5UkLQAOwwX4wK/P93BgiQvwwgflFBAcDFEaZ5kXX+LiyLYghyCwvCEkBGNJGcMCGiNlOEOFZMpDcAcmhMD/rBP0uCm1MUR2G5srpQDPY2mAlxqSc6U4AyPRgtQgjQdOp4QCEkySzmQAabCUY5wAvnfxgJMuTQmWUgwBnPBFGisgKgahSJqEVrzAAYySGuyYkwfBUgFQLEQuuDi4F5WhSz0OgBEwras+I0odDC+IVc9C3Y3hOIAeAY0zBEmnibvSckg2WEIAuxMTQAUESIOeQogVGQCwCOYkM0F57y5xD8ayThLHvOsh6TxDV/YlhAjZLHh+ucKbDQKzpwVxrwWCMJpD4rJhTWmJXKaRy+R73AgvYCTthEVCnBjEU872rB8cuMBieAZ0gvT1Syzv3Vw10IbhxbJYDLfMe8YlxuEOsQzjKI2qduB7zkULJAVET0Tc8+H6Fp+GU8rkCpmu+hnHfDaNi2U9bdj3zGYgcNkIzkAf4la0HGeYDBKIbXdTU3F7qo0Km2NCoy2kJWGJFTUlzVVl8Hi21pZqtfAul9nORlrM6a73c2h+NkcyiFyr1Gl1ehTVIXIZKoMpI2p9hs5BWGZHuMzuKDQyJtwSu0Rn5GJ182z0wki5PUuXoGc5U6SGRuPpeE1SGodRQlSmiiA0RIIuNsklk0U7+Sgnk8CkJ8oUiXGpcxRoVqgEonNlkkQYatQnLnFHxsforQ4NRrgzIq0uR1YCistiw91ah5GLizImpVnTFWzaAHgauRZB+xBqUJUO9V5V/dxwAjpNcIglcrliOwd4Fp4OsKIclkxw8fmlkIeg6YSn75hss8Q8pfDo0kjISbFhASCCJahaEgVsEgWqUMObQa0xqPSS6Nj4yoi+MPEvpGB1PIfRvB3S0NRPeQ/ucNEZgKiIeCHZG7xkh530woeHEgFuluEB0odKrFyIWHvnA2KOrO09WQjDpWE0mdMTVmzoYX1WjjuLwF0E4cjMolB9jkpJ2oALt+/t28JyjDcMBIRQvFiiU6ir+lb6eVcBc0UROYqg8gNuBJ5y4CQpEtaz5943pHixVA2Lvf95AwHOFZoXPaqebqCHB1pwgIKE9cZ+6kal1+sPvdio35USmui1+gPPWvFgIBq5guL3P2/Q52Ibyle6+60RkhDbAuFDqhpVaFDcrleplEoVhioBIVdDetlwvV0D1JimHs49EodevM1kGU5AeIDDiSxki23BFOb2zpgwpVyt1MBMQyUkjTtdBJjnskUy3hz4UAnLASeDEbtxO4JjuAMgvfwTPZGJc42x5oi6hchAIiEWtmeMix6a4WnSbi+fBzjYGLECdzIuAg5LDpRHRCFWY6K4V48Satyu0MltQKuzY3YkHI6hfm//oV2pd9J6MCfEnomLtQ5lmNQA85WGSigsTKeBber5ZuSVe3Ol07555dTktX4+PZcv/D158rG1mr6Ejrjyy+8WNM8PSDZOzX3Nujciz//mCMExLG+a5dzUUScL4v8sufPVmMJRMVHJX76+qvPWpO8OHrw4aLlIDF287QejML9M23LmWMGy+oZc5xpmX9aW7vPt3+/4adPu9WvzKNsq/cwv/ZiU2ytvVh59N8qylz3hG3WBEj8z1bfUcIGGKe9/U3f8w3unSieS72W13Qo6s0ZIbr6yKyBv88Rr0a/63DEcPuvZ+KDJv4C6WuDf0P7bmmP1fsv1JdKj+zuv+17Mo0Zbx06MW9f61b4QiTnc8caha/4rlb6/Kc3LuOabdfetW780PP4ov3PSVtPY/UPPr9oeZNa++1bS3biRQV30o0+OHeicEXWhwar8k+Hh/PLq5gmPmrb8vEnVVcedaDh7tmT48RoxbKrPrL913RsjFrnKa7cOu/GGa9Rl+vf6Oicw3UpTfH7kQn57x5yQC0Gr8zbc3dmlaDSt5W4u2tiYa7abAnc2LdvUVXy/sFjomHX39YBB3y6vqfGfuvr0kZiiY+7aJ0GhLW5V04wDqYF7hn0gu2W0nclVp7zZETJz8YILpeOF1rPC3L/u+rSmqePK4ccFtdcLu4d4G+br83hqVcci2L2XmuKlpnipKX4FmkKN/i9pCo32/1hTKJR2zEZo9Da72qbUqgGmVGJ2XKEiMB1QauzyX4WmACiw/zc1xfGnmuJja+On59ERDe3Th2wZX1hnJHONgjE8f+SE0atNYoZlfeKESzV/oT5LeDJRf1KzY3FZw4M7V5s6cpUdhT7oeufQOaoZH7VW3Du24/CspY+6Sx7Wtkx/FPbw/g/3p9zQah+u6j6/CYF64nKJX0sKs5LcBfXE8F49AaqvjiqmNlK529RvJjh3UrP5DXWl76SAnTOgnqgfd3B8xKthlxpbBvlc27GsxIL8/HVmAbJZHN3Qrq65UjZQTyDTvHqis5Upji4IDFD5/YFddbRoygSz78Uj6y6f7GQ9t+9NGnx7RvgK9vqkOWO2VQSm+JKOExGm7deLu7T+O5s7xiZkvffJg67vk4u+NfB3pixrnH7uevG5gM6o6HUzx57Ouf+FT/e/2s+nmOytRa0fKj7/bnvJNU5/opqcruRC1zcOqpr2x7Dme0m7Csfq3plVHDJykeptTzM57tAGwh6pON29u+gJObzefHG3uMUv4O9DCstcb5sXDd18asLx4qU7flL88yra8eOk2YvH+aVcXvH1mqz0/YE3Ji89Ulc5++KPlSX/+CIoefT0wsGzDp0eHNN8MtWnV0+8Jgua7NUT/wZqjsb/
|
||||
eNrtVnlwE9cZFzEhkDDFgQnTMgHLKk1ozEq7ugV4gmzJR4MtyQfGeIy72n3Srqw9uruSr4LBFAKYkKydBEIIFF+ixpjDhgRzToDCACEcDhPjpgmEJCTFEG5Sg+mTkIsZ6H/9Jy2rGWnf+773+67f+/RVhYJAEGmOHdRCsxIQcEKCC7GmKiSAPwSAKP2piQESxZENTkd2Tn1AoLteoSSJFydpNDhPqzkesDitJjhGE8Q0BIVLGvjO+0EEpsHNkWVdVRUqBogi7gWiapKyoEJFcNAUK8GFKgf4/UoGKHGljysGqolKlcD5QVgSEIGgml0IdxiOBP7wlpeXED2HMDRLhzVZuIfBX1ESAM7AhQf3iwBuSIDhYShSQAgjoWp0dogCOAkD/bsitoHiRElufdj5jThBAIgOWIIjadYrb/CW0/xEJQk8flwCzdBjFkRSIzcXA8AjuJ8Ogqb7p+RNOM/7aQIPyzU+kWNbohEiUhkPHhU3h2NDYD5YSW53QCes6RpnGcwyq8TUerMa3VSKiBJOs36YNsSPQ3+a+Ih8x0ABjxPFEASJVlBuun+4daAOJ8qNGTjhyH4IEhcISm7EBcaobxu4LwRYiWaAHEp2PmouKnxgTqfGMLVp80PAYhlLyI2RQnz40GEgCWUIwUEMeS3aRHBcMQ3krqtFRYSnyM0kqn/n9FqduU6DwZVtTPVPc2enpYh0qsGZk2TjfZzdM8NqZSk8YM8vQTCT1oKZdPCDYGpUjakxpAhkmo2U6Ja0GZZAMMOaYcs2StYcZlqZ6MoT0bzigMGtNqa7swNlPnMQvhmBd+ZMq9OLW7XFfoertDxT788OenyvpbnTLdNtUprdhbkmK6F3gSBNJmYGS1N8NpCZn4UWJeWlqzN9rnQcs+t1WiF5Wj6FpdvUafkeny3fzg1wT6s1I2jUQyOqN6Php7WfG37AeiVKrsd06DoBiDy8L2B+E0yZFBCrGiAPwdFDoejFqXO89oDCoxtskJPyrhwqMFGJmZQOQlJqUa1eieknodpJmFmZmpHTkhw1k/NYCm7OEXBW9EAa2vspHyKoAFsMyObkx5J9V5jssJJh9+EdRUApz4kAiXolt8xAsu53DCTd1nb/ZiGc4MVZujxiVt4VYX1JeWkJSQRIkgqWMKilXK+j3SBAeNqjR3iBC5uBDiGMKNcbDVhrVNLPu2YYK4pgKIJiHaUIvObATzM0zGfkO9q2RLnBAJP90aMKEuwzrCiH9JFqoLsHagiAgYQN234Ao7dYLDsfr9QPpYMqFpOl42EtEQz0BtMy4kePKkQh6lCxpbRfG6FJuWs8XBShWlxn8hBGyCWUJEkLQN24yeMxEajZjBk9hu2w9dEERAkXk+cECREBAXu0VCZ3TWTw0nCPSdRhBp0RRjpZSbOEP0CC7IDbxoVjECcreQH4OZzcmJyCJOMEBZDsCP/kkC0/05qRnrxtBjKQSIiDjzR2OcRyIkt7PE3ZQICFkZsJPxcgYbMUQBPEyrLmy+1mUo+SOoNO69ECM4kZkCTYhvrR/k27hnCnDeF+6HuQkNsoXaJqkl6vU01WMnii2QjLFPkXmdcUjpX1HhhUG1c9VBF5YvwuK9uNxu78xwsFqzd8XPPFhJuN1JvWmOudeurZeS/lndzWWfNVVuCNvZWa8Qnbqs9/vG+4N+i5ZYlxkp+Nfvt7STub/ym0Q3Orkh1XRl1a8P7UswUdvR30nrjTN8+6kJQFX95Nqp2Vc/mNy/P32VY72hevG7Ws1Z7LLvHlbmhefGGX3XT4zFtXt35a4T58BGw/tjx31t+O/XCs1uoquC0PUkxxXF5Ri/TlFsxQz3prnF2q9lX0Df5zXcmv69qHpp9c1Xkuacynw8qW9B0fu7dmQWf8ohPPZ1yv+HzUfM/xirE9qaXnXu5bmjKi6nj8xa1z405e8C0uUC5cNnhMkvfLwjcXfz687mDzFLPp64Mi+1137N1MT99S0/7xhWNd1d9h9ePjOveP081dc2rOwnuvrI+dHZf1wR3u/IlNEzKDPwjvJFwNvlTrOFP4o9BWum/DthV6y/YzG7VnJEpzGARze24c/XBi5o1F3XnqrosN55XDejviWWxhWqjasPavgvfKvmc5Jzh4MQ5m/969GAV3Ze7oPU8pFE/GhSfjwpNx4ec5Llj+d8aFBsxgMP4fzwtmQFr0bsyIWTBgMOEY6SGByaL1mCx6nRkntD+LecGsJ92m/+K8sPw/zgunDt1opGIG27sVie3DqhpiKeE3TDLytPppw9A7t6Zuce9IU085ynu8wTUjFfbpzNT3UlJPBdV37/Qc/IwP4HHsxj0dPd9ofJUeYc7s3vcLegvDM0OffVQRnBm4ya/LUy7To5ypLxa2qe6teGG9e+vqRacLpPqWS+7yb0+9u+LkH99b03hE9cnpto4rpLNzyKWRirmh78eKWw5U+mKOHHjuZN2iVhfzizWKnB9Z29uj4xevrJ/5YvrXFpXjBLcydRMZbxzqlqaOuqOIwaghiRd+/+oX1xIrrfUVVip2CPJVr3nlzHNjFq2Nn7fkeFdJKPup6bsubP7trWOf3L4U2/1Tx3NzEnSVexPcNU3D1x249ktX3eXO/ZdGzn31VPk/741Zr769rRpcH3GoHn+3p6fzyoSXSaz2RGrPstLds3aenT5z6cpVq1ryfsWMaU/9Rmv5y83ybwtG95bvv5GwnAxmXZ3wfPcWVSsmzbv5zPqOkdc2HBiRMCX1nYs13ujMcGLhdP9uODP8C9Sfla4=
|
||||
@@ -1 +1 @@
|
||||
eNrtWE1v28gZ7qK3XHopemaJngqPREqkvgyhcPxRK15bie1d21kshNHwlTgWyWE4Q1ly6kPT3gsW/QPdOFZhuNldJGi3H+m5h/4B76G/ZV9SVGQjabfudaWDpJl55/143o9H4rPJECLJRfDBFQ8URJQpXMjk2SSCJzFI9esLH5QrnPOH7b3953HEr3/qKhXKRrFIQ14QIQSUF5jwi0OzyFyqivg99CBTc94Vzvj6F091H6SkfZB645OnOhNoKVB6Q3fB84S+pEfCA1zGEiL97NMl3RcOeLjRDxWxBPF5wFFKqgiorzdUFMNs1RFhZklvPNV5wLzYgU6cmpqKnZ1NXKAOhvibc1dIlby87fTnlDFAIxAw4fCgn/yxf8rDJc2BnkcVXKKrAWSQJJcDgJBQjw/hYnor+YKGoccZTc+Lx1IEV3loRI1DePf4Mg2QoHOBSl630YmVVvHhGNENNLNQMQvmFyMiFeWBh3ARj6I/F2F2/rebByFlA1RC8swlF9PLL2/KCJm82KasvXdLJY2Ym7ygkV+xXt3cj+JAcR+SyerDd83lh3Nz5YJZKtS+vKVYjgOWvOhRT8Kfb10GFY0JE6gj+b3xcoaPB0Ffuclzs2T9IQIZYgbhVxd4TcXy2TnmAv71z0leNJ+1t2ZJ/Pf3fnS+hnlJ3hyAs6QZtrYBXa1klGx8a9iVhmVrP9/ev1rNzeynabjWFIxUEYbpzrRqljWs1EiCasaqR2pf7kc0kD3MzfqsDibMjYMBOJer762AN2kFYHhpPFi8BEahkEByN5OrQ7I7bR/SWns1LTcioj4N+GlWDsmbrBROTkcnDosdxx2e+Eb91CrzLsSs9zq/EkYiNYMOEV8mz+1q+WV+MkvGJQZvENMghvnXEYkQG4/7HAHO3vMelsm5bRjGV+8KKDEA7PaJZWSvf9yUiMDHLKa252qser3+9/cLzVSVUaReu+0NphhuemOWfPnVuwK5is8MeTWaSRPuJNc/wUXHtAxq04ptOYzZdoXWzVIVKk433aOWWf0L5pYz1JImMxQRJhsYDiw1Tq6XfDpKG69ZNu1yBSNd1vJpsRd310Qag1zWwgg8QZ3PWY8wylwg04JMJmtHOyvbrdXLPXRyVYgBh99+/cH3Ox3W63T95tg7Nh/vr9aGh9tb1VYlsg7g8IBXH7daEW0/CTo9KQ6j+DAsWTViVsu1aq1uGDYxC0YB25asb3jllrUuN3ds2zg83tjqR+2W1SntPNo16pR93Pef+Gb7gdUblT92gw9XhOeuq634uBR2tz8c9Xfu70QPT7YPWuIgvL9a2ToqlQc7gxWMhiq3WVzWsDY54tvMW4Zgy5C0YcxGadYwy5qTYdAs3B6Py9omzvp24I2Xtb0UTMBP6sMeV9DcEQFc/w4xiIfcae625aZ5uq5Uf3DkrT8Odumj4/ajcIMWjh7cH4mT4cA+egAndSoe3QDBqJeIkeNQMaxaVoVz1/9Pr/50SG5OANKeckQyCYQMeK93sQcRNlByyTwROzjpI7hY3SC7K0fJ67rh2KxnMEZL3bJR6ZL77b0J9bCYhix55ZabesOyyvqy5tNmrYJ9k3HcLy/S4gv6X//ghw5VtKEhGzlIYCkhMqRDsjLqH8vtbfYRs4fjTfBjZ9R2ux/Fh+Ph4xi5TXSPccrkNwpzCi1kcwgFGM4tBajzLXjWe3mS4ECwiFElZi2lTAyUM+gojsza0JHWaOyp9GAsFfidHvoMUYiup7Z7YadaAqdKu7bFUpuuwMtT0uaBAyO9YSyhEk/RlG9z1qY4oLBRglTtnNpTVoceUjH6F8Sed7ake6KPA60rpxtLOhrn0u1gYMiNuRSSf07f2fLeve8OnHPsNrOfRQvE/nfEfrxA6w5oaZviZAHYXQBjNFgAdhfAWgu47gLXlEMXmN0Fs7GIF4DdBTAlHDpeQHYHyH62QOvb0Pp2gHSpRKh/RyCaR/lUR1D8UHWmTzX0Ri39ezRz9+2uiVgqoag330HBW1c7DijKvewZZ/Zcwnkri5dp7HAx3zh7j5WbCqZZwWj+iw7cyB5woqEwAoezWx4b6T+7NAn/4fjs7G1yP1lr76x/eu/eN5t/1lQ=
|
||||
eNrtl81u40YSgDfY2wC55swQOQVqiRRpiZIhLPw7/hlbzkhZ2xkMhFazJfaIZHPYTVmS4UMmAXIMGOQFkvFYC8OZJJhBkt1k9pxDXsA57LNskaJsGTYQIMdAPlju6urqqq+qq6xn4z4NBeP+WxfMlzTERMJCxM/GIX0aUSE/PfOodLh9uldvNJ9HIbt835EyENVCAQcszwPqY5Yn3Cv09QJxsCzA34FLUzOnbW4PL58fqx4VAnepUKvKo2OVcLjKl7BQHeq6XM0pashdmggiQUP15DFIPG5TNxF1A4lMjjzms0TTB5kOn0KGFHuwkGFEr9YtHqRXg/xYZT5xI5u2ouTyTPMEVCX1AohVRmEi1fLlk7FDsQ0kPj91uJDxy5uxfYsJoeAF9Qm3md+Nv+mOWJBTbNpxsaTnEJBPU3LxeY/SAGGX9enZ5FT8HQ4ClxGc7BeeCO5fZACQHAb09vZ5wgCBx76MX9fBiaXNwt4QkuAret608tp3AyQkZr4LVJGLwZ+zIN3/eXYjwKQHRlCW4PhscvjlrA4X8YsdTOqNGyZxSJz4BQ69kvlqVh5GvmQejccre7evyzavrzPyup4vf3/DsBj6JH7Rwa6gP944TGU4RISDjfgr7eWUj0v9rnTi53rJ+FdIRQB5pZ+cwTEZiWenkAv626/jrLa+rm9Pk/i/v71zugp5id80nSin6GWlTqRS1IqmoptVrVjVTeX+TvNiJbummaThUpF0IAu0n0gmtbSoQEGHgspaJDvI+r4ZYl90IDdr0zoYEyfye9Q+X7mzAt4kFQDhJfFAgSM6CLigKHMzvjhADyevDG2uvpqUG+JhF/tslJZD/CYthaPR4MgmkW07/SNPq4xMg7VpRDqvsyNByJNrwCHkifi5Wam8zHamyTiH4DWka0jT/zNAUPnUZR4DwOnv7KmL+HRB07SfbitI3qPQFMamlv78d1YjpB5kMbn72gx4UPnlbqWpKQNUKtZNbyDFdNYbveiJn24rZCa+1sTFYKqNmB1fvgeLlt3RcBvTom2W2tSwDL2jacUyEC9jUiSV0r8ht4yAlSSZAQ8h2ZRAX5PD+DLn4UHy8GqGvmCUINJFJWshjai9ypMYxKIShNTl2P52ZR2tYOJQ1EgLMh6vHu4u7WyunDfAyRXOe4x+8ftbf2+1SKfV9mrr68u64Xp6r9zYP1yyPK1ot/SV1fvBk92DgRiNemzBfqC18y2+g/RysaKXjbJhIj2v5fW8jnpr251Bb7Np7+cPxOH9dbarG/fNduufO1a5EZWb0eijzS1PyoVl1nT3TWuz3N/pLjWWnx5tt6xeXawdtjcc2VjobLkiLLYPsHZUefgBRIOlUyssKlCbDPjWsieD4MmgyYMxpg9mUbFTBrX8zfa4qGzASKj77nBRaSQwKXxijzaYpLVd7tPLL4FB1Gd2rbnfWO7tuyP+cOmB4If9p/2P5ILzdK13ZNUfkG5U0ZsaZ4eya23OQDCMMtIyDiXNtNIqvHb9T3r1wwGa7QCoPpkc8djnwmedzlmDhvCA4nPi8siGTh/SM8j5w6XD+LVlm5ptGG3bxtjqkDJarjfG2IVi6pP4lWPU1KppGuqi4uGaVYJ3k47Cj8+S4vO7v7/9mY0lTkeUrVbVZG4SmJpoaevBjtjaXl1iI7L34bY1/LDUOFrfO9zf2rBh+Km8/QS6THYifz1p82kfAgUCfUtSsHkNLzedpLODFCXdEGllpFtwSgwFjMRWB1yjYQAeJld0ghYttm26YNASTUw7nJFkhD9KBqtNB2pVy6lgWWK1epwNcBVDH4IGDRZy13NehUVIOzCGwQ0/ct2TnOryLvSttpgIcipczoTTAv9hBGZaj3NqNrrT5b17fzlq14g20v+E5mBugXl3DuU2FGWDH8253MGFYH/O5Q4um3Mqd1CZTKs5mjvQDHk053IHF8ltPJyTuU3mH3MoGZQ/5qAKyQP1r0XiOphjFWL3AtmafFNXq1byXWDq1ZW0klMll9i9Eujl3M2TLZtKzFyRFlryVdu+0tVO7rA5qz9BDb7PHDm5Qvxotb679vjevf8DlwNB/w==
|
||||
@@ -1 +1 @@
|
||||
eNrtWktz28Ydb5qbTz31jKDtpUNA4Puh4WQoyZYlWaJiypHdxMNZLhbESgAWxi74kEaHuv0C6PQLNFbEjkZxknGmjdO45x76BeRDP0v/C5AiFbmNkZmcAh8o7uL//O3/BXOfTgYk4JR571xQT5AAYQELHj2dBORJSLj445lLhM3M0912Z+9ZGNDL39pC+LyxtIR8qjOfeIjqmLlLg/wStpFYgu++Q2Ixpz1mjl///DfHqks4R33C1cZHxypmoMoTakPdI46juERBygE7JGpODZhDYD/kJFBPHudUl5nEgY2+L7QS01zqUUlFuA/iSddigYtA0LEqxr5kPODM63JsExcB3eIKaObfTMJxQH1pJDBtgm5FMEVIa6RqHXj9AHwLBJU2AysRoX+TM4YIvkpuIFFCf+6KoCL2pROz5mYWchFQr6+egIbQw7ZDPXJTLvL4kARSKrjKnAGYZ5PvCt694r8h/ERi9CSkATEB8an1ixofz8VsTqUmEljvgGABa2SaVFqDnN0FJCzkcALSPeQu8Eq1wNQQQUikblgT5Cbr2arLYudiNKmHndAk3VDGxIxtYhNkQjD+52e/OLUZF9Hz6wH2OcKYQBgQDzMTvIw+6x9RP6eYxHKQIOcQVR6Jwzc6PyTE15BDB+Qs4Yq+QL7vUIzk8yUZFxfTKNSk4zcfn8s40MA8T0QvW3zs4TZY0tpY2h1DOnhKXq/k9fwXI40LRD0HwltzEBh15sfP/7H4wEf4ECRp01SLzhLm54s0jEefbiPc7lwTiQJsR5+iwK2UXizuB6EnqEuiyeruTXXTh3N1RT1f0GtfXhMsPYo+i/804k/KXi4S2MSBQ9eS5I++7RGBdJne+kJ668nJ/v2aciKCsYYZ2BD9xXg+A9khXl/Y0bNyqf7XWfb+4QzYRMifnsKBkn//azItEp+0t+ax8MvTNTjc6NU+MXOKUVbukJ5SMApl+GiUK41SVVnf3rtYnarZk2d5CYk8EktkIHcSE5cVsD2ANGiGwtJqX+4FkGEW+Hd7FkwTbIfeITHPV98YRq9kGIF70h+oURoZ+YwTbWpmdPFQu5/US21j7UUSsxoL+sijR3FMRa/ieBoejYYmDk3THgxdo35UKtIeCbH11ZQFio5UAwZpLo+eVY368+mT2WGeg/OGljc0I//NSAsAG4e6FACOP6dFm0enZcMwvr5JICBhobxPSkb875+LFAEUR6ivoHsuplSv1799M9FMVBFI6tX6N9epAOsFMfmCy7++STAV8YnBL0Yzao2a0eWvYdEtVyrVWr1XqALG1ULP6lWtnkVwr0CKFaNoVV8mZUcT8jB9FsBhEwwdSoyjy5yLRjJ7m8V8GagNY1mZFp1O2Ftj0ge+rPgBcRgyP8eWhhE0By0JyGiy9mintb2xeg61W1tl7JCSP71+591uF1vdntu07naQvrJl7m1VyuPdD+/dGRyMxmzYfRTuj93tQs0/qFr7dw9b1Y0PtHy1WAMvDKOq5XVDh7TXcP1JpT00vNtVZ9UYhit0xNuP+vbDjYebv/PWibU58jbcJw/WwnIhWHf0tRX04LBTDYatUT3o3tt3xoPtVn1lrby9Pqp96G95R8MPSm4LvEHCbi4tKxCbUPh5c5oyGqSMJhMm3yjMEmZZMWMMmvr1Grus3IXm3vac8bLSkWAS+AulvkMFae4wj1z+GTAIB9Rsruq2l39QWa1zr1cbuX5xZ2d/H9+l44PyPUP3Udja2lm5XdDXj7YXQMgXy5oxxaFilGpxFM5N/4FW/e2htlgBtHbSaqKJx7hHLeusQwJIoOgcOyw0oV0E5Gz1jna/9Sj6qm6YZWzl62WzYJXMPNZW2p0JciCYBjh6YRebaqNUKqrLiouatQrkTTzU/P4sabWvf9U1kUANBZoatFpVlkgMBVJrjfoH4cpoY8Me992Ng53d+9YQ+/jI3XyACtAyp3024Vgoqnpch4AAQ90Ssn1fgVd54zikQUEoaTK8arITg6MUky506wDooDei0JHtnI+5IG7XAptJ4IPpUrfld6sFYlZRr1zCUqfNgDkZ0qhnkpHaMHIgxBHx1DQdzhAUKEgUT4qdj3LxWGZBRwf7vNBxYAxwWB8KWo8nGzkVlFNud8ExLqecmAoGkekUEC9v3frpwDnH7vhjVc3wenu8knk2Q+ztEftYbWQxlgqxfXuc4ZUCL8UEbzPAUgAGr/QZYGkA4xgGtwyyFJDhgA0zwNLE2JB6GWBpAEMZXunwGqIga5RpIHs/QyvVpJ/LJv1UiGVvkmnQkj8hZYClACz+vS0DLPu/ih8PsRWCUcizKEs1iGVv3ynfjBDPAEsDGAuF/JnEnF73yIB7W+CyV/CUlYxmmZkKMIsSJ3sHTwPZe9lElgqvkwyt70Pr+wFSuWC++hOBaO7lsbx76vqim1yPUhu1mrxoMbP3artQzamCCeRc7eTz5dx15q5JBKJOfOsyvuJkXhHDUaDQpGy+cfIGNYsCknMBf/6PDNiIL1yCIj8gJsXXTDbkJRF5DP/j8cnJ1fF+tNbeuf341q3/ArgMR1M=
|
||||
eNrtmk9v48YVwJv2th+gZ5bIKRBpUqT+GkKhlR3/leVa2tbOxhVG5FCiTc5wyaH+2NCh294LBv0CzTpWYTibBBu0SdrtuYd+Ae+hnyAfIm8oypazGxRdHgoE9MEiZ968efN7b948Snw6G2I/sCl559omDPvIYHATRE9nPn4S4oD94dLFbEDNi/1Wu/Ms9O2b9waMeUF1ZQV5tkw9TJAtG9RdGaorxgCxFbj2HByruehRc/Lqp789F10cBKiPA7EqPD4XDQpzEQY3Ygc7juBiAQkn9BSLOUH0qYN5TxhgX5weQ4tLTezwpr7HJJ1Krk1sLkmgTYVPD/nIcbDTZZQ6XQOu+TwWcgIMvQHzMXKhgfnh3X2XerGJ0H4u2sRwQhN3Q25jIjkFUYZdD5iw0OetilzibfEcA2obOB7LJl5srhWSmB037PaaCxDkxgLbfH3TaaIiIfG/jYZOEweGb3tJf9wsMCowjpETk8UECLgNPBvr8Hxwk89sPL8NMAu9+Op7ymKHwzVXCEJC6C25ZWEp4LNJX+Tr8MDQgWMT/CZliAQj7HNVPg6oMwQzB/gHtXF1POJsH5ucTGLkvUmOl8bR3gk2GIybHk9nA4xMWOsfLwY0YNHz+3H5GTIMDHGDiUFNmCv6tH9meznBxJaDGL6CWCQ45h1dnWLsScixh/hyPir6HHmeYxuI96+cBJRcJ7ErcUte777iPpAgigiLvq4HE2K0wJL61sr+BHYREVRZL8vK52MpYMgmDuwKyUFg1KUX9/99ucNDxilokpIdGl3OBz9flqFB9EkTGa32PZXINwbRJ8h3i/qL5XY/JMx2cTRr7L8+XdJ5N50mq6pc+uKeYr6i6NP4oxr/t+nf7inBzJ9IBgVd0Z+V5wtYDiZ9NoieFZXiXyAcPNh4+PeXMIyFwdMLcAz+979mSY74uLWz8Oh/fvLzizVwUvSyMwhzgloSWgYT8kpeF1S9quSrakHYaHauG8k0He6TG9gMY7aCh7xlvtlXBchMPoRULWSWVP6i40N0WuCo9UVQzIxBSE6xedV4Yzi85OEAy+Prgfwk4bFHAywlZkbXh9LBPF1KW2sv5rEnUb+PiH0Wx0b0Mo6L0dl4ZBqhaQ6GI1epnOma3cOhYX2ZDIGNyqcBgyQ3iJ5plcrzpGfhlCtYvCKpiqSo34wlSE3YsV0bAMf/k5wdRBcFRVG+el2AwfaD7D7Tlfjvn8sSPnbBi3zuOzV6pVL5x5uFFqrAyEqlVPnmvhSwXlKj5t3gq9cFEhUfK8H1eCEt2WZ08y7cdA2tUtAVtZwv6lavoJq4XEEVlC/iHqrkK0j5mucOA7RwZ3rUB2djAw4oNoluci4a811Y09SCVoSVrgpJjm+HvTXK1xCsCp6PHYrMzxrvSw1kDLDUjgMymq0d7dWbW42rNhjZoPTUxh+9eudn3a5hdXtubc809io+622O8D61O1sN89eaafaIWl972OlsHDU6B2NnZ9SWS7qklvIVtaSVtIKkyoqsyqrUeFR6ND5SDhxbPWm0ZYL1w72+MR4+LPS3zjZ2yKG3s21VPrBQ+Sh8v7eptYuU7e6MGyW2azfXZe9XOxqZFIqbxrrXbebXizKh2506rAaxQW1lVYDYhCwa1JItI8GWkeYbRltsmFXBjBnU5Pu5clXYhLO9RZzJqtDmMDF8wknSthmu7VGCb/4EDMKhbdbW5e3GmVWcbHxg9Z64G80m6xb3W2TC8rudA+fwyUa4ueczYg0n9SUIpXxZUhIORUUvx1F4Z/pbWvXXQ2k5A0it+dEezQgNiG1Zl23swwaKrgyHhiakfR9fgs8P6kfRl2VTV0xNL+gWwpqSL0gPW+0ZciCYhkb0YqDVxKqua+Kq4KJauQj7Jq5pfnc5P7hevfutiRiKawg4t0ReABlQ/kj17d0m2yrr6EmbNUmL6EWl88g/2UU7W86GmFucX/MR8l3JJMd5CAQMyFuMn4V38HKLQmi5DpJ4NpSUkqSWYVQwCaBm6VpgGvY9sJBPYXldnO+ZuKDhIuaq4+IFaoHHvPIx8VisKjk4vh2GxOp5Un+JCPIQJGjQkLur10joODlxucy6p2POADq6u/t1xaufkZP2hrav9Hv90e7entbkNs6P8KWKZ6ngWdQ7SbkjIr8fujAzTCTCYX+cgyLBgirNmZsyzYkO7UPW7AUL22DpdjDoAr2AK4ylYFhS2cW3Dx786Hz2gx5ZRrsM8/zDmGcG8G0BzuvTDGEKhB+K1SwK0yH8zWCSAUwDUDBh7RnBNAThsT4jmIpgYEBFmjFMw9Dw6SgjmCoKRzbJCKYiiDKAKQGOkJ8dx6kY/jLDl+6ZJJc9k6RDmD0Vp8LHf+7KCKYhGP9YmBHMvpn5fyJ8iA0UBlkcpisIs68W0j7UoSAjmIogDRn/Gcycv6aSkXx7ktn3C2mzoZ1t5nQELRs72RcMqRj+IqsM0wGcZvju8P13DmLAqCf+uEjcLSZ+Odf1WHf+LpxYLen8dZuFWbfN+SJ/7YYh57ZFVQDjvcFdEzNk8zg8Fw3+Ppt5K6xM36B1WX5OG8xfGjK9pfx4rbW3fvzgwXcLR6Ib
|
||||
@@ -1 +1 @@
|
||||
eNrtVU9v3EQUV4/c+AiutxKXzNpjr+3dlRBKWrUpTUkKgfCnaPU887Lrrj1jZsZpNiEHAhJctx+hiRIUVdALR245cOALhE/DzGY3CALiwKUSPdjWvHnz5r3fe7+fD093UOlCihsvCmFQATN2oZ8dnir8okFtvjmp0IwkP95Y/2DzqFHFxcbImFr3gyBHriQbE9UIU1TYbjRB0IbQNlSwJwU81W0mq6CSHMsAhBkpWReszUpoOJKdKCjEjhzjcS755OLLff/KZTBPyu97/uKWKIxiEiYkpv6S51eoNQxRW4/P9n0lS3S+jUbldpm0tQjjTJtYll6FHnhP7FX+wefuMOwOjF0Jd5yGUefgdITA7Z3fniwzhrWZnr8JdV0WDBwcwRMtxYvbl0HJ5qTGv9k/+9BeTpaH1mV6/mxFGhkHtB2nbRp7FQ+cgUmFrYWtgSBqh57UQQVM6lYUt1O7tq6g2KgFqko7XgliGNQT2wDRits0anedQz0pqrps3d6YbXhsexgoNGpCHNKtEofAJt7iwkUSZx+T5WqP3AHjsrdoJmEUJpv2SZPepz+B3dN8TFxLLqsiBZ+e30qjvMtitk26OaWkk3YY6fXyjAANgQIkEKfbPy4Oz2dmev4GGINVbd6mPyxgW0MxNKPpEY063yvUtZ0y/PpEGzCNPjxmNvNffzmdt/X5+oNFR767uDlLXJCV+SDc/yPDNVuMYJPpUS+lx7PKft5CvuSFiXcXc88VaV/9JOuHoXfv4ea1WOuNqRvbUjcM5La0gzx9HmXXco7D9MzaBM7YMT0bI9YEymIHL7xr2V0LSOOXuwSc0/uX+Nzn04tbYZpF0LVIctpNSCfKYtIDYATCBLpJTHudlP955l7+deRmxPnKYqgKMfztRrTvF9zv+5UeDnKuxoOQpqvvPVp9KuTK+JO1ZDt/1L3X7O1aAvnGBnSul3hbwyWFfNC6sD2x3FnyZ7y1tjlf7bRa4xW1LO3mQQzuOvfZp++vosK3tOWbLspyMmNd33ssHoutERiPS28iG4+BZSXY1dCrYFiwAsQ73rId99wqEHD34VLddHT1tZH1QFllcXrgo+AD0yjhzze0g1Qwm4doynLJSoCrp2+hcI24ojmNl3w5a/aVKcoODl7L3P9H5rIw/GeZyyFCyhIgeZZHpJOnnEDUoyRmSZhsdzLOu/RVkLn4X2SOvmoyB0jRYhESlqH9f8S8Q/JeRkkCFDEOwxCz6D/L3GoPa3V3vDfZqfDBR+8+3E3k1p3ktcwtZO535liL9g==
|
||||
eNrtVk1v2zYYRo+77SewcoFeTEukJMsyMARuCrRFsyZYPLToOhgUScuKJVIRqSxu5sOyAdvV/QmNkQxBsfWy42457LA/kP2akf7IsCUDdliHAdtJ4Pu+JF8+z/s80PHZAa9UJsWtN5nQvCJUm4V6dXxW8f2aK/3VacH1SLL5zvZu/6Sussudkdal6rpuwlkl6RhWtdBZwVu1gpwoDVGLFOSlFOQz1aKycAvJeO4SoUeVLDPaojmpGYcH2M3EgRzzeSLZ5PLzI+eqZLBqyukCZ30L9rAPvRD6yGkCp+BKkZQrU/HJkVPJnNvaWvHKZqk0bxHahvo8z0HBAQF75ipn+qndTA4H2qyE3Y48HEzPRpwwc+fXpz1KealnF++TsswzSiwc7p6S4s3m8lDYn5T8hvz5x+Zy2EtNyezi1T2ppe+ilh+2AgwK5toAlRVvrGM1cXHLA1K5BaFSNbDfapu1KSUVHTVIVbQDkBORuuXEECAafguhVmQLyklWlHljc2eRAHSYuhXX1QRapBs5TwmdgPWF6ybOn8Fe8RLeJ9p2b9AMkIeiPgoMrvj5D8TkFBtDS8nyVTBjs4s7QTvp+EGMYcySEAamFnaCtqGhHRBO2yiIUPz9evNqZmYX7xGteVHqD9B3a9i2uEj1aHaCcPBtxVVppox/eao00bU6nlPT+c8/na1ofb39eM3IN9cO8FF8bmKCL0Z1dj7mvIQkzw747yl6+0eGLm8vIBDw3mqktmtd1qbajgLclGaMZ6999PYQElv10fIxj9js8k7s+ZSFeAhpyAgMEk5hEnY6MAw8EjEcJEkcXTv+0W9QbhnUBZ3MTmLsX4Jrdde6QP58QdSP/VHdBCgC21QDyxlAQdfDXd8HDz7sL4TzhcGwykT6y62NIydjTtcpVDpIWDUeeKiz+2R/f1QhcZ8964221NMoFDh1mo42CNnSJd4msJSQQ5TKDCdGO01noVsTW+nVTKsJXknLyG51iOaHtnzx6ToPecXvKqM3leX5ZKG6LnghXoinI6IBk2Aia0CJUSUBiZSF8RyRAr1MciXuamBMg4OE0PGG3dcDSmd0fNtq11FaloPK2Iw1B4cLNtB1JZxVQlnKBDVNiTrPm8YP7OO6BhcL8ZXmkd905IL7q5CPptP/Pe+/5Hn+n3teGEesEwYxjDtDDAPmD2GS+AlEjA6jEDMcDf9pz/Pa79DzcHST51EUxmHbY5BQ3zh/QGKYxGYZtjuozXiYREnwVzxvjrzQ+1tML7zB9PB103vwZBfHe1E61I+f050JDTCqdot/jekxmYKCpBnNiNgAPTPvifntIsx+mKzerc/haDr9FcHSkDA=
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +1 @@
|
||||
eNrtVs1u20YQbq9GD730rhI9FVqJlKhfwyhs2a4Vx5b/EP8UgbBaDkVaJJfmLmXJhg9N+wJ8hCaOFBiukyBBm/6k5x76Au6hD9En6FCSYRk24geodCDE3dmZb775ZodP+m0IhM29j89tT0JAmcQXET3pB3AQgpDf91yQFjdO12qbW8/CwL780pLSF+V0mvp2ivvgUTvFuJtua2lmUZnG/74DAzenDW50L7eOFReEoE0QSvmbY4VxjORJpaxY4DhcSSoBdwBfQwGBcvI4qbjcAAcXmr4kOieu7dloJWQA1FXKMgjhpG8BNRD6Px99empxIaOLm3BeUsYAj4PHuGF7zejH5pHtJxMGmA6VcIYgPBgkG521AHxCHbsNveGp6BX1fcdmNN5P7wvunY9AE9n14fb2WQydYIaejN7WEMRsNb3WRd68hJbKayntVYcISW3PQSKIQxFPzx/s/za+4VPWQidkVJOoNzx8MW7DRfR8hbLa5g2XNGBW9JwGbl5/M74ehJ60XYj6lbXb4Uab1+GyKS2TKr6+4Vh0PRY9N6kj4Ocbh0EGXcI4+oh+UHuM85YN0eW/9Toz6w13puvsa3tblWJ7Z2W5UM0H+jbsbNuFvWo1oLUDr24KvhOEO35GLxKtkC0WiiVVzREtpaYwZbKw6GSr+oJYWs3l1J39xeVmUKvq9czq+oZaouxR0z1wtdoD3exkH1new1nuWAtyOdzP+I2Vh53m6txqsHa4sl3l2/5cJb+8m8m2Vluz0wlEF7ZtY2ajJpa0owUpm61dZ2HP26Dr+7V1f5Gmdh/Mdfhhu5XbfQCHJcrXx+CppQxRRwjzql5U49/FlTYc8JrSip4W9RcBCB8bAL7rIWMyFE9OUYbw15/9USc8rS1fK/iz03mUZPR+G4xkQs0lFqGRyKiZHD7KuXxZzyW+Xtk6r4yibMUKvExI6Mg0tOOVYWNMJ7D9AgFyJpQmKb7eCqgnTJTlwlUL9JkVei0wzip3iv99LH6sbJwOdiSBjs8FkBHM6HyHbAzvBFKdfzPsNMKDJvXso0EnRO8HXXB41Dk0WGgYVvvQVUtHetZuQMjMt6MjfsDjMAiIuCJ6lteyF6OdKx2eYfIq0VSiar92SIDcOLZrI7+D5+hiEtFpDsl/d9tA8hbgFdbXB9VR/xi3CMBFAcexr93opVLp97uNrlxl0aRUvIkGSwzjaLSMK97dNhi5eKqK886VNbGN6PILfKmbmp4paEUwMoWCqheYWco3IKfpJWpmsmYRfsHa2gy9xMX0eYDFBoa3sOxGl0mXduI7Zyar5bJ5zHQ6YXvMCQ3YDBvzPM5BTCf8ABxOjZfMJIwyC8hQkFF/fnd1dqVa+WmHjCuL1PzhBOh7XHi2afY2IcDCRGfM4aGBl2cAvcoi2Zjdjd6WVCPHTC2DCtGzar5B5mqbfeogyDaL3ljZGaWs61llOuHSmWIe6zEYCN/24qS85t+fvDCopOXEsWIbeNvH04Ph7CCznea+PJBNL6ev+0eudrTr8xKbLxZae9VNHAS8sY/qHZ1IXc+b1EDfaMCwHySgz+vOvXOoEBSaTtQC0YrxfMFEbQZ1aeMYKis4KWjoyHijKyS4dRMxQ+Aj9Di26dcLGTAKtJHTWRzT4nh4OOFsz4COUlaT6MSRVCkfX404isLHAnix2+s5GI9AMENBEZ8XOs5JUnF4ExulIYYLSQWD28KqY2I4bkZWj0+mpv4/DF7TtTT4bJiQ9EGSPp8Q9GGCEkv8cMLRPRwx6k04uoej6oShexgaTr0JTffQ1OXhhKN7OJLcoN0JSx9m6asJQXcQdD8nipDcV8ZY+Wa+trrweGrqP/aerWg=
|
||||
eNrtVs1u20YQbq/ppZfeWaKnQiuRImVSMozC/1FiWY4lxFaCQFgtlyIjkktzl7Ikw4emfQEe+gBNHKkwXCdBgjb9Sc899AXcQx+iT9ChJMMyHKD3VjpY2t2Zb7/5ZmbHT0ZdGnGXBR+euYGgESYCFjx5MoroQUy5+HroU+Ew62SnWqs/iyP34nNHiJCXcjkculkW0gC7WcL8XFfNEQeLHPwOPTqGOWkxq3/RO5J9yjluUy6XpIdHMmFwVSBgITvU85ickeSIeTTdiDmN5ONHsOMzi3rpVjsUSGfIdwM3tQxgT4VvLiKKfViIKKawFtQPIQARRymQkjWORw7FFoT31wcfnziMi+T8OuUXmBAK4DQgzHKDdvJ9e+CGGcmitocFPQWeAR0Lkpx2KA0R9twuHU68kpc4DD2X4PQ895iz4GwaFxL9kN48Pk1DQ6BCIJI3VSCxXM7t9EHbQFKzuplVXvYQF9gNPBALeRj4DMPx+S+zByEmHQBB07wlw4nz+awN48nzCibV2jVIHBEneY4jf0F/PbsfxYFwfZqMVnduXjc9vLpOy6pq1nh1DZj3A5I8t7HH6Y/XnKmI+ogwwEi+VYaEsY5Lk4u/m01iN1v+0sbGiqp5vtoxanuNZdNX8lZTXV3bDB9v7/f4YNBxC9aW0so2WQWpRr6oGpqh6UjNKlk1q6LO+l271ynXrb3sPm9sbrjbqrapt5r3K6ZRi416PHhQvuMLUVhx696ebpaNbqW9XFs5OLzbNDtVvt5o3XZErWDf8XiUb+1j5bC4e29RAnZx17WW6nu1lc6eN2C7y1ucNboH3Qei4Bysdw7N6hZpx0W1rjC3IdpmeYaephlImTJcUHRTST/nl7Xh0aAtnOSZmle+iygPoUvoV0OQTMT8yQnUIf3j99G0XZ5W716V8Ccna1CTybu6E2ck1ZCqREh5Ja9Lql5S8iVVlzYr9bPV6TX1tAQvJEF7Ike76c6kXRYl6NGIU7EUCxuZr+oRDrgNdbl+2QMj4sRBh1qnq++t/ndp9UNq03igZxHthYxTNKWZnO2j3cnDgcprryethljUxoE7GLdC8m7cBoeD3qFFYstyuoe+UhzomtuiMbHfTF3CiKXXACHk8+QZqHo+PbksxFMIXkGqghT15x6Cvqee67sg8Pjv9PXiyUkB1H9700CwDoV3bqSP06P8NmsRUR8qOL37CkYvFou/vt/oEkoDk6J5nQ2kmM6yUfM+f3vTYArxVOFnvUtr5FrJxWewaFqKUWjRBZXqqtHSbNOgql40sVFQDEzslvET5NYlgJImM2QRJJsSeKpFP7nI+LiXPjpLmlrQFiDSRckNiBdbtBa31lgaA1+Uwoh6DFsvVjfQKiYORbVxQSajtcb2cqW8+sM+mq0sVA0nY2IUMB64tj2s0QgSk5wSj8UWvJ4RHQLW7nIjeWNaumJputKytIJpEwOtVGsj7AHJLkleO9qSXNJ1TV6UfLxkLkA+xlPjy2EaVND+86NvLCxwSTqSXUsuyemIITBg0PKdrQrHON+1du/x3UG4W9kRjbbn34/u1QZyRmatx1C9U4/s1VDKjusbDAj0g6CAedW6mcuhMztzUNplSDGQaoIX73MYNE0bqNEoBIbpFXbYpPmWRQsaXaAptMNckk47GHZuYNGeXFIyMiALLJeOprNOxlDf0PiAkLkaiTIsImrHHAONIPa844zssTb0Q4tPNjIyXO5ypwn8YaxMrR4d37r1nxPqSpXb4/8T5lqkjp/OdRg7SrfZ4VyKiRQEB3MpJlKU50JMhJjMl7kaEzX6LJ5LMZFCMAv352KMHb/4P+vw76HLXLBQngn+4Vp1e/3RrVv/AJrrWTs=
|
||||
@@ -1 +1 @@
|
||||
eNptU39oG1Ucz5g/NqeuTFFEZPGcyrQvubRJf4QJdklrZ9cfayNbJ7O8vHvJ3XJ573r3LjbtZm2nICvIHgiDwQbaNKlZ3VLdrNP4g3VCtWX/+IuhiOCcSnX+IaIrjvqaJrWlO7jj3ff35/v5vMFMApuWRsmaMY0wbELExI/FBzMm7raxxV5KxzFTqZJqa+0IDdumdulhlTHD8rvd0NBckDDVpIaGXIjG3QmPO44tC0axlQpTJXlJ6ZPisKeL0RgmluT3yBXecqkUIvmf7ZNMqmPJL9kWNqVyCVExBGHCoGJdp9LBfSKcKlgXFqRDW8GgEqhQi9mgQtSSK+Vq6WBGxVARKL53lKVUajE+vmqy0xAhbDCACaKKRqL8rWivZpQ7FRzRIcNZ0ZfgAnSejWFsAKhrCZxezOI5aBi6huCC373fomSsOCdgSQOvdmcX0AABkTA+UVeaw92WFIskTtnl9bkqcj3AYlAjulgG0KEYKW0U/B8sdxgQxUQdUCSJpxeTTy2PoRYfaYaotWNFSWgilY9AM17lfWe53bQJ0+KYZwJtq9sVnf+3q3R5Klw14ysKW0mC+EgE6hYeX1ryUkpW8FIJ5CogeyZWlMbMTAJERQf+unyqtEAdkyhT+bBHlkdNbBlCe/hQWqQx2xpMCbLwzFSmKJg3WptKVA+lgoI2/uFurJQ7ZZ+zAYedorFPfPy+Kr/X63yqOTQWKDYJ3ZCl8ZAJiRURTNWXVJFBqk1iWMkGbqiHbPFOAE3heXHukj3V1buNnb5wc4tqqI17O3e172nE6vPDCQ3yrMflcUYpjer4NIoABJGKwSIyngl2ttQ17wiM7QHtNEyZBUIwylOEEpzuwKZYJs8indqKkKeJ04EG0F7Xyc/UyooPRWQIw0ptTQTVgu2C9RLKJRSpBW0X7t+A2KQpTBf+2Ty0zlF41op3fl55ta5p8smyl+c/9/98R+rNL9++l549MfIox989cOzI7zuPHa9vmuo/GtpwOHPrH30H8uvfX3dny7VfZr+abri29erc3+9u/HbyyoFXPMGbN/Tep3buutizJSc/vfe2mXPTh/N6y6atA4eO5ILZr58Z2teVTZOrs/Z1xz2DuU2Pv/fNr5HQXH7uqJHLvHb54m8/Td6k/Kl/dP2K9OloML/t/L+RB0/e/sKWmfM/vFjTCx6a3DjFXBcGPune8dn2c88l7mLb7v7rsSe6b5k4WyafuTzZOHo8Nz89e//m9T/2P1LfX30ycuLjAry1ji/M0P6mNQ7Hf3JxBh0=
|
||||
eNptU19sU1UYL5kxopFJwobRIDdVNCQ77b29XdtNHtwKQx1jY23MUHA5u/e099Lbcy73nDu6LdMwNMYwSI4xGnmQbOta0syNMg1maKIRk0VBZ3iaMYjRhxFijPig8wVPSzu3jPN0zved79/v9/tG8v3IoSbBG6ZMzJADNSYelI/kHXTURZS9kUsjZhA929UZi0+4jrm4w2DMps1+P7RNH8TMcIhtaj6NpP39ij+NKIVJRLN9RB9YtIa8aZjpZSSFMPU2S4ocCDZI3uonYXllyOsQC4mb16XI8QqvRkQnmJVMBrIs4h0+XIohOrJKNs2Cro6ACgxoplwQECllVQ57h/MGgrqY5rrnkaxBKOPFdR3OQE1DNgMIa0Q3cZJ/lBw07QZJRwkLMlQQpTEqQ8ALKYRsAC2zH+XuRvHz0LYtU4Mlv/8IJXiq0ipgAzZa7y6UJgJiUMz4xZZqH/6uAQEolmSfGvLJ5zOAMmhiS0ACLChaytll/6XVDhtqKZEHVMjiubvB06v/EMonO6DWGVuTEjqawSehkw4FZ1fbHRczM414Ptq1vlzF+X851acovnBxTWI6gDU+mYAWRcUVkFdCCoIXFcghICsX16RGzBkAGhEV+Jg8XQXQQjjJDD6hyJFzDqK20CA6kRNhzKUjWUEWujKfr8hmvLO9SvVodregjX8eN9wGSQlLnRqTSoKQlGCzHGhWVGlvR3wqWikSvydLxbgDMU0IpvZUVZHXDBenkF6I3lMPhcpuAFPnn4l7r6x0tLcog60HEs8n3dhR1dl3rCcY72/6JAM0i7g6YGKxECgPm2F8UYJNicZgUFWaFD2kNwbDETWQaAxElEQoElHUhDLRb0JeUHyKlCQkaaGZaBuIQs1AIFaGhOd3H9zf0vFCdKoHdJM+wiiIwyTPYoJRLoYcwQIvlEsLXTsoJ8K7Ww7yjyN6UNZVNdyoB7VIoqkJtAq5VOFZGT9bWoryAh8XFDjCdPnX7Scf8JRPzb7TV1/86rktb/aiXbc2Zt8+d6Xtvi/fw3P2k144f+jI0m/7zwy99Vjr9cPddYe2/fNdbbJt642Fb4s7w35yrPP7Cz/Xzrw/98fLvds2HX+mZym4cMa7+fWnekZ3Tn9xko1/WFc//OCWXxbaztbUuX/evBTzFS7MgVu3n6hP9+146dO/l8mBm6nfX/0atiu5x2c7tl4bDD371yzJvXsqdyO/t2F7/bhptN1+59FNl8d+2BV47eEx+jTeeJqO1i8PLl5dysz/aDRvfuinE3u++fesVUDL93s8d+7UeDzXTn1Qu8Hj+Q/DbAZZ
|
||||
@@ -1 +1 @@
|
||||
eNqdVXtsU9cZT5qtDRVqR1WVtgxxZ1HRh8/1vX5fZ2ZKYhKiYJzaDiRBNDq+99i+8X3lPhI7lD3CJDatr1sQLYVCWzt2m6RAQqCUNqjvBoa6jU1rXa2ok0bY1oKGEF27bmHHjjMSwV+7f9zX+c73/b7v9/2+M1joQ6rGy1L1KC/pSIWsjj80c7Cgol4DafrP8yLSkzKXawtFollD5YsPJnVd0Xw2G1R4UlaQBHmSlUVbH21jk1C34XdFQGU3uZjMZYrKFouINA0mkGbxbdpiYWUcSdItPksUCQIhIgISPXIKWawWVRYQ/m9oSLVs3Wy1iDKHBPwjoejAKQORl3hspekqgqLFF4eChqwWHYkKRq4bKt5LkdTWQhJBDqf1ZC4pa7p5YCHQg5BlEfaHJFbmeClhvpoY4BUrwaG4AHU0jOFJqFwGcziFkAKgwPeh/Owu8xBUFIFnYWnd1qPJ0mglHaBnFHT98nApF4Bzl3RzIoRB1LfY2jK4ohJBk26apA+lgaZDXhJwiYAAMZ68Ul5/Y/6CAtkUdgIqbJn52c0H5tvImjkUhGwossAlVNmkOQRV0e08PP+/akg6LyKz0Nh2fbjK4rVwDpK2k96xBY61jMSaQ2USXluwGelqBrAy9mG+SB2Yq4+ApISeNLM0bX9ZRZqC+wNty+NtuqEN5jAX6PRUodIoL4Va50g8W7U0F8C8mJMbEWclKBfRhGKEnbK78M3ncvucXqI5GB1trISJ3pCGsagKJS2OqVgzR3uBTRpSCnHDjTckfLJEOM6mBB+3JUBpRdYQqKAyRztAeFYhoCVweLa7gKwmoMQPlMOak2Xm+wfS/RxrcFyyr1+kmAGng48hg41PVLYoqlwKgwEBUTOzDOM9UFmZq/0wzpUCNAUo+nga4D5HAi/yuJ7le0WmmplzURR17HoDHSsLC7rgpMrXifkWKhIxaaXY19w4GYZ588ZGc64c2ITxMMcXWmloPhraLmrHrjeouHiJ0kbTc9aA58ziSvzRDTnG4XAih9PjgN64K+amXSwd57ysnXNDxsm+jpXPs9hLiUxFVnWgIRbPJD1jFq0iTJd05nfQLocbZ1pH8BIrGByKGLGAXMpBqyMUFQky5A6yccBCNonAbP+ZhUDn+vpgS+NwBINslOUUj57+tLqmu5uNd8dE/7o1VHOID7X3hqk1XeudKY3NeGLd4ZBmGC1xJRBq6TEeHpC0tSovA9rj8Hq8DEV5AU1SJFYpcDEpb5ILrW00WtJNVKC1IRTs9darQW8kJnUE6Hi/t51R1DUBt0RFpai7K6FCUW/qc3Kcm2v3BrsMkmwWtCZBbpd7Okl7Z1v3OjvVj7OBetJvqyNwb/K4vv6KQgBWCCjpg/bZ5/RRR3DlGvjJhdOwjliLx3lIEjJ1RKRUTISfUEQRXkf+9bKEijtxDYw+nvNT9UxnbzoQbWXCSTfk0qlA2Ej2t1MsGWxIe5L1altTfVci3GNXEvOK4KY9gKrUwU05veUuvAb9/0R1tAPMFzwIKbPnVkGSNYmPx/MRpGIBmcOsIBscHuwqyjc2gXB9pznBUJyLjdspDrkYbxzGQQMemXPe/jcecqVToQAF3GN9rHk46fBbfE6nw1JHiNDvdWM5lU+3n+VLPSkl3q9+Z8WvaqvKV81j4bef+D31vcnzD928f9nOXeTfvhr8fPA7Ny0ia8dGpo6sOml9Qizu0DeOzNSpZ8TxmHns63+cPX15i+Pys9W1Z2K3Nxx5uv18cGbmxOvLVs8Iz01v+f7Z20Z/8aM9D927evmJrd88uOGVd5dfbLsU+Th1zic/dbL4yw3V97Hhzc/IfecuHr//lPnXvU07Pr33N9/88dzyzlOe9+N7lqITZ59/Y1PzrdlP3j24uOrz3kd3hEYuPfLlix3+Hyz/4P5ld37buuSntR+tDEzd/cD4hHWD45W9aCJ7ZcWFmuSZt0BD1P7CrRdrm8cJMJVd/K/PHp8cW9F2crVlorb5nrev7A24ijdPNbQu6WnIdoOfLOr458P53FHP9GP7yaOPpx5Vtqenbengrtim7+78XZGjxy/HuNA9b13w7pvpjP152xc/3Pjlj7PBwS+urFw1PWSd+mw39+GZ019PD1wZ7Boy79t97O6DbeEjL5//KLN0/OO/3BU4OvXv13Y/M1H4E7fnqrl/0dBvHX8/dcsfcvtu2ffrm/I7/rOxiD7IwiX04tyh2DtPffXC2K7J3be1vLd96pN2jHLb7c7NkQsj6rbjO7ePvHpH8YFva6qqrl6tqbq0btXWTfj9v/DeoiM=
|
||||
eNqdVXtsU1UY78QoiS8UX0iMd1XxkZ3be3tvXxsVu3ZsRba2tAgFZbm997S93X15H107RWUawYDgBUFN5gM3Wq2FsQwGTibG+Nb4ihgmEeMrxhiNIxgTNeJp18kW+MvbpPee833ne/x+3/ed3mIWqhovS3VlXtKhyrA6Wmhmb1GF9xhQ0x8uiFBPy9xAOBSN9RsqP35rWtcVrdFmYxQelxUoMTzOyqItS9rYNKPb0LciwKqZgYTM5cd777WKUNOYFNSsjdjqe62sjFxJOlpYY1AQMBFiDJaRu6C1AbOqsgArEkODqnXt3WhHlDkoVLZSig5oGYi8xFc0JbRHoremq5AR0SLJCBpEGzoUFZSKbqgVSwROrC2mIcOhRLcMpGVNN/fMDH2QYVmIbEOJlTleSpm7Uz280oBxMCkwOiyheCVYBcYsdUGoAEbgs7AwecrcyyiKwLNMRW7LaLJUruUH9LwCzxSXKpkBhIakm/tCKAhf0BbOI4wljMRpN07szQFNZ3hJQKABgUHxFJSq/NXpAoVhu5ARUOPPLEwe3jNdR9bMXe0MG4rOMMmobNrcxaiikx6evq8aks6L0Cz6w2e6qwlPu6NwksRdQzMMa3mJNXdVaTgw4zDU1TxgZWTD3EnsmcJHgFJKT5v9JEW8qEJNQRUDHyqgY7qh9Q4gLuCH7xZrpfNC6I4pEo9brhoIIF7MsVjaaMBIFxZidcxO2GmMpBsJeyPaaW2Plf01N7Gz0jAUUxlJSyIqWqZoL7JpQ+qCXMl/VsLHKoSjbCrhoyoFMKfIGgS1qMzySrBssmdAMDA8WV1AVlOMxPdU3ZpjVea7e3LdHGtwXDrbLRKeHpriE9Bgk/tqRxRVrrhBAQFRM/sdHseemmQK+xLKlQAkAQhyNAdQoUOBF3mEZ/W/1riaOeAgCOLgmQo66jTU4kWaqD6vTddQoYhIq/g+bYb2eDyHzq40ZYpCKh6XZ3SmlganR0PaRe3gmQo1Ey8QWjk3pQ14zhy/AS06XYSDo10slaQSTg5C0kO6WA9FcSzlIDmXE76Cmp9nkZUKmYqs6kCDLJpSet4cbxCZXKXPvBTpoJwo0yaMl1jB4GDUSATkSg5aE6aoUJAZbtC/GPgZNg1BtFp/ZjEQ7/C1B/2lKArSL8tdPNz6Zd2szk422ZkQvfiScMoXXh52OCJRZ6uwNBFtW6zxrY5wrDmgZOSW5EqfT0ozRku8G5AuO4qbQj9A4gRO4iTohB1uZ1pL6PZ2j5Ft97UHok7dFxOX5rXICo1Y0WU4ErgzmIga+Yw7i76cMLVqlS+cYnz2LiEUyfV00EI0m8zc0ZYIeu4M6G0tETKCsmH0tNfWhKHa5BG+3lqHANQhYLI/qKn+aMK4KgZefOY0bMLa0IAPSUK+CYtWwITozYgwyuvQ2yFLcPwJhIGR5TlvRza3OBOAHfFlRGfziiDekYkEGbKFpuyqf2k8TQYDeFs8mQnEW+RpINjtbkDUcHAStLtahadD/59RjawE0xsehJTJm6woyZrEJ5OFKFRRA5klVpANDg12FRYQ58t8cXOfm6MJjqI5R9KZdHOkAzSjkTll7b/xMFC5FYqMgGosy5rDacprbaRpytqEiYzX7UTtVL3v1hUqNSml3qrbdt3G2ZbqM0uI+KRjxJxDP1+x+tndb2x95uaJXW3r7up1v3Nl+9zZ9CtbR3buODfou+icU2PPl4/iWy+4hOobf/qrAxfe/viV8+eUtkV+/+h7V/cfx9bd/9L6iaHRY2ty9x/6wfi09b1FI66EeXn2j/OX37di7fKR7vOuj9/2yfv9m566a2PpEF5avn+0b8PxDB38YvSpQfH43Oga/APjtfKJbzN3du+4/LyhdV/Ps7x+7GShrzwxePR1dWLzyat7hYiw+TnLwwcW1Dc/cnv9ks2Je6zbf9iwsOXU+FjvgouG/LOX9MSObyYue4h7vP/kn/MXTsx9oPXG9Q9+Ur/J/uC1CfXIm2COv7Xumub+w31bJo5e6CuUFl5NffcXK7Grf/wF//DvS+UNt+j7W+c1FDfVr7ppQfa5uoWhv+b983JD34GxjcY+27vv7b354uy3+nbqRGZB/2Of9f12omfi0dW7ySX2b4TDzcEjO2+75cnx+P4t1KJh9+fXS4sOcsPbZg/WJzpdb4KeH39Sht4+svJXek35t8taRj7+p85iOXVqloV4bH748DkWy78yRYCR
|
||||
@@ -1 +1 @@
|
||||
eNqdVWtsHNUVdhpoU2FSUihUahGrVUod8F3P7Mw+zbZarxO/Ym/s3djYKKzuztzZGe/M3Mk89uGIhrokkZIINFFTIqgMdTa7rWOchAQCAUe8qhoRMGobVSZpaEgLgiY84qCUVm16d71ubCW/OtI+Zu6553zn+853Z7iUQbohYXXJuKSaSIecSW4Me7iko40WMsxHigoyRcwX1kVj8b2WLs3cI5qmZgQbGqAmubCGVCi5OKw0ZOgGToRmA/mvyaiSppDEfH5m/SanggwDppDhDD6wyclhUkk1nUGniGQZO+udOpYRubUMpDsf2lDvVDCPZPIgpZmAxUCRVIlEGaaOoOIMClA20EMlEUGeYH+sIGLDtCcWozkAOQ6R3UjlMC+pKfuZ1JCk1Tt4JMjQRGMEg4oqvdpjaYQ0AGUpg4pzu+yDUNNkiYPl9YZBA6vjVczAzGvo2uWxMnJAGlRN+0iUgAi3NazLE9pUB+3y0i76YA4YJpRUmfAAZEjwFLXK+ksLFzTIpUkSUJXELs5tnlgYgw17XyfkorFFKaHOifY+qCte9vDC57qlmpKC7FJk3bXlqotXyzEu2u3yH1qU2MirnL2vQvnRRZuRqecBh0kO+1fUxDw/MlJTpmiP+j2/1pGhkRlAPyuSXaZlDBeIFOjEVKk6DKPRjnkNz9TcUWgmstiTfYivd1AexxqUdLgpt4d8BT3eIMs4Wjrj45Fqlfh1VTgU16FqCESJ1fOqlzjRUtOIH4tcV+/Jst6kmTJ6MoMA5TRsIFBFZY/fD3rmXADamg/PDRfAegqq0lClrD1ZET47lMvynMXzYiarUIEhlpGSyOKEI9Utmo7LZQggoBj2Xh8bmKiuzFM/RnqlAE0Bij6WAzqhQpYUidBZ+a5a0bALHoqiXrg2wMRpRExbYqnKdXxhhI4Uolm59tU0bCAQePn6QfOpGBIS8C9GQxRFC9HQbsV44dqAaopRyhjPzUcDibdnVpKbBAVplnUzEAr+pJvxeb1ulmME5Pb7hCTjY+gXic0ljmQpi6lh3QQG4si5Y+btmXoF5so2CzG0h/GSThsdksrJFo9iVrIZl3swGh2ajmQM+QOcADjIiQjMzZ9dau7vCne2RcZiBGQE47SEdr23ZGkiwQmJpBIa6G9xZ1NCJBHvGWznk7pgxo127FtvxTw8k1VFRWDD3uxQphUTpXyM3+cPUBQDaBflIiYFjNjd0pfLr3Fb/lhfot9Mu30GN9gd7fatH8hBSxc3BuQ1HUJ3humQI76Bge6wIeDuDrNTNtlmvre/i17XHkvyeSiv1RK9am6wI632ZEk30BRDDY0OMpsS4TdUdQggDgFlf9BB97w/Gh18hYOQa/Fh2OhoJUd2VJXzjY5YmUxEfqGCYpKJQl1YRTM/JxxYGYkPyYkmd75zYC3l8WCTNSjezHSqOEp0s1oja1t9vWxTqqd9MN5ihheQ4KM9gKry4KVYf2UKr0L/P1E9fz9YaHgQ1ebeTSUVG6okCMUY0omB7DFOxhZPznUdFSNrQE+43z4SoHgPJ1B0QAhAvxCgQBM5Meez/e94KJRfCiUokxnLcPZhkQk5gyzLOBsdCgz5vcROlTfYT4vlmVRTv11SvGvHsprKtZR8rlzZ2fPqo3+gbpn86N6tAV/dzRu+PRRetvyt3d9rqtMvtH2y4XecnDqKTm5u6Xrv7u/seOMH2y5/OPmyb+Tx2prnXgNPn95Rtyl1Mbrt07N94EenLieWv38cD2aPbgo+8dHFoycfu3Ni13D2WyvPrf6yV/+sdvXbmdF9P1yx6sWJ/Vlr/ea67frKoV5+17hBv6+dSe+ffbbOl+/+29//OX7m8C9u0276sbvm4ce/eFIfWP2N002HjjlCWxzB1y5Yy2pCTz7y9LLwtjr5jZNr25+3z3/33yM7z/q06WnHli0HqG/+ZWppc+8H/9i46tIfl4cLn2eoD3c+NdFWm31n1vXLr+49M7j/9eNfrPzaqUt/umXm7NSI++GnuHNnizcEpyd3dP615dk3D46c1h6cPfHM9FuvTHXvufEnK/68x7N99N2762/f2jMV+k1/APfVts8OT92++8ry2Scuxx849enm86mmdt2On7tvFcA3TXMjv1/xn/T5Yx/Q1NcvRgd6bvV8dal2+wC952OW+n6kcFx67sJU44HSv8QNsd2Few69dKr1RNfMXRUxltZ8tnXjXkCU+S+tood0
|
||||
eNqdVX1sE2UYLxKMhCCQgCQMYtOgENi1d71rr90sOtptbKxrt3ZsSGC53r3XO3Zfu7t27QgmFDHIR8jxEUQEhG2tzrGxjIzPoUhAEwhGgh9DYySgYBAUJWiMiG+7TrbAX94fvb7P87zPx+/3PM+lMnGgarwsjeniJR2oFK3Dg2akMipojgFNfz0tAp2TmfZgIBRui6n84DxO1xWtyGajFN4qK0CieCsti7Y4ZqM5SrfB/4oAcm7aIzKTHEyusohA06go0CxF5mWrLLQMQ0k6PFg4IAiypdBsUWUBZAUxDaiW1cuhRJQZIGRFUUVHCBkReYnPWkpQhsG3pquAEuGBpQQNQIEORAVWoMfUrCfUSq7OcIBiYH1b2jlZ043u0Rn3UDQNoG8g0TLDS1HjYLSVVwrNDGAFSgedME0J5PAwOpsAUBBK4OMgPXTLOEQpisDTVFZvW6nJUle+LERPKuBxdWe2MgSCIOnG4QBMoqTCFkxCaCUzZiVcVvRQAtF0ipcEiBUiUDCftJLTnxipUCi6CTpB8rQZ6aHL3SNtZM3o8FN0IDTKJaXSnNFBqaKT6BspV2OSzovAyHiDj4fLKx+Fw60YZiV7RznWkhJtdORoODLqMtDVJELL0IexH+0exkcAUlTnjDbMjr2nAk2BjQLWpuE1Paal2iEX4MKnmXzHHAgsHibxO9P0dh/kxRgIc7FCM0aaA7RutqN2wowRRai9CLOby/3hLm8+TPiJNPSGVUrSWEhF6TDtGZqLSU2A6fQ+kfCBLOGwmmz6sEsRkFBkDSD5rIyuBqR2aFSQCl/fUHchshqlJL41F9YYyDHf0ppoYegYw3DxFhF1txI4HwExmj2cv6KocjYMTAgRNaONxN3dec0w9p2wVhTBUATFjicQ2OhA4EUe4pn7zc+rZrQ7UBQ9+riBLjcBONkZAs09p0ZaqECEpGVjP3JDuN3uk082GnaFQxO3a3Q2kFEwMhvMLmpHHzfIuziAal2JYWuEZ4zB2fDQaCcdLpeLwFw4g7pQ2oUTJOliWUAwJOF2kI5jcPh5GnrJkqnIqo5ogIbLSU8ag4UilcjOmQfHHLgTVlps5iVaiDEgFIv45GwNWrFZUYEgU0yPtwzxUjQHkFCu/4yMb2l1ib/C2xmCSXpluYkHW6+MGdvYSLONEdFT6yYW4aSjpMXN+BIEGqeCZWVJ1hkng6iIEaUqXssHpMV6WfUSP4KRdjdG4iRuRzArasWsGGLFytiwO1wW9enJZB0XXlJtb11cLzBcXXNlq19UiIaAXreYddcnIiAYXxgt18sX+psjammEbeJRP+MPNVeGHRGnxFU0VCXCFbV1rY0NLbAaSuc8tmIz7E0e4uvJTwgCJwQZmg98eD6KzUwOA4919DYsNi+Cez0gCclicygLJoBvSgQhXgeealkCg9shBrE4z3gIR52vPlFSqsUDZNiHVXm9lWrUEUIj5T5ncJFDYexkEy8Gy2v8dSNAIF0uBM3j4EQJV64LH6X+P7Pqb0BGDjwSUIY+YBlJ1iSeZdMhoMIBMjppQY4xcLGrIA05ry1Zahx2MQTK4DjqdjlQF+tkkYVwZQ57+289tGe/ChlKgD0Wp40+DvdYiggCtxSbRcrjcsJxyn3m1qSzPSlFz47Rnt/4jCn3jBVqzlefQSefvDH/uX0Fl2cfvHQ/9cqOudPWjyUnb9jUV1E1q6d3Vsm6v36Zu8VZqtyl2GicfTDLhO7qm4bWNNtWtn186/aDM+W/Uf2bE69d6fmq/+sFF2V/6sTus5v8r44bGGj7tfyLjnevzL23VQ9M2PgtfWtGx1175TbizeID6Zl18+dvnhSd+mXteXTvuT7l7Tc+jwTrZ48r6k/tNJm+P7Hqm3eKPrH1p366vv7yzZk242C113Rh68op5/Zsu6jdHmRmj+O3HN94qqTj5lPOe+NTTUfXrjCtWvlR6OIf9TcWbiy9lihYQVZO/PPqdl8NXzhwbM3LV9ddvlS3q/TOoiPL9sw5U3R/sulkfPPuxhfe6g0X7Ete2S9NnD5QUPDZS+r5Nb9fPzbj6tw9f1/b8cPNY+E7P6+oUmqoBfMyp5f2fjj/Yd/N8xXL/2ke//ScH+9fpPdMq93Jbd7xYNLUF5dduIFtSKamTHj29CSI7sOHY00f7K16f8tTJtO/AQ5vFA==
|
||||
@@ -1 +1 @@
|
||||
eNrtWctu20YUbbdZdVOgS5boqtDIpEQ9DaOwLTsxEkeOH0icthBGM0NxbJJDzwwtyYEXTfsDXHXd1JEKw01bJOg7XXfRH3AX/Yh+QS8lObKR9KF1qYUgzty5j3MfhyIfDg+ZVFyEr5/xUDOJiYYLlTwcSnYQM6U/GQRMe4KebDS3tj+PJT9/19M6UvW5ORzxvIhYiHmeiGDu0J4jHtZz8Dvy2UjNSVvQ/vmnD8yAKYU7TJn19x+YRIClUJt1c5v5vhEwAxt7Yp+ZOVMKn8F6rJg0jz/MmYGgzIeFTqSRI1DAQw5SSkuGA7OuZcwurloiGpk06w9MHhI/pqwVpzbHYsc5U7MgggB1LGHNylvHQ49hCtH/8dobJ55QOnlyNaKvMCEMDLOQCMrDTvJl54hHOYMy18eanUIcIRvhlZzuMxYh7PNDNhifSr7GUeRzgtP9uT0lwrNJ3Ej3I/by9mkaNAKHQ508a4ITi2tzG32APjTsfNnO21/3kNKYhz5giXwM/gyi0f5PlzciTPZBCZqkNRmMDz+5LCNU8ngdk+bWFZVYEi95jGVQdp5eXpdxqHnAkuHyxsvmJptTc8W8XchXv7miWPVDkjx2sa/Yd1cOMy37iAjQkXxmDYgQ+5wl53+2WsRttYOFWyvW9SZv7hxsWiv3bzv7ivQr7dZmU8Xxmhs1mmt78Z2jUN2QXCC7UqxWqjXLqiI7b+UhZFSq7Vc92ryxHK/1Vq3GzaXm+kF1Ua5Xt9rhvYbtdqs7tUiuNMqhtR1ul+93JA706qFDaZnuVNfvx/n8dV+t+mJH7O3mC7sbrVsFqztvgHfxIacL1mJt96DX2L5Z2/TKmPb2G5ux192xSH59qVfxFuXG6uL9zuZeIepccq9sV5A18bBsOVUr/Ty5qA2fhR3tJZ/bJfsLyVQEFc0+HgBkOlYPT6AO2W+/Difd9Kh5c1rCb540oCaT53cZzRlWyVhlbaNgFUrwVS+V6yXbuL6+fbY8MbOdluC5oVlPz7HDdGXcRfMGtLBUTC/E2kXVb7YlDpULdbly0QND4sXhPqOny6+s/udp9UNq03igmRHrRUIxNHEzObuHNsdzBa01no5bDQnZwSE/GrVC8nzUBt2jXpeSmFLvsBtYtSOnyNssJu6zyZFIitQMOIQClZzYVs1+Mtm6qMRTiN5CtoUs+8cegr5nPg84IDz6nkw3OFsC+L9/WUDDQII5OHRG+bF+uSwhWQAlnBqfqnFqtdrPrxa6UFUEkVql9uNVKQD7khq7EKjvXxaYqHhkqbPehTTiNDl/By5aNsYVWnZsWrHLAAUp1+y2XXAYcZyS7VScHyC5nICWNJuRkJBtRmCU635yngtwL506C0W7VCxDpPPGZHxuxe2GSGNQ80YkmS8w/Yq4iGDiMTSuyGTY2L29uL62/O09dLm0UHM8jJNhKFTIXXewxSQkJjklvogpjE/JBsuraHNxN3lWs2iJuEWnVGtXqy520VJza4h9cPKQJE+94oJZd5yiOW8EeKFahnyMWOWjQRpU2Pn9rVOKNa4bMPYpMEVKQQQICC32Onv9u/3Npe7OjTtyxbWPogOvqA5uNSv9AEhEtPegfCcn8lPSyo8KHAQINIRmoPOid23rlYSEoNAcZFWQXU25CQLlhLU0Bwqrm8AVOPZ1utFXwEAtF3xmMgLXU9tu1KoUGK3gdskhqU1PwOExTfKQsh4wVQ6U+BqnxDahRwyVDwkIU7VTMk3pk7nAeeBfGPs+UJ4vOtApbTVeyJlgnCuvBYEB4UykgGUnPDm6vHbt/wPnFLu7Xt/M8PrveBkUos0AmwEw7bEMsFkAUwRIIoNsBsiIFN0MsFlqrMvDDLBZAMMZXrPh1cUyI8pZIHvvg/CDrMhmQWyJEQx/mjPMZmnM7G5sRqbEKgNsFsBErNO/6Okzswy4WYDLbslmnGQ868yZAHM587N7slkgeztD69/Q+neATKVFZP5PIJpG+cAEUIJIt8avMMAfO31ofeHvdLmaM7XQ2H+xUqjlrp5tUaYx90eveEdvIegLWYgNx5SL6cLxK6xcVjBOC4TzDzpgYfQuFwxFklFOrnhspc/b0yz8zfbx8Yvsvt9o3l758Nq1vwCNNtHn
|
||||
eNrtmM1u20YQgNtrTr0UvbJET4UokxT1Z8MoFMuJ3diWHbl1nDQQVsuhSJnkstylLNnwoWlfgI/QxpEKw01bJOh/eu6hL+Ae+hB9gg4lOpZhAr0XtABLuzs7O/Pt/Eh8MhlAyB3mv3nu+AJCQgUOePxkEsKnEXDxxdgDYTPzdLvV3n0ahc7F+7YQAV9cWCCBU2QB+MQpUuYtDLQFahOxgJ8DF6ZqTrvMHF2cH8secE56wOVF6dGxTBke5QscyLvgupIHEpH67ADkgiSHzIVkJeIQyiePccZjJrjJVC8QisEUz/GdRNLHOQ3fuQiBeDgQYQSvxx0WTG3A+WPZ8akbmdCJEitSyRMUFeAF6LSIwmRWLaonExuIiUj+fuOtU5txET+/7ua3hFJAO8CnzHT8XvxN78gJCpIJlksEnKFvPkwhxmcHAIFCXGcA49mu+DsSBK5DSbK+0OfMP09ZKGIUwM3ls4SCgjb7In7ZQiMa6wvbI7wPX9KKRq2ofjdUuCCO7yJgxSVozziYrv86vxAQeoBKlPSu4/Fs8/N5GcbjZ5uEttrXVJKQ2vEzEnoV48X8fBj5wvEgnqxs3zwuXbw6rlTUtGL1+2uK+cin8TOLuBx+vLYZRDhSKEMd8ZfqmDJ24EB88U+nQ61O11sufrjda2x/tF0u77Qrd92NbnvtDnfulrd3bzeDPlu1HjQavk2i1f1DRavqda1awpeiFdWiVtSUDmzVKjbvCn2zHg02G5vNdkU0dr2NEd/Z4+reQVTuFivr3XY06tcG+KkCvYcPG9s90tAP3NbO8GjLcNsDq39vrbte/7gp1lZ3tJ0lCa2LBo65vDUY3uk3YWv/vtq5vbde3OrvrBNt1Sjp4crGvq2tN4tr+1a/ub/K5szT9ZqiphZWVKOmJn/PL2PDBb8n7Pgpyn8dAg8wquHzMSITEX9yinEIf/4xSVPsq9a9qxB++7SJMRm/2rWjgqRVpRYVkq7qhqQZi6q+qKvS3c3d85X0mN0kBC8kAUOxAINkZpZJSxLmdchBLEfCUmrf74bE5xbG5eplDkyoHfkHYJ6tZEb/qyT68WoTfzC9FRgGjIOSmhmfP1Duz4qNst58MUs1hYU94jtH01SIX03T4PBoeGjSyDTtwaGn1o+MktOFiFov0y1ByJJj0CDF4/HTsl5+nq5cBuIZOq8qmqqo2i9DBfMeXMdzEPD0f1rxeHxaRvo/3RQQWKKwNk6M6fWov89LhOBhBCdnX6kx6vX6b9lCl6pKKFKv1n+5LoWs59Rousd/uimQqvhK5efDS2nFMeOL93DQ6VZotwwVYgHRq/hWrVoVratZpmWYVZ2oP+PdOhS1JJcZsBAvGyiWdzGKLwoeGSZFZ7mklUsV9HRJSgtoO+o2WeIDX5KCEFxGzG9X7igrhNqgtKcBGU+a+1uNzfWVHx4o85GltGb1OJ74jPuOZY3bEOLFxGfUZZGJ1TOEMeq639iPX9ZMQzVLFd2i5UrN1MrK7VZ7Qlw0ckDjF3ZpWV40jJK8JHlkuVbB+5h2ms/GiVN+7693DkwiyLTwm/KinLQlik1JaXy4sTmyVza0qLw3sMsP16qBsRW49wL/3qEqF2TW7WP0pjuKV42sOI1vFKCYDwJQ52XqGmrhsj/NtyclyTJFxbJTw118xLHRdCw0DcIALUyOsIIO6F0TyiWoQKLaZg5NOuSjpF2ZMJQXUTdqFkRePE7bokwwvjHxUUPhqo3KOAjBwuaGZviR654UZJf1MB+6fDZRkPFwh9sdtB/bSir1uCCnDXE6vHXrf0ftCtGePZJzLDewSCY6lXO5yUXYkHPJ4MIp1umczE0yNGSHOZeMiDl0/JxLBheSY8nEckjCvCVlkPkgh5IRLp/4n+R5lAHmNlCCv5pzNBkxk3+1y27UhOdcMriwSCQ/uZMnXTmfDD7597vsKuPk6ZTFxXLAzb/gZZB5N4eSQvlvDjIXLJD/XySunDmW0XcvEJ3ZM348Vkse916adTVdK8iCCeK+ntHrhet7OyYI4rh8GmrJY3rztax6kqF0Xn4GG62f23LyGvKjZmtr9fGtW/8C1DFJQg==
|
||||
@@ -1 +1 @@
|
||||
eNp1VmtsFNcVJo9SQoRIoI1SSMlkkwiFeNYzO7vrXVNTzNo4tjFrbGNsErK6O3NnZ7zz8jz2YeoooSGCkEiZqCIRVUUDZtdxHBMKpWACUX/kUYGEWipStwXSVKjk0ahKmyoQInru7BrvCjqS1/dx7ne++51zz71bihlsWrKu3TIuazY2EW9Dx3K3FE086GDLfragYlvShZHOeHfPXseUp5ZJtm1Y9bW1yJD9uoE1JPt5Xa3NsLW8hOxaaBsK9mBGkrqQ//Pt9272qdiyUApbvnrq8c0+Xgdfmg0d3xMaVf6aczZxT9kSpgRsySYWKFkTdVNFBIwSTV31JkVdUfSsrKUoA3mo/hmQmVZcU/IUrsA0TCBr2jK2KBWcA6TnwJtbGlMAShZl3vO1lBIdzVPiptCdJbf1MyMbMAIYk5ItSk9T0MI1VCvFI41K6ZTu2JYsYCorg5COTakOL1GqbmJwDRaI4nVkz2D5aiifqSuYqONY2PQNb4IRVRewQoZShk0HdVqVNdmzxJYBSuNESSiw2Oyz84a3esDStYTFS1hFxLSyS8wqmjPalGaIPmopQpt9WHNUEjefhAwjT5A07ICuCmlaSPARfrZslyh3X19LRstMLNuEePmGYQilUsDZkjNYg3+eA4g2b8oG0ZsYl7pJiJOkZ6kZey9Slo1sTOBB6xpvRJJTRHrSBKLJctPTd2YtITO9D7aGCtRQXA0VrKFCVdwbq7lVbIAcjhSJBYwpSEs5EP9qcSwDabIllRyllHJTNLHGey1YrSKNtGQbKTI0q1yvmQa9iWrDXpwHHXIkSr4qNUY3kL5OsMpDdYpX+tGTA5gvYQmCTGaR0lmZESJSLExYaEj9P1iEK0/yxTYd7DGGEYzU6dXEHVYBEtmOSTAYPzNclDASoP6cn3X3iKRbtjtRXVP2I57HkO+goS6AFO6bqSHZqIHyICqQBmNQRzTsnVN3LI2xQYOwGVworXLfgnRVyhRrSfKPl+sOTTZ+4/QYOW006KbZ7qE4kGhsre3Mw5nVKNYfivpDb+VoSD9ZU0BnmojsFgxv/ljlhIH4NIDQ5cLqFkqLJyptdMvd14H4eHcVJDJ5yd2HTDUcPFg5bjpeuN1irPNGd+XJGXecn2X9dQeqgK28xrv7vEAcrZyQsAIhoUsl3j2WxDbykyLuryjifgOZFv5NlU9sm3ma18G1+xpT4HU9LWN36stEghcTSbUh3q22DLSlYwkcbbeyWWd9nI30Oe2dvS2pTOoxP+rsWye3YpVrSrfSbB0XDoaCHBegWT/jZ/0snQ31BZNKb9eGPlnNtiSYoLpRDWfWh3uljo74wPq805eLdWhKLNfrj0ucxoaTTRvMeCIR7dzYnQ5tTDc193axqV6pri3Fr+oWhWjjaq5u3XIK2DkZWWgYtJWunBppa7Sb7QyXFPVAImOsRWuaMx1xpj8ZR2IPH7P7ZS7XWEEvEOZopswwzAQjDPkmplNKgUNvS+4ICzOj00X5pwVSrhxrywjkLz71QbF8De6Jt8+k/j0jTZDL7vEeyamhmCjVBndCgAmE4Kc+EKrnglRLR894rOyn56ape6DHRJolQiibp49KkZccLY2FsdhND8lxckgglIQ/3DY0zhm6hekyK3e8j+4qPQDo1qaDpRNJ62YKatyQ59Y97p2W7FAuK/COIEiZrMpEh4IcFG6HFw+Vl8DFQtwAIVq13L3BOmaiPDOdr2OwV4ZmGZphJ3M0lAesyKoMgnq/5VeI5Y6EQO0jNxrYehrDe6UY9MLBnKi0MOF6g2sSfM/ABKPR6Ns3N5qG4sAkyoYmq60sXMmGDajWkRsNyhB7WdUaz02b07LgTj0EnQRKhgUcjkQifF0kjCNsSESYiyb5ECdGmQgWj5aqKG2TaBq6adMW5uHNZefdqRoV5UhxauDYEBeGrS6HxwuvOALudpJNOtmEtRweOVjRkbA/tpqOIbjf6W4vAd1iU//axo7W2OE+ujKT6LhReu8VNd3SZFEsdGMTIuOO8YruCFBlTVwArK7GfvdQRBTrApFggBMi0SgTqqNXQf2aRruedyOkRBeRAtwzvHtQ4hp89cEg51tOqaghEoY4ea/CZwql2+3dW/bfv2POLO+7Df6uXXuh66T2F+autz97dFtD+9b7n//FpZ175lyZNXTp18tu3/XEOuWRlz+aeHHyuWvHX/q8b+6uW4/+iznIvTp18ZGFt44/1/b0pw+9sWLy49//e8MKZcXw1av/+PbMF6O7T+ybnz32z1d+1XDvdy//cs6x3aNf93+1duuKemHx1a29dzz8948m/zpRd3HT0Sf3t+yZv+gcxbk7At87/hWI1YsP/Omek9+8MXln7wOND59IrZozuOjCA8UPv1687MAHu90l20caR7XYqpVztZUrF/QnP/nBl9t7fstdYa+8PnvV6cMtp0M9ITvwHj8vP+8Prz7b9N+nl2wfGN2Zn7d26OArs9/v/897/Z8ORE6fW3h488ux2DvZL57frQ9uYtitP9x0efH5jfrr6QVtc5/atvo+3wufRxd+/P6Rnd/uKNzVfenBuvueeq04eObiu/ML6VNTj/7umX0//9v8k1e//87qB9s/kw73dXY5o0s/sb9z9MPwqW3K2SsXgvvziV2P6+eTP767DQl/7Fgz+ubQVG5Re+QnZ6+9eO7wj2bPrl/AXzh0dvEadurkBpk/M/GzJ8/pS9rumIp+cyeJym2zXspfXh+BEP0PoYqenw==
|
||||
eNqdVmtsFNcVhqIKqBCQtBTaRGRYVSRxdtYz+15bkCxrtizED2wTPwhy787c3R3vzNxhHvuwSyLIgySkUaZtHk1aU2BZO8YYHFDKy0WpWmqVSAmBNnIikyaqWpqQSC0tVWNSemZ2jdeFXx1pd+7j3O9895zv3Ds7+jNY1QQizx4SZB2riNOho5k7+lW81cCa/nhRwnqK8IWmxpbWfYYqjFeldF3RaqqrkSK4iIJlJLg4IlVn2GouhfRqaCsitmEKccLn359zqdchYU1DSaw5aqjNvQ6OgC9Zh47jYZmCZ21Ot1xTegpTPNYEFfOUICeIKiELiEqoRLInE0QUSVaQk5SCbERXCaD03yiLeQpXYCkqEFR1AWuUBA4Byga25+6OiAAhJATO9nE3lTBke/czIJtKbmpKvTaMYKlKCRpF0hS0sJOKURySqSShiKFrAo+prAABM3RKMrgUJREVgzuwQBRHkF7CcTgph0pEbEXA0LDq2LYFRiTCY9EaSio67SW0JMiCZSnDGAtvBalIFLHYpRMidnHQtuKZQKIGNByarmIkVQzoWILNI91QLT+Mi7HG7JUpInDWWK9Dzys2iam9W+5utC0DGUm2wcxgObZtK4OVM/r/4oAZ5JtTBaVs6XCUNwqyA2Xaa6ezaHc1K5NSST+9Diwb1qY3O1JIUfJ2uLABChCtpoZ4hxXZKXoQI9COwyKPkkkVRClksAwvG+p/mJS6cdBOimSpaXtbPZqOIL5AArTgtEdSQtKShtUESvFy087/9FqL1BRjSKnbSXmclNdJ+SpZWpWYtEQBYyKSkwYIcOZeNQXJgpYqoSXFcjOhYpmzW7BaQnZ0BR2JAjRvFQUL3ypzq9xKsDcie3OAKrlUgpF4N+Z0ANu2ZVt/CiMesnZx1uJCimi6OTzzjDiEOA6DtoEm4YGCeTDZIyhOKPmECOEchHNBxrZmzME0xgoN3DO4WFplHoYEi2XhVHdrRB4qnyO0xeXm6UGrsmjgK+vm0UYgEY5VN+WhNmWKdXmDLuZwjoY0CrII+6OtzZlFxZ4/WTmhIC4NIHT5oDSLpcXDlTZEM/fXI66xZQYkUrmUuR+pkt97pHJcNewwm/2RppvdlSen3XlcLOsKjMwA1vIyZ+63C/0XMxZjXc3THAEMcw9T5AhJC9gc/3tXF5foikurBBfKcp6osj7d4G/oTEaiHiGnhdc8uD5AupCYr+8Ii2vT9fGmZCdHswF3wOvzMKybZl2Mi3WxdOc6LtGNW8KNm4RUMNusIUMw/FtFb6vsyrR5G92bvKmN3Q3tDIoq/iifViLt9WGdxDdopC7ToMfiET7R2BLcEGXWCkKrL5BLRKLxjeFaCtgZGYFf5dvYvNYIxcV4ptHbytT5U/n1zclQe+tD4a2cHEn0xPPB+qzwoHuTEqygF/AHaKbM0M94g4z1DE9pQ4QC0VNmgYXBARC0AvcSfqxo1a+h7SiAEPFbY/3l+2lv44ZpDS8p1IEozdGoKkClBqgWrFBuxu2lWH8N46nxeKjv1rcORcp+Wm+pwZFWFclaAnS4dkrz/VzKkNOYH4zcUu2jltohlRZ/uCJonFOIhukyK3OonW4u3cx0rO5IqbRooibhPOix3ZqjtuyzPbkszxk8n8pkJSbU4/XASWZwiaPlJXCmWm6AEC1p5j4PGxouz0wJbxD2ytAsQzPscevE4KDOrM0oRNVpDXPwLaDnzXGnhHJWka3ysD6PH4JcCxcsJxo8bjHidUQCaWq1cBFjkSD+RI6GCwmLgiRAZuz/8neGZhZ8sPjYzQY6SWP4Iun32nllfllpoWIL39rENIw3FAqdurXRFJQHTEJu94mZVhquZMO6Je3YzQZliH2spA3lpsxpgTfHvwOdLh4zft4XCnkDQbePifMs70dMIs6y2B8IBRLoUCRKRxCXwnSLLUCzv66jIVwfi7zRTlcqiW5USh9i/TLRZCGRKLZgFTJjDnIiMXg4LlVcBKzmcId5NMiFuHgo4AshhvHyTJBeAwfRFNoN3RWss9b+ItteLN0Av5n98V275s2ynznwu35dbw7LHzCLT00u+XXfwTWv/2zs3EFW3Xpu+Y6j6zYv+Qp96J6V34gpr/mHPzo998d3xubfvnxefGet587Pt55ZNraKX/C7VyZfH6n64lTsrjd0+svPJl7YMPCf4xOPPHrigw/fuf+OR5/IX2JOznV+ueG9/ne9D+15Kfov5a/P9y4Yip1Y17b0bLAj8wB3dWDNq4dXd/5kwOyM7sqNPPOxd/0f/vL5+2O3z3df7T2zjPutvGj1P5fvpri/Xdv/LnXb0nnjytOsEn3ia4oj1pdedOU25w+uDjxmTFT5Zp9iB+853rxPOf3cj64s+2bb4LrhR651fv9A29nq6/eN5h+++OHFlyfX+74+2vfF92ojmw6cXVGYv/rCkUD82e1/rn/v5MaPQi84/1274NnZ2b1S0+Qflz8XWtxdHVmx07nzlc29Y6hvztJfrTCv7fr20+rYD/MLn0mfU7dPbLmwJjaoBd+8zzx/efTK7tjjCw+8eKwm2Tu8+8m3m6Ptycw/VvYOFF5sXbowZHxrVp7r/ezn5+99YPKT3W/WnG/vyl15qmbxypd29S060/HTvcl37nj794W+4fs/qbp66fjlJ9HLpy/uuRDnn5r76kTt9oV/Grm36rWv1nzKB4Sm8b2dXZef7yp+uuSthiNJO5FzZsVGjCNZyOp/ARcvjAU=
|
||||
@@ -1 +1 @@
|
||||
eNp1VmtsFNcVhtI2gTwK+QFtScJ4FYk09qx3d2bXu3ZNY6+NMcSssY0fNGR1d+bOztjzYh7rXYytxoGKKKAwAvGjLUooxotcYl5OGmJsQlQgNKAWqjY1SYjUqs3DahBN0ypJBT13do13BR1pd+7ce+73ffecc8+9g9kUNkxJU+cellQLG4iz4MN0BrMG3mRj09o6rGBL1Pih5lhr2wHbkKaeEC1LNyvLy5EueTUdq0jycppSnvKXcyKyyqGty9iFGUpofObqNxf0eRRsmiiJTU8l9eM+D6cBl2rBh+dplco/9WmL0FOWiCkem5KBeUpSBc1QEAGjBENT3EFBk2WtV1KTlI5cVO8syGwrpsoZChdg6gaINSwJm5QC5ADpErhjy6MyQEmCxLlcyynBVl1P3BW6OUdbWaDdtLQMpdjAqGrdiNcoWCKV0swSqg3DO0MhikcGZdnAbWBO4rWS2dmeMspjaDIm/rBNbHj6N0KPovFYJl1J3aJZjVYkVXItsamDb3E85xqw6PNYGd2d3W1qatzkRKwgYlr4ScwKmrPeyI0Qjyi5mPR5sGorJFIeEel6hiCp2AZPyqRpIt5D9FmSlZPcensu6c0rMS0DIuTphy6UTIJmU0phFV4uAcSXMySdeJgY5z4TEBlR66Vm7d3YmBayMIGnJLPM7RGlpIgNtwlCE/mmohm4YC4RM7MOfxkVKKOYMooto4JF2muKtRUsgGyHJIkF9MlITdoQ8WLnmDpSJVPMESXlfFMwsMq5LZitIJW0JAvJEjSLqJ+aAb2L1/rdOG+yySbIcRX6GN0h+rbAIobipC7k0RLdmMth8bxERpHcXJgRApJNTFSoSPk/WEQrR/LFMmzsKoYejJSZ2YQOKwCJLNsgGD6vrz8rYsRDxbk2Z9GQqJmWM1pcRY4gjsOQ7+BDjQdXOK8kN0t6GRQEQYY0GIFtpWJ3ZzojPRjrNDg2hYdzs5yjkK5yXmI5Sf7D+UpDk4XfOTxCdhsNflMtZywGImoay5szUO5Uyu8NRrzBo2ka0k9SZfAzTZzsDOvu+HjhgI64HgCh86XUGc5NHi200UznYBPiYq1FkMjgROcgMpQQe6Kw37DdcDvZaPOddPnBWTrG6/d7K44VAZsZlXMOuoE4WTggYhlCQueKujOewBbykrLtLSjbXh0ZJv51ESe2jAzNaUDt7PcNc5rWI2Fn6p/xOCfEE0p1rFVp6F7dE43jyBqzt9deH/OHO+01ze0NyVRylRc1d66TGrHC1PU00v4KJsQGWYYJ0H6vz+v3+uneYCebkNtbOjolpbch7mOVDUootT7ULjY1xbrXZ+zOdLRJlaPpdm9MZFR/KFHXYcTi8Ujzhtae4Iaeuvr2Fn+yXaxYneRqWwU+UrOSqVhXRYE6OyXx1ZssuSWthFfXWPVWikkIWiCe0teip+pTTTFfVyKGhDYuanVJTLqmQF4gxNC+vMKQjw37yDM6k1IybHpLdIb8PoY9NFOUnxsm5co2B4cgf/HFt7P5g++XsTWzqb94qA5y2ZloE+0yyhehViOVCvgCQfirDAQrGYZqaGo7HM3ztN01dY+1GUg1BQhl/cxWyXKirfZgfiR6100yQTYJhJLoh9OGxmldMzGdV+Uc7qRbckc+3Vh3Ircjac1IQo3b7NI6E+5u6d2c7uU5m+fFVK/ii2xmGSjcNieM5afAwUJoQBCtmOAdJuAfzQ/NJOwILNZH+320z/9Gmob6gGVJkcCj7n/+4gFzg+Du1+80sLQeDFeULOvGwzdZaGHA+QbnJJDPwrCRSOTU3Y1moBgwifgjbxRbmbhQjT+gmK/faZCHOOBXzMPpGXNa4p2px+AjHk6EwgEmEuaCHMuGgkIwyGJIJRxhMR8KMuhkrozSFgmnrhkWbWIOrllWxpkqU1CaVKdqxh9kQrDUKrivcLLN41Y7UaeRRZhVcK/Bsob4I9GVdBTBAU+3uhnoZOu61tY0NUZf66QLU4mO6bkrXlbVTFUShOFWbEBknBFO1mweyqyBhwGrpabLGQsLQkUgzIQFJCQivmAFXQsFbAbtduINkRqdRTJoT3HOCZGp9lSyLOOpohRUHQ5BnNyL4LPDuePt7NxfLXvh3jnuMw9+t27taDnT/b5v4cTXpb/5xT+OT9snln5YO//ZrVuvTSfGrvy5vXRNLeN94J2bfccmuqrYbc9Yae3aXye+t++hkjfFx791aO3xT5+79NnDp3dNv/bi+f1Tpwcy4R9+cHbt9c+++MPn73Ssatj2o5tPntVGYr/9zxnP0uvChvo9Ow5Mp06P/2DFkvGNKxZNvCs2dC0Nl27509Lk8S27l0wJLynfWWJ/tLN2sGXLmq0L/8JOcGuzNyr2JHZPllQ/dGHx/lMPzp97+b1Fcxv57Qe5VUtaMuc/Hv44u+DeR37+6CMdze1PtnTsaqfeC3mcL7c9+PwTj78w9o3SjVVvL/7oArVv/+jg51erEsyuh78+eebqfQOTP3118oHLyz55K37j3I5n7LrGazvPbO//yfPVy2u3vLQ3cGp6fslXK/RLN5dX/uzfT18cOPp+4uyj3sf69qa2ffj3T+4ZeHXl3nNXul95eejT5vIrf/u28ftzR7bzf/zqOrss87tLO3tunR8o2fPWm4emF65b+sXkjcDiTf8dufX9cTWz4P5/rd7R/8F3303cf/nisoPz7d2l+5ap6n3zL0S+nEciMm+OvFu+GoL2/wCPq5n8
|
||||
eNqdVn1wE8cVh5JQWtKE0DJt0kk51BYG8Ml3kqwPHDIRsg0GbNmWCB+BmNXdnu7su9vj9k62bD5DJlMmkz8uaVpamjCpjUVdY/NVSKF0hqFpISHJNJCZGhLoDCkNk9bNQFo3bTP03UkGufBXNSNpb/ft7/3ee7+3e08XctikCtEnDii6hU0kWPBAnacLJt5gY2o906dhSyZib1Myle6xTWV4nmxZBl1QWYkMxU8MrCPFLxCtMsdXCjKyKmFsqNiD6c0QMX9h0oVun4YpRVlMfQuYJ7t9AgFfugUPvrU6A5/aTst1zVgyZkRMFROLjKJLxNSQC8RIJtG8RYmoKulQ9CxjIA/RXwQo/iZ1Nc/gMizDBIKmpWDKaOAQoDxgb21OQgUIRVIEz8ccRrJ1L/pxkE1FNwtKPKlF8oxmgxedtCGRMBAKkyN0FpPG8J9nECMik7Fs8GdiQRHJrOJOXwXjM4mK3Zhtik3fpnUwoxERq+5U1rDYEGE1RVdcSx3mePg3kIlUFautFiFqqwBjN4MSUimGVWqZGGllExbWIFxk2abrh/Nz7py3UyaK4M51+6y84ZEYi9Z1d2vsGuhI8wzGp8e3aVMJrFTD/xcHzKDCgqkYJUufrxQoCA206O29XTfvkbq104qK6fZh3XaDftInI8PIe+nCNtRcdYcUiT43s2P0IEegFp9LHmWzJshQyWEd/jyo/2FSfMyAWmTSwdy29/RCLQT5BRKMQiu8GVnJytj0hkApUxpqxMRle11SY4yhpIEKJljBhCqYqnKWbu9lXVHAnIr0rA2SGx8rNZCuULmIllVLQ8nEuuCNYLeGvOwqFlIVGN4tCy6+29hugxVhb2X2zgSVcykHI5k2LFgAtmndpoKMkQhVuzRhWq9MqOUMjj8VhpAgYNA20CQiUHD2ZbsUowKaXFIhnf3QPjr2NOP0t2NssMA9h/uKu5z9UGC1JJzKNkr0gdLJwbpc7lzudzuLBb665RxOAol4fWVTHo4vneH9oaif29/JQhkVXYX4WDc4p8/w1o+XLxhIaAcQtnQ0On3FzYPlNoQ6exqQkEyNg0SmIDt7kKmFQ4fK503bS7NTSDTd6a60eNtd0M/z/siBccA0rwvOHq/Rj47bjC0zzwoEMJxXuT6BkHYFO8PXW1sFqTWjLVT8qEMI1hlL2xvDjWuyibqg0knji5YvjZBWpOYbVsfV2vaGTFN2jcDykUAkVBXk+ADL+zk/7+fZNUsEqQ2n4skVihztaKHIVuzwBjWU1v25laFkYEVIbm5rXMWhOiNcJ7YbiVUNcYtkllFSk2u06jMJUUqmosvquFpFSVdFOqVEXaY5Xs0AOzuniAurmltq7VhGzeSSoTRXE5bzS1uysVXpJ+IbBD0hdWXy0YYOZXlghREtoxcJR1iuxDDMhaKc+xkc04YKDWLJTk8sGt4LejbgIsLb+9z2tenTvaBDfPZ0oXQh/TS57LaEZ/TWgCadE3WmAo0aYVLYYAJcIMTw4QVccEEwyCxuSA8kSm7Sd5XggbSJdCqBDGvHJF8QZFtvx2J/4q5iP+GKHSrp0ocbgsWdBqGYLbFyBlaxLcWrmK2vOVTsLJaYWTgOujy3zglP9R1dnR2iYIuinOvQuFhXKAgHmS1Ih0tb4Eh13QAhVqNOTyAWHSytjOmuH2LlWJ5jOf6X7oEhQJu5wRjEtFiKBbj8rbwzXKGhTrfHFgb5qmAYEl8NN6qg2iJO2ZkaooEyaTXcvFglSDzWycJ9hFVFU6Aw3m/pxYI6vVWw+bU7DSzSjuEVpBDyysr9utzCxC6+G8RtmFAsFvvV3Y3GoIJgEguEj423oricDR/Q6Gt3GpQgeniNDnSOmbOK6Ax/Bx5aA2GEcawKRaUARsFIFeJxIIaCoSCPMlFRDA8l6tgEEmTMpjwBOoWa1Y3xhvrEkVVsuZLYpFF88yrohOqKJPWlsAmVcfoFldginJYm7gOslvhq53BUiAmZWCTAC5FoSOSi7CI4h8bQbumu1z1qvVewbX3FC+D1iZdnPjdlgveZBN+bN60W1H6Rm/b5K62zRuijL4R+Ftwyf+432Yvr73niD4+eXR2b/4ZYf+PMB0tPb5l5MPU79uXHpmxIjl46d+6ROYu2XorPfnyEP31h14fSi98aGfxk9KgWG9Lf3HVq9K3d16+NoDc3LkEPV6/NMw+9cvxS/cruRLz64qmDs+772uo/X/OtGxyUbtR+8by+ePaRuTNf2LOsTbMP7mR/cKai4erHdPSSUn/fj/7JP7joe8LRxbtzi7fM+uqha3TPbCl9z7BRP0X+yY4Zj0tvTdS2Xrv3+29PPvj7Y9rzD008GUstCV31vT905aONX5r6/Nwj7105tfLTP/3wnac2D7z7gNVNzn9+9dySocLm6y+/2v8Lc4ryzAN//8tLO6etPzDSFZn9WOHd6ZfXT/vC/matIVwzapzddmbyI1NjYowbMXde3bq06jcDM89Mp/cPt/14e/zna9LnL38qV/2NRk9O3XHuw3033mne+pUVbE9sTvfg7meHAo2f/fal/8zL77XOz3940cj0Cfe/PXqhuZDa+o/XK7eTtX9NPPh+5UHH2Hzio8/+GNjx7dDC7SfvDV35179v2jOqv7z3ePM3+oY69u47xp2dvOuD6m27o03r0hfmtW3sOR7b/sbX3+taMf2pwsffXd744havipMmZDKfPGdDSf8L0feGaA==
|
||||
@@ -1 +1 @@
|
||||
eNqdVn1wFOUZB9MRph1aO3VqrdpubmhlWvaye9+Xm2sJFyAJJnfJJTGJlcx7u+/eLrdf2Y/7SAijoFZFoFvb6rRjnULI1Rg+EjKKCFY70GqtiogDgQL9Q7Hj6FA6UztVhD67d0fuhvhPb+budt/3eX+/5/09H++7qZjFmi4o8sJJQTawhhgDXnRrU1HDQybWjQfGJWzwCjuWiCe7d5qaMPsD3jBUvbGhAamCW1GxjAQ3o0gNWbqB4ZHRAM+qiB2YsZTCFk7XXRxxSVjXURrrrkbinhEXowCXbMCL6ycyUf6syhs2PWHwmGCxLmiYJQSZUzQJ2WAEpymSM8kpoqjkBDlNqMhBdc+BzD3FZbFA4CpMVQNnNUPAOiEBOUA6BM7cnTERoAROYByuOwnOlB0l5oVOlGgbq3zXDaUAYIyGhZSIbXxMlHepwG4IHqWA2xlTGIFV6omYhhUCJCZ0rGFJAafMApEysQyPSBLSil4/h+9aTrg0RcS2YiYscI3eCyOSwmLRHkqrBulTSEmQBccS6yqojwdL4oHFiMsoqM7q9boiD+oMjyVkm1a/2mZVj3N6lWZszaRS1EZcECBGE1RbIhu1m7f3UTYgFM4R1QD1bQ5DMEqeJ69B2KNlh3RDg1C6RmEIpdPgui5ksQx/8/G0KDlizuoaCyHoBGQIInQGibiUKTQBytNUjQNNtQRVXtjJn7Z1hTERyWkT4vtFG63M19DnNMGAaEMO1DDeVcGaZ8ejTqiGTDvT7bqokvh6Mar9ureaoTZzq3mU1HrMlLBYVrBnkZioDiqHRB3bXshI+gIs21fGDrmhmdjxGEYwkiqrbTosASQyTM3GoNzUaJHHiIW2cm7BTWO8ohvWntpWsRcxDIaUxTKjsCCFtTs9LKjLoU44ERl4AopExk75WRMZjFUSiSDDeGmVtQ+pqlh2scHO38lyoZH2xq+fnrALhgTdZMOaiYMTTa0NiQL0NJmg3f6w278vT+oGEmQRdCZtka1x1Zl/sXpCRUwGQMhyv7TGS4v3VNsourWrHTHxZA0k0hje2oU0KeDbXz2umU64rWIscT1deXKOzuumaXdwqgZYL8iMtcsJxAvVEzwWISRkqXNbL6awgdx2b3ZX9Wa3ijQdP1/DiQ2tQDIKUFu/o/ZUZBWxnDZ4a4ymqODvK71l8zisM0x90xjEEP/11WK5w++Ir50L/y1jzRBP63A3by4nqDDRhmTCQ3n88NPo8TfSIWJNe/dkrMzTPW/4pro1JOscbGdVJV2KDG/KGcxOxOZNlMN2osB2bP+haZI4ryo6JsteWZN9ZFfpbCNbm/eXspJUtDSShWGH1jrsZExuOJ9jGZNl+WxOosLDPq+QwibDzZSXQH+0acAhUtKtnaEQtac8U4nZBOyVImmKpOiDeRJKBIuCJICgzm/5gNWtMT9FUQeuNzCUDIajuOijnM9L1RZwZEDUbO45GF84HD40v1EFygsmYbrWG4gorvaG9kj6gesNyhA7aUmfzFfMSYG1ZpfCy2AgGPCEqEDIF+L8yBfwhjxcALE+RAe9HA6wnhdKnYQ07GiqimaQOmbgOmEUrNnlEsrbBRr10n5vALYasY9S0WRx0kw1K/Ym9Aic31hUELs3tpqMITimyKSTgFaxub+jqb01NpEEL2OKkhHwz08vrBscZLjBlBT1Kqgr07M6lDTWNnm6Bn1yrleIrR0YGuR7epjO9tz6cGdHT3tXu9DcT4KzAZ/f56VDJO2m3LSbJjt6BwaHeJ5K5Lp7PHetlfq6e8KMN5wY6PQPx1vuTrqTRoGPSe2r+k2qfSAT4BmuJdHmyw8pZm+8P9WL+tVESkr0djbnWt1US5BrW52k0rAbZPDRhgjcUFTo/3q0XCIklAhZKhB/pUAiBOtoEHXXttEI0QI3MfueEyGStpgY/qGTJwUDRzvgejP7C9DAzApstDfX0pEvZKh4dogLr+ljEB2W+gbCOQ/2YTmwqoPuCNK+gqy63UyVCEFPiKTKOgQoX8hJwznX/0+vnusjqyuejKulK2cRbj6ywHHjSaxBBVkTjKiYLJwIGh6HmHc19VszIY4LeoIsixDnCVMBD7kSem0F7Vp/GLOPkyISIceyjLWf90ZdjT6f1xUhJBQNBaCenIvp/eOlk/jowunvblm8wPnUwffq1ce6Xtn2DnXzoQ9+OJnrSDzeHvxe8IHQ/Sv2Lfrm4kcPvbl2vSq+fnHXDT2f596bOcMedQ1dQhfeyF+Y/XPz4mN3nLjhxLrpbx9+bV3/xu2LPgts2JA8e/7wZzt+vOGlqwOjE6/+e+9Iy84/Ri+vOLp94pa/bD1HZNJvzXx52a07M+vO/u1XZ/71/fNvHPlHo68zkH+z7Ymtpz+cPHUzfu6Z6Q25zotP9bYktiiP3LTy9g+8F2buuLJpQDy+hm12hYkTJ+vridA3vv6z5l/3DTxk1P9y/2PZbRvF+45Nf+dtrc6sO2dxoy/fePzG96gvLT2+aKblxIqniku+Jfy09auh7ecLgv/j20K7Gxafii9lWiO36q/ETx7505IfHVh08J93Hzr59rNLlr02++S2U4UnZ5OuI/8peN95fPrvm2+LPv/Rxh1bH/pvduSTze839Ypm/eyUL3Oo5elLmQj7zJLd2a+0TUSzW4zC4rB5evfD7LufXvS9VXj6N5nI5e2fr1z24G+nMqMvdzxb3PrE1H2X/nAl89HB98PUMSV1+5l1ZxZu/tqnl+8ZPv/Jgx8+evbj17tWam1XnMDULXg4OvBuBKL0PwOa1t8=
|
||||
eNqdVmtsFNcVBuG2aVXRKiEEJSgMSyEqMOuZfXh3bW0DXtvY8WMdr8E2hGzuztzdHXtm7nhm1vswprzcVpAEBhHUCBIabO9Sy+ERXCCkJFIrCGnaPKCJaqKkTSgllZO0aqRSmirumdldWBf6JyPtzp17z/3O4zvn3Lsl14dVTSDyzDFB1rGKOB0+NGNLTsW9Cazp27IS1uOEH24NhtqHEqowsTSu64pWWV6OFMFOFCwjwc4RqbyPLefiSC+HsSJiC2Y4Qvj0pVmv9NskrGkohjVbJbWu38YR0CXr8GF7RKbgqU3ppmpKj2OKx5qgYp4S5ChRJWQCUVGVSNZilIgiSQpyjFKQhWjPA+T/g7KYpnAJlqKCgaouYI2SQCFAWcDW2gMBESCEqMBZOh6gognZ8n4aZGteTWXBTk0naQDgVCxERGxiYqrgDQHLqTiKgD5rjnACTxZSARUTCkJJaVjFEgFDEmkqksAyDJEkxIi2MI9tW07ZVCJiMyoJELYNrIcZifBYNKdiik67CC0JsmBKyjDHwltBKhJFLIZ1QsQwB2MzxlEkahhWNV3FSCqZ0LEEAUF6QjX1MHbGnLN2xonAmXP9Nj2tWEYU42GquzE2BWQkWQLTA2gbGCiAFVj+qjggBjnAqYJSkLTZCo5CKkK2WntvMmt9aia7Uj6n+v93e3vcjH5BgCJRi34d8sTELVoJoYK0spk+oFhMhXwV+rAMr9sh1pMkdVPqBh4laBRkK6I0IALns5alIDNYplSVWWkxk2CYE5EcS0CC/T+7i+vTdCRVQYeUg0S8nQcmrFm9ZhWZTJQE51bnSk1YXwJGIt2Y0wFsYP1ALo4RD4HfORwnmm4cnl74RxDHYUhOLHOEBwOM52MZQVkO1RAVkY5HoRRkbJFujPZgrNBIBOXZ/C7jKFIUscB8ebdG5LFCOdGmJbcuj5qlQYO1sm6MB8GIlQ3lrWnoUDLF2l1eO3M0RWs6EmQRvKNN14ysYq2/VLqgIK4HQOhC9zOy+c2HS2WIZow0Iy4YmgaJVC5ujCBVqnAdL51XE1aQjVyg9VZ1hcWb6px2lrV7jk0D1tIyZ4xYlXpy2masq2maI4BhPMccLsZHxHJMjxtDPrfvEDCqQL/FW7OwTU9oW4aBC/zb87lC3z0YbCyS+MGMucM1wItxpk4VllMODxXCCuVgHC6KrahknJVOllrV3D4WKKhpvy0Nx9pVJGtRoKK2SHuOiyfkHsyPBm5L+BmTcPDGNB/aHI1TCtEwXbDKGOuk2/InDt1QczyfXTRRY0gWMpZa44zFfDKTSvJcgufjfUmJ8WVcTiGCE1x0vLAF+oKpBgyiJc0Ycvp8hwsrxdiPgq8MzTI0w75olgwHqWY6oxBVpzXMwRmnp42J5RJKmXnmd7JuZwXDMFVm3xcTPA4lIjVEAna0KjhgsEgQfzpFQ1PFoiAJQIz1Xzg/NWPYDZtP3Sqgkx4MJ23OxVjPy6UScFIAvunETRiXz+f75e2FilDgrc/Hek9Pl9JwqTWsQ9JO3SpQgBhiJW0sVRSnBd6Y+B58hDnsZDiei7gQirijnggb9TJet9uFMONgEeM+EqijA4iLYzpkJaCRq+lqWdncEBgNAXiAkB4B7740c1Y4zEXDEckflPu8PVFHsldo0F2aXVe7EO7trpbbddTTla7Qe5uYdG+8s8UZjdGsx+FxuZ0My9KsnbGzdpZ2Mt32gCrXhtrsdU7PmlbNE9JiMmlw1MYavc61Ld6umlAog5nqtjVtAZdXbmnXHcmm2GpvOrk2LsZiyU6mMZnysRXhNdWrKho7fa1tLTUPA51Ij/vLq+AOoUD31PyFEqGhROh8gTiLBVJF8VYS+O3T22EVVQ/3I/MmUgWVBdmE4Q0nV0jQsb8FLiATeyAGiT6B98uxjpq6IOMLPoRXtTbX29ujQY/W3lZX0xRsCsR40uRyBeuaPGo40VASBIfHSTOFOFQwLq+VPTdN/4pWneikSyueDir5i2AO7imyEI1mQ1iFCjJGOZEkeOjsKs4C520ru4xxL+fjIr4KVyRSwXqj3gq6GnpmEe1Gfxg2jwXrRrg5mz+qzs68umDHHTOsZxb8pqb0trflfcycgavLxr6Yv6S+/uNUT9XP13qEi6ebPz237duP/GQdt+6EsLfu+rXXlnxtbWLj0bH+DW/6fvDyjzd99zE3XzZK/2J1LpXa+PQH4cUv7Qx/cm3BgSMPfvKHifcfndr+eqbj0altg5O7rvjX/PPFyfWLq86+7fj+109dqKcr3/Wuz76Wufus8Y3KrkVJ6fkXkO3XT35zrn0I31knzDvwzOmTu1fHqUWvzKq+w/ev96/PcX85+HjKHv7rW/Mu2fjLi6tXNH62dMUT6FwbQuzmp+bMHTxuz7wR2/TU7nvuvrLhzvvfRX3P/urg/ns6wvveI1dPZgY+H1/2Tm7HuHj/x2dV98X7Dl37zX3dmYefWPi7vx979sydi8rKPt3wt8XJN4XO2j8+RpUdkr+YPZj47MNdW1eip5f9edeVnw2jvf7I7B3z4+91u37kP7iCU89/VDt7//YTOfrfk57t34qe8M3/cPANNjX5n9jeg+eynj0HPvK/s/PyD3snltKNny/dGP/pxWWutsvcDG7k3vFnnuzY9OXZjq0XXgidOPqPmYOLHu+Y3PydbO/+5/bdFR8Z2bAm/OrU5NLu8T3X0/NWKcr5miq2Zqh5qoXp544tu3fJ2t8/5HxQfOuQzf46fxe58Bd/2at/WmCxOWtGWfUCNQPU/hewh7rA
|
||||
@@ -1 +1 @@
|
||||
eNp1Vg1sFMcVJjVqEgJKUimkKUVdX12hIu959/7PxqrMHeCf2Gf7zq7tgpzx7uzt+nZ31ruzPp+RGxXSBpUEslLTNK0SCrbvKtd1wFCSGONKSSoFCUdCEIqLSERLUAONKJSoSCGhs3tnfJadle5n5735vjffe/NmduX6oW5ISH1gXFIx1AGHyYth7crpsM+EBn4uq0AsIn6kORZPDJu6NLdRxFgzKisqgCa5kQZVILk5pFT0sxWcCHAF+a/J0IEZ6UF85u8lsztdCjQMkISGq5L6yU4XhwiXismLa7tKFZ4tA9imp7AIKR4akg55SlIFpCvABqMEHSmOUUCyjNKSmqQ04KC6F0AW/sVUOUPBIkxNJ8HqWIIGpRByAukQOLYNEZlASYLEOVwbKMFUHSWWhW7O01YWxW5glKEUkzCqqBfwiCJLpPqRUUolIPnNUIDigU5hk3DrkJN4VLow21VOuXQkQ1sP04C6a2gHGVEQD2V7KKlh2odoRVIlxxMaGtEWduelIR47XTijObN7DaR2G5wIFWC7Fr/abkV/F9TIW2xFlHxOdrqI/JwuabYANmqCKHTfgUKCIxkm2tocWML5yOP3IezRQkAG1kmiXENkCCSTJHRD6ocq+VmOpxalqQWv+yyUZFBETUAZHJBhvg5YCiOKZRYFULOYoCgKu7STtq5kTAZq0iTZ+7qFztsX0ad1CZOKJeWyiPHpeaxlVjzkpKrPtOvYrvoiiZeKURzXjmKGxXVZzIN6eiGXx+J5ybYCubk4qQKQDWhHoQLla7DsWDk75Vg3oRMxGYFAmZ9t00GFQAJs6jYG42aGciIEPGkaH614fEREBrYmFjeCNwDHQVKyUOUQT6Sw/pQclLRysqcFGWA4RnaGCp3NZY2lINRoIBMZsvlZ1mGgaXIhxAq7fscLzYK2F77UPGZvGJropmLrWIwEUVNX0ZwhHUulWLc/7PYfHqANDCRVJjrTtshWVnPsJ4oNGuBSBIQudEMrm588UeyDDGu0EXCx+CJIoHOiNQp0JeA7Wjyum066rVykeSldwbhA53WzrDt4ZBGwkVE5a9RJxNvFBhHKJCV0vi9bJ3ogBm6787qLOq9bA7oB31zECbGeoTlEqK2DTJZDKCVBa+5WdzcndPco1V4EWlNtW0Nx3FDjae32qel2KdLQ1dcttrVxLY3p3nBLU1tja6MU7aTZoDfg8/u8bIhm3YybdbN0U3tXd58oMs3pRJvn6QalI9EW5rzh5q4W/2Cs9sdxdxxnxIjSuKXTZBq7UgGRE2qb630Dfchsj3X2tINOrblHaW5viabr3ExtUKjfGmeSVRSJzuyX+Or2dG3TQCbFxPr7hPC2Dg6wYaWjK5z2QB9UA1ua2KYg68uomtvNFYUX9IRophBhgPGFGPuZmC8pGapJLFrD4aD3D/NtdXeWSIZNY9cIKV94+v1c4eg6FGtYqPy1I1FSytbJhGiWU0yYqgcq5WE8fvJV6fFXsmFqW2NiPFKgSSxbuUcSOlANgWRyy/xOyXGiqaYgPxZZdo+ctPcIyaQdPjkvaDigIQPShais8Q66NX9o03XRo/kNSSM9CVRp0KG1TjqbJT04kOY5k+fF/rTChAd9XqkHmpxwrDCFHA02DQmIVgxr2M8GJgqW+XIdI2tlaJahGXZqgCbdAcqSIhE9ne/CzcGwRvxE7LeWOmCUguSOkfM52WBmij10ckCRg45wL8D4wuHw9PJO81Be4hJmQ1OLvQxYHA3rUYy3ljoUIIZZxRgfmHenJd6aKyMv3X4BeH18jz9A+pfg4ULQz/eEfTAQgH5fOMQxb+ebKI3tbGpIx7QBOXJPwhlrrlwBA3Zvqvayfm+ALLWKnCCcbPIwbvZEkb0Io4pcTKCMAP9GZCsdAeSEpuNOAVq5aGdTTWNd5HgHXVxJdEzL39FyKjJUSRCycaiTzFhjnIxMnjRZHWYJVmtNp3UsJAhBTxD6AgLPhpmAh95M2tc82v26G7E7dA7IJPZ+zjoqeqtdlT6f11VFKaA6FCB5cm5yP8vmD7e/PnD4e3sfWuE8JeRz794LrTXqReax6etPvPf66DuTL3ecof/2zVM/OLmyrZQ590uhwVqdftnnv/u/zZPcD8VVV9559/QHzwivfBF9iKET3zjXNHlt9+zE+o8vRzJffH71k8s/Vw8c+Mfv76y7dOmV2LMqtf6Jr25u2PjT+FDLzKNr5wbSI23RU6GpqxdnYV+LfEt3DX58aD2s1NrvjAc/4K9/OPV++8Xyiti114KrHt54s/rxzXu+vL0vvGPvXw5+64+313xq1fY+d21T2coo2rayzCr99b7S1+o+WT/8u0M3UhSWB/H2SNtuXDlz/qXz1J/31fKvnyltWdP26vlnRs/uPhea/ejBT1d/1hsqv/T9/pJTRw6uG6++/Lyx/bq55yur6e5TN07/68Por65c+vaLFx78zYWI6739Ev3uiexjh26UBP/97MF1a/67d/bMo1dT5RduRSeT0pN3ArEf/SfVxUvl9NpH6sfWHz+KZ3Z9t+ufT0YnxS/Rb/dP75998eyBIwceHmWY4417Lnzn85mbm9b23R2/t64KZVatvl3/wtDZp3LsL8R93aOPNL7Z/tnU9PTGsrLnr1Q4aSlZ8WqFvilEcvR/822J/w==
|
||||
eNqdVmtw1NYVduq20CaN3ZmkgZJO5R2aNNRaS7val4Ek9hqD48c63sWxKZ6tVrralS3pytLdlx+T4pA0CaGOmOlrAqHGxpv4CeVh6uBCS9tA2yFhMh1qPKWTmdKUhklLCEmnzJReadd4Xbt/qh963HPOd8655zvnqi+TAJouQuWuMVFBQGM5hD90oy+jgc440NHOYRmgGOSHGgPB0GBcE2fXxRBS9fKyMlYV7VAFCivaOSiXJegyLsaiMvyuSsCCGYpAPn2pcF+3TQa6zkaBbisnvtlt4yD2pSD8YduuEPjalEKmawLFAMEDXdQAT4iKADWZNYEIQYOyJRSgJMGkqEQJlbUQ7VmA7D2gSGkC5GGpGg5QQyLQCRk7xFAWsCV72C9hCFEQOcvHw4QQV6zsF0E2Zt2U5+LUEUwTchx7UWA7y0MCp0IkoF5ChAB+pgmW4FmNQHHsTwOcyMOSrKWtlLBpUAJmznEdaLbeNrwiQx5I5lJURSQDSVlURFNTwWs0fqqsxkoSkMIIQinM4XdzBwVW0gGW6kgDrJy3gICM02VRXDP9UHbKXLMsY1DkzLVuG0qrVhDz2Zru7rybCgorWwqLt8fW25sDy9Xw/8XBarjCnCaqOU2bLZcoJhrmomW7UDfrUzdrJ2cZ0/3f5iFcyzsKBBSs4iLMAhN3Pkq8VZg0NjMHNhrVMBvFBFDwYznELTBJLGjdwSNEncDVZgkdFwJkOUkTCBI0le/K7KOoWWC8JrFKNI7p87/inpcv8pHURITbA/N0uQxMWLM3zR4xK5G3OUuTyw+hLQ8MRtoBhzBYb1tvJgZYHm/85YLioRjUkTGxuLEnWY4DmJ5A4SCPQzDGo12iWor7VJBYBEZwByjAKrsx0gGASrISdj+ctTIOsaoq5Wpf1q5DZSzX/KQZy1LxiNkcJI5XQcbRAA6ioqasMY0nkELQdsZrpw6lSB2xoiLh/EgzOWNYteRv5AtUluvAIGRuuhnDWeOJfB2oGwfrWS4QXATJalzMOMhqsps5kr+uxa1tNjL+xqXucsIFd047Tds9hxcB62mFMw5avTq1yBggLU1yEGMYA9QwB2GHCIzZD8NhTghH5I0BJeHtEBzJTrEGMbodaa0s6GyvVEKI7WhNu1FnHZXujLU0OIUoSXscHsblpGiapO2UnbbTpJNqt/s1ZVOwyV7t9DQ36p6gHlVgjWNTtNbr3Nbgba0KBrsAVdnU3ORnvEpDCDmSddGt3nRyW0yKRpMtVG0y5aPd4ebKze7aFl9jU0PVk+sJHF08IfIblehTVdUByhd4AmxurN9iDwkBjx5qqq6qC9T5ozysY5hAdZ1HC8dr8sJzeJwklYvQTTFeyrwm5rkhASWKYsagz+F6DfNZxWcJeGYYbxmK631DmIfgd2czuTPlQKB2gcL3D1VhThoz1ZpYSjg8RBCohINyMATtLqec5U4Hsbk+NObPuQktS8HDIY1VdAHTcNM85TNcLK50AH7EvyzZZ0yy40qa4eMhT4KUCnVA5qIyxlrIpuxpStZUHcl2Fgm1KKuIXZZbY8ZifbIrleS5OM/HEkmZ8nUxTjEC4pxwNGeCp6LpBgdEyroxyDC+iZxknncjOFeKpCmSon9qDgwOt5mZjAo1ROqAw+c3ShuzpTKbMntso5N2Od1449fjYcNJcR4E45EqKGNm6uvx4QkkyPLTKRIfKUASZREXxrrn/g10Y8iFjU8sVUCwA+C/iAxjlZX6Wb6GBkx8M4kFGMbn851cXmkeyolVMB2mF2vpID8a2iHrJ5Yq5CAGaVkfS82rkyJvzK7FH2HMSF/EzTgFysO7XYCKRLxCxEN5GCBwNOvxTPqrST/LxQAZtAhoZKpaGyrqa/zHW8h8JpEBNfvzlFGgroiCMBwEGq6MMcJJMM7jaamBYYzVVNFqHPVyPi7ic/toH8t4Ba+brMRzaB7tDu+GzFFr/UXtGM4eAL+6a+6ru1YWWFchamrbNUcV97w1WXzrwQfmzl05Ay9u7z99/7bY3TumV7W2rv/N1TOxK4Mlfz71wKzvzeT2m8Qvv5sQmEs3dtIvd59d9XzhJ5WeddN/Ku2fa/vR0JvNjXuPP/al/jdu/mAFeHWqrJ/6wleObzjwj8m2/Tt/v7uybPwq++7L3feMnXO0nf+70LkHfft4d2hgXOlhpozvV1eLe88PplZ/bbTjk58/sePTq29tZF86rE+t2C/0P13CXf/o2AHj+YsrZ9UXaLX52c+rtppX1xS9s+brY9djffF31rk+dfLYSPH2119RT50fvEGWToSu1/721tafzI2feuzCxx+1wmtTmf3hP57ZMpl51LVvYMQVWSnuLLp5bd8q7lsnPujyrNuQ2dP39OnTq9Snpr68u+iDd/cWDlx33Ked1R7n+nug/sO/nH7/UonRU/FMlY8fFe998ZXpK66Ppx75zt0nnzxR92j57dVX3jvU/sJox6GL/wL/fAS8/+vZPZc/U/Q9Zs+9z/ob2goev+yeSbx99b4f994497Z3dE04deulh4ofOtL61oqpigcHRr/x1/H32kOnav99ceu1C/ps/S+onhm/+Lc1/g1/uHb5c8jWP/3a0OsXXA0J7rNbg2uBL7x2Fzj23DnwYVFBwe3bhQVfvGf3i6iwoOA/rld3HQ==
|
||||
@@ -1 +1 @@
|
||||
eNqdVmtsFNcVhlD6iNpiqpCqpTTDBiko2VnP7OzTloPsNcGGmDVe29gkdLk7c3dn8LyYx3oXChEQVEJah6GoUhKF4mDvpo7L0wmEQCqqEFAVXmoaRJImP4jUplWhaUlomjT03NldvCvon460O3fuPfec737ndTcVs9gwJU2dOi6pFjYQb8GH6WwqGniNjU3r8YKCLVETRjrjie49tiFdul+0LN1sqK9HuuTTdKwiycdrSn2WredFZNXDWJexq2YkpQn5d77iXedRsGmiDDY9DdQj6zy8BrZUCz48j6pU+VmYs4h5yhIxJWBTMrBASWpaMxRElFFpQ1PcxbQmy9qgpGYoHblafZNKJkdxVc5TuEqnbgBYw5KwSSlgHFS6Bty1+2IyqJLSEu/auo9K26rLxG1Vd5bMNlRhNy0tD8p4A0spGRP9mCqfUoPTUCJKgW13TuMlQZtLxQysUUAxZWIDKxqAsvNUysYqDJEiZTRz7qR+j5fyGJqMCWM2bPCsXwkziiZgmUxldIsOaLQiqZIriU0d2MfJEnkgsc5j5XV392pTU5MmL2IFEdHqTyJWNZzkq7RCOFNKXlvnwaqtEF96RKTreaJJxTZwLZOhiQQPwWdJVgly4uZeMltGYloG+NCzHqZQJgOYTSmLVXi5BiACeEPSiQ+IcOkzBb4TtUFqUt71nmkhy+WckkyvOyNKGREb7hCApspDRTNw1V4CpnIO1kv5vRTnpQJeKliDvbkWW9UBSMJkiC9gTkZqxoaYqCXH1JEqmWLJUEYuD9MGVnl3BLsVpJKRZCFZgmGN6YcrSm/D2nrXz2tskiYlW9Uco1tA3wRYY6E27KvtaKnVmC/pEgSJrCK5szoi0kg2MUGhIuV/6CJYeRIvlmFjFzHMYKRUdhNzWAGVyLINooPxMeuLIkYC1KT3p9SNiJppOXtr68w+xPMY4h041ASgwvl1Zq2keyHJ0jKEwRhkmIrd3HXGBjDWaSA2iwulXc5+CFe5DLGeBP94OUtpcvBbl8dIttHAm2o5E3EA0dxe35mHgqhSrC8Y9QX352gIP0mVgWeakOwUdHf91eoFHfEDoIQuF1unUNq8t1pGM53RDsTHEzUqkcGLzigylFDgUPW8YbvudoqxzlvNlRcnzXE+lvWFD9QoNvMq74y6jnilekHEMriELpV959UUtpCPFHZfVWH36cgw8eEam9gy8jSvgWlnmNlboVWGwLdEZ4RlQpEXKoVpc4GkrG1uGgEf4jdPF8vt4fn4kkn3f3ekFfzpHO8WbS/FRKnFSKX8jD8Ifw3+YAPnpxZ1dI/Hyna6b+u+A90GUs00HGdhJVyKvGirA1gYi902UI6TQIHjEPxQcWmc0zUT02VUzngf3VVqjHR766FSVNKakYE8X+uadY67ETO4Njco8LYgiNlBhYmuDXBQvGw+PVHeAsWVmAFAtAJ+Z/3BSHRvea3itTE4LUOzDM2wR3M0JAmWJUUCSt3/cn82nZEgwzBHbhWwtAEMnbwYYNzntWoJ6DjgN2J9Uk0gGo0eu71QRRUHIlG2Fg34FFejYf2KeeRWgbKKPaxijucq4rQkOJfmwUeSDaAQioRwhE+FoohjUVQIR6IYC+FwOBJI4VdKtYS2iD91zbBoE/NwG7HyziWvgnIkRZs4NsiF4KiNpBPLtoATdqpVI4cwG6H9Y1lDwr7YQ3QMQZejE24IOsXW/qXNHe2xsQSgjGnagIR3vDN1WjLJp5MppSmeUBatXjwQS+LoEnNw0O6Js5E+e0ln76JMNtPmQ519y6R2rHCtA+00G+ZCgWCA4/w062N8rI+lB4N9gZTc27W8T1IGFyWZgLJCCWV7Qr1iR0d8dU/e7svFOlQ5luv1xUVOZUOp1uVGPJmMdq5IDARXDLQu7O1iM71ieHGGb0mkhWjzQ1x4GZwGWWJTfSNccHToAGZTOUloSBK6lCLBSoo0UoLLQZOvtpA2Um1wkSPXpEYqQcjE8IZanpAs3LQUbkeXdgIHdlYSmtZYcldOiSxuthZaWS6V1vzJrL4UPbww2xFn+lNxlO7mY1a/xOWaq0jwhziaKfMQYgIRNwwnof+fqF7uo6tzno7rpRtrES5OqpROFxLYgAxyxnhZswXoCQYugM+7mvudiUg6HfaHcSQtsP4oEwzTLVBtK9puVogR0lCKSIYYy/LOIZFr8jQEApynkVJQUyQE+eTeazcWSr345NT99zz59SnuMw1+N278tKtZfZepO/bXWa/vGv3twZ5TF+gzw/NXfNibHGvZ/atZJ3d6+q/c37bqX1e3CKe6zt/15y0/efq5E2/6nnqibtX3509/YenBv2w+c+UHC16/ev0312coRz7/dGLtl0fPffzPL/d/NnGjZfvQnY/lWk/uG5vxu+snPLOvnp3YNv97iy5+kT5EP3j3sx0PzjyunR/yz4k88OO3Z2cOfrJ6pfDis94PVr71XPjObyz++N6ZLVsvXxuKrtx8rnNbz7+3XWubF2zJz/nOHc8fvveOHafrlpzafnbkH0MXOi48NauuIdTUsHf3+O6fzz3Wvb2XemmoTdh1fu6y6XhX76rR329+K3Kma/vZzuUnpI9+eGBO29C3/rjqb9MXrLy8Yl/s2teO/n35seCe5XOW7RjkA6l7VqXiT9QtKL70Te2Zlq2vzXj00I0tQ4UO7dwGJsmfuOKbt+4X2Y0f3P1R4wZ7s/dnoydTze1/QNySPz1wepjd0DzvybcfK+bPff7ee5H/LPiUG77rq28Uvj1z9p73Q7tOeYZ++UmSv0jHN2780dYD+x65HHij7sxnL04MqxfH+q++fHjL4x/u/GIqccu0Ke/aBS4CPvovQgblGA==
|
||||
eNqdVmtwE9cVNnXJBOiDtilD2smwVtqQZLzyriTrYdfJGNkKfspYBoyBMVe7V9rFu3uXfdiWXZMG6DDTQpoNMGHaIdTYloLiYAKURxob8mpJG5oOTUN5NDPptKEtLcy0k04JBHp2JYFc+JX9Id2999zvfPec75y7GzK9WNNFoswYFxUDa4gz4EW3NmQ0vM7EurEpLWNDIPxoWzTWMWJq4tlHBcNQ9aqKCqSKbqJiBYlujsgVvWwFJyCjAsaqhB2Y0TjhU+dKrw+6ZKzrKIl1VxW1ctDFEfClGPDiWqVQ8NT3G7ZryhAwxWNd1DBPiUqCaDKygaiERmRnMUEkifSJSpJSkYPozgHkfqOKlKJwEZaqAUHNELFOyeAQoBxgZ21hWAIIMSFyjo+FVMJUnNNPg2zLuanK89QNkgIATsNiXMI2JqbypyHAnBJQHPw5c4QTeVJGhTVMKAglpWMNywSImCkqbmIFhkgWk0Qvy2G7yimXRiRsR8UEY9fQapiRCY8leyqpGrSP0LKoiLalAnMs/KtIQ5KEpW6DEKmbg7Ed4wSSdAyruqFhJBdNGFiGgCDD1Gw/jJux55ydAhE5e27QZaRUh0QhHra7W2PbQEGyYzA9gK6hoTxYPsufFQfMQAOcJqp5S5crf1CQIqjV2Xs7s86rbmdXzmlq0IUV0z70SpeAVDXlhAuboArJHuqId9mRLdCDGIGeXDZ5lExqIFSxFyvw50D9H5Pcaxz0JJA+6ra9oyjdQIajCUrUy50ZQUwKWHOGQCmeH8pEw0V7bVIFxpBSTznlLad85VRlMUu7OpO2KGBOQkrSBFFOP6uuIkXUhRxaUsoPExpWOGcEu2XkRFc0kCTC8G5RsPHt0rdLMAd7K7J3BqiYSzEYia/FnAFgQ6uHMgJGPGTtR6MC0Q1r3/SuMYE4DoOygSThgYD1UnJAVMuhlBISBDMLdaRgRzFWtgdjlQbmvTid22Xth/RKedlUrNWJMp6vRdpmcudy1q4rGtgqhnUoCiRqGyraUtDeFIp1+4JuZn8/DUkUFQlOR9tHs9Kqs/7z4gUVcT0AQudbp5XObd5XbEN0a6wFcdHYNEikcYI1hjTZ7ztYPK+ZTpCtTLjtTnf5xdvuvG6WdQdengaspxTOGnPK/Mi0zdjQUjRHAMMaZvYV4iOBRAzBGmUZD/MCpFSFbo03pm0Fm/qGUUgGfudkJt+190SbCln8oGTeaB0kxpqMaCJoNUDFsEp5GI+PYv1VjLfK66GeaOkYD+f9dNw1Dy93aEjRE5CL+kLeM5xgKj2Yz4bvmvFJO+NwHJs/NEka96tEx3SelTXeSbfn7iu6oe5gTl400ZJQEQOOW2vSSX3fQH8fz5k8L/T2yUxowOeFWja5xKH8FugqthsgRMu6NeLzhfblVwrBz8JZGZplaIY9ZtcMB1qzD6MSzaB1zMENaaSss+Uy6reFVuNlK71+hmGq7VtDMnkcM+N1RIb06NVwPWGJIP6VfhpaMpZEWYTMOL/521e3Rith89E7DQzSg+GezvgY55kqtoB7BvDtQ9yG8YVCoVfvblSA8oJJiA2+Mt1Kx8VsWI+sH73TIA8xwsr6eH/BnBZ56+y34KUbxRFmWBxKsIEgQkyI82Efw3E86w/G/SwOToQjdBhxAqZjjgCtTN2K1tqWhnA2BuBhQnpE/Oy5GaXd3VyiOy7XiG7Ux3kjamNPq7+1KxmOeMV+vXZRc2OAdCMp1bKiVqrvaYm3Jbs4mg14Ar5KL8N6aNbNuFk3S3ct5hJrcaw2ulQUgn3tOjJF079O8nUo7t7lvqhnqU9Ysra1k0ER1R/he9RwZ0utQeJNOqnrbTUa4mE+EY0FmyJMvSh2VAb6E+FIfEktpBMZQk1FNXyBqNA+9Zp8idBQInSuQLyFAqmmeEcENe7p/bCaWgxfV/Z3TDVUFqgJwz/cezHRwDWt8PlydjvEwOwV+ZrKJe31ZiguxXujvg6mzi+kGtuToc6OZbXrOCWcGIingi19YrNnqRosCkLAH6CZfBz8jC/oqOc29c/I6nAnXVzxdFTNfUZm4CtHEROJdAxrUEFWlpOIyUNr13Aact5eu8I6FORCXDzk5xGfSPh4JkgvgqZZQLvVH0bte8H5nnwqnbur3prx4YIf3lviPKVG+2ryE+a+oXcn9l/Wd37vobI/vfT39x+NpfeenjrUPvxNrax1yz/R774fuXplW9nMLnP9/vHB774bemwqM4s7cWSu92SvcLB9zpVPHjo3seej9UND15Kv7V7+8Y1rV85/tP7TTb8UZsbODPsHf/WPpjObm3d0PfOXxl512Ve6tPHa+yIHr+5YsIluy9KzziwTLp3avlx7e/K3X04+vyD12r9OT8a+82ApO7iT+cUf9v5xV/TY2INvvrN7qqPRc8+cDUePvzm/o/Ho7J+yFzq3z0uX7nxEbKi6dGBe/POdY3U/Hp67UT3SOvLvufNmW5cfW7D++qcHDh9/evfUA5cvP3/8RvnjysUPf794YkQxeh6ewO9v9r1+beB6ZAv7TOfhycDrNQsv3j/1xon5a5a+9+2GSxfeeGRG+LS2fDHVumZzV2BW89dO7Hnh5Pwbdc9uaaC+lJ517/b6rTN/1rc18vYp91PeV78ain5Q/fjTrvGHJ774g6bDz31y7Gb58OzVe7emttX8+cLfxr4+LHpLuB2XD+1qfbHk4xefvGf13vbz72VLG56YX554YMEXDgYXjcwRdtSz2YqNN82xlQdOnkd/vTihn8Qs89/JU//ZteYb3N5m3T0na7x1vmHjqsxVbapsVd2v72/+zbYnIZc3b5aWLAx+7rm+0pKS/wE1Cc+Y
|
||||
@@ -1 +0,0 @@
|
||||
eNrtVnl0E3Ueb4GtgAesT1dQjpgVdbWTziSTs+RBD5IW0jNJL4p1MvNLM81cnaNtWrpWLD4flC0p4AG7rpTSYFsK2AJySlFXFFRA0aUooOyKBy5KQURQ9pc0peWh7/n28d66+8wfyWR+3+PzPX+feaEKIEo0z8V20JwMRIKU4R+paV5IBOUKkOT6VhbIPp5qyc5yulYpIn34AZ8sC5IlIYEQaA0vAI6gNSTPJlRgCaSPkBPgs8CAiJkWD08FemNTatQskCSiFEhqy+waNclDV5ystqjzocJ9kkr2AVUlIOCPqKI5VTIvyTw3TR2vFnkGQDFFAqK6dk68muUpwMAXpYKM4DzC0hwNpSRZBASrtngJRgLxahmwAoxEVkSoi2pQ+IbnmX7XckAIG/QqXCRQqHzl0VKj5gg2fFoK5JIoHChAAYkUaaFfRm0H8lC4GiggECLUg8mTwjYEEeZElGkQ+cfwJDFgPeoboqW5UnVtLQwP5pgWAQWhDUrCMKOSvKcMkDKUrJ1TG/IBgoIuGlt8MDvBzquTv44gSQBzAjiSp6D14NrSalqIV1HAyxAyaIMZ50AkzGCbHwABIRi6ArT2awXXE4LA0P3uE8oknuuIVggJA7n2uC1cDwSWk5OD3VkQRFJ6QnYAdgmnwjQGTIOtr0IkmaA5BlYdYQiIp1WInG8beiAQpB8aQaIdGGztV+4cKsNLwdUZBJnlvMokIZK+4GpCZA1419D3osLJNAuCoZTsa91FDwfd6TSYVmPacJVhKcCRwdWRRtp8lTKQxQBC8tBGcCXaOZAfBnClsi+4SqfVrRGBJMCeB4+1QjVZkea1wFqAfXtC0d5vzpo1UMSjMXe0pMK6BHe4fEq8CjWoMghRpUW1ehVmsOh0FhxX2TNcHSlRN64fLcMGl0hwkheWYsZA2UOkT+H8gGpL+dGC7wgXHEYThg9HCwFVAi8BJIoq2FGA5PZPPZKe2tXfXQgvlhIcXR1xG9wRqXxldVUlRSoU5auoZFFzNa6jPUAhvd1RFTgCYTcQEMJKwVW4Tt8ZPRnIfRuMFUUwFEGxrVUInFXA0CwN8xn5jq4eKdiiR1H0xWsFZN4POCkYwtHIZ+dQCRGwsGhh34NmcLPZvP3HhQZM6aCI2ajferWUBIaiwbSs9OK1AlETzajUUTUgjdBU8PA98E8JoaXMHr0eJylCZzR4dVrMRGBmwmPEUEyvA8SW8D4goZVwMQVelBEJkHDPyoHg4XiWqArPmVUHRQ0w0kS4HklGoYBT8aTy4RikRJUgAoYnqHWkFyEJ0geQ/v4LhlILM5My0lPanBBkCs/7adDUGzuupIT0lnhYK5UXKChnUhiHO60cNYvJQoEsukRjEup345WEwNJYSpqU5EzPsfMIZsQxrdFk0uIIpkE1cEoRh8dv0uWSdjTfp+NLAnaz35lRaMygdTPNmWhBmZMRGCXTpfHmutOqzclV2pmObHNWkjbXVpXkypNmZmp0eHlmJenT0kwuhuL+VNLuNThmCTnp2Q5TmQE3G4n8HFdWieyHUQtw2VoTElWwYeG+lKzRsUHg2CDhoTFa0IGhSVRRkcRYNVevyERVGry3sjgmkKhyhjMM4C/c205aBtZMngOHl8LEKBU0Zc0kst0FAb3bnWVMwryluRTvtpFKURrhChQVlZXn8YYkD12ur/R4MoZkxmjEETSaHAOKmyKtOQj9P0S1qQAZugWQrMhFBIvL8RJHe72tTiDCqQq2kQyvUHDbi6A1xYbkJhUGu80YqcMxwmMwGSicBFokGe7RAWtXdkZL+KoIEQxsvAoy2OXTWdUwlTp1ooolrCYDnLHINf5oa//F9Wrs95MXjoyJfIY3OHP4FejYP57MLzg/4d7krulVs7ue722zyssMa/fWF0t1iWTNpvTZMy6cXnJ3bBM4WDX9vdrztZXnD2++cWTsQ9NtdYfe3WBb+JUl4zS//Ejo3N6LzT98c+GdD/s+fODW+FtnT3kP7bvp3Lf1+yYW8k+XdU9/bdkpwrvYcratj8Ial+CL7pi4f82w+SF37/wbbzcUn0H/9PGMcVM+mmpd7391fNGePY11Y5MrPjx2/g83zn20IbWLbEny0/MX35xeX5ez215XtHftqoM9zIhnmm5Zzc/ZlOyICS3dM/52T/wHj2x7PYAvHB1cN21u+iPH+iqPbT7w/pEzJ777W+ekT1NWOD4/d3DdVv8aZspdjuXHU6YmPmgbmdYrfzB6zg8N7x7yvfVpfYzefeQ5eafyd3b6/bYdx+NeuLn4wS8ulY+5r7tW+OyS9PETPS9sdE3osLxy/rHzye7eNfYa75SlxeLsk3HPf2lbbrlrQruiPGfdMnW/Td/7z8zvkz8Dd6QnjD5x8c6eC0eGf7p0lach4cTh32zcPt0eqNz8suRZeqigYd/XhQc2HS8bNmLJ65e5T5oqplmfOnR5T2MMuWbi77YYCoQKy1dPe/fzx146GNe47fGe5sPi41tO+C6xtxUczDubGPvNIQtzpmnv6EWG7bNvul+ZhCxpr+/sbJ4y4uLxMbDOly8Pj1m499ZX7h0RE3M9meGwnOvDDOOHaHIKw1w5JuAtBLchfN9PAktIgvlJJkhDHqYOC5SkzMg1lTvppMIKNG+WNz3FLpmLiCLF+HPoIiGWKixEAr2oa4qv0LpitUVVrO7HX6yuVYc53VDY6vRwuJLCcQHNYHhhzEOhl/wMjL/y5F958i+VJ+vN15kn6/+feDJu/l/hyej158l6j8ELtJQR1eEoYaSMmM6DkqhJqzNjqAkjTP81nqxPqp4VcNjQnGxthZ9zC7NYxlxt53J9AYdU5GYdgUwnmYWasllHziAb1F/hyRk+Zx5fVe0nBV7Qp4KkDGehKblcq/X4gSYnA6W5yjRCyVNm+sopv4Mql/SFvNGuoXL4alsZW00bZPsMtsgrAQOa7MqbZeRmujWKN4DZZ2T7s3MdnLmoxGPSZqQmp5vSfy5P1l8nnmxOE205zvI02sPYyqkiW7U5tyDgd3kU3FjIYeXmUszmrKCNKD4THZIZHDX+MnmyVw8oyuQ1UNeJJ68Z5MkRDtWQ28OtQm/b3nf7k2+vHPZGXBO52p1ndvdavyybX3wxllv0V/+0TYvaLl18Y/HjLnb1Q6Z928d7nz02a/e49xfw45/aoTKblhx999zbk2uwf710+vTkWxKPLdv8xZucvfHcae3J9jW7ttUsPtu2tclkGt5y4K3us6qRzf6HlgVyDilfs+o418PNHdLSJ5++pffz7j0LtG+24euyPp+0sX7X5lNZu8eRCe8YP+ke/eyFJ0F7PlU3NvWGuTWTPA01+G8/Uo+YmFbwcfv8pb5Rp277Pn/MqVEjzh1/ZtOpuOErgWU9WlTz4lZXwPeayiMm3intbjw5Li7x5NeaP3+rO1rWnnKsamwsewmo5LmexlHkI6GtJ1bEfRCYMEFfP+bhVYR7X8XcwjPJXOaEu0d17VJ2frerI2d68gphA6KZfyoJeQNs9LjuTHjiH81nLsZPDry9ceOXOz0vjc2d9/vsRX3Pdc89Ujm+b2zCV10b+haEdk2tuxyagrf0vFaavX/BgX2VPS/fPfamjHb2hqMB62T7F8uZOXPyPdJf1gZExw/D+yntPW9mrnwAPv8bzps/8g==
|
||||
@@ -1 +0,0 @@
|
||||
eNqdVXtwVNUZ3220OjKDBRGwHe12BxBr7u597TOzbZNNWJIQNskueVSZ9Oy5Z3dvcu89l/vY7C4CFTs6KOJcH6NC21ESdp1tComkKAgqdup0QFQmOhpbqrYVaXV0aJyxiiU9u9mUZOCv3j9277nf6/d9v+/7zvZiBmm6iBX7iKgYSAPQIAfd2l7U0CYT6cYvCjIy0lgYbo/G4kOmJk7+MG0Yqh50u4EqurCKFCC6IJbdGcYN08Bwk3dVQhU3wwks5CZTm50y0nWQQrozeMdmJ8QkkmI4g861SJKws9apYQmRo6kjzbllY61TxgKSyIeUalA8pmRREYmWbmgIyM5gEkg6qnUaSFYJYMPUiC3torcU0wgIJJuHhtNYN6z98/EdABAi4g8pEAuikrJ+m8qLaq1DQEkJGKhEUCmokr1VGkBIpYAkZlBhxsoaBaoqiRCU5e5+HSsj1SwoI6eiy8Wlci4USVkxrPEoAVHf7G7PkUIqDsblZVzMaJbSDSAqEqkMJQGCp6BW5C/MFagADhAnVJUkqzBjvH+uDtatfW0ARmPzXAINpq19QJO9/MG53zVTMUQZWcVw++XhqsJL4TgXw7r8Y/Mc6zkFWvsqJDw3zxgZWo6CmPiwnqb3z9ZHQkrKSFtDDM09oyFdJW2B7ikQM8PUtw8TLtBrfyxW+2NvtHWWxL/Ylg03El6sY/G0WeugvY42oDlYmvU4GG+Q44I854i0xUfC1TDxK9IwFteAoicJFU2ztBdh2lQGkFAKX5HwY2XCSTZl+KQtKZRVsY6oKiprpIfqnBkMqrnx4Ex3UVhLAUXMV8JaxyrMD+azgwI0BSGdGZTpQJ7nxAQyYXK8aqJquByGAKJk3Rpiae/+qmS29iWSK00xNEUzR7IU6XMkibJI6ln5rU6nbg17aJp+/nIFAw8gMsdFnq48L87V0JBMSCvHvuSGDwQCR6+sNOuKIyoB/3w0hFE0Fw3DyvrzlytUXeyl9ZHsrDYlCtbkCnLoYz0AIS/rpZlkgKYTwMvxnM+T8EGO9UEv7z1MJl+ExEuZTBVrBqUjSFaRkbMma2WQLc9ZiGM8nJdkWucQFSiZAoqZiUZczkGvc6gakjAQDsAkBQFMI2qm/6xiY+/6+rbmcClGQIYxHhDRw+/Zl/f1wWRfQg7lUNwTiAs+RsFrNrV0xF2NmmfA71Kjme56LHd3x2TI5tRIjO1rohgfz7A+v5/lKMZFu8iUUk39PIwMCp2eVj7CmevyeqSzKSA2RrubeiMZF611NRiDjJoRcS4Qz/Zgo9/or491d3DqYKx9TS6Xp1vCrfGe5oS/q1Py+dZJ0J/IJnztZnN8fdf6dfl6r9ri6W/pEPPJNpIiMNIhd52DNKxIih6qjg1FxoYqD40vSM8OTZ1DqBQm5Jq/Iusca8lqjypSrs4RK1cYkX8go5hooNB6rKDJR0lhzIwohMxNG3LxCNfLh1k6BnSlK94Ge/yg2aer9AbIrkl1cJGGgWRLfBDPqQzrZSi6WhwvzfsrrXkJ+v+J6lAPNXcLUFF15g4rKlhXxGSyEEMamSqrBCVsCmTba6gQXkN11vda4wEGcjwDOC7hY3mB4akGskdnvf1vZwyXr4oikEjjZaB1MM2FnEGe55x1DhmE/F4yY5Wb7u5CuVGV1B/sQ99/4Fpb5anZ2Xl81wS95OjHt9/yI9/q5pOrvtg+fk18/OSOBYsbLPjSiuTNPz6ZWXqiNL3rl+Ntpat3tC7k8Crujc9X2n/W8myIPj3l+PZvJi6Uvv7Xafma9z960K9O//uFc3vOfvj0ha+/2vh7b0f9qeuXfLg3f3t69Lv3OLmJV35w/fKNU9rjy9CGG/+0Y/navbueff1eI/KPp3a2PDDy7r7eJ8++3XvmkcXnJm95caXN5p7wneUXbxsLCXsWsE99eTR86KWFdjoSdO7cfOCuD1aNnmq4jrWfWvKfn/904nv+N6Pf+fPLtz5xtTq86FvNW78ZXRqUIm/ALNe/5dXoOyt2Bz955nzq4v3PnVj9/jsLD996w/Q/a3q9Y8WrPrjwVvbobcdHho7fG3zzht3pnlOK1Dv1ykcfo9Gf3P3JjVsXnXni7cU13e8dWPrqVctCJ5oOS48/1Hn6/rVdj/Xd99WeL++848nPtn26rOHacTuSb25ZqSxww4V/W3Rx4NMjf72Nnjr368deDq42zt+04tBdb02J9LYv7Pcd2VAIp361+/Oh35mZbqX14tY9Z8b+/ug3dptterrG9hlmzlM1Ntt/AUZXjK8=
|
||||
@@ -1 +1 @@
|
||||
eNptVGtsFFUUXh6RthaiwUQMaCcbEB+925ndZemuMXRtS+1KH7RLbQHFu3fu7kx3dmaYudP0AYlUIU2BkMFQAsEX3e7i2lKaklSiqDxtgKRAiVqJVQMiVqBi8AHa1NvSAg3Mr5l7zvm+c77v3KmPV2FNFxV5UqsoE6xBROiHbtbHNbzawDp5OxbBRFD4aHFRqb/Z0MS+eQIhqu7JyICqaIMyETRFFZENKZGMKi4jgnUdhrAeDSh8Td/GOmsEVq8iShjLutXDsXZnunU8xepZUWfVFAlbPVZDx5o13YoU2oRM6IEfSxITwQxkKmkxAwOKQZgAhppuXfsaxVB4LNE0JEGDx8ABBCiGDWCnBKyDXUihCI6odB5iaBSftbFr4wKGPB223/JoVFB0YnbcN0A7RAirBGAZKbwoh8y2UK2opjM8DkqQ4ARtT8ajCpmJMMYqgJJYhTurgU6gKEt0LkDECKatmh8VFvlX5eWX5RbGboOa+6CqSiKCI+UZlboit45NC0iNiu8PJ0Y0AVQomZhd3vE2M4prqB0yw9qcbhu7715qCdKOY+po/NN7AypEYYoDxqw2Y7eL996bo+hmSwFERaUTIKGGBLMFahGXc8KUmiGPDGrGs4vvpxsL3qVz2Di7LbNjArBeIyOzJQglHXfc8eBOSYIa6QCsC7Bc1wRoTLQagBTKYH7I7h0XUMJyiAhmM+dw79GwrtINxm/FaBkx9Poo9RKf6o6Prd3uolfGN2FTNIe6ah70C0Y6w7qYAqgxlHgBw7k8DodnAcvkFfhbs8dI/A90qcOvQVkPUqdyx5cmjgRDDmM+kf3AdUmM3Swg8uZn9H0Vy+VFjBLVtzQYUivD4mpfdkmuXIjzDtzVRdFCUBZrR2lH6vrmOtwuxwLeEQA4EOSB0525ELjddg4E7PZM3pnJLXTyruYqEZoJzsYxIUUJSbgdBQGCSMDgtjRmPKei0FuQn91aDkqUgEJ04IchMyorMo6VYo26YSaQpBg8XX8Nx7IXgxJvhbnfzSGHk0OIDbpYJ0J28BJdm3GZ7sgQHbk7o7+BddQKjR4dm9SYtjHJMvpM4U3vlt6s1PXDjddbtu/3dTX4DrRmzWl882RK8qTcM+wFsmHJFfaCmLxs+AVf07asXek363p6mtpnzXFlXixdoaRdORL+/otzXWn/3fht6Je2J6/GH59Ztqf35c5GzTX/cMo7Rw9AbUbF9OfLMhuaG6Z/JzQ2/ylfLbh88tbez+teHxx4sUxYv62846a2dueeG/pftpZDU+Ytx+zvm5fUD56dSba+sfXsnJvdaUNTC6tbHu5RdyyrkN4f/Km7vXvn1uRzvVP7d/262pcX7Qn+7bV9nDqwuf/I7NOPda9LKX8i6UTS9g+eSr34yIWpCCataaqesaZ2yfkvvYsHTmya/+zpfDjNe+iZHHsFTDpzLPlUsfZj70P95uGs050rGdIp/sxseO9S+aLBYPm50uWTvx4Qma6VBw+d/yal88S3T9srZs2eW9XWdPSfafytpQ0AHpl3POXkHzsuNa77anebr2hXR9+15/Yfr62MWJu9nwy9Wrzoes7xoZ7o5R/eHbpW9e90i2V4eIrF9ARTHZMtlv8BHmuAkg==
|
||||
eNptU39QFGUYPhQbUhmIGZv6R3ZupBqHvdtjr+OApomOEEQ6hBsGRhM/dj9ul9vbXXe/xQO0ApnUKZlZSy2omYjjzllJpSgkMSMpayAHGkeHqRwrM5pKBRRicqDvTjAZ3b++fX887/s+z/s2hmugovKSGNPJiwgqgEH4R9UbwwrcpkEVNYX8EHESGyxyl3jaNYUfTeEQktVMqxXIvAWIiFMkmWcsjOS31tisfqiqwAvVYKXE1o4eqDf7QaACST4oquZMwkal2VMJ80IQtmyqNyuSAPHLrKlQMWMvI+FORBQxeaAgEH5IAKIaQxCgUtIQUQmBopp3vhQBklgoRAIZAWgsJGmSA7xPI9NwHYqm0iNwCPplPBjSlEgVykLtDHMQsHjsS6bEICepSO+6b5RjgGGgjEgoMhLLi179Q28dL6cSLKwSAIIG7lGEUa50wwehTAKBr4GhO1n6cSDLAs+AiN9arUpi5/xMJKqV4f1uIzI6iRkRkd6TvdCHtagWMy/ilmmHhToeIFUEeFHA3JECwC2F5Kj/5L0OGTA+jEPOq6qH7iQfvTdGUvWOQsC4SxZBAoXh9A6g+B32j++1K5qIeD/Uw66i+8vNO/8vR1tsNkt61yJgtVZk9I4qIKiw6y7Jd1MMrBVNUg6SsvUsgoZIqSUZCVfQ26ijCwQKUPQiTm+32TMOK1CV8bLCXSGchjS1MYjFgkPfhOf36wN3wYLUbwRzsGz6KQ+npRK2dMLNICKyJITNnkmnZdopYl2hp9M1X8TzQJW6PAoQ1Sqs1AsLWxFmOE30QdZwPXAfjPkjInlW78PvCspGF+Ruc2nFG9VAYVFengLp9EKQzX8SIBlB0lgS4QuEZHTYANJHiUo7nWG3MU4nTdMOSDkhpKg0J2ScjN3BVjrp9hoe6IbNYiO8kuQV4DFXLukCDAfJkiglejin/MXswnxXZxlZLFVKSCU9wKsHRUmEoRKoYBV0I1oa77UCQzi9OLtc73aydqqqislgYYbdARhAPo/XZYGeu+MHI0cRvfQGLIGCTV/FbE9+Pc4U/ZZu2Fjh++G5lXNrW7ZM/NLU/XDs7eKxM3knv9/t79gFm1rdzdKzBefyD51fMXPtzLWH6pNuz64fa+xn9r63emqw9eKtyetTJ2Zvjxe03hz/Z+I7/+eXXvlyiX+M9+hGVuKjb69pfrUkvro5fsVfAyUDSUfGPgrPVF86MXx15u+JmlObyfSyrSnCwGu/TQ+ezmnvGcnal9TzFhe6fPnJ3tjTwZTDKf1E74/jzRWtMX03hp7Y8vMzhscovb717LSntzP2wrBpX9ZI/fpCNjl3uvQcvcz37k/9S8uWX+mPXftHnJLw+9Z453Dir6adVXE79geW7whIm74orTMm8xL2tx0cWt3YQO+5cv79FSNnYzYfevoGiHGzw490p3rjbnEttXvaOro+fXy7mnqhqGX51QtF617+rK7hYvIyI/+0+4rnsYI1U/WDe8etbWhoYBX4NuPrJZM335lobPhXqH/zYFlXX/mqp0ZndzuO/HkrATM8N7fURLZuWDkdYzL9Byv+bUg=
|
||||
@@ -1 +1 @@
|
||||
eNqdVX1sE+cdDnSsdNqg7WhHitrerFYgyDl3vvP5S+4WO1kwIbWTeCFmouH13Wv74rt7L/fh2CaglbVoKF3bK6hp1Q/RJNhtloQAUUrDR2Gj2ibaIjZ1ItCVdm01NqXrumkIqSvda8cZieCvWbLPd+/v83l+z+92FjNQ00WkLBoRFQNqgDfwjW7tLGqw24S68VhBhkYKCUORcFt00NTE6bUpw1B1b20tUEU7UqECRDuP5NoMXcungFGL/6sSLIcZiiMhNy1ts8lQ10ES6jbvT7bZeIQzKYbNa4tCSSJkSACiC6XxJY5Mg4hDoOm2GpuGJIhtTB1qtu1bamwyEqCEHyRVg2TsTtIwtTjCdrqhQSDbvAkg6XB7MQWBgFt6aiiFdMMaW1jkAcDzEPtDhUeCqCSt0WReVGsIASYkYMBhXJoCyxBYw2kIVRJIYgYWZr2scaCqksiD0nltl46UkUorpJFT4Y3Hw6XaSdy3YlgTYVxEXag2ksNoKgRt52g7PZ4ldQOIioThISWA6ymo5fOj8w9UwKdxELLClFWYdR6bb4N0a38z4MNtC0ICjU9Z+4Emc+zh+c81UzFEGVrFYOTGdJXD6+kYO+2wuw8uCKznFN7aX4b89QXO0NByJI9wDOsVamwOHwkqSSNlDdKU+1UN6iqeDfizAnYzTH3nEOYCvv3bYmVIBsJNcyR+UPW9oXrMi3U8mjJrCIojmoFGOCiHk6A5L8N4WQ/R2BwdCVbSRG9Kw8GoBhQ9galomKO9yKdMJQ2F4eBNCT9eIhx3UyofjyEJsyrSIVmpyhrpIFtn1UGG6g/PTheJtCRQxHw5rXW8zHxPPtsj8KYgpDI9MuXJs4wYhyafmKi4qBoqpcEFkbJuDTI0O1Y5mcN+GPdKkTRFUvRUltQwFJIoixjP8m9Foro15KQo6siNBgZWFRZzkaXKnxPzLTQoY9JKua+HYT0ez7GbG82FYrCJx8VNLbTS4fxqaIesH7nRoBJigNJHsnPWpChY0w/gm06WYwDnctJ0nIlzgHYybifPO+Jx2gGcXMLlfAPrXORxlBKZKtIMUoc83kdGzpqukUG2pDM/g/043KmPEBVeMgXYZsbrUakH3UeoGpQQEA7wCZIHfAqSs/NnFetjD9c1h4LDbbjIIEJpET5zYdHKzk4+0RmX/XqCozktHNmoC4w9vSnTwWyoz6wPqmZrY0NQkNrzrhTNBc0mj9xD0i6WdrjcboeHpO2UHauUpELOphArpSI9kiMUYlvr8jFRocS0XbBvyCWNpBM1mNFQw8b2bgwzn3C2bwyCSDYaVpxNdTnUGg8505nG9nadk9nopqA7nd0cyNY1uzqCsXSek1uEaCJmpDwUZW+I4RaBkfLX+gg8sCIG3V+RDYllQ5ZE4/JSc6LxEUIZGL994Yr0Eevxfg8rUs5HtJUQhvgKZNgmGtD/MFLg9F4MjJkRBb87Bto7pM0bOsXubn0zciZBc93miJnPIEHgskoItCQ6+fWmqnW75yHD0k6SqoDDUay7PJrXS/8/q5rsIOdvATKszr7IigrSFTGRKLRBDavKGuYlZAp422uwEPwR2VoXsyY8NM+wNO9h3dDjTiQ8ZADv0blo/9sZQ6VXRRFIePAyvHU4xfhtXpZlbD5CBn43hzVWft09WigNqpJ8a9Gx+/uWVpU/t+Dv118/0XpKuUh9+/hf1rlf2jOQufv0O/CHj27Z9TK3Ynp82a6ac5P3xO6sz8daPrl0q0eZ2bpqvG9Zb2/4c6t3S9XSwbeWPdb14C/t59/b3tKbi5y9OPjum5/9AHoe6n3yhQPTH3187WB2xZnT/3iPWbuD/9OaS0v6pGO+X68dEDYOT1/Z/izqs7256qfvpid2//Ebj4wibt3f+U83vR47Uf38qOtboZkPv1xc9aGZ3dNY/KL//KnP/jn6++9bUmTG3lxly7+wNnBndfyvHTWrI7nfXP7mxS+vLJk4d5IMPO4I3NVy377lKvt+IL30nu/K937H+9Wil9/fc7TxwW2BfXd/tOa2fP/PDx26qlwLnZ5a/Xxg6oMLB3dMHZk8cdu5Teyf+/Pyi69MPrHmd0c/efr8rfS+4pKTTwHvVz/eesfA54v7Z5Zffmbr5ENndov3M6pv50zswmsn7ludH23vEsSadwrr9kbJv+32jAauXLhaPf4cvPaHty9NnH3jF+lrjTsW7/3VyVfP3N6yyrw329X33Ni/O+X+6uW7loD/iCuelaiCPzUC0dmeBy4/vvLoIW7s1MqB6ifF8/8Sv1hVouiWqgF09VwT5uu/A4Sdew==
|
||||
eNqdVW1sG0UadluuQoJDOqVAdRLqYsEJQnez6931V3Cp4zjNR12ncUJT0J1vvDu2N96v7sw6cXL9cYWrQNypXVqoysePUscuJm2aNrQcbenpuCvtFXEH3J0IEhVV+VFAgBAoIEGBWce5Jmp/3f7weGbeeT+e531mtlWL0EKKoS+ZUHQMLSBhMkHOtqoFt9gQ4UcrGsR5Qy73JlP9+21LmWnOY2yicEsLMBXGMKEOFEYytJYi1yLlAW4h/00V1t2UM4Zcmtk55tUgQiAHkTdMPTzmlQwSSsdk4u2HqkppkALUkFEgQ8awMZWBwELe1ZTXMlToWtkIWt6tvyYrmiFD1V3KmZjmGZHGtpUxXFudrHJkRNiCQCOTLFARJAsYaiYpjBi6vlgmsLWah0AmZe8o5w2EnUOLC5kEkgSJd6hLhqzoOedgblQxV1MyzKoAwxrJXod1mJxaAUKTBqpShJW5U85hYJqqIgF3v2UIGfpEo1oal0x47XbNrY0m2OjYmU6SJKJdLb0lgrhOcYwQZNjDIzTCQNFVAiGtApJPxazvn1i4YQKpQJzQDTadytzhQwttDOSMJ4CUTC1yCSwp74wDS/MLRxeuW7aOFQ061VjvteEam1fD8QzHMYGpRY5RSZec8ToNxxcdhtgq0ZJBfDj72EPz+KhQz+G8s58ThAMWRCbpH/hIhRzDNtpWJlzAN89WG430QrJnnsQLntvL7YQX51R/3l5NcQEqKWHKx/oEihPCvC/MB6l1if6JWCNM/3VpmOq3gI6yhIr4PO1VKW/rBSjXYtcl/JRLOKnGTZ/0KQ1HTANBupGVMzFI980piO5qPzrXXbRh5YCujNbDOqfqzA+PjgzLki3L+eKwxoZGBV7JQFvKTjeOmJbhhiEJ0Rpy9vt57lBjZx77GqmVpTmWZrlXR2jS6FBVNIXgWf9tyBg5ZZFl2VeuNcBEd0TwVYGtf68ttLCgRkhzY191I4RCoZPXN5p3xROTUEB8dbEVgguz4XwaeuVag4aLF1g0MTJvTSuyM3MXmaSDok/MhPggHwqwPlEUWAGEIBviQhzL+WR/6M9E/IpEvLhkmoaFaQQlcmfhkjOzWgMjrs4iPCfyflJpK6XokmrLMGVn2g23BtRKmRZUDSBPxjroGJDykE7V+8+ptm/eEE10xWopkmTMMAoKfPL9JcvSaSmbzmiRbpvBw1GspyxN8aVD6YQh2pIciOfibahL797UWSxuiveYWxL2MM0FfCEuIIpikOYYluEYjjZ4vbetLbNe7tR7Ep1tfWzRH+gG4kDM6var6eSD3XhTVttUjJo+f1f/6IC4rs0uDPWW1qc5ExaVUDZbTG5WChrGMcvkt8QHbMbfNxQl1QCcj7S0UqQ3FYJvpKEQmiiEdvUhhtl5fbRSch2DCLP4NmylOsl1n9TVUiuVcsGEZAQaTCkYRjYYOpzZTTCwi4ocCchxkOhghmzWig32GcxwMj2QeyjR548XgqZtGsPRQk6IM2aiJ7cABJHjabaBg58VgvUuvJr6/5nVsUF6oeDppDn3rlV1A+lKNltJQYsIyKlJqmHL5GK3YIVw3hfd7EwHZYHNZiWBC/plnvVxdBu5Mue9/e96KLuvQhWopMeKknM0z0e8YUHgva2UBiJBP5FT/fX7fcXtST339yVo1RM3eurfMnVjIrmUW3Hyi8mR2Zu3/yxw4+37f3XXL/WO9Sti3d9MPXx59j+zB52VP5z4+MjvVp76mn1371vrTzd59iFu+b7uczWrMvZd8MrIoFGrHrxjw8Y1H1xUhbGts98cPffb5vDG6Hmxec0B5taBt6jCkbGHSrv/+LZ4x+y6j9nzRz7dfuCedU3wD5c+/9D3qfXZnn9/Nn5lYuDp8q3Lue3Hb/B8eCIkdTx7ac/K2CRa23xz9LZ7zrzR4/nrrscf23nn5b+8c+Tyc53xp9/2T6X/QX90Q8/uNWvvfeAX3S9euW1F1y0B1Hp81/uPfPW3A5nJJ9CqHS+Fz773+n/PTH/7+co3ey/eT8fOr/ryqWPh3Tft8O38051LdzX9/ESP58KzSz5JP//oV/2h37Davzpex4ePN1XP/fPs9N17B59punD6k+8vHTvrjPsvqmv3lZu5B+4dO7f55dPGD7mpyar25Rt3K8+3v7f8zNDUO8fWfnFSf62819rzPUH3xx+XeW46fd+7zlKP5yeHyHrs
|
||||
@@ -1 +1 @@
|
||||
eNptVXlsFGUUb8FYg4RUg2iIqduVxAQ725md2ZNU6LW1Qnd7LJTSYPn2m293pztX59ijFdGCRCIIg3IJVqBlF2stYhsuqTFeoCiJHNESQvxDMFYTbqMkgN9ut9IGJtnNzLz3/d7vvfd7bzpTUaSonCTm9nGihhQANfygGp0pBbXpSNVWJQWkhSW2p9bX4O/WFW54dljTZNVdXAxkziLJSAScBUpCcZQqhmGgFeN7mUcZmJ6AxCaG4x1mAakqCCHV7G7uMEMJRxI1s9ssczBiAiYFiKwkmERdCCDFXGRWJB5hq67ip+VLi8yCxCIevwjJGkFbbISmKwEJ+6magoBgdgcBr6Iis4YEGWeArfg0aXEtT4URYHF6F3Lye8KSqhn9EynvAxAijIlEKLGcGDI+DrVzcpGJRUEeaKgXExVRpiBGbwQhmQA8F0XJ0VPGJ0CWeQ6CtL24VZXEvmxihJaQ0f3m3nQ+BK6CqBmDPkyitLq4NoFrK5ooi52yUJ/ECVUDnMjjYhE8wHyScsb+2XiDDGAEgxDZvhnJ0cP9430k1dhTA6CvYQIkUGDY2AMUwc4MjH+v6KLGCchIldfeHy5rvBeOtlBWi3P/BGA1IUJjT6YNByccRpqSIKCEMYxdZBJKUoRDxrncvJYWGGwJCCWJKqUxHvR4xPkeuSHKxSo4ts7ZtiDm9NQtbK3iWgKKpC9ssQVtchNBORjK6nA6rTaCspAWnDNRHobWhL4gZqulyqpF2MjRkTaucYE34q22+ivraOgi+RoZvORzufyNXrHyRVQpu1wKFKOeejVQB1B9VX29FtNL6/yoIVIdb5VsdY3WJaXQWeubXweiMsW3Ly5nHKxVnWPClPUox5Z4I1RFqz8QtdlfXBimvazPW9nkrWTb2LL6Jb4oYnxtLQ0tiwOLrNVwHGcnZSfILG07yTjJ9NU/phgeiSEtbHRTVnKvglQZzw5amcSF1HS1swerE/1wPJUdot2++feEPaOnAivVGPKH9SITaTfVAMVkJa02E2V307SbsZuqavx95dkw/gcKc78fD6AaxOKsHBuEFAzrYgSxveUPHIGh9Ajg/qbp42ElUFyWVERkWRl9i4n60e1BVFcMjM4bISkhIHLtmbDGUGYWYu3xGAt1lg1HYwLpamdoLoB0GBzMHpEVKR0GEyIE1ei2knR/1jKmxl6cK0lQJEFSR+IEnn3EcwKH65n5z64w1eix4WIfut9BkyIIL7sUk+kG+fl4DwUJWMbp2PdgGJfLdfTBTmNQNHZxORxHJnqpaDwbyiqoh+53yELsJtW++Jg3wbHG8Cz80GIjaZvL6bJbqQAJSARJu9NJIRsZDFIOysY4DuNtyEGMkm6mLCkaoSKI97WWMIaLBBBPb54SmrLRdpzpHBMnQl5nUYMeqJDSOWCBywriJcDug0ECAhhGxKj+jFRFk7e0prr8wGJivJAInzz6rUiJkipywWCyASm4MUYv5CWdxStUQclyD1Ff2mQMuihIM1TA5gQuxslSFFGGl9MY2v+y60nv3xTgMfcoNAbCdInZzTC0eY5JACVOO25T5ovyejKdqxj6Jnf1M289kpO5JuPf3btrN/4ofknmr7qcmHIiNG/Wa28qked7u5o/HFnfe/yX7V+f2U90nO7Mv/yya97j/tk3N3716px3hpdefrZs73Tm2XcbpyaEs//Yaz4oODBw+edke9eFfaeOne0/44hdTAKpWJs+PTiU+3bo7Krt52bP4248puZNLTz07YnEjqLTTNPgTvsk/4ZNM44NfBdYu655+1XGO+M5hGbl+ehrBY+VHf/89uq1S77YHGTd7sbWK12b5g30r8kfWTvlie+PbinY5nGPFDpmlh7c//uJQrmW6Xpj2ZG6Ef9cbUV9cvBk3+01sZtlrX98dD73uievcf23pzYXmMteOLfmvbc2nHE3NP/w0yud01a3vTLYfXtax9YdT81kW3duW9e/9eKkDdUX8x7dtePqlIp9fx08NrPwx5yKlcaK0OFLy59uHrk29++SX58u6jz+8eTCfy8eXb595ZUv7rT+uej8w8mC81t+29D90JMnTTuXrXN3dd16v2rv9bKRx3fonw6t6LhUfmNyutiTc26dzvfcmZST8x/1AE4b
|
||||
eNptVWtsFFUULhIU/CMiKlEC40JCgM50Zmf21Vqx7FJobNnSXWiXh5u7d+52pzuvzmPZLaKhEklEsKPGxII8t7ultuVRVARKAgmCkYAGDFlMIEGMKCKJ0SiBgHe3W2kD82N37j3nfuc753z3THs2gTRdUOQxvYJsIA1AAy90qz2roVYT6cb6jISMmMKn6/2B4G5TE3JzYoah6uVlZUAVKEVFMhAoqEhlCaYMxoBRht9VERVg0hGFT+XeXWOTkK6DZqTbyokVa2xQwaFkAy9sqgDjBCA0IPOKRMimFEGarZSwaYqI8nZTx+u1q/COpPBIzG81qwbJUg7SMLWIkveV8S6D/3VDQ0DCiygQdYQ3DCSpOCXsmMeiKc/abAwBHid8uWRiOqbohtU/Oom9AEKE8ZEMFV6Qm62+5jZBLSV4FBWBgXowcxkVSmT1xBFSSSAKCZQZOmXtA6oqChDk7WUtuiL3FjMljZSKHjb35LMjcV1kwzroxySqasrqU7jaMsFQnJui9yVJ3QCCLOLykSLAfDJqwX5kpEEFMI5ByGInrczQ4f6RPopuddUB6A+MggQajFldQJOc3MDIfc2UDUFCVtZb/3C4ovFBOJZiGMq1fxSwnpKh1VVoxJejDiNDS5FQwRjWTjoDFSUuICv3ZzgMo+GIVEkvCqyGSbfaEoQN1aK5mIm0LnC5mpY6fLpz4aKGUFgPaouESFiohiTjsnsYl8PhYEmGoimGYkifSYVbW5OaZ+GS1jgdFms4KVXbxFeFFtY7l4nVcktESbqF+fZQi1iPElEoBhtbwi2IYpUmuQ60ur1L6huqG+mQ7EkmI0Ba4vVG/WJVBYHZmQmBr+SWsUq9BFoT82vbgn7GHpcSTVRYEhvtXkOJL/fVsgbV5mUXBVtCI+jRmCFdZOikOTedf/qHtSEiudmIWbsZ1t2tIV3F9wa9ncElM0y9PY11iM6czhYv0C7/aw8k/FzahzVpDQZjZinBuAg/NAg7becIhitn7eUsSyysC/Z6i2GCj5Tg/iC+enoUy3DBsOSzMGbKccT3eB8p9sG82HEn8/TxLSVRUlV0RBZZWb1NZMPQ5CBrfANDN4tUtGYgC22FsNZgQfWr25KreWjyfCyxWqI9bRwrRJAJoweLR1RNyYfBhEhJt3Y7HPb+omVYdz04V5pkaJJmDidJfM2RKEgCrmfhtzi+dCvtwMU+9LAD7hfCgy7LFbpBHxvpoSEJCzYf+wEM5/F4jj7aaRiKxS4el+vwaC8djWTD2CX90MMORYhdtN6bHPYmBd7KzcSLsJPnaIhQBEVRlHaxHIMflkEOYI9GgRugr/DoEyBGyTdTVTSD1BHEs9pIWblSCSTzM6aSZRysE2daQQgyFE0eBcyIT8nnoFcQqoZEBfB7vdWkF8AYIgMF/VlZX2hxVV2N94smcqSQSL869J3IyoouC9FoJoA03BirB4qKyeNhqaEMxmqoClkH3Zg95umMuu2Ig9BJzsdjaBjtf9ml85M2C0TMPQGtgRhbaSvnONZWQUig0u3EbSp8TdZl8rnKzSfHLJm+cXxJ4RkrdhyXT9ATfbduPxk/N8G2Y7L14qSWcX1t3RcCSxdsHphJbb55aUvPs1evzN0wueH4yQ2pbblcpe+9db1EM/HC4l2fzwlJ21+5+OOGU0fu/PLzxUtKmB/M/hDf8nFiYJ3bXXt7Xfu9lc+A5Z91pL+fVTpVO9HRSUW/NSyUO/pE3576cSuk2Z/4D6wvb+zkO88eOJ6bMvs779nLtq+nVPylXO+ee/edrXU/zetacCu1qWP7PObxs907Sv55ve1qJ3HsVcDt/COe3cioh268/NRJI3thx/RzH360p4/tmv5v6EoNuTbgvnb5esdv3zRd/5WJ/D54pftO46Retq+r/cw0c3zt+cDUlbK7fewM78pN10JvzOjt7jgUfNOYOHEl17Rq6/nYwdzfp1c8nb2Z7t/bsOulCXffnyVu/PSCo/wG/9bVex+cuv58Scn9+2NL7m5bOg08VlLyH7A2NRs=
|
||||
@@ -1 +1 @@
|
||||
eNptVXlsFGUULxCPqFFT0UQ82G40IdKZndnZs4e17LaldEuPXbSFkPrtN9/sTHeuzrHd3arYVv4weI0oEpNKeu1iKQWlYgUxHqmagBojlRQV9Q/iAcYgicYL/Ha7lTYwyR4z732/93vv/d6bvmwCabqgyEvGBdlAGoAGvtGtvqyGukykG09kJGTwCjvS3BSODJuaMHsfbxiqXuZwAFUgFRXJQCChIjkStAPywHDg/6qI8jAjUYVNzYo9dgnpOogh3V62qccOFRxJNuxl9ggSRZuEbMDWqcTxT1QxDVsUAU23l9o1RUTYx9SRZn90c6ldUlgk4gcx1SAY0k0YphZVsJ9uaAhI9jIOiDp6NMsjwOKUThXdPMIrumFNLKa5D0CIMAKSocIKcszaG0sLaqmNRZwIDDSGyckoXwRrLI6QSgBRSKDM3ClrP1BVUYAgZ3d06oo8XkiGMFIqutw8lmNP4Mxlw5pswiSq6x3NKVxP2UaTHpqk9ycJ3QCCLOICESLAfDJq3n54oUEFMI5BiEKvrMzc4YmFPopujTYC2BReBAk0yFujQJM8rgMLn2umbAgSsrKB5svDFYyXwjEk7SR9ry0C1lMytEbzRX9z0WFkaCkCKhjDGqQyUFHiArJOLrmmowNyHVGpsjb9oDvQ3bRefyjlrVlvxkFAhrViMl0fqlFrYmRYpM0Etc5sp/hGgva6aKfX52PcBE1SJM6ZqDdDBt1c16lIzqivfmMqInVQzTBc19jA1DJiWCATDfUh3ddYw7W2mu4gUtvWyc1NnBxYX90AIw0BMaShQFuQbE9Wp9zORMuGuDvUBTtCAlPdqdVHNRALAX96Y7Mn2F5uw5TNhMBWJmtJ0q02JJy6DMNdUF3DC2l6bXojG6+JSeFgROl6MBzkw+2tvpYFnCnKQ1AF2h7K5aNy18S8YkQkxwzeGqYp324N6SqeF9SfwYU0TL1vBKsTHfs4WxicoaaGS8K+bSSIlWodifBmqY3y2BqBZnNSTreN9pQxTJnbbatrjIwHCmEiVxTmaxENyDqHxVkzPwhZyJtyHLFjgSuOwJHcCOD+5ujj0SRQUlV0RBRYWeNtROvcxiDqgwfm5o1QtBiQhXQ+rHUkPwvd6WQ3C02W5RPdEuVPuxghikzITRaOqJqSC4MJEZJuDTNO70TBMq/GMZwrRdAUQdGHkoSGSyEKkoDrmf8urC3dGsHlp6YudzDwpsELLuvKd4N6Z6GHhiQs41zsSzAuv9//9pWd5qEY7OL3eg4t9tLRQja0U9KnLncoQAxR+nhy3psQWGv2HnzTwXm8yIO8XhhlIeeNAhcHnSwLvBTnpwDyM2/h3SdAjJJrpqpoBqEjiHe0kbJmSyWQzG2eSoZ2Mx6cablNkKFosihsRoNKLge93KZqSFQAuw9yBASQR8Sc/qxssH19dWN94GAbsVBIRJM6937IyoouCxyXCSMNN8Yag6JisniFaigTqCVaq9utST8NGRfN0ZwPeZiojyXW4OU0j/a/7EZy+zcLRMw9Aa0DPFNpL3O5GHu5TQKVPg9uU/4t0pvJ5SrHppfsXbnt2qL8tQx/Ll58qvWo/BV189tnVh+s+KoXffTGmYbeO7ctvap4eeU9Wx/YHn+SmL53ak/F91scq1bv6Ms84Kg4dvYGbsffrUWrYjM3viBM7vT89edMokcnPt/y1Ndffvbtl+lzp3ue/Ca7r/fu/pfRVb9sGbQemtk66Ekvr1smFXe+d3ajTB49zR3evLdn6N5t9x/9edX5mek0ufnkF4+0kCf6Xy+JPTdzo3x90eMvXfjk9v7pujf6p8/eKljtJ3YnfigpevHjWFDgPhrq3z27dsV1fYPP/jucWnqmdG3//rqBd8u43/64lny3/7bQrl/f3zy1Zri8Vl1608slz5/46YPjzu8H4cDqrZ/+vaTqFSY9Bocqb/rn9qqp76ZeLe7MPHd+f3Oksqe06LHfD/946niYbrljtPivp0vu2LFn+8CKN6tKHNe0rp1cee409/szm1DL5PmK2VHnSRdfd3oq+U173S1DO40L5cd6TmVPkccvwqriDx9ePrkhxA+kNiXvbNipnO+AP9z1R++t8FD31au7dv5W1Vbx46e7JmrP3XL9wZn3tq4IhyaqBi7senZ6Zb4ny4oyzKFhP27Qf7FZXVw=
|
||||
eNptVXtsE3UcH8MgUUEJCkQTvBTlIbvurr2+NhfoujoK6zbWMcoIlOvdr71b77V7dO0Ir/GcEOBEIT54CKMlzRiMbTwm4x/kFQyJgpgJ6CAxPkZMQBNBjPhr18kWuD96/X2/39/n+/p8v9eUjAJZYUVhRCsrqEAmKRUeFL0pKYN6DSjqugQPVEakWyorfNUHNJntfYdRVUkpyM8nJdYoSkAgWSMl8vlRPJ9iSDUf/pc4kIFpCYp0vHf7cgMPFIUMA8VQgCxebqBE6EpQ4cFQDTgO4QFCInViBL6CoqYiQUDKiiEPMcgiB9JWmgJkw4olUMKLNODSorCkomajBVU1OSimbQUoxeFbUWVA8vAQIjkFQIEKeAkmBg3TWJjRtiLJAJKGaf+Q80oLIyqq3jY8lSMkRQGIDwRKpFkhrB8ON7JSHkKDEEeqIAXjF0CmUHoqAoCEkhwbBYmBW/pRUpI4liLT+vw6RRRas/mialwCT6tT6exQWB1B1TsrYBBOT35lHNZcQHAjYTdiR2OoopKswMEiohwJ40lIGf0XQxUSSUUgCJrtp54YuNw21EZU9INekqrwDYMkZYrRD5IybyU6hsplTVBZHuhJV+XT7rLKJ+7MRhw32tqHAStxgdIPZhpxYthloMpxlBIhhv45lqBEMcICvfd+IECFAkG+qDwQrGFrg3MCxVUYUeOiTcAPfJgvEvVWe+qKrQsX0VUxu8BFF5U7UdxmcuA2i8XqQHEjZsSNOIo5Of8cY71pzkJ/CRVjmGrVNN8bwGzEArbGBVSV9ou1NQruqdHCc/C4sQEPlS1g3FXOuFaplXKlbndFsadeNhbzrgYz4W60+nhigRguRGB0WpSli2qpWqu7qsEi1FviXo32WZ0RWTLFJDzgsTJOsnw+VQYwvMFmLhkantliQrFshFaMsGPpp22QGxwQwiqjH8AJ4pAMFAlOD1ibgCVTNaWpBfIQfHUxmR2j/RXznlB4QksJ5KTeU81oeQhuQyooFTFhJgLBiQKzqcCCI6Xe6lZX1k31MynYXi2TghKCNHQPUj5JMZoQAXTK9Uyy96TJDjuZDh9OKQpikqgANBuV3upHqwb2B+op6RiYLFSUw6TANmbc6j0Z1jc0xhpoSqNpJtrAY45GwswGgUaFOrNXJFlMu4EBobyiH7BhjrasZpB3KZgrhuIYiuHdMRSOOeBYnoX1zPxml5iit1hgsU8+baDCrQPXXZLIdAM7M9RCBjwkbNr3ExjC4XCcfrbRIJQZmjhslu7hVgoYGg1u4pWTTxtkIfZjSmts0Bplab33LXgI0LagzRHEYeEpm4V2OIAdd9B0KEiE7BhuxSyn4OpjKYiSbqYkyiqqAApubDWu9+bxZCy9Y4rMuMVshZkWIqxAcRoNfFqwREznoBQikgw4kaSPuN5DXSTFANSX4Z+eLIGT5vW4jvvRoURCK6SBr0VSEBWBDYUSPiDDxugpihM1Gi5LGSQgVpVzkd5ppwkcw3AToIHDHgI0WgzX0CDa/7RrSW/aJMnB2KOU3sGYiwwFBGE2FCI8WWS3wjZlvilrEulchfC5EVvf3Dw6J/OM5OY7hRvYK6f7X1u8VG4eeWlD3Ze7kJ5XR8vexftmvPR+7eYtM4zz2vpeWPN46faavOcvrd/48e7bV+5GRiBlM63IhztbG8WJf728bdXeVOnf3YF/7ScDroed/an7hdf767fdKZhxKO48J6becPecuLjhZnPNiLcp+fD1yzfqlnzXbxpf1MXsaP3jtP/WtRcnF7s2H6u9vqNqx/xJ50atnJiTc+Sht7B7wuPmMfTeLX9OOnC3krviyjFs927ajn9y8Zv2k3s87q1f/9S16rdxtVdzI+tGgdVT990823d7mT/s33H23tg9tzoebZg7dpxzyvTXuf62By1zlXurL46lnvv1/J7claf+MfcJm0wgurZr/Mp3Nx699nC297MH5jPmKyU9Y6ZPOdUp0fcNHRdy+yqMkdiuwIPZPT+jVycvMbXWTCvE94an7vLpTc0Hd9/79tNfdt847t55/vzmY+s/mEsVzrx8x/D9hVmzOuznzG2P+qrKyg1b9fYff9/Sjz1Ydv+h/NGFO7Ng4R8/Hpkzratb78nNyfkPIFJRJQ==
|
||||
@@ -1 +0,0 @@
|
||||
eNqdVWtwE9cVtovbuCmQtKGY0OmgKAmQ4JV3tbJerpzIsuWY2JaxZPzg4V7tXkkr78t7d23JxpNCMm1TG6dbm2nKQDLBD4HiBxQSHFI8GVIaaGknkISODW1DJo/OZMiESaZJhhL36uFgD/yqfkjavd95fd855+5KdEAFcZKYO8aJKlQAo+IHpO9KKLBdg0h9alSAakRih+t8/sCQpnAzD0dUVUbOoiIgcyZJhiLgTIwkFHVQRUwEqEX4v8zDtJvhoMTGZ3Mf6TYKECEQhsjo3NJtZCQcSlSNTmMjNliHDGoEGjohwD+KgRMNfu8jxkKjIvEQQzQEFWPPtkKjILGQxy/CskpYJELgRA6jkKpAIBidIcAjWGhUoSDjKlRNwbakicRvJInPhFXjcsphSBPTRWLjb/46u40iEFKnYai2ZlPBABYiRuHkDMZYCdWFqZowQAYKtsPEoZQPWcF8KCoH00+8xIB579nYOFtODBt7enB5mF9OgSxO7SYSl5lFSsEoZFSM7NnWk4hAwOIQzwxHJKTqE4uJnwQMAzEnUGQkFnvXx8NdnFxoYGGIBypMYrZFmC5TT7ZBKBOA5zrgaMZKPwxkmecy4YuiSBLHsuoQqURuPU6m9CCwlKKqH/PhJNxVRXVx3CGigTJZKRN1OEYgFXAijxUneIDzGZXT568uPJAB04adENnu00czxhMLMRLSR2oA4/MvcgkUJqKPAEWwWo4ufK9oosoJUE946m4Nlz28GY42UWaT/cgixyguMvpIupGOLzKGqhInGAn70F8gJ+b54aEYViP6EE05DioQybjf4ZOj2EzV0K5hrAU8dyaR7fsDvsfnRfxnTsFwOdZFPxmIaIUG0mqoAYrBTJqLDZTVSdNOC22orAmMebJhAreV4UhAASIKYSkq5mVPMBFNbINs0nNbwU+mBMfVpNLHo0XAmCwhSGSz0seaiPrMxBNV5Ucz3UVIShiIXFc6rH4yrXxnV6yTZTSWjXR0CqSjy0JzQagxoWNZEzwCqTA4IUJAmBwrOZE9mec+iWslCYokSOpEjMCzCnlO4DCf6e/s2kH6cDFJklO3AlSpDeIFlbCQ6c/0QoQCBSxaKvZNNxaHw/GH24PmXdEY4rAVn1iMQnBhNpRZQFO3ArIuDpBoLDaPJjhWn3kAP7SabRaKtNtIyk4DlmSDdiugg5AGVruZCdqLLa+k9gGDvaTElCVFJRBk8I5V4/pMoQBiqTlz0VQxZpEkS/BqZHiNhX4tWC6lakAlBlmBvATYSSZEMICJQCLTf3qivLnWXVPlSfpxkh5JauPgb2ZzV7W2MqHWoOBSZU+V2xoHQnu8vbjGjTRLwL7JXS/5N1eihvYyjxm1uDvaGqjI5hqCwkWYbXa7mSYoE2nCU0qwgUoEo22g1WNTWpHVFmDZOMNuDDTEvU1Nzc1as6MOVfg2bWLKKnzmmKUOKqQnYAGo3RGtkarVliaOlWJ2WfXxUTcdEDyq6tjULlVX14r18VhluLjM29q5WeVsSK3AJeJl6yoqMeCGxfsSubJjQ+CxIVJDY3OS80NTYmDTxLhMi1dkieExfGf5RD5eYvCnGIb4F+9tP6dCV60kwplBTIzWwbEu2ttIosdpqoGOhsrsUm2jucsW0hyVDc0+r6XFvtlnCtdvjJV7y7xoATN2i40gs+RYSYs93Zo3U/8/s3q5iVi4BQifnLmcE6KERC4UGvVDBU+VnmR4SWPxtlfgqMdL1Lub9WMOiqEtFCgO2c1BOmiHRBneo/PevtkZw6mrIgF43HgdjH40QruMTouFNpYYBOCyW/GMpa/wnaOZi+v0t5as6c3PSX+W9PlrpEvk0pPXG/N/8oZn+u7u6ZfO3DkWOQ5c/OvmVcnqSxvZswP/Hhd+PVd6ppZf9/HPvvpp/o4dz7w/dOyuVUt+5z716OC+8oYXP3X2rxFLC0ufOHH9P9e+tnad/WT7J1xNdLzz4y/Ia0s/m6pwr7v4I5Bsua9qqKSp6f2ntmsrifBn6/s/6l15sPrnf37rV3tPjXx3wyFof/5vv71iuTN8Td+2+qE33aem7+ijXpbmpn37r9zzAO90VDys9hfkVz3/x1VNQzvyptCF7/89byB3hfee6L9OiIOrc9m+jd9ujK6/3HP9fJzs3bCn9MZ/lRvvbCU+atwy+8Hx0JaZL7e9Yh7q2v85+od10Nby+drdn5Y+t3UFs9Qy2SLuHPzaW/vg7PeczGvC+cDBs8eXX1+2/v6pgsuP/n7nHRMzuz9oeWzdue8sl/9Umje5/4m+viPP2vpfHGLe+PKF1p3mCuGvQ6/KK5RDIxv8vZdfGti9bHntO7PON/ddvTvaltxbby55e3vHvdoBcuvR3H3j/YZ734v+cnLlQOPbF5Y+/ZeO0zfGf7B18Nll5650XFs7EMrLGzo7J35YfFXsOtQ7p6/Jue/w2nMXZoNrT3/1mmdvxVz+3J6L3ZetS5dfLXqIfPDpi9L9r++zJbtXv/vcj8GeD+sLIm0bLn2RG99f23je+J5U8NYP837x7l1Y7bm5JTnanIMn8nJy/gcqPgKj
|
||||
@@ -1 +1 @@
|
||||
eNptVH1QFGUYhxzDRi3I0rLUnQOyyXuP3dvz4BgtTzBkEA7hciATfG/3vbuVvX2X/bjghBoVZgJMW5qxKSYy77ijG0IuFC0/pkadMZWZJv8orBynj2HUP0qzHM2il09ldP/afZ/n+f2e5/d73t0eCyJFFbCU3CNIGlIgp5EP1dgeU1CtjlStKRpAmh/zkVJXuTusK8JQpl/TZDU3KwvKggVKml/BssBZOBzICjJZAaSq0IfUiAfz9UNtW00BWFet4RokqaZchrbazKbJFFPuxq0mBYvIlGvSVaSYzCYOkyYkjRy4kShSAURBagsppqAH6xrlQVBRTY2bCAbmkUjSOBHqPAIs8EOhRgdWQkCzdDaB0lBAJvNoukLwaQvdGPMjyJNhLyalRfxY1YzEfQPshxyHZA0gicO8IPmMT30hQTZTPPKKUENx0p6ExhQy4jUIyQCKQhD11wFVg4IkkrmAJgQQadX4pMTlri4o3LCmJDoOavRBWRYFDo6WZ21RsdQzMS3Q6mV0fzg+qgkgQkmaccg52WZWaT2xQ6Joi81hofvupRYh6Tgqj8WP3BuQIVdDcMCE1UZ0vLj33hysGl3FkHOVT4OECuc3uqASsNumTano0uigRiyv9H66ieBdOtbCWC05iWnAar3EGV1eKKooMeXBVEmcGMkC2g5o5tA0aKQp9YDDhMH4mO6dFFBEkk/zG2GGdXQrSJXJBqMdUVKm6er2CPESnTsdm1i7fa6iyU3YGcknrhrH3H7dTNF2qhgqFCFeTjH2XJbNteVQBcXunrwJEvcDXUq4FSipXuLUmsmliXF+XapBfDzvgesSn7hZQOCNo+S9mmaKvF5vbQUKWiX7entdTijEhoLlzs/v6oIVH5SE0BjtaN1QBuuws8t51gOQx8sDmyMnGzgcVgZ4rNYc3pbDZNt4ezgoQCPOWBjKh7FPRPs5L+Ag50dgXBojll9Z4iwuzOupAGXYgzUVuKHPiEhYQtFypBA3jDgnYp0n66+gaN7LoMxZaRxwMBxrYzia53mbjeOsYDVZm0mZpmSIjN6dsd/ANmKFQo5OJbctaZuVNPbM4A1nzY+r5jSPtMbPVh1t6y9Z+EfmO+cfLnseFT32kye6eIj9q0JZ8YE++NnIse8FqmvptuM3b2RoTpw4+eLAK2/82dXx7dlrhzF+aeX80PBx+5Lfd33E5H2Y8qr7ibDwCPtspnnuvPDuLRXMiSrzTHPi0ecqL8zf6Gt4b+Cfhjc7Ftxa6a2YvSzhufXvdfv6yzd/3lTUkrJQmPfVly5r+p32XXuNNG/hby2uO4ODm5uzv7g+6/y+1rLXryWX3Fl7sNBYtWjw0rn3q2K2/Nuwdgl/Ib/UdyO5c1WBa757755Oai5dr2+mbqd6n3p8x3B/U//w38sDKSlPdxfO7sx0preAupnh1NP5zRdTnvHSja2dPyxa8e5q1zeJdZc6Th1IpDYUFPVsDLLmK/7XZgxc6V56pOrYiau754TPlL7N76P3rBWXFaf/Up16OTPtu6bMWKp13VXfmdmhxe0bXlhUe/J69HSf/WA4vvjr7gW9/z35K27I4EZ87Tcah48frhohqo+MzEhKOed+i30oKel/M3dwnw==
|
||||
eNptU29QFGUYx5wIUyY/ZMWHar0ZKp3bu13uuD9gxHHkpUgccBkmgu/tvtwtt7e77b6LdxglSM2U0swOqEzK9MfjLq9LITGaTPtQFs1kMjZDkijqJHxIbGrSGG2g987DZHQ/vfv8+T3P8/s9T1usCcoKJwoLEpyAoAwYhH8UrS0mw1dVqKD2aBAiv8hG3BXVnv2qzI3m+hGSlAKjEUicAQjIL4sSxxgYMWhsoo1BqCjAB5WIV2TDo7u26oIgVI/EABQUXQFBU3lmPaGbC8KWjVt1sshD/NKpCpR12MuIuBMBJU0eyPNEEBKAaMQQBPCKKiK8EMiKrmVTEkhkIZ8MZHigspA0kX7ABVQyD9ehTJQ1CYdgUMKDIVVOVqEMVEvMDwGLxz6fsTTiFxWk9d81yiHAMFBCJBQYkeUEn/apr5mT9AQLG3iAYBz3KMAUV1o8AKFEAp5rgtFbWVofkCSeY0DSb2xURCGRnolEYQne7Y4nRycxIwLSBh1zfRjdYcy8gFs2WQxUX4hUEOAEHnNH8gC3FJVS/qN3OiTABDAOmVZVi95KPnhnjKhoveWAqaieBwlkxq/1AjloMR++0y6rAuKCUIs53XeXSzv/L2cy0LTB2j8PWAkLjNbbAHgF9t8m+XZKHGtlIikLSdGD86AhksMkI+IK2ofUwTkCeSj4kF/bT5vtH8tQkfCywu1RnIZUpS2CxYI/DsXS+/VRRdmc1DsjpVg27ZjHr+oJ2kpUMIhILglBmwtMeQUmK+Eq9ySc6SKee6rU75GBoDRgpZ6f24oY41eFAGTjznvuQzx9RCTHal/hdz1F01V0CWdRnSG6zOYoAeH1DkuTy30kRDK8qLIkwhcIydSwIaSNEnZLvs1szwdsvt1M51tsXjND2/OslB2Txlqphv1NHNDitIEmfKLo4+Eh52rSCRg/JKtTlGix0g0vOsrXOBM1ZJXoFZFCeoBPiwiiAKPVUMYqaPFUabzXMozi9CrHBm3Axpqphgav18bCPAtgAFmC12WOntvjR5JHkbr0ViyBjE0nFmx5ckdWRupbuK6yPnC2eMnsynjdX5fazTlouneYHlpdWJB5bnPOxYnOlpffz/3ldG7+8vGWM+c2V7SN1y/qoZv1/T9P9B2fGWl5bebPy+oXN29M28fEolVTT5y3VtR80PFs+coqNRu0bo8skuKVJ/tBa09obY13V+31gTHD9h3BOmFk75bfp25kLk60d5zp+zc8s8f/d0F4svLSu5mvPGObLhe2+bhFjTmbu2qvhk+Nf5NVFwKmQ9J7npUvfTLYN1kYr11/32JzieRqLjvw9pVG+Y/fBtx9F648UtSara3qLs593HH14sPktoUdKzqGfW8NudZ8P3Ry49kHm05X9zzd3LXkCHt9afY+hy6WuWldUceFLxPa3mVjnQ7X8Gf7iJFO7uLyE7ujv1JTEzX6YepRPel2vX68+c099ffH17zx2NABavcLVx7a/cB3X7efLnvqYFbZTyuWdU+e6vLtHPMVdg98+87la58X/3D9OXT4WO0MZnh2dmHG0WulN/9ZkJHxH+xyZNQ=
|
||||
@@ -1 +1 @@
|
||||
eNqdVXlsVNUaLzQIUZOnL/G5gV5G8OVp78zdZm0mtp12Smk7085MKYVoOXPumc5l7ta7TGeK+CLU5UUN3qYxkryEpe2M1AI2rYKFGtG4gGiCC6EaMS4Ed1/Ce7iDZ6ZTaQN/vfvHzD3323+/7/vOlnwaabqgyAtGBdlAGoAGPujWlryGuk2kG305CRlJhR9qCUdjg6YmTN+VNAxV9zkcQBXsiopkINihIjnStAMmgeHA76qIim6G4gqfnc5ssklI10EX0m2+9ZtsUMGRZMPms6kCTBGA0IDMKxIhm1IcabYKm6aICEtNHZ8231thkxQeifhDl2qQrN1JGqYWV7CebmgISDZfAog6qrAZSFJxBViKrSk7tTmfRIDH5W0bSiq6Ye2bn/B+ACHCHpEMFV6Qu6y9Xb2CWkHwKCECA43gNGVUhMMaSSGkkkAU0ig3Y2U9B1RVFCAoyB0bdUUeLZVFGlkVXS4eKVRDYgxkw5oI4ySqGxwtWYysTNB2F22nn8uQugEEWcRQkSLA+eTUovzQXIEKYAo7IUusWbkZ431zdRTdGm4GMByd5xJoMGkNA01yceNzv2umbAgSsvKBlsvDlYSXwrF2mrF7xuY51rMytIaLJByYZ4wMLUtCBfuwdlH7ZvERkdxlJK1BmqGe0ZCu4j5BW3PYzDD1LUOYC3T8zXypYXaHG2dJPF1241At5sWaiiXNCoJyEc1AIxiKcRK0y8eyPs5J1DfHRgOlMLEr0jAWw82mJzAVdbO052HSlFOIHwlckfCpAuG4mkL6uDFJlFEVHZGlrKzRtWRkZlLIhtrxme4iFa0LyEJvMaw1VWS+pzfTw0OT55PpHony9nKsEEcmTEyUTFRNKYTBCZGSjsHxuPeVJLPYj+BaKZKmSIqezJC4z5EoSALGs/hbGlfdGnJSFHXwcgVDSSE82HmOKj4vzdXQkIRJK8S+5Ibzer2Hr6w064rFKl63e3K+lo7mZkMzkn7wcoWSi92UPpqZ1SYF3ppegQ+dLpZ1cpDj4jDOMF4WxIsviEpAlmHdHs+LePIFiL0UyFQVzSB1BPFuMrLWdIUEMoU587O0k3XhSisJQYaiyaOoGa9VCjXolYSqIVEB/H6YICGASUTO9J+Vr+0IVTc3BEaiOMmAoqQE1P/hgps6O2GiMy75s/VaeyYRDMqNQTWaFnpqBb7V093U4wm2tm2sFzrjmmK2dToTTrWDpN0czeBkGSdJ2yk7nlIykIRM1mzqcbbQNQ0ybBfYVLfQ3hRKhRqYWF0rC72U2KyC1WGvN9YekutWoTrV69WgnA5G9HgrQJH6SMToMatbYyiaashsVJyt7cy6auhpCTe2grRKi71rA5ybZwolAiPpd1QSuGEFDLq/NDYkHhuyMDRuHzU7NJUEXwTGb5+/IiuJVXjXh2UxW0lECwgj/A8kFBUM5A8pMpoewMCYaYH3h1J07cZYPO10rWpLsiE+HKrrCNXx3XxNZF04jbhwd2e0c218DdMA5yDjoV0kVQLHRXGeYmteSv3/zOqFteTcLUCG1ZlLLS8ruiwkErko0vBUWSNQVEweb3sN5QJBMlLdYU14achydJx1JRKUh6dpsgbv0Vlvf+6MocJVkQcibrw0tMaTrN/m4zjWVklIwO9x4RkrXn0P5gqNKne9tuDB2x9bUlZ8yh/vp5VXqOse+vG3q9/Sq1YM/BWlFr+/q+m7qrY2a8zxrz1w/flFNyy/sOlMX//OyJ7Gh3/9furwoXO0rW91tV6TfftJ95rm28a/PSMcuG/42QPfgnOTnxw9++rmQ/cN3Lqt6vOd1EfL1N9am18URhcOBH98unLDkiPOjtMrv2Leerdu8S13VC3qQN3MDvudpyb3bj/eb3SvORnU/sP9/Yfrl/ctPaS8+cyi+0/8+/hnO1aXnx6/OvmAYOvzDdY8xPwwXJ+zXi//InjHl/b05NLyxeibjiW59cPv/O+9M+FjsZPb995zrnFqYN0vk+rLh08c+WBwbGIw/+iT2+Td5+9a8fw73N+u4Xbs3Ar6/5s2Tn1a9h4b2Nr0BHfup4c7lpdtjz0wcd2xm/dXX3sMbBq94d3Hq7hbfu55av3p309F2i+O3V52dsP1tWDZkqP7zy77cGnf4vPtH6HX7t3w9ZHvVj6ycOVB9aoFK1Nt/+z9+i+37frH6j13qyePfn/h4+3hE26M9cWL5WXjb4CnLiwsK/sDSUeFGQ==
|
||||
eNqdVWtsU1Uc3+SDssSoUUNUkMvEaHD39t7e29eWGreWsSmjZS2w8rCcnnva3vW+eh9dO/CD0xgRFS8xSqKMx0qrdQ4IExA3o6JEIxoFNRlGo4mPmPhAIxFExXO7TrbAJ++H3p7z/5//4/f7/84dKOeQpguKXD8syAbSADTwQrcGyhrKmkg3Hi5JyEgrfDEcikSHTE2YWJQ2DFVvdjiAKlCKimQgUFCRHDnGAdPAcOD/qoiqYYoJhS9MPLahUUK6DlJIb2wm1mxohApOJRt40agKMEMAQgMyr0iEbEoJpDU2EY2aIiLbbup4/cA6vCMpPBLtrZRqkCzlIg1TSyi2r4x3GfzWDQ0BCS+SQNQR3jCQpOKWsKMdi6boB8ppBHjc8JZiWtENa2RmC3sBhAhHRzJUeEFOWS+n+gW1ieBRUgQGquC6ZVQFyKpkEFJJIAo5VJo8Ze0DqioKENh2R6+uyMO1PkmjoKJLzRW7NxKjIhvWaAgX0drpCBcw1jLBUJyXovflSd0Agixi8EgR4HpKatX+2nSDCmAGByFrPFqlycMj030U3drTBWAoMiMk0GDa2gM0yc0dmL6vmbIhSMgqB8KXpqsZL6ZjKYahPPtnBNYLMrT2VGk4NOMwMrQCCRUcw9pFj0zhIyI5ZaStIYb1vqAhXcWTgx4q4WOGqQ8UMRfo+Lvl2gjtDt03ReKXdXOKQcyLNR5Nm00E4yFC0CCctJMjGK6ZdTazLLGkKzocqKWJXpaG/VE8fHoSU7F4ivYyTJtyBvGVwGUJH7cJx93Y5eM5JVFeVXRE1qqyhnvI7kntkJ3BA5PTRSpaCshCfzWtNV5lvq8/38dDk+fTuT6J9vVzrJBAJkyO1o6ommKnwQWRkm4NOX3OkZplCvsK7pUmGZqkmSN5Eg86EgVJwHhWf2sC1q2ii6bpw5c6GEoGYamXObr6vD7dQ0MSJs3OfTEM5/P5xi7vNBWKxS4+j+fITC8dTa+GcUr64UsdaiF20/pwfsqbFHhrYiFexHm3h3ZBt8uFmKTXyXsTTg4kII+c0OWBnkTyVSx+AeIoNpmqohmkjiC+rYyCNdEkgbytMz/LuFg37rSFEGQomjyKmImgYvegtxCqhkQF8HsD7WQAwDQiI9X5s8rB2LLWrs5AJYKLDChKRkBbT9XPisdhMp6Q/HRHpA/mvWpvFHa3i+YyJpFd7PH0rHAFdfeSju5YXI9qHUIiLrRDkvE4fYzH5XKxJEPRFEMxZNCk4tlsXvMtWZ7N0HGxk5MKS3v41tiSsHul2C73JpS8V2hzxnrFMMoloRhd1RvvRRSr9MhdIOsNLA93t6+iY7Ivn08AaXkgkAyJrbgbYKT9jhYCz6aA8fXXFEJihZC2PlzN9JQ+Wgi+ioGfmnkbthAd+KIPyWKhhYjYYCL8BhKKCAbyL1NkNPE0xsDMCbyfW8kqYQlkc21L+6MhxpmRcj1UXBJXOQOY1tXBpaxB9QfYjmhvbBoINMaBruHgpjlvdQovlv4/qzrYQ04XPBlSJ79oZVnRZSGZLEWQhgVkVaComDy+2DVUwpx3t8asUS/P0ckk4GiIEAehm2zDV+ZUtP+uh6L9VSgDEc9YDloH0qy/sZnj2MYWQgJ+rxvLqfrde7Bkz6Sceqc+PH/zVXXVZ5b41JvLjtLXBn851/D+98Xegd1t8kfXv3DVplva7tS2dyXUsZHx1qcrF558viSFN/wKBlO5XN91cO2KsfVrDw7wKVO7MHqqaccHv60ZEz1bzvz00rl15IlDN95tHPkuq3715/UL561jN23/9J6GD+rvu3KAKJY2/0it+6YwePXOow3GPtczW5+LDYZ/+Wzb8ZNN87eTi2YPzvnRn3h8/xenH3myNDD//n2FjdHm0/dzb2w+ecexw4F5N1BjqwYfXnDrjl3BwPpHTv2QaJj7yficXdt+eOXWM38LW48da1573trx++qbvv38xIOn022VO0Y37jz/6P4tYOifeKc8L/fMvW856AV01zXZvzYenT33pgWz/daBs/f2xOpn7/n7G2Jtw0Sbmftw6L3ks7ftXTz3YKT0asemYwt/PjS4864Muln97MWv3z56+x8fz8fQXbgwq27pE9edBVfU1f0LdzdoqQ==
|
||||
@@ -1 +1 @@
|
||||
eNptVGtMFFcUxtCSKlqosRHtD4bVPmKZ3ZndZdndii0siiiPhd2UajV4d+ayM7A7M8zcQYFaK7aagFoHbNWaGpF1wQ0iBEWRWpVq1dZXGm3VWLRNg9EIplKD9VF7QVCJzq+Ze875vnO+79ypqC+BssKLwqhGXkBQBgzCH4pWUS/DYhUq6POgHyJOZAPObJe7TpX5i29yCEmK3WAAEq8HAuJkUeIZPSP6DSW0wQ8VBXihEvCIbOnFL8t1frAkH4lFUFB0dpoymuN1wyk6+8flOln0QZ1dpypQ1sXrGBE3ISB8kCfzCBKAUDhRRoQkQj8BPKKKCA8EsqJbuhDjiCz04VTGB1QWkiaSA3yRShoxCWWiEjEcgn4Jz4RUGXNQemppPQcBiwfuCnstwIkK0lqeG2IXYBgoIRIKjMjyglfb6S3jpXiChQU+gGAItyjAQZW0UBGEEgl8fAlsXUIqCPCCD89GIt4Pcavajqxsd35a+oczs4KPQbVmIEk+ngED5YZCRRQahyYmUakEnw+HBnQhsVgC0vYmD7dpcJZiSwSC0ptteqr5WWofwB0HpcF4x7MBCTBFGIccslsLPi5uejZHVLTtmYDJdo2ABDLDaduB7LeYR0wpq8LAoFq9w/k83VDwKZ1JTxv11pYRwEqpwGjbC4BPgS1PPHhSEsJGmkjKQlL03hHQEMmlJCNiBq2WahoW0AcFL+K0OtpsapChIuEthiuCuAypSkUAewlPHq8fWr1t2XOHN2F1IBW7qh1wc2o8QVmITCATmDiBoC12k8meYCLSMt2NjiES9wtdanHLQFAKsFMzh5emnuFUoQiyIccL1yU0dLtIntW+w+/5FO12leQIljkSci2WzB7RmZPqRIUZ7U91EWUvEPiyQdqBuotTTTaLKYE1eUjoKWBJs82aSNpsRpr0GI1W1mylE82spa6EB1qI1tOEVxS9PrjLMYt0AIaDpGtQGq0+dV5Wcma6o/EjMlf0iEgh3cCrBQRRgEEXlLEbWojxiSqL11+GQVyemzxP222jGZOZZm3QVkCbPFYjmYLXZlimJzIEBu7O4K9gObZCxkdHR/XGVr0SNviEs9XZ4jkq+ujBn45P1Hedb+uYsP4N4u/sadOkDyq2flWTMb71RMbGSa3jzn+6+K/dkSHrvC39fZv7p15pv7Cvc82lnsSJefce9N03xAp38vqLux72HuxtkqZbb/m2UK6GyXbUNTqqNNpdN59QutZcvnp1TF5UXMK+S033oqN4tb39sr9ts/d0xzcn1p18/Urv6bUr9/7bI0/oJcekuF/ZmlR1+Ig1pcE6yR2TWlU9Z/+r7zvJX/unRBV2nkveGpEx/l71jOKYKeqipJSfKwpv/BGzqmD5/OQFG9APaest46gv6sq4ms/kosjc0bEnNvxTeYx21hx4Se28NN3ZPPVuau3ps/a3y06N3z92T7yzdvaRmzF7zjgSDlMhw/VZF5rbVnE5i7pTF76VU7jAEhvdek29Wbb5zLhw7vsVtPtC39m71V0BInNs4FBPrrnfEee+s+74Eu5r3y0uJy2Ljasua+iG22I+STf0RRxq+bPgv7zMa8U3NnWr6Ya1+yoDrvUb61aWvzP27NV1jm+THngqQ7MTujOWnfpx9c7fr3csLpze8/IKY3tnXEL53JTeZOeDTbeL8pyTI279cvu3yvcm8nPaEmcQO97Vt3Wdr+0tzo+MqMq4f+xQd2Pkyu5la2qS2srL7A9HhYU9ehQepj6sCEaEh4X9D/5zr+U=
|
||||
eNptU3tsE3Uc3wRFGLKpOIcQuTTDsLhre2vXbSUIpYPNwVjdinW8xq93v/Zuvd7d7q6jHS66Bw8zEjglEubGa31R92oQpkNChCwBo5g4CA4nM8BgoCQoII9g8NeyIQTur99935/P5/utD1VDUWJ4LrGd4WQoAlJGP5JSHxJhlQdKcmPQDWWap/yWkjJrm0dkBmbRsixIRo0GCIwacDIt8gJDqknerakmNG4oScAJJb+dp3wDO9ap3MBbIfMuyEkqI0Zos/SZmGosCFlWrFOJPAvRS+WRoKhCXpJHk3ByzGQTGRliAJNoXpQxgYduDNh5j4zZIRAlVe2qWDGegmwsmGSBh4K4DqcB4/LgWaiXVqfNiZWUoVtA4GSPGOukVWtrQzQEFIJ+LiHFT/OSrESfgtMFSBIKMg45kqcYzql0OGsYIROjoIMFMoygOTkY50uJuCAUcMAy1TD4MEvpBoLAMiSI+TWVEs+1j+LCZZ8An3ZHYvBxxAonKz2msTk0Fh9in0Mj6wxqbbcXl2TAcCziD2cBGikoxP2HHncIgHShOvioskrwYXLn4zG8pASKAVlS9kRJIJK0EgCi26Df/7hd9HAy44ZKyGx5ut2o8/92OjVBqHOiTxSWfBypBByAlWD0EcmPUiJIKx2uNeBaoueJ0lAWfTjJow7KHm3nGIEs5JwyrbQR2bqwCCUBLSxsCKI02SPV+5FY8IfjodEd21uyeEzqzf58JJty2Ep7MjEiByshZSy2JBihN+qyjHodVlBsbTePNrE+U6WoVQSc5EBKLRzbihBJezgXpCLmZ+5DZPSQcIZSvkXvCi2xoDTHvIQp9HIOU3nVkvwam6m0Sqo84MVJlvdQuIyuEOJxsF5ZGcD0kIR2u94BCSo3R59DGewIuJ7IgiBP58jNJtuqGaBECDWBOXneycIu8yLcDEga4mVxSpRQfvlSU/G75vYP8FLezssSbgVOxc/xHAyWQRGpoETirdFeizCI0ktN5cpXuZRe63BQlCFXn62zG/LwBWhdxuh5BN8fO4r4tdchCURk6ku8PrPpxYT4Ny5fKeF/1U7uOzJpz2J10VbDsUl3vgYf1T23SjPOmFzH9h9MbbpZWLna8ueh5KLBa+lba2ruz7060HdymfqKMDg02NJ//87N4VsTh2rfPHvst89Gzgxvv3HypC71tciGxNa1R8uY8afDqcdb1n4yp2Xl8NmMi1N6Nl5LO5/B87d7uv7Z+G/rjU6YlS6d7rn8esGxoeFrw+HBgqmN4ZT5BakNOwgTnTtdn5b/ZXNlb/I8C37wzOcTssEbmGXCW9Nqi7fMKPUnsvkj5ZbiuZlVV9V7V6eszZ57vf7nyxMvdYc3vpM0+3a1oj+adLf5nFhU13t+Vlh38FLTlWnpJd7ozEad59DRWztnTV54dv/8BtXLTfypqP70eHNpRX9DN3C9vWZqrhT8rmth+oHCjoyWFMbWXztj0ZwjjS/tDrxA0sLFfTeya4+betMK69btXlPeza5PSqCydnZ+vGukfmVq3YJw74aMmb90XOjyfT+F6HP9/eFfrfYt09eX2ye9OtJ878d5EanSey+5+73C509tjxoLMpYC0ybbJiI0f/rh4MA384YOl124Oztt24llU/bNWZ4q/rH+/E+bb9pO7Ct63xfIyzMWBX5vpJd1bNthsyx/peLTXa3NtnYK0u1t2yqW16sou3VFEpL2wYNxCaGA84vLzyUk/AexLZt7
|
||||
@@ -1 +1 @@
|
||||
eNqdVXtQE3cexwd3Fp8z0mp91DTYuaGyYTebhBBEB0JA5CmJAvYc3Oz+kqzJPtxHgOATtVpRe+uJelrbUZA4FLCeUK1o1XpqK56jrcphxbNnLa3a4mOQ01O8X2I4YfSv25k8dn/fx+f7+Xy/3y33e4Eg0hw7oI5mJSAQpARvRKXcL4CFMhCllTUMkFwcVZ2bY7VVyQLd9q5LknjRFBtL8LSG4wFL0BqSY2K9WCzpIqRY+J/3gGCYajtHlbbxZWoGiCLhBKLa9F6ZmuRgJlZSm9T5Ai0BFaESXZwgqXgOMCrCzsmSyg4IQVTHqAXOA6CdLAJBvXhejJrhKOCBD5y8hOAaPSLJgp2DdqIkAIJRmxyERwSL/S5AULCsD6tdnCgpDf2B7iVIEkB/wJIcRbNOpd7po/kYFQUcHkICtRAeC4I0KLVuAHiE8NBeUPPcS/mM4HkPTRKB89gFIsfWhcpBpFIevHxcG8COwNpZSWnMgSCS0mNzSyGjrArTGDAN9lkJIkoEzXogRYiHgHhq+OB5c98DniDdMAgSUkupee7c0NeGE5XdWQSZY+0XkhBIl7KbEBiDbn/f54LMSjQDFL859+V0ocMX6XANptUY9/ULLJaypLI7SPmBfs5AEkoRkoMxlJ1oQy8/HsA6JZdShWHaPQIQedgfYEUNdJNksbwaagHOfu0PNcqunIxeEa+FjalOgbooR2wuOUaFGlRZhKDSolq9CjOYcNyk16vSsmx15lAa2ytl2GcTCFZ0QCksvbL7SZfMugFVa36l4EcCgsNqAvBhGyKghOdEgIRQKXUFSN7zCUHSU/Y/7y6EE5wES/uCaZUjQeWLfSXFFClTlMtbzKDxPh1O24FMOhpDLrzABdJAQAgjKtWYNl7bEDrqJb8WFosiGIqg2KESRIBceGiGhoQGv0NzCn31KIoefNlA4twATrRfhwavL/taCICBqgWSvwiji4+PP/xqo95QODSJj9Mf6m8lgr5oMC0jHnzZIBRiFyrWlfRaIzSltE2GN0V2vcGoi3Po4wzxFEUSqENH2YFdq9WSlFZnB9QXcNBpEkYJqMnDpYGIgIRLSSpV2mIYoiQwaIk4pscNsNIEFc2SHpkCVtmewgVqEBNUvAA8HEHtNaciZoJ0AcQabEDFn1KYnZSVbq61QpBmjnPTYOOVAWOLikhHkZ1JTPXN0ZuLc7LF/NI4S7bsJswsmeop8aVnWniLU2P1YLIXnSkXoq4sBIvTYdo4oxHXI5gG1cAxRdLlTAnLTVvAMVq7MX1uqY0pQnNJa1pWBp6Ke6y0xpuRnikasyyOvDxZnwL4gplsbo6DNWcnZZC2DLMnUwDmghRNYUlSqV7rnTXbrc9cSBZl0njSAiHdLhDOTCLeNzfXkFIISyQkV2Jsggp2LA1JTwzNDQLnBglMTZwJ7Z2aBBUVJCZR039HJqhmwCWfw3pKE1TWAMMA/hIMsMJ9nZjNsaBtEyRG9tJUYkmqRqPnM7xakSWtC0k+2UX7sBm+uZTb4mSsKTZu4RxristamGec1YcZFOJBQ+QYUJ0x2JovoP+fqD4vQPquASSHf/4287OcyNIOR40VCHCqlFrSw8kUXPcCqIGNkJdUqDTGYySuw4ABcziMuN1IIclwkfZG+9/SqA68K/yEBzael1T2u/BEtUmnw9UJKoZINBrgjAXfectrAo3KOk8OvDOpYkhY8BoEP8+erbN9v3Z82qjFrfmRD6ZOefivk7cXt4xb9Jph8N7jr80aVf/buKzT7bPNs/+efcrx9lHlny1bVrLfbNxs/NOYebeExx9Z5z2VB5z/2/mryTfKnNNG/nLnt59+6vF3c3fbbz79w69LlnTd4HvugGc/nGiPfXhf/m7ziGtPNlz7UkYSO97eaamZd2Wo6US5796TtpM3H2zf/umn276egFZ+/ut8Z37LbXw8OOHsGLOl9T/nPq5KY9gfWsPDjrU+LjTmHZu+7T0jd9SirT2EGA6sVi9LNVbOuGGr2hblvkJ+i7+Zt/vp5mO+lctWdEVcvbR04tDapvmad/jI+VM2JDfvmqQ6zXC4jahSDWmua4qOj2h5ffHay+a4CGP4zXNnDgyaKKYuX69acnxgyoCLg2l3YkHnsMNR6Fvvr5xfvqfl9fqfR+ywzdn+45OOmSBq6qyn+q4LEZfLlqxpDN9hd9LvH8yPxCnHzFV3BcuksnUDjVVf/Xi2u33rlbyx4drp81O14VlTm6b4Ms4nfJOJZ1pGzK5f+uzRluQtJbUXpz005nd1NZ6N+ktFdWXhB5Gyxt28q3jf/RsXHnZkYavemGk+FbbzMlLxhaljuH9X9/Ws5aMvblVvPD0x7vejMyJ2n+veIHdmZEab7hf80o5P1o1tkkb+fLtt7erj0Wv+XN69FnCFkWMHN308aHTymOhlK5KursubQM24NyCja3TxmXeio+p6bEzzowjH2fGbFpz+XbtL3LnIXtNJRrR8tz36H+tvnXGc3/rttJ6Sg7c+OLDibmr3I/PhisimoqEm8G7r3PWraxyTxoQdvVQ57hNPOj6k4/jlU58oEddPXhrREK+5R98/Oc3t0eyY3BD7fef1+kHbKtJzNv/13rnusRvqTw/3kmsWbSz4aE9P3I5OonNT2pWeSf8mvyqbMOyEb9SwC9MrF8WMjvnw6tLKiX9sWDneUrrmrdY3Zp2ZPNDLZjZ3+C8UDn9wqKLR8ubky3F7sh8vvDcy2NKDwoatcuwtDw8L+y+SEjoQ
|
||||
eNqdVX1QFOcZP9EkpU1rRDM41Oh6UTDIHrt3e19cz3ocCIzCAXfgSWKve7vv3a3sF7t7B4ehMWiNtmPsoqnVdho/4I4wfEigiDE4dqqpydBMJtEOpB+2aWNorNJqM62Jgb53HBVG/+r+cXvv+z7v73me3+95nm2NR4AkMwK/oJvhFSCRlAIXstoal0BDGMjKnhgHlJBAt1e63J5TYYkZzw0piigX5OeTIqMTRMCTjI4SuPwInk+FSCUf/hdZkIRp9wt0dPzwTi0HZJkMAllbgDy7U0sJ0BWvwIV2q8QoACEROSRICiIKgENIvxBWED8gJVmbh2glgQUJy7AMJG3LdrjDCTRgE1tBUUENOiOqhCW/kLDl4S4O37IiAZKDiwDJygBuKIATYXLQMIGF6cwt8RAgaZj6wfaQICtq7/xk+kiKAhAd8JRAM3xQ7Qk2M2IeQoMASyqgC2bAgyRValc9ACJKskwExGZuqadJUWQZikyc5++QBb47lTGqREXw4HFXIjcU8sMr6qALBuEoy6+MQtZ5BNcRFh12ugmVFZLhWUgjypIwnpiYPD8390AkqXoIgqYUVWMzl3vn2giy2lFOUi73PEhSokJqBylxJmJg7r4U5hWGA2rcWfmgu9ThfXcGHY7rzP3zgOUoT6kdSRnOzLsMFCmKUgLEUE9gvbP8sIAPKiH1FE5YOiUgi7CGwO4YvKaE5dZ2qAUYvRxPFdNJ1+ZZEf+oyWwvgrqoI55QOA/BzYiLUhA9picQnCgw6AsIK1JS7ul2ptx4HipDv0cieTkApSielT1OhcJ8PaC7nA8VfCQhOMwmET6sUxQ0iYIM0FRUarcXrZ7pIrSsaGCmulBBCpI805x0q44klW9sbmqkqTBNhyKNHGZtJgyMH4SpwGDqiigJCTcwIJST1Xaj0WLoTR3Nkt8Fk8VQHEMx/I0mFFY6YBmOgYQmf1O9nLiLYdjwgwaKUA9g18cJLPmcn2shAQ6qlnB+H4awWq1vPtxoFsoATaxm4xvzrWQwNxpcz8nDDxqkIE5icnfTrDXK0Or4Grjw4Sag12MGvQGzGHHaBEgDbcIIU4DETAHcSBjOwu5nKIiSUFOEYwWVAQUHlxJVx/M4sinRaHYDbjSYYKY2hOEpNkwDd9hfJCRykG2IKAFWIOk+5ybUSVIhgLqTBajGi7ZVOMrLnF1uGKRTEOoZ0PbhgoU+HxXw+Tl7hc9fy9T5S32F1RhR66T1wAvcmLs+Uu4p21Fo2rqNrm6y8GwEgqC4WW/FzUajyYriOkyH63AUc7DeUl2DvnSrt4hqCoU8ir6q3IeZiRqm1gkUhfYKdbUyXlYbDpbiUV0jHthSEyqudkTDleEStqS42FVY1iDpCjlno4Eobja5OaJGCMJsSCVkz7chsDgZyK891SIobBE00SDGAmy2QWwIneTArps/Dm1IKZz5Lp6N2hB3gkwA3yQH3HB42ysEHowfhhyEIwxtr6PqTMXVjUa+wRgtD9Nuk6NeEvVNIu4rM4UcZEUVtQVgeKPZUDSXBINRj2IpHqCYlmQV3g/9/4xqyIvO7XjUJc583OK8IPNMIBBzAwk2kNpFsUKYhpNdAjGoebVjmzpooQksEAAWykpSlgCg0UI4M2fR/jcf2hOfhTjJwhqLUOpAyGDXFhCEQWtDONJuMcF2Sn4CX4wlapIPXkpzrfrhVzTJZyHb5hJ+hz1+afLusj35IxbH+wh67Nl+cuMZ8saUxj7qvHB5sHtT7Dm1N3PZl7d2r4j/7fR36F2uyWBbs2vprtFXxrP07lPHYp99cOPgq6vOD37x2NkD525tn75564aTO3IzJ2jbqX789pKhf9P/mjh29L3Bn195ZMPl7IzctZ9+dPvejoazddvzHjuRvvYuPdBTcWTgqufc8Nc/uPvR88aCG396vGxor2+pZlf8z1vsUtkLrxtH71Adq5cMHu7x6RbQ+H88b1de3K+t//GrRUu9+18aEpYPZncWrqlat79uo+5E4/nRr02tPL1k4/LrE1rHx+uysnqJd48MtE7+7LeV4SWVxy8Ob7721it/Z3sQW0lb5r2B7LGMTRPq5h+ktUifdcZ6CxYP5hx98rl/LD7w4s19Z35xSx471Lq21nV89V8fufbWcfpK//dbJsZWejd8K6NUc+Cp33z1PDnx1PpLhgVu2+Qd4vrKHWc6Lncezry3IcOUvjT3R6aCoWDa2F9ettSs9xQQT144VJjz3nefX7O4M/26dmxfttp7dk/p+23W3Nbs6vSekkPIqsJFR0w3F33+RIs1svugQlxZzvx+2Us98RVZb+ZUBW83ZP7q0WDfNbz6anpsRcMnX3pf+F763sVDB8j1p6aq+1bYXjOrlWnxJ/btNX3zyifpFyZX7/rDt4++8+HyY7XmrMjF9GHvSnH8mds5//zUv8y47vOtsbs1U4/y7raTd27n/vKow+2Ovv5uTl/gi+m4sPobd6xD01XZTz9zaGSd8afv9Hf8RHv819s3uKbSNJrp6YWakrrXrmYs0mj+C91Z35g=
|
||||
@@ -1 +1 @@
|
||||
eNrVVk1vG0UY5uPGkV8wWiEhIa+9ttfr2iiHKFRtoVGLaqqitlqNZ1/vDtmd2c7MxnEjHyg9Iy2/oCVRUkUtRQVxgUocOfAHwoHfwjtrO6VO2lThhGXL9vs1z/v1zN7b3wSluRRvP+bCgKLM4B/93b19BXcK0Ob+XgYmkdHOhfODnULxww8SY3LdbzRozus64yapp1TELKFc1JnMGlyM5O5QRpPf9xOgEYa/f/CFBuWuxiBM+bO1rvzcfNLw6s160+8+XWUMcuOeF0xGXMTlk/guz2skglFKDezN1OWPNM9TzqjF2PhKS3GwJoWACnN5sAGQuzTlm/BIgc4xDfhmTxtqCn1vF+PCn3/sZ6A1jeH7K58twP391vu/2fBauxjMKJm6q2kqx+56lbcuH360+wliKJ8PkqJGvICsU0VaXqtDmkG/3e77XXJhffDriTGuKB5zUT74acAzTGtJ+mSNsgQWLuWzvBhidjWS0S0XQa4E3v5qatxrm6w8rCftFafv+23nY9SvtDq9lud5taTttnonKJ4vwTm/lUsN7sVZzpjTyTm/0O9ep2pS7s2g/mCtsHnuZRCxScqdoNv6ZSnAOoLGDqPO83auc1oeYGdJLGWcwtMbrrWuYHDsTfnQ27uqaJzR8pGQLrNleHbDxTLTSMbuAMcQ3EtReUg6TW/YG3UpbfqtJgPai+g51qI96nm9YdRrHZIT81hTECFeTlNd7hpVwONFBoNJDsfnaH8BbN7kJvmUCtLsdT3ief3qbZtcjfXXOFMKm/nXOw+2nfn2OH3Hq/fqncCpOVzgzAkGIY5urJ3+tjNM5TDURmLGEIKgwxQip29h1ZZ1WGzAYNfaGCjCcmgwIWzRLE9Bh1mRGp5TZZaDnG6Bq4fLbSCkPMS9VpNlA6nikCmoShJGXM+VI6wganM6ybB6y045Zi8FTUP01se9dPtVWWugiiXHpIkch8akYcEXImNHITQcVBgVao6OTqqyplLEdtvR38dVsO7KzAVNf1pzxlJt6NwG0EzmYFGGXGxyA/oI411tohBpK8fu206+jAmDDKlBpNhvJEM0FCMe28MLDS9VO8olEuhRJoymEBZ5eEfzu4gftygGhbC8CuhCK0yCJY90mCI9oHMzWCgjORahgCw3kxfePmptuIV1FetIEA4nVWItr9dtdlredPreq1l85TQWxw9KdUOlWQM76OYKa2Qalo21+R/R+7enkftZiHs3eu2FEFiuODN1P2ZzqjInUtV/ZvZjZH7O959UFOyy+U10RMpvSq+vuwz2cDiQJsv9YpMzqcTy5fAyqb57eduZzV6YUJ0gF3Y832/RUbPdhqDZ6QbQ9TvtgAWdTsBgBM0RZThijEZeuzXy293uMPCY3w4gYBEbBoBMmlHBRzi3dnE5rvZN52jYUTsbbY2/UGLwaw2/rlbCAW6gnVDnds1JGa4cMhJ2BVFhqRBxwZDf0GNjTNWM6+cTiL9vvtFZFwsEtz5zOuuZs6CnJTe3qjlnPcYsPPrOl7IgVAHBS5IibdoLz5CRVKRiGxxVlwo9BttRgpfYhq4T5AhiEkArO0JWkXPAoSFyRBRg8wGJm1Szv2WIkWQWofJZRK2TSyMywbMjKT40ZEPIcaWfmdbIV4U2RNMJCqlZMlwgUABEg90Aezg+avGsyDBCRCzB/CucxcK4hvot8fn8/D7ZXkCZkltibQYWpXPYVrhaOferB4G8MOEmVdzeKHYinIW37f/MxZZ/UdgQK5jhVPSdkTtbB2eKr9tvHGo6ffEsgDa3p/8A34xtTA==
|
||||
eNrtVUFrJEUUZvGPFIUgyPRMz0zPTNKSQwhhV9wQxSjIbmgq1a+7a9Nd1VtVnclsmINxrx7aX6AmJEvYVQ/iRRc8evAPxLv/w1fdMxuNkV32IAgODNPzXr33vvfqe18fnx+ANkLJW0+FtKAZt/jHfHF8ruFhBcY+PivAZio+ub25c1JpcflmZm1pwl6PlaJrCmGzbs5kyjMmZJeroidkok73VDz7+TwDFmP6xxcfGdDeegrS1t+7002cV856frff7Q9Wvl3nHErrbUquYiHT+ln6SJQdEkOSMwtnrbv+jpVlLjhzGHsPjJIXG0pKaDDXF/sApcdycQBPNJgS24DPzoxltjLHp5gXfv3lvABjWApfb7+3BPf5yceC1RcIg6RKpTk85QonIa1nZyX8veQZtoIzq8+rA8GVlj84bMZ4iMRqlXtb7NB1Wp+Mff+na771PFdTb6sZqKm/evubjUWpuyBTm9UnwcroxxtjtrVIhay/vCQ3ujc0xJhHsNzUp1ZXcBrj2OrnO1nVIf0J2eaWDPxBQPpBOByEwxG5vbXzjDOegcfbTPUTqbzGcr6eW+/DA15fdrPhGg2DYEjfIQVbG4xWB77vd7KhN1i9wfH8GrbNw1IZ8O60g8Z+b57Hlb+hzad4Zxo58Nut34/ogp00pH530h0HtEPxNgCvNoLDUujmXiIrCqChrPK8Q/eY5VmE8UjeCHtLRErDI1phRFHlVpRM2whkXCokPA3dsDrUcJZDVJXRQyMeQYT10xQ0Dfuu3SuvtJlGsCbKBRIY3eOlM1ZTGUkoSju7ig7Q69ItTze5XhiivZkFQ8OBvzrpjwb+vEOFRLpKDhGyPjUONq4MLqWFiIkI91HPEDrbyyFeIlc6jTiCauYQC7NwJsgE11emppG1eVSJZYDFHccOBegorhbzi9msqZYrmbr9wQRBAzZT2i4M/QABGmAap3sNw1TpfVO6tIarEiKHScgD0bS3RDKMjFUad++v0fP5P0vN2sukBr9oNT2dFz1M7ZVa4Q30nGQY+78GvZ4GrQTBv6JBwX9Bg964e0RblkUZMxnq0MgPggFL+sMhjPujyRgmwWg45uPRaMwhgX7CeD+YcBb7w0ESDCeTvbHPg+EYxjzme2NABSuYFAky1K2cwD24R1/QGr0tiQ0+ocXizwb+vN8Yd1BgHBfpLsogx53EdUaCICocICKuOK4YRuxPmW71Y8E1fL73SrXuVAhuqw163Zpt0pc1tzjVoa9bxi4jQvqJqgjTQJgkzBjhRNSSRGnS6ApujcekmYK7UWKZ2TddgmpAbAZ4yt2/c5QCkBhEJUQDXj6g6pFmDQ8tsYq0GZqYZdYueTchM6wdK/mWJftSTRt/e7RDHlTGEsNmaGT22sElAg1ADLgNdMULdiiKqsAMMXFS8qd0DgsXBrr35QeL+iE5WkKZk/tyowWL1gVsZ1xvgkPqXi5lZaMDpoWTX8cIuox299+GuPEvBxvhBAtkRUgTr10HOsfP7iunmuMbAw4ZZmvO7M7/ACbG6BE=
|
||||
@@ -1 +1 @@
|
||||
eNptVG1MFFcUXZUooj/aWpM2mjputZbK7M7sLAtLo5UuYlBZiCxksa307czbnZHZeePMGwTFJkLVVtRkaGPSxqrIsttuQaTYGENpsZZW0baoxEg3MTZ+tRqjqfUj2kgfCCrR+TXz7r3n3HvOfVMTq4CaLiFlTLOkYKgBHpMP3ayJaXCVAXX8YTQMsYiESGFBka/R0KT+2SLGqp5ltwNVsgEFixpSJd7Go7C9grWHoa6DENQjASRU9dettYZBZRlG5VDRrVks43CmWUdSrFnvrLVqSIbWLKuhQ82aZuURaULB5MAHZZkKQwpQK0kxBQLIwFQAAk23rnuPYCAByiSNl4EhQJqjRSCVG7SDEDAck0GgMAyrZB5saASfsTHrYiIEAhn2rOX5iIh0bLY9NUAr4HmoYhoqPBIkJWS2hNZIaholwKAMMIyT9hQ4pJAZL4dQpYEsVcD2SlrHQFJkMheNpTAkrZpfeQt8ZYvyShZ6ow9BzX1AVWWJB4Pl9pU6UpqHp6VxlQqfDscHNaGJUAo2D2SPtGkvrCJ2KBRjc7ptzL4nqWVAOo6qQ/GOJwMq4MsJDj1stRl9WLz3yRykm035gC8oGgUJNF40m4AWdjlHTakZyuCgZsxT+DTdcPAxHWdjHbbMtlHAepXCm01BIOuw7ZEHj0rixEiOZlw0wx4YBQ2xVkXziDCYDczeEQFlqISwaDaynPtLDeoq2WBYGyVl2NBrIsRLePxIbHjt9hQsGdmELZEc4qrZ6RONNIpxUflAowhxOsW6sjguK52lFuX7mj3DJL5nutTm04CiB4lTC0eWJsaLhlIOhbjnmesSH75ZtCSY35H3MoZd5k33ZLCOVeWoeKVRIvBVyFfqCR18rAvSQkCR1gzRDtb1z+LcLi5d4AI0DAQF2unOzKDdbgdLBxyOTMGZyWY4BVdjhQTMOGtjqRBCIRm28kGaB7wI6YfSmLGcUm92fp6n2U8vQwGEddoHQmZEQQqMFkGNuGHGeRkZAll/DUY9ufSy7FJzv5vlOScrpLNAcHOBTAf9NlmbEZkeyRAZvDtDv4H1xAqNHHWP2TyjLtky9IwTzOy6xILJGwY2x5fYvDeUlNTv0/79JvXTefv3NTm7l4YuHO/jj35xYhY7c6DzTGLD9p1J986e+qR3au3h8Zuq5asdqwsO35yy6djfV28+OHU+NLejbp3T3+B99dc3evqnT5y79IXLG4+6hfRm/5/UNqtLbEzddjrxbUaD/er9ew/CnS2r/Q1TSwLdlxK3jD0n4W1b06F5s5dD5kbt0ppdJ6fg+vfrT06/21X2X5K3smnS7+rO4lJ514xzXdePfl4/se9U0tkdf8HFiyIoeGfFb19PvrJ1fteE3hePrE/xv5zck3x59yuTLzx3PokHydX1lSnV1XmJrhW5V3q2zEntzQMTsg+9nuMoBcknuiceL9TOnR8/v/7HBb3tO2bidukitXHnJf9b14P+vqLlY09fkagD73YeStxJae8585qj9KVpsypatv90d4Jwr/gjGhye/XPKsX8+u7R5/S97WhYX7Gg7mCgRt97q+yMnt1a937r7g4sfb7m/K+/ED292XLt2e5rFMjAwzpJ7fZKTG2ux/A/oUIK0
|
||||
eNptU31QFGUYP7TMCRoZnWkmamA7hj8y9thlz+Ug+8BDTAyOuAMVMXlv973b5fZ21913CVJHjtLGUpu1j5mmsJLjLk8SL3EcE5uIGG1qJE0swhz+0JE0p8bJyGaQ3juBYHT/evf5+D3P8/s9T2u0EWq6qMgpnaKMoAY4hH90szWqwY0G1NFrkSBEgsKHK11uT7uhiUM5AkKqXpSXB1TRBmQkaIoqcjZOCeY10nlBqOvAD/WwV+Gbh97dZA2Cpg1ICUBZtxYRNJVvzyWsU0HYsm6TVVMkiF9WQ4eaFXs5BXcio4TJAyWJCEICEA0YggBexUCEFwJNt25ZnwBSeCglAjkJGDwkGVIAYsAg83EdiqEKEnAIBlU8GDK0RBXKRm2JChDweOyLlvSwoOjIjN81ShfgOKgiEsqcwouy3/zM/4qo5hI89EkAwRjuUYZJrsxYAEKVBJLYCCN3ssxDQFUlkQMJf16DrsidkzORqFmFd7tjidFJzIiMzKPFU33kVTZj5mXcMsPaqENNpI6AKEuYO1ICuKWImvQfn+lQARfAOOSkqmbkTvLBmTGKbnaUA87lngUJNE4wO4AWZO2HZ9o1Q0ZiEJpRZ+Xd5Sad/5djbDRtK4jPAtabZc7s8AFJh/FpkqdTYlgrhqRYkqKPzoKGSGsmOQVXMD+hDk4RKEHZjwSznbYXfqpBXcXLCl+N4DRk6K1hLBb8/lR0cr/2uVZNSb0zXIJlM094BCOXoAsIF4eIxJIQtL2IyS+y08SKck+nc7KI554qxT0akHUfVmr51FZEOcGQA5CPOe+5D7HJIyJF3uzB7w0UXRqQ/QXLlWoBVi8p4dwVqwur1wjBI00kJykGTyJ8gZBMDtuEzCGCc3gdPtpBF7KQKXSwNM+ydi/DUpwdMA6Gge2NIjBjtI0m/Iril2CXs5R0Ak6ApDtJiRktWVtRXL7S2bmGrFK8CtJJD/CbYVmRYcQNNayCGUuWxnutwQhOrypea3Y7eDvl8/FLHLCwgPGyheQyvC5T9EyPH04cRfLSQ1gCDZv6U4ysN+dbkt/cF15cFRh+Lv32k28f+8f66LMPzlu/rMxdd6q3+/XHrnrZX8yX2wd37nv/yIGMiTFrR2jvvC+vpOn9o/FvalwnLzdMtGX9PbCh5vpP1984fy06/tburIn6EIvssecH2+an/p6zq8W9q2H3Q6lSv/vrhQcufR695cusk25sPlG3tVZ+b13uoYWst+/GlZvZZ0bHRttKdzx1VYyMjGyrW9B1Nv3c2T7i2NI/Qx/1WV5q8i3qUh+pXlzdPqaODHiOdd73sNAycvqvvVWLhn4dvfgtjNT3Dj29ee617GYqVFbbeqE3p9byQIY74+Pv0syBPadN1x/B1J9XrjAyfyvOP7dnyGlX5+34MKObvmVvCRwufYYc2ZFW27r98px4Zjmz4AnWfn77xoKT3tC/++vlUO2NHwdTe8YXV5Z/wbkqtsVLvFu7LzC3s9+5mL9x+RqtYv9XS7dEeryXbMNnwo/X5K7+YE7O8MQPjfrx8fstlomJuZabLY6ysRSL5T/v1GTL
|
||||
@@ -1 +1 @@
|
||||
eNptVWtsG1UWdgiPwv6gCIraCi2uQQiBrzMPj2OnhG5qO2lIY8eJQxJKa13fuc5MPK/Mw45TWtqEh4BdYKBQIfEojWO3aUiBPiClRS2IR0XDQ4BEgIVKkP2xoouAVVeobLvXjrNN1M4Py3fOud/5zjnfOTNUzGDdEFWlalxUTKxDZJKDYQ8VddxvYcN8oCBjU1D5fFu0Iz5i6eL0bYJpakZdTQ3URI+qYQWKHqTKNRm6BgnQrCH/NQmXYfJJlc9Nb9nokrFhwF5suOrWbXQhlURSTFedq01EaSd06lDhVdmpWHIS606YVDPYSbncLl2VMPGyDKy7Nq13u2SVxxJ50auZgPVwwLT0pEr8DFPHUHbVpaBkYLfLxLJGMiFWcpvyBDYVBQx5kuZ3jsV5QTVMe2Ih9b0QIUwwsYJUXlR67Vd6B0XN7eRxSoImHiOEFVwujD2WxlgDUBIzuDB7y34VapokIliy1/QZqjJeSRCYOQ1faB4r5QNINRTT3h8lJBqaa9pypMaKk/b4aA/96gAwTCgqEikakCDhU9DK9rfmGzSI0gQEVPpnF2YvT8z3UQ17tBWiaMcCSKgjwR6Fuuzz7pv/XrcUU5SxXQy2XRiuYjwfjvXQjMf/2gJgI6cge7TchjcWXMamngNIJRj2y1QBqWpaxPbXVVckEiiVSMr1uSa9ayDV2Ki0NGodGTEbEvmYv39t1t8Y6+xrEhNJXbU6E1yK03oAXeulmVq/n+EA7aE8JGcQFBCTs9ZmuTZ6dbOCukQ23S92rY2kI81MPBxjUYCSWjV4VzQQiHdFlPAaHNYCAR0pmcZ2IxmDuL2pvd3MWg2xOO5INw/0qVysi7mnAfnboi0xmNFoabA76K3lGWOlk1C2MiJfH0nTob54MsP51nQKbISPRsI9kTDfz69uvyeawd5of6Ij0Z28m2lG8zj7aR+gKrR9lNdPlZ6JOcVIWOk1BXuEZvy7dGxoZIbwcIEU0rSMoTxRJz7xYbEyTDujLeeFfX0+RJRqH4kLlttJ+ZytUHcyFMM5aV8dy9Z5fc6m1vh4sBImflFhvhYng2ikiDjDc4NQRIKlpDE/FrzoCBwpjQDpb4k+GVaABzTVwKDCyh7vBu2zWwQ0h/bNzhtQ9V6oiIPlsPaR8ixkBweyPLJ4XshkZSow6GXFJLZQan/liqarpTCEEJANe4ShvBMVy5wax0iuFKApQNGHBgCZfSyJskjqWf6trDLDznOk2G9e6GCqaUyWXtFb7gb19nwPHctExqXY52G8gUDg8MWd5qBY4hKo5Q4t9DLwfDY0IxtvXuhQgdhJGeMDc95A5O3pm8khkfKxqJZJJiFLQ4ZPMhxXy9DkmPLXYl+AqZ0k21BEBKXUTE3VTWBgRPa2mbOn3TIcKG2eepbmWB/JdKVTVJBk8bjDSobUUg5E4JqOJRXye1EKIIgEDGb1ZxdDPZGG1ubgwW4wX0ggqs1+M4qKaihiKlXowDppjD2GJNXiyQrVcSHYCNobeuz9ARqxXjoJ/QHM+XmaBqvJcppD+7/s8qX9W4QS4Z5B9j6BrXfVeb2sa6VThvV+H2lT+cuytVDKVel9r2rLjY8tcpSf6r8+9ZEyTC0O/+e+B2e4Ry6ZqsbTu8ZeP4VinUv0n6q+XfrNgYfvvG7m+9uvvSrUOqp0n3hu4yT7QzC06JmhiStnlgQ3rOMmP379zKkhfPUTv4LJv292nz4arspG90xNPfR+A8zsPfpLEzdTOHhV2/JN73xbFVw0cbzvxfwed8t2sOtvjiX86HvHvzTpY++fOsE/m38s0rPs+LHPudzji1b8+OlmUoSTT08cd5/d/cXJ+tu3Tpy5ZfUu9rb4rb9tGOSXi3f8RfEOKeiTLnRyh3DHn46ZI/GuVafvby/s//in+z44M7jiwL87/7UlNzK8pwmJLU9cs6LmVGiqZ03fC7vBP4TTO4Yhs2r6M/hw9dqVD13+3HLx2V8u23evg9n9h7BiG7th69Jt757uvim/bKvg/fVn9/bDUdSy/uwHmx3PD4cXT1rOm1e9lBWMxX/+KiH/99Fvjn4xvHH7Dfq2k+8su/S68Vjx845zM9f88/CThy7tfUH6+fsXf1+6qdrhOHeu2jE0tXPH2Uscjv8BZV1LvA==
|
||||
eNptVWtsFFUULgKRRxQwBDBRGDZFA3S2Mzuzr9aGlC2Fhpbdbtc+VFzv3rnTne68Oo/ttgQTSklDJMqg6A8CEbrsmlJasKQ8Skl4Ki9REyGVBCT8wMRQiCJqYoJ3t1tpA/Njd+45537n9Z0z7ek40nRBkSf1CLKBNAANfNCt9rSGmk2kGx0pCRlRhUsG/DWhLlMThpdFDUPViwoLgSrYFRXJQLBDRSqM04UwCoxC/K6KKAuTjChc6/CODTYJ6TpoRLqtiHh3gw0q2JVs4IMtIMAYAQgNyJwiEbIpRZBGgIgSRwRlKyBsmiKijJ2pI822cT2WSAqHxIyoUTVIxu4kDVOLKBlbGUtp/K8bGgISPvBA1BEWGEhScWrYMINF2b0b01EEOJz4rbzZyaiiG1bvxGT6AIQI4yMZKpwgN1oHG9sEtYDgEC8CA3XjDGSULZXVHUNIJYEoxFFq9JZ1CKiqKECQ0Rc26Yrck8uYNFpV9Ky6O5MdiesjG9YRPw6itKIw0IqrLhO0nfXYqUMJUjeAIIu4jKQIcDwpNasfHK9QAYxhEDLXUSs1erl3vI2iW/urAPTXTIAEGoxa+4Emudj+8XLNlA1BQlbaF3jWXU751B1jp2m7+/AEYL1Vhtb+bCOOTriMDK2VhArGsPZSKagoMQFZw7+Hw5APR6QSak1NC0x41KYQDJaL5jo60rzK7a5/21mmu1avCTaE9ZC2RoiEhXJI0m6Hl3Y7nU6GpO2UnbbTZJlpDzc3JzTv6urmGBUWK1iptbKeK21YHXDViuVyU0RJeISVjoYmMYDiPBRDdU3hJmRnlHq5CjR7fNWBYHkd1SB7E4kIkKp9Pt4vlhYTODozLnAlbC2jBCTQHF9Z2Rby046YFK+3hyWxzuEzlNg7ZZWMYW/zMWtCTQ3jwqNwhFQuQhfFeqjM0zvGDRHJjUbU6qJZ11ca0lU8P2hzCpfMMPX2JOYhuvJtOjdI+/xrn1J4XrIMc9IaCkXNAoJ2E35oEA7KwRI0W8Q4ihgnsboq1OPLuQk9l4KHQ3gEdR7TcNUY5dMwasoxxHX7nkv2oQzZcScz4eMpJVFCVXRE5qKyeurJ4OgGISvK+kcni1S0RiALbVm31lCW9S1tiRYOmhwXjbdIlLeNZYQIMiF/JHdF1ZSMGxwQKelWF+Nw9OY0Y7zrxrlSJE2RFH0iQeIxR6IgCbie2d/cGtOtpBMX+9izBrhfCC+8NJvtBnVqvIWGJEzYjO+nMKzX6z35fKMxKAabeN2uExOtdDQ+Gtoh6ceeNchB7KP0nsSYNSlw1nA+PoQB74q4OMR4XQxDcR7ew7p5wHo5ikFOnoGe43j1CRCjZJqpKppB6gjinW20WsMFEkhkdkwJQzsZF860mBBkKJocqjEjZUomB72YUDUkKoDr85WTPgCjiKzJ8s9KlzWsK62q8A3Uk+OJRPrV0e9FWlZ0WeD5VA3ScGOsbigqJoeXpYZSGCtY2mAd8XAsxfMR2gsgz0LoIlfiNTSG9j/tkplNmwYijj0Orf4oU2IrYlnGVkxIoMTjwm3KflU2pTK5yo3nJ4UWfTQtL/tMFrdflc9QszsetM64fG/KHGLV1YOd7T9rv+4Nbule5vhuxzHz5IVb3y86N1g3fVLw9PnOf97q7x+cueDusntL7349N3/5ga7Bb87zA6/evvZF38xPZo38JhzfffXA7XsXH6NzZy9sOjBru2G8lF9bO3kp+2LB69Pa33Du+Vi+K+zIr5i57Eqpe+BMkF2YP+cnecsP1MIlu/vLlpz+47OhqdvogdjtVNfFO7vS4oKFO2ecnD/14aNHW+mRgHvG/FvL/Wdmz7oW2LeYku7vEhZ56m+8z56vPGimH/g/Zeddv3Op5d9k387qU1dem/ZJquLPjs+PGouox7fk0JPlFw+evRQs/3t6avq2Nzs9H54Cs+LbtneMXKxILCm4vKnjx1Mts+1bChavKO4sVfovWzdsL99cWvNecsr6V/5asefLS9cvzf2lp+b+1ptrRzavwOV78mRynvbBw17wQl7ef6XuMgw=
|
||||
@@ -1 +1 @@
|
||||
eNptVQtsU+cVDgLRVlPaTBQQQms8066Q5rfv9fUzWZSmdpI6iZM0NiGhm9Lf//3te+P7yn04thmtgE6jQCXuKgErj6rE2DRNwrOUhoQ92CrYoy+1SEm39N2qXdVpQ5Xo6Ep/O85IBFfy495z/u9855zvnLs1n8SqxsvSohFe0rEKkU5uNHNrXsUDBtb0J3Mi1jmZzXZ2hCNDhspPVXG6rmg1djtUeJusYAnyNiSL9iRtRxzU7eS/IuAiTDYqs+kpYZNVxJoG41iz1jy6yYpkEknSrTXWCBYEi4gt0NIvJ8hPVDZ0SxRDVbNWW1VZwMTH0LBq3fzzaqsos1ggD+KKDhibC+iGGpWJn6arGIrWmhgUNLw5z2HIkpRmyiqynKzp5thCmscgQpggYAnJLC/FzdF4hleqLSyOCVDHw4SchItFMIcTGCsACnwS52ZPmcehogg8ggW7vV+TpZFSMkBPK/hm83CBPSCZS7p5uoOQaAjaO9OknpKFtrlpG308BTQd8pJACgQESPjklKL93HyDAlGCgIBSr8zc7OGx+T6yZh4JQdQRXgAJVcSZR6Aqup2n5j9XDUnnRWzm/Z03hysZb4RjbLTD5j2xAFhLS8g8Uiz6ywsOY11NAyQTDPN5KodkOcFjc3rRbX19KNYXFeuaMt0u/2BHu7Yh7WlsNxLQL6EmIZUJtjUqjXFbWKCNJNVi9FJcCNAeJ+3weL2MC9A2ykZyBkGjTac7m/tl0RH1BjemI2If1YnCzaFWpokRwrwt2Rps07yhxlhXl+EKYKWnRersiEn+9oZWFGn1C20q9vcEbL2phrTLkXxkfcLVNoD62nimoV8NRlUYb4O+zMZOd6C31kIoG0merUs12WwupTXp0CQUHkDKQxyfoR/ObGQTjXExHIjIA93hABfu7fI+Mo8zRbkBVaLtppxeqnCNzSlGwFJc58whmvIeVbGmkHnB23KkkLqhbc0SdeK/XsyXBudwR+sNYa/IBohSzckIZ1RbKLclBFWLg3K4LLS7hmFqXC5Lcygy4i+FidxSmCciKpS0GBFn49wg5BFnSAnMDvtvOQKThREg/S3QJ6MJcEqRNQxKrMyRHtA1uzFAMHBqdt6ArMahxGeKYc3J4iwMZlKDLDJYlksOipQv42T4KDZQ7HTpiKLKhTCEEBA1c8jh842VLHNqHCa5UoCmAEWPp4BKSiHwIk/qWfwurS3NzJLyU2dvdtDJpiELLu8sdoM6P99DxSKRcSH2DRinz+ebuLXTHBRDXHwe1/hCLw3PZ0M7RO3szQ4liMOUNpKa8wY8a07dS276fJjC0EVHfYybdUVdvhhiPZQbuukoZijswK+Q3ccjglJopiKrOtAwIjtaT5tT1SJMFTZPHUO7GDfJtNbCS0gwWBw2ogG5kINWa1FULMiQPYZiAEHEYTCrPzMf6G1vCAX9Z3rAfCGBDmX2/ZCXZE3iY7FcGKukMeYwEmSDJStUxTl/E+hq6DVP+2jEOGkcY1inj4l6WfAQWU5zaP+XXbawf/NQINyTyDzFMXXWGqeTsdZaRFjndZM2Fd8iW3KFXKX4nxaNV+68vax4LSaf69d3dYUSq+mKyX8d2/eFcNu7q5d91Mq3b9nzxuUjtidPXnzry5aXutdkp8Z/fPW3K0frL+fKPz58YdOVQzO/mLi77A/9J5Y8v4t9Z6nnfF91d1/lXy69bH+xo/Lcu5V3TTx+deK7787uF+pH/rj2Ae7KD5Y/F/HsmH5/N/hm8ai15dUvaybPHXztqxU71ZllgNd7Ly+5Z6/nCj044P/oku6uryrv/WWw+oMXyspSn7934M3Et2v2UKsO7l4R/nX5jk9euf3BgLrqh4779vdkVgxtiXy8anPlJvFQw6PlQoV77RrB+megL0ruCd11f7Mwc6Guauq+JduOP3PHvrVM7dF1W39/9av/bNtu7GWlNwZf+9G//+c7MfSTwHR2zROvJv4pOtYHfnPxM/2pddsP/WNlWf21S/qGv+2oeKH8Z7T4ZvwCnz6+7IJtqZo88Oxj0c+XTvz0qbG/Vz1dPdq68pnlLVXbMp13JnYfPKM33L2y7vrqT5+Y+dX5UXkmWl/RAh97e/32o6PjUmrtzn32r186eWXXtd9Z4bfi8m6B/rSOG8Gf3em59y0tKrw4/d+laPuZ+uzjr1/70F5s0OIyZnDa3Uy69T3LDll/
|
||||
eNptVX1sE2UYHwMTBFRCAP9Q4Kya6dzb3bXXdt1YYOsGm6PrtnZjQ7Be7972br2v3Uc/BhjcFAXGx4EkSvwD99GOOcYWFj4FEghiAE1MJDhQZoSEqCAqJigxwbddJ1vg/uj1fZ7n/T1fv+e5tmQEKioniVP6OVGDCkVr6KAabUkFtuhQ1d5NCFBjJaa7xuP1dekKN5LLapqsFubnUzJnlmQoUpyZloT8CJFPs5SWj/7LPEzDdAckJj6yY61JgKpKhaBqKsTeWGuiJeRK1NDB5IM8jwkQo7BmKYxeAUnXsACkFNWUh5kUiYcpK12Fimn9GiQRJAbyKVFI1oDVbAOargSklK2IpAR6q5oCKQEdghSvQiTQoCCjxJBhCgs3O9YnWUgxKO1rWbO7WUnVjIHJqRygaBoifCjSEsOJIWN/qJWT8zAGBnlKg30ofhGmC2X0hSGUAcVzEZgYu2UMUrLMczSV0uc3q5LYn8kXaHEZPqruS2UHUHVEzRj2oCBKKvNr4qjmIkaYyQIzPhgDqkZxIo+KCHgKxZOQ0/rjExUyRYcRCMj000iMXR6YaCOpRo+boj3eSZCUQrNGD6UIdvLgRLmiixonQCPpqnnUXUb50J3VTBBmx9AkYDUu0kZPuhGHJ12GmhIHtIQwjE/xBC1JYQ4aI3/6/XTQHxCKq/2BBm5VoMJfWoeTDS7GAhuhF/eGI25fZXOpfWUTUxcrEPlIU3UJIBwWJ+Gw2exOQJhxM2EmAF7CN1aYWywVKxvL6BjL+jRLrduPO8h6rsEFNY1plFY1qERlgx6qIOLmKBFcUc+W15XE9Rp9Ob+8vNxTWtmimEsFV9RKlrfavQJZL4WKMBSdHuGY4lX0Knt5XdQmttjibp3x2kvCimyJyYS/0s6WUNW19AqIE1GHtWxieFabBeCZCO04WYCnnoFxbvBQDGms0UWQZK8CVRlND2xPoJJputrWjXgIL36ZzIxRp6fqIYXnd5chThonfKyehxEOzENrmAW3kBhBFlothTYcW+729bsybnyPpeCQT6FENYhoWD5O+STN6mIYMn2ux5L9RIrsqJOp8NGUAhiTJRWCTFRGfyOoG9sfoLLs4NhkAUkJUSLXmnZrnEizPtoaizK0zjBsJCrgzlbSygWgTgeHM1dkRUq5QQEBQTW6SCs5kNGM864P5YoDAgc4cSwG0JhDnhM4VM/0b2aJqUa3DRX7yKMGGto6aN0lyXQ38JMTLRQoIMKmfD+EIZ1O5+ePNxqHsiITp8N+bLKVCidGQ1gE9cijBhmITlztj41bA44xRl5CB78tYLMU4EwAWi023A6DpA1xK2CF0BZwWgnoPIpWH0cjlFQzZUnRgApptLG1uDGSJ1Cx1I4pthI2qx1lWoRxIs3rDPTqgTIplYNahMkK5CWKOeBaBlwUzULgTfPPSJahSXNXug41golEAh557GuRFCVV5ILBhBcqqDFGH81LOoOWpQITCKuupMkYLmBIAvkNEiiFgiBkQClaQ+No/9OuO7VpkxSPYo/QxkHWWmwqJEmrqQgTqOICO2pT+pvyTiKVqxg6O2Xtoi3Ts9LPVL52qPoMPvf7u/Oeyc8Dzdk9nTNzS2dN3zRlWumG3Mvxre4Fp368l+3rfbBt58ZDH5gX/rbu5vG70ey9qwe+2NtxKXD+/L2cy44793YlO0avn17zw3u3Ni9smWNeJAqtna1b24ISe2OlzvT2L97cNZhwl4HvjiS6buUteOr9ZAjU1m07aczb/df27RvX77vecb+dfC7yetXX2GfE4pysrNHbI8ws59v7iFmtpyo2XTy21HZtdXaNsa79la9uNWqzL13dubHtLZZecuXlG3OffiLY++KZnF+m80/+8/ybp6uOLO0KL5u9pWrw/tSra/HlH7avufDB3T2699Vvr0X/bt71jbe2fE/LOen3ozO33SY7gzPcC+f3+S4MzNlwObLlvqe4vjz3tY9nAJzc+PMfV6qFy6MveArrKoZHfxrpPXxO2NPF3oyHquDw0EfS7nYmeeWB415T/69Ha/5VKwtzzlbNz0uqz87oqNdu3xn2DuxchKr84MHUrP07pi35JDsr6z8PST+u
|
||||
@@ -1 +1 @@
|
||||
eNptVXtsU2UUL6AZQWVoFBON8VogGbjb3UfbtcUZt3Udc6zd1sKYaJqv3/3a3vW+dh/tHszgUOKDMa4CYkRA2FqzjDkdkzeKBsWIkaB/OCCQaGKEGaPxFcPLr10nW+D+cXPvPef7nd8553fO7c4kkarxsjRjkJd0pAKo4xfN7M6oqNVAmv5iWkR6XOb66gPB0B5D5ceWxHVd0TwlJUDhbbKCJMDboCyWJOkSGAd6CX5WBJSD6YvIXPvY2k6riDQNxJBm9azutEIZR5J0q8daz8MEAQgVSJwsEpIhRpBKgIicRARlLbaqsoCwl6Eh1dr1XLFVlDkk4A8xRSdZm4PUDTUiYz9NVxEQrZ4oEDRUbNWRqOBMsBWfpmxUVyaOAIfTvGCZ1xeXNd0cmk79fQAhwphIgjLHSzFzb6yDV4oJDkUFoKMBTFhCucKYAwmEFBIIfBKlJ06Zw0BRBB6CrL2kRZOlwXyCpN6uoFvNA9l8SFwNSTf3BTCJ8pqS+nZcY4mgbU7aRg+3kZoOeEnARSMFgPmklZz98FSDAmACg5D5/pnpicNDU31kzeyvAzAQnAYJVBg3+4EqOu0jU7+rhqTzIjIzlfW3hssbb4ZjbTRjc30wDVhrl6DZn2vD/mmHka62k1DGGOa7VBrKcoJH5tkZBeEwjIYjYll7tdrUFvX5pFqfEkzyKS/PNbhal6dcvoYVLdV8OKLKxoqwI+pQmkm61E4zpS4X4yBpG2XDOZOVcci0G8tTjnq6okaCTTybaOWblvsT/homVNXAQjcl1Cng6YDbHWryS1XLUJXidqtQSvoatUgDQI3VjY16yihvCKFgoqatRXY0NDHPlENXfaC2ASQVWuhYVWkv5RhtKYEpG0meK/MnaG9LKJJ0OJetiLN+LuCvavZXca1cReMzgSSyB1rDwfCqyEqmBk7h7KKdJJWn7aTsLip7DU0qRkBSTI+be2jG9Z6KNAXPEFqXxoXUDa27D6sTnTqZyQ/T7kDtTWHP7/NipZpHQ3GjmKCcRB1QCYZiHATt9LCsx+4kqutCg5X5MKHbCvODEB5ELYrFWTU5CBkYN6QE4gYqbzsCR7MjgPubpY+HlURtiqwhMs/KHFxFNk5sEbLGOzIxb6SsxoDEd+TCmkdzs5DqaEtx0OC4eDIlUu4OO8tHkAGj+/JHFFXOhsGESFHDxXExQ3nLpBoHcK4USVMkRR9qI/HsI4EXeVzP3D2/yjSzz4GLfeBWB11OILz0MvZcN6hjUz1UJGIZZ2PfhLG73e4jt3eahGKxi7vUeWi6l4amsqEZUTtwq0MeYjelDbZNepM8Z44txC9hdykHWQcCkYg9iqIMa3c5KQo5aQTcTpaNMgfxNuQhRsk2U5FVndQQxHtbbzfHikXQlt08ZSztYPExainBS1AwOBQ0Il45mwMWuKIiQQbc+zBKQgDjiJzQn5nxNvvL62oqP1pFThUSGVAm/hkZSdYkPhpNB5GKG2MOQEE2OLxCVZSu9JGN5c3mPjcNWTsdKYWcq9TF0TRZgZfTJNr/suvL7t8MEDD3JDRH4myZ1WO3s9alhAjKXE7cptyf5YV0NlcpdmJG96OvzbbkrlkbXg/Xfkbdf+LilcUVOw6D8eubjy0uerWQ8Xq9T289b7zF3/f66nc2dKVqzu19xP9bf+E/qW8uHfwn+uC9Ff273O+u+XpT08qeoZFfLl1fYfvwzROf9ZwtenIk3PvN/tR58a8HetZ9Wlz6ye+7HtKCzXcW9Uh06pN53Qlm58JLT3x1pnnWkgVP3dnMt+ruHRuHk7XsoWVn+MyzD395/NvtR6penPdh4thje+YP97sPvly4Zc6R2KLTV7/3zjZ8L81BF2p7ly/o6TzZ4ztd94v+5B1zV47GHts2tOXy5Ss/7ty8eC9be/F32LVo9M/xT2f84Sto6v38zPpfF1RcePuVy29s+s4TbC4+vWbt3PVf9o3uuTa3c1vy7nsYx+lTP7DRlyxc47/HK4pia+7Z3fT3OTi6KWrZffzkxyPb/5C+2Hroam9XoavgNWLO+FPLnvfIF38inhj++OzGx6WZwcJfg2pRffddsXnDkdGWQODa/ur3Xt3y3SLXOKfd+OnUlZ8LLJYbN2ZZNj9EJK7PtFj+A1XHTc0=
|
||||
eNptVX1sE2UYHyAIxOAiqAn+sUvBRHDX3vWuXbs5ktExQDa6jwIrhpS3773XXntfu4+uHRKyOUgIDDgJMVFAga7FOccmhI8pKhINGBMSwI8ZIcAfEgNBEREVyXzbdbIF7o/23ud53t/z9Xue68gmkKYLijyhV5ANpAFo4INudWQ11GIi3ejMSMiIKly63t8UOGBqwtD8qGGoernDAVTBrqhIBoIdKpIjQTtgFBgO/K6KKA+TDitcaujNdTYJ6TqIIN1WTry2zgYV7Eo28MFWL8A4AQgNyJwiEbIphZFGgLCSQARlKyVsmiKinJ2pI822fg2WSAqHxJwoohokY3eRhqmFlZytjKU0/tcNDQEJH3gg6ggLDCSpODVsmMOi7NT6bBQBDid+uag4HVV0w+obn8whACHC+EiGCifIEevDSJuglhIc4kVgoB6cgYzypbJ64gipJBCFBMqM3LL6gaqKAgQ5vSOmK3JvIWPSSKnoUXVPLjsS10c2rCN+HETVUkd9ClddJmg767FT/UlSN4Agi7iMpAhwPBk1r/94rEIFMI5ByEJHrczI5b6xNopuddcB6G8aBwk0GLW6gSa52cNj5ZopG4KErKyv/lF3BeVDd4ydpu1lA+OA9ZQMre58I46Nu4wMLUVCBWNY+6gMVJS4gKyh30MhyIfCUiW1pKkVJj1qLAAba0RzOR1uWVRW1rzCVa27Fy9pDIb0gLZECIeEGkjSZU4vXeZyuRiStlN22k6T1aY91NKS1LyLG1riVEhcykqp2mauKri43r1SrJFjYSXpERY6gzGxHiV4KAZWxUIxZGeUZrkOtHh8DfWNNauooOxNJsNAavD5eL9YVUHg6MyEwFWyKxmlXgItiYW1bQE/7YxLiWZ7SBJXOX2GEl9dXcsY9jYfsyQQC44Jj8IRUoUI3RTroXJP3yg3RCRHjKh1gGbdBzWkq3h+0BsZXDLD1DvSmIfomzPZwiDt9y97SOHn0tWYk9bJQNQsJegywg8Nwkk5WYJmyxlnOcMSi+sCvb6Cm8BjKTgQwCOo85iGi0Ypn4VRU44jrsf3WLKfzJEddzIXPp5SEiVVRUdkISqrt5lsHNkg5NLqwyOTRSpaBMhCW96tdTLP+ta2ZCsHTY6LJlolytvGMkIYmZA/UriiakrODQ6IlHTrgMdL9xU0o7zrwblSJE2RFD2YJPGYI1GQBFzP/G9hjelW2oWLffxRA9wvhBdels13g/p0rIWGJEzYnO+HMKzX6/3k8UajUAw28Za5B8db6WhsNLRT0o8/alCA2E/pvclRa1LgrKG5+BDyeHBbEcWHUZgHTJhy8U6Ogy7K5QE8T1HMCbz6BIhRcs1UFc0gdQTxzjZS1lCpBJK5HVPJ0C7GjTOtIAQZiiaHmsxwtZLLQa8gVA2JCuAO+WpIH4BRRDbl+Wdlq4PLq+qW+o42k2OJRPrVke9FVlZ0WeD5TBPScGOsHigqJoeXpYYyGKuxKmgd8XAsxfMgzEIXw0LoJhfiNTSK9j/t0rlNmwUijj0BrcNRptJWzrKMrYKQQKXHjduU/6q0Z3K5ypEvJzSUbJlalH8miTto/2mqeOO9f6ff+DkdW+hbdnTG1M7ptU9N3XfG7Nt8aqBrvTV9xXCFNvvH9xK3f1vwWeuv8vP0lI86Otqjns3f9XB/9/8z+ODqpUtiy7vkMceuttWV117mh+7emXjtCnXj6Vl/XH976oXVG+d2LVh7dcfMTReNvZfSd145F6mM1m2c/0Ns2dlv5/oP6vGdtRdKS3Z3WRMrZ90kw1sH1gxv2jb4BTlLnD08j2w7F++89tdmWq2ZPPn4vfMzv3/i9rTpB6aZoYp3trefrrueeilT0T1l/Ybd6VppT/B+e8ndrovny7p9t7pmvL9368a9t+Z8dfl+1+CGF0+VX1g9/+zr+2e0/3Kz+MnsC9uufH6meNUc73ZH565nn3nr6+0zJnZsmfLBTn12l7uiJDXvWv+ei3eDr7Jz24f/7JROWIM1kT03/T+FtJIHE4uKhocnFT0oPrUW4Pf/ANGuMu4=
|
||||
@@ -1 +1 @@
|
||||
eNrVVk1vG0UY5uPGkV8wWiEhIa+99vojNilSFKq2QGhRTNUqRKvZ3de70+zObGdm47iRD5SekZZf0JIorqKWooK4QCWOHPgD4cBv4Z21nVInbapwwrJl+/2a5/16Zu9OtkEqJvibjxjXIGmg8Y/67u5Ewu0clL53kIKORbh36WJ/L5fs6L1Y60z1ajWasapKmY6rCeVREFPGq4FIa4wPxL4vwtHvkxhoiOHvHX6pQNorEXBd/GysSz87G9Wcar1ab3aerAQBZNq+yAMRMh4Vj6M7LKuQEAYJ1XAwVRc/0ixLWEANxtotJfjhquAcSszF4RZAZtOEbcNDCSrDNOCbA6WpztXdfYwLf/4xSUEpGsH3Vz+dg/v7jXd/M+GVsjGYliKxV5JEDO21Mm9VPPhg/2PEUDzrx3mFOG2yRiVpOI0Wqbd7rttrdsiltf6vp8a4KlnEeHH/pz5LMa0F6eNVGsQwdymeZrmP2VVISndsBHmh7UxWEm2vbwfFUTV2L1i9ZtO1PkT9hUar23AcpxK7dqN7iuLZApyLO5lQYF+e5ow5nZ7zc/3+dSpHxcEU6g/GCptnfwY80nGx1+40flkIsIagscOoc5y964wWh9hZEgkRJfDkhm2sSxgMe1M8cA6uSRqltHjIhR2YMjy9YWOZaSgiu49jCPaVsDgi9S64IQ0dGviNptsMO92u67ZD120N/G7Q8Y/IqXmsSggRL6OJKva1zOHRPIP+KIOTczSZA5s1uU4+oRwP7zjEcXrl2zS5HOuvcaYkNvOvt+7vWrPtsXqWU+1WW22rYjGOM8cD8HB0I2X1di0/Eb6ntMCMwQNO/QRCq2dgVRZ1WGzAYOsuBgqxHAq0Bzs0zRJQXponmmVU6sUgZ1vg6uFya/Ao83Cv5WjRQMjICySUJfFCpmbKAVYQtRkdpVi9RacMsxecJh56q5Neyn1Z1gqoDOIT0lgMPa0TL2dzkTaj4GkG0gtzOUNHR2VZE8Ejs+3o38RVMO5SzwT15rhiDYXcUpkJoAKRgUHpMb7NNKhjjHeUDj2krQy7bzr5IiYM4lONSLHfSIZoyAcsMofnCl6odpgJJNDjTAKagJdn3m3F7iB+3KIIJMJySqBzLdcxljxUXoL0gM719lwZiiH3OKSZHj33bqLWhJtbl7GOBZ4/KhNrON1OvdVwxuN3Xs7iq2exOH5QqmoySWvYQTuTWCNtJwlNac1wstL/I5L/9iyKPw9974evvBbahjHOTeCPghlh6VMJ6z/z+wlKX+q0HpdEbAez++iYml+XZF91JRzgcCBZFpN8mwVC8sUr4kVqfXtr15pOoBdTFSMjtrsubYR+q9nsgOu3lgKn7dA2DZxGp7UUBp1BnZpXE6DdqDfDeqPjDzqOj2Wtt5baroN8mlLOBji3Zn0ZLviGdTzyqJ0OuMJfKNH4tYpf10phH/fQTKi1WbGSABcPeQm7gqiwVIg4D5Dl0GNrSOWU8WcTiL83XuusyzmCW5s6nffMadCzkptZVazzHqPnHj1r48rn6/3N5eX1m+sffURuipxQCQQvTopUai5BTQZCkpKBcHBtytUQTH8JXmxbqkqQMYiOAa3MQBlFxgBHiIgBkYCjAEjmpNyEHU20INMIpc88apVcGZARnh0K/r4mW1wMS/3UtEJu5UoTRUcopHrBcI5AAhAFZh/M4fj4xdI8xQghMXTzr3AGS8AUVJeXa9Osv+JfzID0yO4c0xjFq1PUKJ3hN8KVMkqPbNTK0pVPC1muvW0qmbl2zMBY8yhmPKaupjvzuntY0hSHpmcN7Om2WGN8bb52qPH4+QMD2myO/wFK03fT
|
||||
eNrtVVFv3EQQVsUfWa2QkND5zufz3SUmrRRFUVuVEFACUhUia8+es7exd93ddS7X6B4IfeXB/AIgUVJFLfCAeIFKPPLAHwjv/A9m7bsEQlCrPtfSyXczOzPfzH7z3dHZPijNpbj1nAsDikUGf+ivj84UPC5Bm6enOZhUxsd317ePS8Uv3k2NKXTQ6bCCt3XOTdrOmEiilHHRjmTe4WIsT0Yynv52lgKLMf3T8081KGc1AWGqn+zpOs4pph233W13vaUfVqMICuOsi0jGXCTVi+QJL1okhnHGDJw27upHVhQZj5jF2HmkpThfk0JAjbk63wMoHJbxfXimQBfYBnx5qg0zpT46wbzwx+9nOWjNEvhu88EC3FfHn3FWnSMMkkiZZPA8kjgJYRwzLeC/JU+xFZxZdVbu80gq8bPFprWDSIySmbPBDmyn1fHAdX+95lvNMjlxNuqB6urb979fm5f6EERi0urYX+r/cmPMpuIJF9U3F+RG95qCGPNwlunqxKgSTmIcW/VyOy1bpDskm5Ehnuv5pOsHPS/o9cndje0XEYtScKImU/VMSKe2nK1mxtnaj6qLdtq7TQPf79EPSM5ue/1lz3XdVtpzvOUbHC+vYVs/KKQG514zaOz35nlc+WvafIF3ppADf97665DO2UkD6raH7YFPWxRvA/BqQzgouKrvJTQ8BxqIMstadMRMlIYYj+QNsbcxT2hwSEuMyMvM8IIpE4KIC4mEp4EdVovqiGUQlkX4WPMnEGL9JAFFg65t98orTKoQrA4zjgRG92DhjOVEhALywkyvon302nSL03WuS0M4mhrQNPDc5WG377mzFuUC6SoiCJH1ibawcWVwKQ2EjIe4j2qK0Nkog3iBXKokjBBUPYeY67lzjEywfaVyEhqThSVfBBjcceyQgwrjcj6/mE3rapkUid0fTODXYFOpzNzQ9RGgBqZwutcwTKTa04VNqyNZQGgxcbHP6/YWSHqhNlLh7v07ejb7f6lZe5XU4AetuqOyvIOpnUJJvAEny1jOOlY4tHmrRG+mREvDt0p0qUTv7B3ShmthynSKajRY7jEvHvV9fwi9UX8pcgcuG7DI9Yb9pTgajrvMPj7AwOv6cdcbjsZDd4Q4u/2lQc9FHcuZ4GNkqF08jtuwQy/Jjd6Gyhq/ocXgaw1fH9fGbZQZy0W6i2IY4WbiUiNBEBUOEBGXES4aRuxNmGpUZM41/L7zWrXulQhuowl605pN0lc1Nz/Vom9axiwiArpz/6Ot7d2Vla2HW3fukIeyJEwBYYIwrbkVVkPGUpFaa3CHHCb0BOz9EsP0nm4T1AZiUsBTlg3WUXBAmhA5JgqQCoBKSOqlPDDESNJkqGMWWdvk/phMsXYsxXuG7Ak5qf3N0RZ5VGpDNJuikZlrBxcIFADRYPfRFs/ZAc/LHDPExArLP9JZLBHX0F5Z6TRdfy4+mQMJyOEC0wzNaw1qtM7xW+NqnSUgO516dNT+AxWlCfeZ4lajLWHoIoulRxNqb2cx9xBHmiNpAjp2mm2hM3x2XzvVDP9W4IBhtvrM7uxvcr/ytw==
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1 +1 @@
|
||||
eNqNVQ1sFEUUbq0EotJgIg2QoMcBicHudfd277dUbK8/lFJ60GtLi3jZ252723b/urN7P0XEUghGFFhAVIgQ2+udNLUFCsq/SoIgQUSCxqIgosRojAgCgUTEuetVWkqim9zkZt4333vz3jdvlidCQIGcJGZ2c6IKFJpR0QTqyxMKaNYAVFfEBaAGJTbmrqr2dGgK1z8jqKoydObl0TJnkmQg0pyJkYS8EJHHBGk1D/2XeZCiifkkNnouc8ISowAgpAMAGp2GRUuMjIR8iSqaGM2G5zXWTgI0sg7GYDbmGoyKxIOkTYNAMS7NNQzbQA1F0BByUKWR5X7Yfbzkf/Ja/h8vOZyXGsm7GK0IEgv45FJAVjFKwgRO5JJIqCqAFpDBT/MQLE0EAc2i/F/IGBcLSlDVe4bntJdmGIAYgMhILCcG9PcDLZyca2CBn6dV0IXiEkGqYnpXEwAyRvNcCMQHduk7aFnmOYZO2vMaoSR2p8+BqVEZjDR3JePHUJVEVd9dhYIoLM9zR1HxRQNhsjhMlh0RDCWFE3lUTIynUTxxOWU/MNQg00wTIsHSwtLjA5t7hmIkqHdW0kxV9TBKWmGCeietCFaqb+i6ookqJwA94XKPdJc23nNHmgjCZNs5jBhGRUbvTCX9w2GbgapEMUZCHPq7eJyRpCYO6P3XvF7G7/UJBZRjPqgUvYq3uN6sEpJIFrkZaZ5a2ljvaZxv85ZVa5ES1Vrb4CvDMcJGWikLabeTGGHCTYSJwOS59UVUHZhX5KuKeAiWdEXqa6KkrbKQCAUrBZGvWEBBi2ifY22KyvWCxRQu58y1WiTobvCbrEqFrxk0sE11XE11ZTlUhGZoswY4MZxvQNFpIY4tIGaXVNRVm9wWXkE4QRIV3iXUecpLPXUNFbW1wdk0U6bx0OObOzQ8s5nE8HSEVpyy48mvZ1AbPBADalDvMNvx9xQAZXSNQVscpUzV4PIY0iE4eTyRvs7tVRX3JJwTK0aa1A95glquAXcY5tCiwYybLWhwEnYnThnKKj3drrQbzwMluNOj0CL0IxmWDEo+wQQ1sQmwXa4Hiv1QUuyoksnw0T3EQESWIMDSUendC7EFA40MKy/uG7hZmKQEaJFrSbnVD6VUH26JhFkG3elgKCzgjhaK5HxAY/y701tkRUq6QQFhAtQ7CLulJ20Z1F0XOivKMo7hxP4IpqBU8JzAoXymxnQ3hXrMgpK9dyRAlZoA6rsJKlUN/PBQhAIEJNik73s0lMPhOPhg0CAViSAOm3n/cBQEQ6MhzALcOxKQpmjHYXdkEI1xrN4/DU28uM3qI6wOEjVAyo8SzbI+B2OjSEBaLD4/IPehNscxiCVZTFlSVAwCBj0dalTvzxXoSLLHFJCEhbSik+YbOJHhNRZUa75iKXkGmG+QFcBLNNvrKsVcNBMEWHVKf3qiuH5eYWW564OF2FAhYVXywLOVECUocn5/vBooqDB6F8NLGouapQLiiGtBYb2+2+732wiWsjkYu51icStWhNrQINu/soslO22C5lHsIUbvC5IFRidFkcZ8g0AX2K2oTKnHrTWePKsYOJq59KnVYzJSXxb63b372npCasPHrQy/tPKyw7Ni3YpdNa+ey57cVzNe+S3ruwnf7sqr6Xj67iHzuufOen498sfhJWvDoxOvjJsxChtzeazrQsP4WdyLrVP5Fz66eeyrm47HfQcWHcYWTV/vdwU+oUPbPr56qeVifM8j7knnmd9fnrLi7O2WnSc2rZ75hfP0pMwZ3zSubvZfqm2cmCjffPQz59af2w4Q69sSo6Jrx0z56WyBqwq7uCVn2tuLN+YcDFhOX3IWj9FKR600X+ksi+unSo+/Xnp68Y0bnrB78sxHz18v3F44y+uNzRXe6b/d6r0xp/GXLWcy/yxd5V776Zk1W6cWPbt/ZbZt8nYtvmdhe39bdmt/+9qOHyeWvZX92Fiz5WpuIHxkTubx2LUNS9ynIlk+dc0xZvSUzx8u3vDGsvC+N8/3Ytqdbbcel7NzCjd+3brur9D3zScLbx37e9KBrXufmXvny6m7wXRt7Cln/7IfTmyqOVGyufdJsrQDXs9K5jgrY++qJ5ZfeSgj4x9qvG0Q
|
||||
eNqNVXlsFFUYXzQxlUTBqCjGY1xJFOls59qrTaN0l4Wlx5Zu1S4Vlrdv3u5OO5fzZpfdIh54H9WMZ/APr5ZdrLUKbTmqeMSooIgoRi0oGkMsoAGtGiXE1LfbrbSWROePmXnv+97vu37f99bl08jAkqbO6JVUExkAmmSBrXV5A92SQti8O6cgM6mJ3Y2hcHNXypCGr02apo4rKyqALjk0HalAckBNqUizFTAJzAryr8uoCNMd08Ts/hnCGruCMAYJhO2VVOsaO9SILdUkCztH3ZwSPTwib9ELKc5eTtkNTUYFWQojw762nJpyQJisATCWsAmI5N9q/8Ll/xPX+f9w+am4wnTcFWRH0UQkF7YSukkLGq1IqlTQVMkeS77YNBBQyCIOZIzIhokUnWTfTBkFJMbhXptPIiCS2hy0ze5Oati0+qbm+1UAISLoSIWaKKkJ65VEh6SXUyKKy8BEPcRnFRWrafW0I6TTQJbSKDd+ynoN6LosQVCQV7RhTe0txUibWR1NF/cUYqNJBVXTGggRJxYGKxqzhBgqxTqcnIN7LUOThEmqTApNy4D4k9OL8tcnC3QA2wkIXSKdlRs/3DdZR8PWhnoAQ+EpkMCASWsDMBSX0D9530ippqQgK+9rnG6uJDxljnewrMO9aQowzqrQ2lAsxNYph5FpZGmoEQzrBSYHNa1dQtbwaDQK49GYUu0J+ZeChpsYb21DXUuD5HClBNDWiPTQEtxe44oyuAkAQ0SexZxGs26e4xmB8bpo1sE4WAdL1zUGg0yNlI5E42wkwCtB5kYg3hDNYuaWTN1iRstCn+zLyvGkwMYy4dBNCRdW4i2iaEYXMfVRsd2h10eT4XA2Elwa09oY2SV5IpFlVRTxLpWWxOpAU8iR5Ey1vrmt4cZAQM1EXZyHa2xPuds6WAHURJcK2aQzzfNeYZJ7Tp6hmZKHLkbwMIWnb4IbMlITZtLq4hnPRgNhnbQ4uitHUmam8LpuwkO0e2e+1OovhmpPUXhOt59w0toRMKRyiuOoBi1NcQwnUKy3khcqnW5qcX1zr69kpvm0FNzUbAAVxwkNF01QPg+TKbUdiT2+05J9R4HspJIF90mP0iijaxjRJa+s3ha6aXzI0UF//3hn0ZqRAKrUUTRr7SiyfnVHZrUISb8n06sVxtsh8FIMpWB8oHREN7SCGeIQrWCrixW8fSXJBO96SKwMzZLUskMZmrQ5kiVFIvksvkuTFlvdTpLsbdMVTK0dkZmcF4rVYN6crGEghRC2YPsUjOD1et84vdIEFE9UvG5uaKoWRpO9YTkFb5uuUIJ4kcG9mQltWhKt4XlkEYVej8vr5FzOGAJczA2cHMexfAyQUoBYPO7eTkafBAlKoZi6Zpg0RpBcK2bWGi5XQKYwY6p51sm7SKRVlKRCOSWicCrm1wox4CpKN5CsAfFVX4D2AZhEdLjIPyvvjzQsrA/6trTQk4lEh/TxKy2valiV4vFcGBmkMFYPlLWUSIalgXIEq2lhxBrwIFfMCTkOIsHliYM4XUPG0ATaP7TrLkzaPJCJ72lo9Sf5anulIPD2KkoB1R4XKVPx4rszV4hVTbw3Y80VD5XZis+ZDz+2rPZd5oJ7vj25oObZ1iNDj+zZcYL6aaHfP/u8+RHjQGDfvHlbfXNPHn9sS+uChp83zBp5feS3rw9cbq/ZeIHpu0a7ePSLnkM/nAgeG7rvyVu3a1tOVu3+E36Bti9/8MBfT73/Dkgff/uXQ0Pf5wZnNl5SverYHVfe/fmiTbufkp5deVF1stN2oTz43jx3cMFg3Wbho8cHlsz58dNvLt71zr5zsp1lVx7ae50vRH/3uLrkkueemPNGwrn34+z9s48+PHMmOlj7aN1VnVfv7AzsXft7rK9qY+UnNe5v5juPfvDrQ0+89Apfdd1o/8ogvTZcuerg4dlHP23Zvw/6d7a+1fhH11WDewbm1ApXPO9b9eal3x823z/bEbj3rPXPZEf/rGmZb1vffFt61odztevr9hzJ9J7/2e7rhdYTq5+uHX53f9OXYw88ZxtZdZ5fuqxs1+3Hqjq9ZWNfReHI+X/c89LYaJkSCa64q7/h3Oi2zWh598srBh2ZpV3wt3NstrGxM23O3MqR42fYbH8DSCB5jw==
|
||||
@@ -1 +1 @@
|
||||
eNqtVn9sE9cdD2WZmGBVJw00OqFcPbSuVc7x+VfsZCnKLxLnp0mchGSN3Oe7Z98ld/cu9945djLSQaHrVir1kLbuxx+lwYlZCKERgZIUGJM6tdI6VRuVUMrEtFGNaVtXoK3abYzs3dkBG/LPpJ5k6/34vu/n8/353r5sEupYQuq6WUklUAc8oRNs7svqcMSAmOyfViARkZAJd3ZHjhi6tPy4SIiGqyoqgCY5kQZVIDl5pFQkuQpeBKSCjjUZ2moyMSSk3/tC27hDgRiDBMSOKuY74w4eUSyV0IkjIkIGIxnoDE5jAhVGwgydJWA5EzMIA4FOREYEmEGqnGY4RkFIdTrKGYeOZGgpMDDUHXsG6YqCBChbSwmNsF7EKpIq2ZIQa5QMjMaRrgALddxB0pp9eggjNYp5ESrAEi2cWmIFw+0CjGN7FKYeQ6o9FCDmdUmzjLW0hdQcBJ0yIIYof8BotrRNWdOpu3QiwZweFSjQHgA13RnPeWaVFya6pCYce8oLuKqGLOcsvQfW8qGljEFxhtBxDtJCJBLJeanDwqLaHCKQ9CiPZKR/btC2tmLsRzFjATFSnBlW0Wgxl2Zrp96mYDOCUkIkUUmN0kyjpz8XXs22UkaBABs6FBhJZfLai5jkpEIq057b3LOncDt81495PBQbgjyxVoAgSBYYkMOFUY0DGUM750YMiQJbJuQCXez7tewetNHvMaQxRayipCYIgIB8VmkQ0RJbK6dyO/ZQotWUW9yuQ8uXjm9U2ElckbfrHlvtgwW2Al0H6ZxHiqzJQwwWnm6g3P5/P1mq80VwR4MVZd6qUaIb0AanKxAod85kRQgEasCVkq9kRISJOVfch04Anoe0AUCVRwJNGPN4YkzSyhlquQwInKG9R4V2lzNnhiHUWCBLSTidO2W+CjRNlni7hCusbjCb71WsZdr92zNW+2FpZ1OJudBJSdSGKsJp2jBVhnP6gk7fqykWEyCpMm2ArAwon2nN3n+9cEMD/DBVwuabsTmdOzxXKIOwOdUO+M7uIpVA50VzCuiK33uycF03VCIp0MzWh++Hy2/ehfM4Oc5ZOV+kGKdV3pyynb5YuCFCmcaRzV0L5usxSIDTavzOgsbv1ICO4WtFmJDoaZZHFNp8xTXNIzQsQXP5ZjTKx6MxpcYb3AXb1agebeh3Ew6pnrowjzrIzqH+yNCuymhTt5FqJP7egViTi+UqPX6vzxMIeFjO6XJyTo7V2vrrvH2woy7WmYpwgqc+1d+T9lS213JJsV1R5dYuL/apgRb/cFrrV3zO0ZDk7jVSYngg7vTrrbEROCAM90k93e0hrCsjuNKfkNTRaoayM5KSUMM1N7b2dTvDPlmncgpSdble6YuEdkb6Blp7e8VmwDcZMo7E2grpud0e1pVn6Hd5Ay7rm1tNKRmqCSKaGY5zuY6u3lLPTFOfEQPvy9D8hW+/lc1fnZOdrXdTf0uG1gs0z0VEo5xxBZkWoDJul9tH/6q4QJXLxzS1R2br8ziRNVN3PqIDFcdpKBtXSyXLi4Y6DIWZ+jWL5JxVJDSUFn96/bIwpSEM2Twrc3Y325V7NLChhpO5imSRngCqNGbDmufsahkdS40KvCEIYnJUcQXHvB4pBg0+vpA/QluaBUMJsQo2j3gDvrn8zmq+zlBbqZtdrItbSrE6dYUsKRJ1qP2ff7lgM+Oj3j5zvwBBw5C+cbJeOxyu84USOr3v6buBYt9V4w0Gg2fXFlpV5aEiQX9gqVgKw0I2nFvBZ+4XyKuYdOHZ1Ko0KwnmMm3bI1Ho98eDcQjjlS7Ie4WgQN0BuXgsLkC3z+ULLOYaJkusYGpIJyyGPH2mkbS5XK6AlNWbajycz+OnllbTe5CXDQF2G7EGZNmAqxlNhzICwon6nWw9oO8dttvOPzPb0N9R2x6qP72bLUwktlPLPRGzKsKqFI9Pd0OdBsac4WVkCLTJ6nCa6uqq7TcXAvF4JSd4g4CWgldw+dk62r5Wtd1Ju4zVobNAptyTvHlS9NQ4qrxej6OaUUBNwE/DZD8k907nngC/Xnew7PkNJfa3nv5WVg4eqkWXXZsOfHh78wPv3HjxTMfVz3qf+mtya/LyFLupZ3Lb8UPfavaefuStp8vez8w/n7zgrLp+dXwsQ8r3lxx5ZfPhBw/9aOPpsx/dKh195l9P+v54fuW9W+FPL98+9vUPxxJPlh6bPXzt5aOf9XwSMjduWX5xB795lzt+6bf//MvpK1e87TXrmh5Wfvzlvb/5WUvi7GPHjJ6X/j64KDn/tn7rgS8N3AhveOSNkSrcceJG5ULs3NjxQFvowQ0fnApteE7ApULLN+c/3nRs6+M3D078cOK7+7/31fIn6v5znQwkG//x5nbctWNg/Bcvz10aeLguc4386dIYOhv6vnOy7f2PNv/gsQsNnQce6ryYuvrzNx5yLF7YdnHjv+Uzy5cSO37yWtXFDw5w8wutv5v4ZO9g1pyal+bLwl3bwu/8Pv1T/d1ntxzevem/T7zddOXar14ou/3mxBdbwFPvDj539IWx6ut/2MKtLD59avClb5c++/Gj3NJc5cSFr00Gf5kqWzrftTSkfnpq/58jt0otl68vubnrsHvlgZKS/wEqr6ZL
|
||||
eNq1Vn1sFMcVN3YiU5AqjBClBJLNqVK+vOfd+/KdqYmwjY0d7HO4C3Ck7jG3O+dd3+7OsrN7vrNx0gJKRJOgbgV1aD4q8Mc5jrGhECBQQ6nq1q0sKkWG1DRJFZWGqlQJQaihQsSd3VsHO/BPpfb+sGfevPm937z3mze7I5eGGhaRMm9IVHSoAU4nE2zuyGlwmwGxvqtfhrqA+N7mcCTaY2ji1OOCrqu4oqwMqKIbqVABoptDclmaLeMEoJeRsSpBG6Y3gfjspaKznS4ZYgxaIXZVUM92ujhEYik6mbiiAqQwkoBG4SzWoUyJmCKzVlhKJQydgkDTBUoAmEKKlKVYSkZIcbtKKZeGJGgBGBhqrq4WYpERDyXL1KrqtA/RsqiIlqdCbCz5rwINSBKU4jpCUpwjY4tOEkiYBHNhXYNAnmUgZFSSEN3QrDiMu9yy2TsFJHKWrdOlZ1WbRNJQ7MRZ4b4aWw4KkG2HGqADV1eXA+Gk4b/bTRZ5iDlNVJ1119qMbhUM8hRPHCiQQCRjKkQk/XaKrAOT6pEC22iqRqql6SJ0prajPRTJWfPGr0WoV5JIk4E1deABCaBhpwZfQ3TodrqAkg0n556RpFdUWl0kA3dsiiFJ+dLxMAkMyRKEZbv7pJZKLHQKJSmdjPMcLDSXAEQtziEJaf+/0Db83NiPYMqKTIlJKqWgdocLFFsFPS4q8Vlp/58zWmdHoWQIMNEmT4kK5YTLC8wBRIk2yOmu2SagaSCb97Kut0h2W8RmpNByj91dXS1dOQECnuB/VLCoV0BYN4fnXv0RwHGQ3DmocIgnBzMPtXaIailFDiIBHQ6S665AW9XmYApClQaSmIb9+V3mYaCqksjZIitrI6kdctoDbXG5e3nQuvE0aSaKbh4LExJr6suas6RHKRTr9nvcnsMZGutAVCTSc2gJED79qr1+evaCCrgUAaGd/mf25zcPz/ZB2OxrBFw4MgcSaJxg9gFNDviOzrZrhqKLMjRz1c13h3MW74TzulnWXX5kDjDOKpzZZzegE3M2Q13L0hwiGOYBpp9DKCVCc+p6PM4l4wm5MhiuaQBNm5jQU03rNzeJ7oDhA23NUA2vw6mqQJzBGwDQeBis8yCaLfd6vIyPCQVo1s24WTdLr2+ur2eqxHQsnmRjtV65ntkI+GfiWcxsy6yvY1CWq5aqs1JS8LGJTCS8qTWA5eRmntfja5nGOJ9yq41xIRLJxuobEqiNkQJiMBZ7ehVF2Blpka+s3RB2Cx5daYy2NW2srVUy8YAn6GlOGeVtHawPVMUbfFnBn/Z6Q75Z9PxehmYchgHGF2Ss3/CMNiSotOqC2RPyhwY0iFXy2sCd/SRluoF39BIdwonxnPPqHAw/dUfCS3tJN4XmaK0mllIeD9WE0pSH8fgoNlTh9VX4g1RdY3So2gkTvacEj0Q1oOAkkeHaGcnnOMFQUpAfrL6n2EctsZNKWvTJy0XDjIowpB1W5tBmekP+vaXra47mbxaNtFagiB12WHPUVn17R6ad5wyeF9LtMhPq8HnFBDS45DFnC2nIVhhCiJax2eMJ+YadlRndDZKzMjRLUsueytDkeYOSKIskn/Zf59HHZq+fJPvk3Q46SkHyeZDz2dVgzsz20KBMBGvFvgPjC4VCv7y30wyUl7iEAqFTc70wnM2G9cj45N0ODsRBBg9lZrxpkTenvkMmcU8SsCzn4YIBGGD4RDBBtBIIlocCvnIQ8kLmXasNcwTFKqaKNJ3GkCNfOHrWnCqVQcbqMZVe1u8NkJOuIm2WkwweRoxEDbLOgFdRqgYlBPiR6lq6GnACpCO2/sxcTaxpTWN99fHN9Gwh0WE1/3WVUxBWxGSyPwI1UhhzkJOQwZNmqcF+grVhTcw8FoSBhJ/z+LgQzwSTIElXkTY0g/aV7HqtTpsDEuGe5syjgrfSVeHzeV2rKBlUBgOkTPY32A/780/O2LxrD700v8D+Fb0caUGvM4u2X9m0+db2qPq9zl0nHj20eO2+wcHGJxe7LnsXnmSPp14bvPyb50d+sFB9/+3og4sufT5xfk/3aN38aysWFw4d3HNhy83u+JN46e3oprHijZf/UtUyWjaMnnvn48Yb/9x6wTv5abHni193jEUP3V8xfHm+d+ckGFmu9BhLpB0vZQra9vX8XexLf1n7b3/3B/Hiq688JN1mVh9+YuzbW9aN76yb//Ctjz+8tTf05Qu77nu7u+GVi+8tfnj/N0sKa3efKZzcoqzc13OlaHyv/mjn1V+UJOYF+2p+O7AI//XzqbIzVw4PLIqV3ujOHR+dvrmi7kT7iUzL2XcXnn3+1JYbD/Q9W7ns8eW/7//x0pvRcNPPSgp/crHoC9q4satufnMk4G94v/OFrgXL9y19ter64XBx24L6BZ8NbHtmwYdccV3hG+2f3tpW8qNzB49EV7xXMXn6secONMiT59/s/cb93R9s3L+m7cW3flXR97uPun5+oMhXV158aWDL6Ym3Htk7unXZ2p4HJ/7s7/lW8cRjdWM7jsVGzo/DUMUfXnztjZ/ufnojWB250new8fyFwmtLq6flT17/VzDY/bfp8T8WcAMrP9kfeBWnv3tt+8TW6c9uX/3Tkutbl0mplRdj5+Du2gdWS6uXVCw8fu5qSwmKFXz/yu15BQXT00UF75z+x57i+woK/gNFXItH
|
||||
@@ -1 +0,0 @@
|
||||
eNqtVntsU9cZh1XtKsoftBpV11bdmcfKVHJtXz/jsJQSJyQGgl1iCAkP5/je4/jG955zc++5ic1jUEq1lohKt7SjY6hVSYjbNOWZ9QWhTB0PdRsaZdOaoa6ttm5Tp4A2tFJ1K+zce22wgX8m1VKc4/N95/t97+/bXOxDmi4RPHVUwhRpUKDsh25uLmqo10A63TKsIJol4lAi3pYcNDRp4qEspape5/FAVXITFWEouQWiePp4j5CF1MPOqoxsMUNpIhb+eGvbOpeCdB12I91VB1aucwmEYWHKfrg6iAGghgDEAOVVpFH2j5bUAFDuJppEs4obxLFcKJOAhmTUBzEFEs4QTYE2c0YjCqBZBChjc4NYBhSYbJEATCjIYdJvE/ugbCBAMhYgpFST0gZl6HoOiYCSMkINg6CGhgE2ZBkwDPvtVf7ZuiPH7aoBLo3IyLJEL+gUKa4NNaDKwNYCwFBBQNLBQpTJ1AClALJQ0qyLtAyFHNNEBBKACgiBDEIUUCjLbjAfY8gYdRtZtyQIRGaK2G/ZtVKNbuhIc21YzW4UIiLZuupWKRcgnCJhyeZEuspiglKOyxjHOhctqPbrHp3glC5kkQIt1sqfFlvFcZaIMrp9SrDEIdg+ikgXNEm1wmBJi1VEBaaJQQEEqs1tq6xqxAq0hBw5lnfsA8SFeMZJkLJeOnM47nZ8Wr6zQuJYeh1skjnKdjWLruU0B9JCpBJ1vLTEwmLSXJYXU7ZDvzZoJzxV2CxPnFBn7ASs1qXFokRtFWyNkNSdpSkJp1jBsddfi14ttlCWK1A3NJbhEgYl6VWaOFwxDFod4oYNleTENT+W8Ei6BwnUuoGiKFlgUE5URjUDZR3ZOddrSAzYMsEJdLXvb2b3ahv9OkOanLpkJoiQwlJWqYiwTnOznHIo9lFiRelcztKQ5UvX9zx2EntKdl1nq/2wwlaoabDgeKTKmhLE6srXjUy3/99PluhSEVyVYEVZsGqUagaywdkNgsrVN8UsgiIz4E9T7hzKEp2ae6vb8T4oCIg1AIQFIrKEMV/rXiupNYBZLkOKRliHwsjusuZIDiGVg7LUh4adV+Z+qKqyJNgl7LG6wWipo3GWaTeSR6z2w7EGj6k5FmdKzI95EgU2NzDg3cGIO7g/z+kUSlhmc4CTIdNnWLXphysJKmuHTAhXmknmsPN4byUP0c09rVCIt1WJhJqQNfdATQkFDlXeawamkoLMYjRxI1yJeA3O7+Z5d/hAlWC9gAVzj+30tyoJWSSzOHLOdDQPpxGFbmv+uSvmn1uFmo7eqMJEVCtwAmHQ5kveYYGQnITMiX+lUkImlVbqA5FHUStOaanGDh/lCfY3JASyhC7o6Uj2PBpONbcZ+SYaWt6ZbvZyfNgfCgT9tbV+jnd73byb59TFHQ2BdrSkIR3PJ3nRH813LCv4w63z+b5sq4LlRUsDehDXLgzlCmqHEnT3xyTfciOfTXRm3CFtUboXdYq5dmlZW2tM15RePRzqlnD/XMC0M/oksZ5vaVrU3uZOBGWN8SkEa3JUaU/GFiTbOxctX55tgUKzIevJ9OJK9Xw+P+ctaRjyBmq91mdvOaVkhLtp1hzi/SH/y+Up9fgw8xk19M1DLH/Rr08VSxvE7viia6l/9xCrF2SOJ7NGDfBGwEI21H1eX5B91fG1dd4AaG5NjkZLOMmbpu6BpAaxnmGhbCqXSlHIGpgtBCPRmxbJuFUkLJSW/mz8cmxvITriSlqZoyu4pc7uxMUaDzkVyRGtG2JprQ1rjtvV0r823y8Khihm+/oVb2RtwC+lkSFkxkpPWEuzYJhCnKKbg6EAv7dEKefrCLOVudnLefm385zGXCFLisQcan+XFjjdHAoyb795IwMlOcRWvWLADof3aCWHxuY92xsY9jUxgUgkcuTmTGVRfsYS4au1YRFFldrwPkV/80aGkohBXtFH82V2ThLNCda3e1O1/oAPiV6/EE6Hw4FwKJwOhiJBURDF2mBARKG3nI7JUSuaKtEopyOBrau0YE7UKDBvNad6Px/0h5ipc9kgFGRDRG1GupFYRuhzgcq2SgLFfdEFXBSyhYdrsxPQLDZ2LJnfGou+voKrzCQurjqrchETHUuZzHAb0lhkzBFBJobIuqyGhpmspfM7zLHaTCbMiwFfOh3xBkRviGtg/ass7WreDVktughlpnufYB7K+utddYGA3zUXKLC+NsTiZC/Ujw07O8DxqSe+M3D7FPtzC/u7cuXZ7XEy6J1x/ML6abnTie8/0vmTlWM/vmw+9O+xHUu/e/KBY68c4M61HN76xfk50buefH3O5JoZOz86Ugz71a23T/3FS7OO1X3WQcSD7ZfN8HF85fMTT3/zbeHbD8+b3Dh93/FLwtTexN/fvfOn77x8/vnz2xo9Yzv5Qy31t/1hMtr34oWDu089+Nvc075TnX/evmr2eMIVC0svyA88Mzmxy+j00sQzl56c0bDkrP8vyfs3NsRC/9zz/qA+1vSDfa1bNv3el9xUN3tX8b3okUeGn2sONs1b1pW476mZz14oTvvW5Lu5Wz0fBGb+ciZNfrBTemUyOa/lvYe7N+2eXM8lPxxs/seDR8bnHJx2Iq/8vH3r5Teeu3fo/nknDHngNx9nV6ze9Lcv8x8+/rvXDnz58en/dpItd+19lVtaXPb8REHp2i00njo5duGTzBNdo+e37Ru/3Dhz+tkf/uyrrsjFhosX+WO5+KcLl61Khn8UbI4/QV8dmDo4Gj3asuPi+4/dMf6NMz2fzTu7/tP6uDv5H8/nd3RN39a85r6BVfvPPbUjNPCJ54uV54xftXWp7+w6eRRv6Tlz75y/kv28sd33wt2XPtKmnbnnq9usYN0yZePiNadNFrn/AY9bHzM=
|
||||
@@ -0,0 +1 @@
|
||||
eNq9V31wVNUVTwJDxTpIaVWKUJ9bRlvct3lv92U/QjOUJATyuYENkNQw27vv3bf7kvfefbyPJZsYqLTW0jDVJyjlyxkkJBoCYqGYAoE/HMEWpu20CoZqO2Mp2ApKvwbbOKbn7W5gE6JTp0P3j2Tvveee8zvn/M65Z9f3JrFuSETN75dUE+uIN2Fh2Ot7dbzawob5vR4FmwkidNeHIw27LV0ampcwTc0oLixEmuQhGlaR5OGJUphkC/kEMgvhuybjtJruGBFS5z/X1eFSsGGgODZcxdTDHS6egC3VhIWrIYEpwmOkUpJBJZFhUkgVqJhsYQ9VaT5oUArRMWUmQMDLuBmGoUSMTUrAWPO43JRLJzJ29FgG1l2dbipXuWrJco4IMgzJMBEcwaZJiBzlkSxnIZkpLS0kWmo6BI6MJDg7IUFksDfG0pzA+2nO6xXooMAEaRxjURDABFhBdKSv3ywGECpS0urKkYmcQ6THLQVQOdZcHc0uDRMIUrNje1Wnq7Nz1TjoriZiUQmUxBRPdB3zppyiHLRYgFhApBz4Y/x3Nsb4Ff0M6McbL8cmmARbKqEySMfYuhHI8RcrwH9EmToAd6CKSKdEnShUhY5UHtJIqIiGJPX/lDl/KOAL+DCmfdjPQADYIhrFvCGaE4VQEIKC+SLmf8kcrBxp53tzxvVmuNHsSiBJj/JEJnrzdV9gF0vxhBmV1ChUFBTd6FnnrSXAfxWETyTAZ8q+U8sGkSHpRsowseKUNKzi2E3FLJPCSDcT4JNBERW8YaG0yURUWAU7ChGw7GzFNZPmCK1IquRIOjli4b+GdCcYcnQMG0QkG2DMZZg6RkrOBoDRoLmZlu7YYTyB64FKEInH6cRPxKNPZkZnZ1bFp7DwU3klYIPXJS177lrUZjrNF0IugACFYgQilhN9x+EMb9LaNB06r25KOLtMC6a/SuBrZnOchUpVJLqCnGVWPQIDupHNwTiNWbgdLqSmwuJYHyG8khrPpH90z2FyJnUCFpEl51TxOBwOSxztFBGByjiLwdGWUzi3znRa/Vjb8Mo4lilJpFpVsiaLZVy53hpES9JWKAUjA7gpUJJKZc1lCJZVSGItUI+u3C2k6yiVkXKeagluO8BGqbBqgttOl+lNYCSA/t/nTe9OEMO09499xl9EPI+h5rDKEwEcs/fF2yXNDQ+uKCMT90G5qzjNaruvFR5hGslSEvdkbtkHkKbJEp8mWWELhLY/2x5oB8vNx31OxdMwGKimfSgMIBZWFtanYN5QKdZT5PV4D7TR0GskVYb5gZYR4OnR0udHcw80xLeCEjo7y9g9mcv7c2WIYe+pRXw4MkYl0vmEvQfpip87mLuvW6opKdjuLau/2Vz28IY5n4dlPYGXxig2Uipv70k3oJfHXMamnqJ5AjrsXUwPT0irhO2hv0WjvBiNKSXBcHkVqlvJhKrrahrrJI/f4lBLPdbCS4zWUn+UMZYhpAs4uNhLaDbg8/oYjgn5adbDeFgPS9fUV1YypVKyKSqyTRU+pZJZgYTl0ZTBrG6rWcyQFF8ml6VkMcGxsbZIeGXcbyhioyCY0UVMbVRo9Wi10UQkkmqqrIqRFkb2S8GmpqXzKUBnJSWhpGJZ2JPwmmptQ0vdiooKtS3q9wa99a1WoKWd5VBptIpLJYqSPl+Iy4FX5GNoJovQz3BBxvnsH+WGjNW4mbC72ZCPfV7HhgajI/5uD8TMtIz13UBEfOa13uwI+Vy4+gaH7+6GdortwQpdclNeL1VHkjAmejmKDRX7uOKiILW4tqG/LGunYUIOvtQAw4khAg8XjXK+l09YaisW+somZPugw3ZIpYMfni4at2nEwHQWld3fSC/LDM90ZfnBTGnRRI8jVWpPm7UH07Rf0962RuAtQUgk1yhMqJ3zSTFs8eKh7BXoyI4ZAEQrhr3b6+f2Z09GidcHvjI0C7Flj7TR8L5hWVIkCGj6b3aCN+zuIoj2wM0CJmnFMOv3cul0MMdzJXSsAGMd2zfUcKFQ6NjEQqOqfCASYkJHxkoZOBcN61WMgZsFsip2s4rR3zYqTkuCPTQXFlGYV3xev8+P/MEQYrmQT+CKvCITZLFfELkA9zOnEfOgxsmmRnSTNjAPv1fMlD3kVlCb02VKfGyRzw+uzodGy8uWgCNWrJw4ThjzKU3HMkHCi2UVdBniE5iOpAlo95Y31S2srSw73EjnMokOa5nfSr0qMVRJFHsiWIfM2H28TCwB2qWOe0DXsoVN9qEg9seKeG8ghgO+oIhEuhQa0ai267zrdnptL5IBe5K3DyZ8Ja5ijvO55lMKKgn6IU/pX1SP9mQenVfz37mv67a89GfSxshSsp2ZvvbSysZrsx+oqtx09az0W9e+1FY/jjx8Pz/tnbNvPtNZo+z+6NrUJY8KW7mvuN87Pnz86PAjlyed/ObdT3qnz6977vC8Y2+v3RLbeeLtzl0DdWfufOORj/qP7zsbiJ779zSRfuVC+Gvv7vznwh+fnzdXMu/8/OM7Diwf/FbzqXNLZ+x7Zk799oLl1Xvdj22Y2voCnrl49YyKrqstKeGDjV969358LZ/feOXowSuRez4s+HqX+IE9a/DSXaXFc9kpv3zeX/BWx583tK4fuu323VOt3x1RN2/LEzb+YvLKFvdb64Z/3sl1PfT004VnR84fo88uuKQOD/8rebTddWLowqb2wX/svTJr3r30lE0PfDg9/KsfslO2nZtz7YsPrj3J3zGwd9usop+WvPJxvnvW3qv5vxk+NWnH3PvWV187tSF/2umThmVenLngjhUPRZri+rqLszcvqz5xerb+h9q8ZzdeaX3ZOnL7r3ccm9EYb6n+8tb46/u+/Y0nOkpmBqTyTV+t+P7AtqdU8Z4LPynYcPr9ux5/9QvNlw/MfOGPBX/teVIsmLxp14h68ankgoHX3xh57YnvTE9M7TpT7O4OzmmrMd78OD5SdW/N+7OmjPxl6nv9m4+UxndePjy7avuirsSzW04/9gMqOHkdJHNkZFLetj9t+dHfJ+Xl/QeLtLgo
|
||||
@@ -0,0 +1 @@
|
||||
eNq1Vn1wE8cVdwIklI+mtIQMkwCLkpIO8cl3kixLBg/4AxNjbBnLARtqK6u7Pd/Zd7fHfciWGU9TQidpIIRjgE4+BgKWpcQYAwETzGfSDGlJgbaQgTEpkEIJhUxohyZlOiWleycZ7MI/nWnvD+nu7dv3+719v327y1MxpOkiVh7oFhUDaZA1yIduLU9paKmJdGNFUkaGgLlEVShc02FqYv90wTBUPT8nB6qiG6tIgaKbxXJOjMlhBWjkkHdVQk6YRBRz8bPDP17mkpGuw0aku/LBkmUuFhMsxSAfrjpsAqghABWAWlWkGeTPyNAAUGrEmmgIshuEFCk+MAQ0JKEYVAwgKjzWZOg48xqWgSEgYBA3NyjjQZzE5jBQsAGaFdziDMagZCKAeRsQGoYmRk2DoOvNiAMGHkDIJhCGqSlAMSUJEAxn7h3/p/V0HLcrG7g0LCE7Ez2uG0h2tWeDIQlWxIECZQREHcxDPJ8N5DgQoKjZhqgE2WbChAMigDLwAx4hAxhQktygUFEgcdQdZN2OwGKJEHHmErM8FN3UkeZqrycWGXNIsk2NqkH5MCWLimh7KsTGkH8VagQASREDYynCkne7KjyUdERGdUNDUB5kIDmRskCyGjYO7c6zbc5MAYusbVvmMuKqQ4I3FadwNtydd9vBXgHboQQa0NXengmRUcN/N5sMckhnNVHNjLvmpGtGCsgRBwCj2DSAijBRobNEdsJExETnTjRVw7bORJT5dBydV5Hkmjb+B0LZIJmlw0MCoOlYSQMMjZihu8wFlXiIH5ojWV5RaUyLZMBmayxdOg7x0JRs2di2ezOtIVJwxET0a8sizcGO5rJlEXEU8v+DTgtwCDbZCWkx884Wy3BBYqNgREQlMmjZ/+eMnnVQyD6AOtEm2UIKyMClBZYJiKNNiDVcg01Q02A87WV3OZHMtokNSKH+PrPb2+vbUwKCHIl/Put7CQHrhtUztANuhyyLyJ5DCos5kpi1rbFNVLMBSUSCBuoiTUFBjqqtrmaEVApKYgwl07OsHVBVJZF1RJbTRJa2O9NEKJvLvcNd9o6nSE9VDGt3iJAoLMupipNWrQDGnetxe3a0UroBRUUirZeSIOGTVJ3x/YMHVNKBSBAqcwxYyfTknsE+WLc6KyAbCg8JCTVWsDqhJvt9uwbbNVMxRBlZqeKqe+Eyg3fhvG6GceftHBJYjyus1ek0oPeHTEaGFqdYTGJYm+kki3GziKz+G5EIy0eickEgVDIPVi6ig+WV82srRbff9MGmKqSGntWbi/wRWq+GUONQYK4HU0ye1+OlfXTQTzFu2s24GWp+VVkZXSTG6iI8U1fqlcvohZB7LhLX6aWt8+fSOM4WS8VxiRd8TLQ1HFrU6NdlvpbjjMgcuiLCNbvViogQDsfryuZFcRMt+cVAXd2CGYCwM2MiV1BaHXILHkOpqGmqXFhaqrRG/J6Ap6rZzGtqY3ywKDLPFxdyY15v0DeIXq6XpugMQz/tC9D20zOgDQkpjYZgJRiPx/OOhnSVnLroxSRZM8PUlyeIENGxX6cyp++WUPldDU9IkHaKrIOlmpgNPB5QiWPAQ3t8gAnme335uXlgbkVNd3EGp+a+GtxZo0FF54kO5wxoPsUKpkIO067i+6r9oK12UkqbPzm6KHLmYx1RGVZWdy1Vnb53UGUlu9Jbi8JaI1TENgfWOujIvqWttYVjTY4TYi0yHWzzecUoMll+d2YK6cg2DCFEybrVEfR4ejIjA8LrIrnSFEPWltnXSpHzDUmiLJIFdX4zlx/dSuSS1d57r4OBmxG5JqV8TjnoQ4M9NCQTxdrYd8P4gsHggfs7DYTyEpcgM5QNqSgazIbxyPreex0yIToYWe9uHXCnRM7qf4p8RDwIeSHnzwvm0dG8XDrAQz/v4WCUyQ36aOgL9NmNmCVh7GqqWDMoHbHkqmfErf5sGbbaXabAy+R6/STVGaTRspLJobAZLcF2EvoMoJIbGYbc9uJSqhiyAqLCjgCtVEldZWFFWfGeWmqwkqiQmr5mphSsKyLPJ8NII5WxulgJmxxplxpKkljVhXXW7gDyR3NZJhoMRHMJdZ4qIo1oINod3SXsXpuCEuEeY61dgrfAle/zeV0zgAwLAn5SJ+cy+tNk+tA58uCkKStHZjnPsHXhevwmPb79yqLamxOnF621bpw2z6amfdXx3JkNo4JfPNiwSu6v3D394uHQ7FFP/Sbx6sPcuUv69b4p55etyPrt1KkfTL9Wu22OarZ8dPXcV6+9P2XyoatNN193X8q5/M2Zm0f4ltuTbm3YfHqW1ffY6RHh3gl/3ru24NiY6pe2XcveOPdv6riGQ9deWHz5R4sXv1u/o6rw+A8f2UIvHg6fOLbw4VhnoHj0d+Jfj5zKXfh2ySbPryJr1vzuJz//VKCocWv/+P2pz68Tnpy97fLpBVc/mFKYTBT3L/7FkqnTXgjP41aNYqZdP/ztn2b6V46yDv5g6V7vDbPvUPzlnr79VzZtWPlZfObRM+WzvjxRtXO9JJwcPuXi0TJP0eyT+y4d2rx6419HPtD0ifzqyd6NcNPy0s4RyTUzr59a/UbR2l/OzX5l/K3x0z+p+HhdVXLl9hHozcmzGxa6L3m2/n7zzkkz99ceDwu33v10/bqvD3eercwLjX2iDx/Qr6SOloyZsKT8CKx5qdV7rOGd6sd79zzdsWJ5ubL1GOitL/8wv/Off5A3uodJr51+aPeC3tjr4cfXbftcevSbNrrn7y+fyHnk7fDqV5jJc7y3VzVs6Og48NlWuH4ievSLJ80fi/uO972RdT5xbda5t05df+bKe7ce+8e458f0fjTz1EP6idXPTN4+UYr860LP2PrrY15s3/PdL7s/f6+kY+xfzk8anz/6ktrnXsiM/rD5wAWig9u3h2VNbNhy8WfDs7L+DTCWA7A=
|
||||
@@ -1 +1 @@
|
||||
eNqtVn1sFMcVh5BaLagJrRqFfChsTqFElfe86/vy+TgRf4GN8QfcGcdQdJnbnbtbe3dmvTNr30GsBgipUhCwhKoSBVGK8aXGmACWA6RASEEpSdqmUimykYjagNokRUAaSISS0tm9u3BX+KvKSXe3O+/N+733ex8za7N90CAKRlNHFEShASTKXoi1NmvAXhMS+uKQBmkKy4PtbZHoHtNQJn6UolQn1RUVQFfcWIcIKG4JaxV9YoWUArSCPesqdMwMxrGcmbzftdqlQUJAEhJXNbditUvCDAtR9uLqwiYHDMgBxMG0Dg3K/mjeDQ6oSWwoNKW5uTakZgoizoAq7AOIcgpKYEMDjnLCwBpHU5CjTM3NNSW4DLMtYw5hyvUg3O8I+4BqQg4nbEBAqaHETcrQSQ+UOYoLCOUMgpoG4pCpqhzDcPZ+rT+X5Oy4XeWcy8AqtCMhGUKh5hoo50oCrFEZUkRjUXAK4fxcAkLKUcDMAiRzKUC4uIqdJ8UosWcSaLgGVrIVDctQtZeSOuW9mNcUpDiakOiMZRjLkcA0VrtoRnd2dxOMYkRKQQ3YqsWvtlrRowyJZCi6zaG9samIUhDHJuUAx/LC9jve6Qa2s6Q4qVztQkCDzgNAmbZELrsFFwhjCyVzhBTWbD5zQf0PbJTxaxuzU2NznYO0EalCc4S02ljMmsumKiZhFRvfGLRjrRSbJdkG4pSEUz2lvjTakjrHBccjqCRTNKagGOsWtvsb8avRMcppEBDTYOWpIC5vvcSTnFYT4lpywoGBYnH7HR7zeDjeDSVqrwBZVmwwoLYXZzUBVAKd8uo1FQZsh5BLdCn394p7pQ2eL4oibDtuyS5QapjQcZCtQKAV0AayKQhkpn5xyszBFCbUGi2dLgeAJEFW/RBJWGYUWvuTqxS9nJNhQgUUDrOGQ9AZGtZwD4Q6D1SlDw7ldlmvAV1XFckp6gq7FUbyDcrbpNwtHrZ7j2fzClFrrI05UdNU0Z5hYxBxotsXdPteS/OEAgWpbKzxrMGT1pDuyN8oFuhA6mFG+PyItYZym0eLdTCx9rYAqS1SYhIYUsraCwzN7z1cvG6YiCoatLJ17XfD5YV34DxuUXQHDpYYJhkkWXsd0o8WC1JQZRXA54a99UYcUuC2x7m7aJy7dWAQ+HoJJqRGhpcwg7Z2C6MFWlWIkjRlDYqCr+rVwphaN8T2UZOsHWQ5hO/9Pps/FH7d1nwn/Q8P1rN8WsejKbOcE4LcIjY9K4VKH/upFquqBQ+3sCU6UpfHid4zfQejBkAkwcJpKJRLVkqZiM344bp7Fspxu1BYOLb/bP7y7CjCBPJ5r6yRZ/mlueOQb6o/nKtKHhtJgJRVDqx13KmY/lXpflkyZTnV168JwVVejxKHppQYy29hw9OGYQ7xGrH2+AKVo3lJIWfDLFaBFwVeEI+leYNRoSrs7OBzv/kzmViDPkEQjtytQHEPZKd31is4nxPFGgYb+OzgYNh3zHiDweBv761UMOVhKsHKymOlWgQWeyNWauTI3Qp5E3tEjYykC+q8IlsTT7GXmOj3y7Iv6AkEfaLokYJeMSgHAl45IIEAhAAczU0NntrZ1LFBeQIldgOhGWuiXANpu0HDHtHn8bNQQ2w8Sqopw4gZr8d2ECTE6eyigIF8oG4BXwfYicdHnAK0svVdrTUtTXXDEeZlHcY9Ctw6OXVaLCYlYnEt7A0ugS0oZsTquyqpiJGntl3CrXRBd1e0e0kgtjBiphuof9ny+EKWqoDH7/V5qqo8vOgW3KJb5PXFXbXeTthaG29LR0XZU5fu6sh4Ai01Yl+qRUNq81Iv8aGqRf6ejN6l+dz9TUrlMjOdal+ecPuN5ngvXC73dCodkZYmYmi9JOBPKqifRQNoKlwRsu9JbCyTcL5FeNYifK5BvIUGCbF7j81B2F06RkNcI7u82XepEBexyYTsn03riEJhuBUjOLGNcWD2KXJYbGxo7oy4232qwbzRMDLUOq0z2rQg2rm8edmyVCOQFpoqicYXF5NQWenhhTwPfsFb5ZThHdf/T6/Gn+WLO55v03O31CzCBCmJxFAEGqyDrGFJxabMTgQDDrGcL63pssaqEokAS4KciAuSVxb8fC2btQVrX8+HQfs4yQKV1VifZB1OecKuaq/X4wpxGghX+Vk/OXfZNUO5E/zM1LHZG749xflMY9/btzdufRddEGY2fH5revyvS587u2ikOzn4TOdK83tcx5PvX2qM/67zbO9s4cur65+6sHTLD/750oYg+ennD2QWzZo2Z3eCK2t9K73zCj/w/ZMP7PrJ5PCF8Jl/xHd9MH/f259+9OGDm7dsmt7/xaa1o8Ohv2083/jOxCMbXtih79h+dfzBy1+ND//sO7PmLtl86GJk2bH3nt53KB7ZNpH4xeVzDeGqOULtH078cKPYt/2Pf87+/IvHusebDjy0Tvz0id0nfGLZqY8O3jdvwUMvr1hL17zVVRvqmu977uipso/Lbm5fcfPM048+2vjYrCPT9+uT619+YuywUfbqrTXL4Yp1Lz7ZWnVy3/h3d5w/f/+/Nlmbl1xZ8knzV8//e//Kq+tCp2ecPBeCHY9PvjCvOrRq46V5iz/bIdzUJv90vUO+duqRNv7ow2Mfvvn8xRvbbtwqn8GPbnm89/gwfueznZn99X9f9Pa5l2p08Vc/HnyXXNsTRd/a2vHx6+jiL8NzO8dv77o+Y+Z94d3qwDO/Of3J6eYVb14//599V8YvnxVOz7feH9t5KFw2+y9fJqs/6Fu/peHGtd2Xtux45aSTmmlT5gzcHK1hefovqMTxTQ==
|
||||
eNq1VmtwE8cdN+DSlKQtj4AnJMAhaBuITz6dHpZkNBNjMAiw5VgGbAjIq7s96ey728vdSpZMnbQ8GtoC4RgeYSCZBj9EjeNAAYdnWpJJ0gRIQqbjKVDaTjIDJU37oenwGELp3kkCeeBLO60+6O7++9/f7//eXZ1JQk0XkTKsT1Qw1ACHyYdurM5o8LkE1PHaHhniOOK76kLhhs6EJp6fGcdY1f1lZUAV7UiFChDtHJLLko4yLg5wGXlXJWjBdEURn75Q/PAqmwx1HcSgbvNTy1fZOES4FEw+bE0oQQENUkChYEqFGiYPnDODAlIMaSKOy3YqpEjp/BKlQQkmgYIpURGQJgNLWdCQTOE4pDBRs1NBgUoTbB5RCsJUq4LarMUkkBKQQoJJCDDWxGgCE3a9FfIURnmGUkKBE5pCKQlJogiHtfeu/g/0LI7dVkrZNCRB0xM9rWMo2zpKqSEOVkqEKSwTLyhRpzyUACGmMCCwQOGpONCpqISsN1EbgpfQoWbrWEEkMuKhZIpiKqZdiJZFRTQ1FSJzkKcKNIIHpQhGSIpw5N2MswAkHZJVHWsQyAUCYiUJNCD+mTyMvdyUWTvjSORM2SobTquWEUJCsVJh0t19NxUUIFsKdaR8iKijIweSy/B/up8s81DnNFHNadiCBakFUZTAFKBUS9mKkukzqUwisOBUDZnFI0K9EH2VDSjpkDDUJBIPUYll85SXmWnOxpqHAkhIZuZM2f1mNZA6MNHNEjJrQs35TzTNDEY4JCHt/0dtwQ/lJsVoMlOiYFV5zhYoxuI4IiqRgiD9zy2ab7FQMgQ6KSaetCOVo8vWQw4QRVsgh4msY0VHJg4BTzRe6oojHRv9Q4fIG4DjIClyqHCIJ4YZr8faRbWUIoZIAMNe0lcKtIrI6G2FUKWBJCZhT3aXsR+oqiRyVs2UtZDQ9OX6kDYtuX+512wxmowlBRuHQsSIymBZXZpMO4Vy2N2snd2fonUMREUi04smfRwzelRr/Xjhggq4VgJC5yap0ZPd3F+og3SjuwZwofAQSKBxcaMbaLLHdbBQriUULMrQyFTV3U+XW7xH57Q7HPbyA0OA9bTCGd1Wx785ZDPEWprmEMEwXmP68/GRoBLDcaPLwTjdezWoq2R4wzU9ZB9O6Ku7SDLgmd9mckN8T2hhPot/LCrpmkMSY5ys1sRSimWpWpSkWIZ1UQ6f3+nyuz3UvJqGvqocT8MD83CgQQOKLpBczM3nPcPFEwqZyb1VD8z4STPjxB3TfjIvaXJ0IB3SOauMvka6Pnt80cE5B7PlRSMtBhSx3aI1Tlqpb2tPtfFcgufjyTaZ8bW7nGIUJjjhUG4LmSomDTGIlnWj0+Vj+3Mr+eD3El8Z2sHQjONYiiZDFUoimfV09j93hupGl5thmCP3K2DUCslpm3Ex1u+tQg0NyiRrJvc9GJfP5zvxYKU8lJOo+Fj22FAtHRZa42Bl/cj9CjmIToes96Xy6rTIG+enk49IORuFrBd4ebfAQK+HdUR9vNPJeXivAASeBUfNYcIRGDObKtIwrUOO3Bhw2jhfKoOU2WkBp8Pt9BBXK8iw4KQED8OJ6BxkOqFXUCo52BHg36iqpqsAF4d02CpAIzOnqbayJljVGyZWViHUKsItF4aNiEQ4IRKVA97QnAWgdinjW1i7qLFWtHsSLtBSB9XQfL11tifC6PUAaDz0zmMR7Sh3sk7Gxfg8tMPO2B12B72oLhhkZovJpojgaKp2ykFmCeAXR9I681xq0TwGpbkqqSotCXGXI5oKh5bGPLosNPI8jsxlaiJ8q12ticTD4XRTcEEUtTCSR/Q2NT1DvAE4HiirMO81IglwINciNGkRmjQIy/iZfINUkHuKGYOAfeg8rKDmk8uWefepoMJmMCF5ktMnLGIYqEUKPL+VxCCRFPlAdX3IHmexUtPQUrukulpJRTysl61rTZS3tDtcYHZkgSsddyedTp+rIAhuJyndXBw8jMtrleE90/9LqwYa6cKOp0Nq9laZUZCuiILQE4Ya6SCjl5NQgiejXYM9JOf1lU3GIS/0RN0csdDHeM3ComeToZlHuzsfusxzIQMkUmNJzjgYdwZsfpfLaaugZBDwekg/WXfPH/dkD7h3h4+a8vOHiqzfiA3hiz+7yIzuuL50fXpTyZWB4O0Jx7a+vX3l/NPb+0umneaWL2+q/97O6Wu/XnVg9+FXLj36xTenXT7jiwku/8i1RR9P/f5vZn7R+PrcI+kbH4nJG9euLn0sMGtH35nt797e8VnyrUsvSM2fsg3XNpw5uV95uffw0+9v+7JZ2OyXFmf23ZQm03va3py8d/GmPd3bLqx7ePzgs/9QJ5ydAA6NyvzVebx+92vrXp41cu1o7Z93Bmp3fj45OrZmpc29bOHCtUdCtuINY+XivYf/4J85adHIzTOu1g10n65eP+bPW8fO6Jz9yHuX2p545UXwzNRPV6y5/sLAtSsv3mz/9a0DnW2P30ynr6/c9LX/6ppr3xi/kb+9uTo15aXIzjHDtwy+emv8xo53phfvnbFrYnfrvp9wn301bv243z8084OBy/0Lmrc8PfdocOfYD1OucQsuT/rRib5nP4TLOqu4wKyTTR+P855ad3HGkeTzE89+0nyuceZH7wTeD92Wv7W4pZO91XKjTv1A3jaxa/C7w/rCx75SOk6McJWUfPvC3mXHf/fLPz25/NRV7dzVU/s3jPDverUy88T4aYMtvqN7dlz+y5PXd31SNqWz7+0f/uI7C+fv2r1vzOgNx55fftb9t37dfvqOMaXovbqKM2GZufLlrz6ferb51pI72wZD50seudY8aVA8BX9a/fjfI6Me9W9cco59avCpCZXqqH8NLyq6c2dE0WPDiyvKi4uK/g0J6vAR
|
||||
@@ -1 +0,0 @@
|
||||
eNq9V31wFGcZD/CH+Nlaq61TCzvXTj+c7N3u7X0G0pFcEgghJCVHaGji8d7uu7dLdvfd7Lub3AXSVqzMINTOIk7rFC2YcKFpDHRAKF92GNtCW9QpOqVA7ThOx1aZFq3O1CoVn927wF3AGRmr98fN7vs+7/P7PZ/7vOvGBrBFVWLMmFANG1tItOGFuuvGLNzvYGo/XNSxrRBptKO9Mz3iWOrpryq2bdK6UAiZapCY2EBqUCR6aIAPiQqyQ/BsathXM5olUuHM7JvXBHRMKcphGqhj7l8TEAlgGTa8BNIKZoiIkcGolBlA1GaQITFZzcFBpsW+kzI6sTBjKyAQ5mo5jmNkjG1GwtgMBmqZgEU07OlxKLYCw7VMpXLD0bQKEUSpSm0EW7BoE6JlRKRpZUp2wfSFZMfwXeDJqJK/Igo4y4thFkdiAhtJogibFQSODSOeQ1EsRbKJmCd96WQdkDCQ7qtrRDbyNpGVc3Rg5aEF1vQETEzAST0edu9wYHi4dxr1QDdxGAUNYEYkloVFWyswHlssgS/AUx79Kvu9hSq7MtfAfjp4I7YBErAMwpSYVmFdduT0g81gP2JsC4h7VGVkMbJFdKbZQoYIYSRMp4lU4/8UOSTFs8kEzrI4zvFsRIwLbCKSjLNiOBwTwjE+msgm/5vIwZsn7T33lEzvgRM9AQWpVkYkGrF6LtkCq1jNKXZGNTJQUVB0U3vD/9sE+I+c8G8T4Jqi79UyJRoEnRaojXWvpOEth2uZrGMzGFm2AjZRhhhgDQ+lTa6WCr2wohMJa95SzrTZCGF11VB9SUxNaCw4IxNLR7YfsakEWE2JkaGignU/cJWvnljF4+0Slqn/1AGBKAdewlS0VLOcCIEWowQBrwzKEuCPwBuetE/ZtKD1WbaKaWXWrAkgo9AuVycmtS3VyJW8NbXmBb5k6TRYz4eeMobIEGhchvQDq9olLy31sEBbRZ59bNC+tmps6MEeEKPKTJ9BBqu5LPJ2Uj4Fn9G0HP9YeC3ylTI6RtSxICdVgylrr2JSkmoxmLbS5vBw5XbHZT+W8Uh2NeS4X+KSpHpgSOuojKqMNIr9nOt3VAD2TCgFutr3V7O710efZkhT3vY+sGCCBM2lnFUVFTYtp0o7/qMK1VRavN3Cni8Dt4X8JA6V7Zpmq3+wwlZkWahQ8kiVNWWI3srTU43v2vzkqZ7eOr0oi16N2paDfXBYwUi/dGZMwUgCA96s+fyoQqjtTlbPFLuQKGJoANgQiQQJ4/44N6SatfD1lzVk43HoPQb2W7c73gcTAYs0dQAXS6fc3cg0NVX0SzjkdYOJcq9iPdOu3B732g8LU4phu3vbgcSCllBHAYYfg+GD0WQwujvPQuNTDQ2GGVZDwKdo+vuHKjdMJPaBErY8WLnF0uHJShlC3R1tSGzvrFKJLFFxdyBLj0X2VK5bjmGrOnbHUh1XwpU3L8MJQZ4Pxp+pUkwLhuju8J1+oHJDwRrEkS2NeO6hLLZR0BvighVDXNBEFsX7qzCxbRVYkQC0u50rioT0qdg9/X4mI8qZrF4fSd6L24yMlWnsDts8MYSGDpEstZtXd6dX3xvPLOx08k12rGtldiHH8nEhFokKiYTA8kEuyAd51lzS3RBZgZc2ZNvzaV4SUvnu5QUh3raAH1DadENrXRahUSOxONZXMLv1aHCwRQ13OXmlY6UcjFmt2X68UupboS7vbGuhlt5P47GcagzOY4CdM6BK9fyiptYVncGOqGaBnE4MS0vpK9ItzekVK1u7upRFSFzoaDSdXVJJLxwWWK7MMMZFEpz3m5xKKQ0bOVtxR8NcPLxz6iv1zSL4zHboulHIX3zi+Fh5DP5Re+vl1P/SKNQLdo+kFaeW4ZLMYn/UDUfhr45P1HFRZmFbeiJVxklfNXWfScOARWUIZdNUqYyJimP0YWk8ddUiOeIVCYTS4w+fXxbnTUIxW2blTtzHLitdANiWxj2limSJlUOGOuTDukf8ahkcyg9KoiNJysCgziWHIoKaxY4o7y0fgZbmwQAhVqfuiCCEJ8s7U/k6DraCmzmW4w/mWQtcoam6Cg71/8u3EOqORsHbz14pYJM+DPeVsYgfDu6nlRIWfO9hbgDsy2oiyWTy8NWFplQJIJLkuYPVUhRXsuHDOn32SoGyihFepxP5KXFWldzT0Lf7M+GkLPBZSZRiSBZ5OZbgw0I4zqFEHIX5hJg9UOqYrO1F0ySWzVIswp3LLrina3WU95pTvcBHhRiYOg8+hKLmSLjTyTYSzwg6jzEtrBEk7Uo1sykEAw/b6SegO9bYvXRBW0tq331sZSax7WbpvjdmEGqoslzsxBZExh0XNeJI0GUtXARdyxZ0u3sTshznpYiUlOEWIXExtgH615S2S3k36rXoMaQB9wHR3aMI9YG6SEQIzGN0VJ+IQZz8W+E3iqUZ4IUZG+ZunF3j/2Zt2vyKcZa7vumDv38q+1rXqlfebz0kvTrz3fGz8xnurUXFVP9sa9Md/IXzM/Cxze6N76zfmKSh858pHH+4ZmT7Ddv2bV7+tv7Aub/lvpAZOP/Bgw8mPsztv/Cu/Fzx57KQYd9btfnGvx5OvfDk+C1NP9h/fP0bn3z6oc38gV90/QUfeHzXqY1z7NFX7+g+lwzdfX6TUODZl9cefDl3bs9QazN6ePF8qWF2/zu/3PIrde23Fi+588nvfU7cwjY46g0zZ55Oz/jyyIbaW38mPfTtr4ycG5k75+hthY2PdtTPv/VY74wnhrfc/dTZ+9dMzg2dWrl6eNvb+d8/NiRu3XC2btumt05+0X0p1f7o969v/yj/j6ef/+0s54d9xZvsl8x7zm69sOr1P37tptyLz5/8TmNT8sMXJ187fvL1xJnr7npq385P/GH3kgOn1jczt3z2o+iJwTfHjj7Sd/HYAzWLt+d+/ZPrdj5ycE5e+fTj/3zjuTPB1vdmpdZu3NT7m5tPZf90dOvXD//Z6byrd+KxJ5Y1DJy4B3x+8eKsmjm/++7+izNrav4FafzYFA==
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1 +1 @@
|
||||
eNq9Vw9wFNUZD4It2hnL1D/oOA7bq4Jg9rJ7t5e7C01ryJ8mYEggCRCBpu92395ubnffufv2kgsN/qettDOuYplCq/wJF0ghgkBVBAsdW6U6/m1HEWEs0yo2HR0RZ6zW0u/t3UEuRKed2t7kLrvvfd/3+773/d73vnfHYAbbjk6sCdt1i2IbyRReHO+OQRvf4mKH3pUzMdWIMtDa0ta+2bX1I7M0StNOVUUFSutBksYW0oMyMSsyYoWsIVoBz2kD+2YGEkTJvj758hUBEzsOSmInUMUtXRGQCWBZFF4CncTlkI05ZHG4N41tCv9owQ0OGUli61Qzg1yLZWSLU5yNDZxBFuV0SyW2iXxh1SYmRzXMURALck0qlwXbCuEsQrmURXr8yQwyXMwRlQEiSm094VJAd1JY4SgpIpQDBHVti7Ncw+AAw9c9Kz/DydsJBsq5gE0MzCJxsg7FZqC/nCsJsB0UiYwBTmdaDgVkhUswba6JgiWTQPhUA4GQUC4IAqdiTDkF43SQA2W2NvA1kZXlVN3RIGZOpyXIroPtsbjM8VEiyHF0h8KSMT1KiNElI8MopINm076Q6lr+ujMZXWEjMVGJKQoO82oiIfJSWIrycUGN81EByyEUjakhWWHSZzWrwAkLmb65OkQRm0R20jXBK4YWWLEskMYECLKMYS/vD/T3Lx+7ZIwTGspgTia2jWUKmWfesgxpsIjM/ZL42UBJXF3/gfdjwRsgDMQBCzKYIarIzjOrwUaWjBlH2tJIt/5PCYiqaiQi4AgfxrEIL4XkKJ8QkcRjCUViahz+wrH/JgHwxqTZ87J86MtAY1lAQ7rdJROD2MvOxgKjWE9qtEu3uqAoQN0ozvX/b/P4by3CWPDmLMciY7uuEdm27hAryMEgi4wNJgwkp8bJ4nIYMYmCDTaUTFNe4gUxFOHTNs7ouIcppJHNwjC6SvKoIsPBMOtQGyNz1ABUBShsCOoJgxGCwtkQNaLL2E/ZeAz47Jz29xdMfA5/PpcRCnZkW08X5gP1+aoHiVFAgEMJ4lIuz5JgMeB8xn1raZuwSq3jwqsv6D/qEGt+cAxC06hCnTePAMBmSfEBSi0W3F0RgKLXopbGCMurW8l8uotjjIP5zI2BZcXXZwEUfFbB85BMeRTDvzAk31opFNT3POFU/wgqQI/ZRl+IA42+UXY6NNe31y908iRhp7huY7aNluaXtTT08bxhxotwJNENG9f3ujgEmwllx7FeoMFnaLNYZFrcFaxYDGoYKYB3vGzKgEYc6g2XNhQPI1nGsP+wJRMF1sHbkezT0+VwMqoGongI9rqFfYp7Qyk4LXlk6Bmcy2t5O1E6beiyz7iKbsjE9kJt4Jlz508Psd3PQ4tiUW9PCzhR01TRmoXOx+LEYCQejOzs5aF+65YBnQxvIPAnl/bnnxg9kYaiAkb4Qlfl5fLKw6NliONtaUZyS1uJSWTLmrcF2WaltHv0uO1aVDexN1jbej5cYfIcXDgoisHorhLDTtaSvS3+uj9aooypneVlAja8jUJOJiSlY+/Iqa4uWe1KmNXUJk1Bq5X2JbvdxX0xubsrLVXW6VLIXDDPVGsq1TanUWlBsUzdAl6MhislKNLxOC8GhaAYFPmFS8RGV8rQoNjQ19q42JmTdLL10SVaTdBM1adurtX17lsa52XVaLI+1q0GG9OkR8sE66Sam5o7epqbcVuLdEvtou723tYFWlbK1DVIltRaM5sD79yMrlQvrOtsjHU339w3J1pvNWkJ/aaWzsrKcIfRNbehDS3pwE2pRYs6O+faTtMo90Ii1POCh5WCFBPYZ7jIDQNbSap5AyGhMr7Vxk4amlh8Zw7WjLrOHQNARPzcM4OFZnZTy7xzHL5iAGor9g60a245J8S5uX4/F4rAT1U4VhWKct9pbt9eW8BpH5eDu9qhx3BU4GF9kfODsuZa0JsO1Y7L9gOM7ZBK5j8cYzy00MTBfMErb/sSfmG+jeeb6nbntxZP7CSy9D4f1jvg076nr7dHkV1F0TI9phDvk8J6AruyuqegAuWZwYBDvOl4A6IYjg4XporMG4JgBV4U4LDc18vDaYcN3dRhRf3fwmUCdCOw3I+dL0BJCsO1I1fp5+PJ0QI2NoGxDPucFSkej+8fX6hoKRKPxypj+0qFHDzaFzFkOo+dL1CwMCCGTWd7b1Ge1xXvyLXw0iVEBRHJ8XA8LOCooiixEHTsSjyuxGJqIiwKj+drHU9ZNtPEpryDZbg50ax3pNxEvazKVIfFSJgFOxsqtmy4Cm5zE3WEBeHM5qDXMAhSHq5t4GuRrGG+zSegN1jXOb+muan2V0v40UziW9L5W9ugRRxLV9VcG7YhMd6QbBBXgXJp4xzYWljT6e2JqWo0nBCxFIurkgIJmwOFqGjtLO8GWK0dRAb4npG93Vq4OlAlSeHAbLiIVMcqJUHw73a35/Jn1G8vmDRt9eQy/zMRvmfO/LjtWeuoMGX/yA0/rD5a/7fX5m9Y+osv37OhZqK0NnDxXZG9Pz3Zeu284Zdzq85U3/vnxkdGLvhjDZeJhZ/9k331RRNm3bnktvJ78TunP9qN9j90vHnYWfnRro8sQp5/fyS3b6PwSebCzevQ4qvv+8ehj68135F2PZK7e8sMZahjxtS3Vx/5/rfiS6Ub9fDLEb7nmw/+5IXpr/z9tWxfx+nUC+Xb77uMu6LFmzLHWH/rsc2HT0afOmGcXjBz5qTnLjph3T/lzR3DN9z29a0HtSsbqq/fgULu0dzLfWU791Y9sNUlb6w8emjfVy/eO3/a2kef/ctbv3/p2Ke172+99ckT0w78brXx5qtzf/14bqOLlakvlr331/e9n0353k7jsVef6X3q0gtefLujadXIg2j9bd8Yka6b8m3z/lXrbvz5wamnv3th6mtXXte64dS2Pa9//KWl+poK/sZZFbGO6fyPDv9g0omqTcc+uOQSo+elbR9+wM1tGZm14Xhy/8Pv7Zv3SmXP8eHfvHTNwZuvuvyeP1y6avpXJhvLR5Z/Il3Ses0b0RiZ9/TMo1NDe9+ku7QPNzz09ISqY3caV324YWU2XrVxrfrU1nW3n1RbN5VfP7Lt0/LEAzNnl206tO3Mu2+tyayw8akz3nsTZh4W8bYP1szM9p5YuX7w48f/mVq61n5FuOvRg+25FLZPPf/Ldw/VPXHyGpbqiWUXXjY4rWJSWdm/AGKbBnI=
|
||||
eNq9VwtsFNcVhQANqDSyhEKV0jTTVVBT4lnPzO6aHYOb+odtjDH4FwMmm7czb3YG5ueZN7bX1A2/kERBaralpSBR8fGvloPNJwQIEJCaFikNSVpERCihFCUVkBKpQBrlI3rf7Bq8xo1aNe1K9u68d+8993PefXfW9rZix9Usc/yAZhLsIInAg5ta2+vgFg+7ZH2PgYlqyV2Laurqd3mOdnaWSojtFuTlIVsLWjY2kRaULCOvlc+TVETy4LetY99MV9ySk+9OnroqYGDXRQnsBgqYZasCkgVYJoGHwBLLY5CDGWQyuN3GDoEvknGDQXrCcjSiGkGmxtSTw1uMg3XcikzCaKZiOQbyhRXHMhiiYoaAWJCpVJgk2JYtxrQIs9K02vzNVqR7mLEUCogIcbS4RwDdXYllhljDCLkAQTzHZExP1xnA8HVvy3/PTdsJBnKZgGPpmEbiJl2CjUBnLpMVYD0oWhIGOI1quQSQZSZOtZlKApYMC8InKggIXC7HcYyCMWFkjO0gA8o0N/BnIDPJKJqrQsyMRrKQPRc7o3Gp4yNEkOtqLoGUUT1iWXpMQrqeKQdJ2r6Q4pl+3qmMJtMVjEUR8RGZlXC+yIbzhRAb53melaSwKCBeiIpylErf1iwAJ0xk+OZKEUF0EzkJzwCvKFpgVXPAxhYQpJliL+8MdHYuH50yygkVtWJGshwHSwQqT72lFVIhidT9rPjpQlZcsf/A+9Hg8yAMxAALWjFFVJCTZtY8B5kSphyps5Fm/p8KoIDDUYwlNizMjkAISGJFKR5hI1ExHuLyMRJ49N8UAJ6oNP3dnA69GTSaAyrSnJhk6ZbTfDsWWMVaQiUxzYxBU4C+MbzX+b+t47+VhNHg1UmGRkZPXQVyHM21zCADizQyuhjXkbRyjCouhxXDkrFOlxI2YcMsxwsR1nZwq4bbqALNMg/fNnJoOHosq54K0l0Muy5xMDJGLEB3gAaHoK9QOC7I3Q5VtTQJ+6Ubiwn/uradnRkTX8KjL2WGjF3J0ezMfqAs3f2gQDIIMChueYRJs8XPFA04XXnfmu1YtGNrOPPoC/o/NYg1vTgKoXJEw06bRwDg0OL4ANkWM+6uCkDzq1GyY4T0amYiXfbhNcrFdAVHwdIm7LMBGj/t5GlIqjyC6V8Zkm8tGwr6fJp4in8VZaBHHaevxIEK3yi9JarL6stq3TRJ6G2uOZgep2XptGaHPpY31PgwnBVfAQfY93p4CQ4VSo5hPUODsbRpj+hVMZLB/HvjcrpUyyWp3dlzxCCSJAzHDpuSJUPYqRcTHZqdCxeioiOC++GIm9hndKp/JVySLNK1VtyT1koNIdvWNcknWN4KSPxApiWw1Je7t/vpoWdhMjFJan8NOFFUmbcoCQOPyfDBcDTIDbWz0LY1U4cBhtUR+NNj+/uvjNywoZeAETYzTKV60sq7R8pYbqq7Gkk1dVkmkSOpqW7kGPnhfSPXHc8kmoFTvSWL7obLbN6BCwV5Lhjek2XYTZpSqttvPi9nKWPiJFnJAhupHVyPZFkrNZw6+/dYTFJicaPQ01xjqdkYzK8xgvElCY93G4ubzJYlC6sUO1KLy5aWcYYp8MWLYxzLzxZEIT8schGWD3JBPsizpUUL5hsVC9qK2/XHdU+Si8rcJqNOLW5piBskZNeF5ytOAstYmt+wdGmtiNtbiuW2qnKUqDSDHZE4v9BasIJvkBRUu0CqjZc1lBotoYq2OQx457VqcmGJUtNUInEJK9oBfGlpF0JGY4UTqahAZfbs6qYqUlSuNDRW6GX1DSPcmz07ynIZD/O5cJSjn93D3NCxmSBqqkvg8rk+B7s2zK54XQ/kjHju2i4gIv79yd7MDLuzpuoOh6d3QSvFqaPzHC2X4aNMDUynAieEGT5SIPAFkTBTXl0/UJLBqR+Tg3vqYbRwFeBh2TDneyXVM2Ek7S8Zk+1HKduhlNR/uL1YmJwtF7MZr1IDTWxtenpnK0v3pY8WazkJZGodPmzqqE/7to72NlnyZFltbTM4sSMc0uLYk5T9GRXoxhQGHGINN9XFhwRud2ZrmHn9ECzQgIM78nA7C5cb1jVDg4z6/zPvEKAbgXQfvFuAWCsxvG305Pv1ODZSwMEGMJZi37ESFkXxyNhCw5YiohjNFw9nC7l4pC+8YLgH7xbIWIAwDXegfVie1eTU2YfhIRYROSUqhCNKNI5EHkWiUUkQo1IkLM4WIiE5eoi2aQns0GralkNYF0vwwkSSqbO5BmqnXaYwxEdCNNg50KAl3ZNxnRcvtWgQ7hwGRgzdQvJgyTy2BEkqZut8AqZ6S5csLKquLDnQxI5kEltjp1/Wek3LNTVF6anDDhQm1S/plidDu3RwD9iqLVqS2h+Vw2I0Epbg5UIMy7zAFkMjGrZ2m3ddtNf2Ih18b5VS+9RQYaAgHA4F5sD7R2E0P8xx/ivdmp70lfTa+EsPPT95nP+ZoNcur7nE5fzozcGhj8XCiFgxmLx6eSEza2LBtpxnt5/0Djx3Yg97bs3OR249+P66hzd9cGJvqxC6evbFwuLViZxpT07yBk7H9xzq+MGrl95+7cCnt4aOzf28UL92wWx8++KVl5rOr70gnL72wJbP5C+e7D99z4OP731mS9GVoYZvNF4s2HjqzIk373ukYcPO7vffZU9Nf52ZG1PXDX77wteUHdGSr/PJG5O/23Xt1IHyLRfHx/feeOzRmUur3PXtnz+Xw83ff//2M87VPvLnGqbuDzv0c7/4eU7o+Pdn1s57+pcbPxv81fne7X05l7/44NPAwaM/Pv7Gq3/76Oa2KS/P2fL8jMLrV7sveO+8deyn+lR1w09ufnJyY84L+z88+FTfrvK5xau3Hpm1+PCBRN+0t/r2H5/4l98VXO6b8pspzbXSwQZh/GNr1jo/E2Zuujy0bfuH3fe+8Nenqw4tqCKqfk/LjMXXTx//5rnfzvGe2lqm2bElszZsfKYjdF91X/OMl/aVh1YXbv7T9F8XrXgl93hB96qPzvS6q6+8fqRoRsOKzQU31+69f+quvnfWaQ8lVG71QnGWcjP26K31T2zdsevIsmdb7n0AT1KmeZff+M4/zt/YVHrrh8Hr1qz3tk/8+HxB7h8LN4vfMj45OPTEpU6o5q1bE8bZk6ZrgxPGjfsnC2nx2Q==
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +1 @@
|
||||
eNqdVWtsFNcVxnFFUH4kjdQ6iayU0Qq1lHpmZ3Zn17t2NpK9drAXP3fXxnYh7t07d3fHOy/m4X04DgklJBRTNISEtAkkxY9FW9c8W4jDNgqBJiKVUvEDZJembSI1CrUaWhQBPxp6Z7wbbMGvjrSzc+/97rnnfN85527LDyNV42WpYpqXdKQCqOOBZm7Lq2iLgTR9+5SI9KTMTXR1RqLjhsrPrUvquqLVOZ1A4SlZQRLgKSiLzmHGCZNAd+JvRUC2mYmYzGXnKxpGHCLSNJBAmqOO+PGIA8r4LEnHA0cLEgTZUUM4VFlA1oShIdUxuhnPiDKHBGsqoegkK5MiL/EWUtNVBES8EAeChvCELstCybKeVWwrcUOyI7Hw33zXESMOCYg2QEW6yqNhZAE4pEGVV0oYR7i0RPBSXFZFYM0TKhKAjjhClwlAYGbULGVtVYCKDWLiNNu6omJCVJ1Hi0MbZ3+V/cK+81LCMTpqRYwZ5lXEWZ6XoFbYZagcG0JQx9DRzaP5JAIcPmTPRFLWdHNmOfVHAIQIc4QkKHPYvPmbRI5XaggOxS2nC5huCdkUmIUUQgoJBH4YTS3uMo8CRRF4aIfpHNJkabokD2l5cvdywVKIxGJKunmyEzvR0OrsyuIckQiG8vgpz9EMqemAlwSsOSkA7M+UYq+/s3RBATCFjZCl/DOnFjfPLMXImjnZDmBnZJlJoMKkOQlU0cueWDqvGpLOi8jMB7vuPq60eOc4N8UwVO2xZYa1rATNSTutTi3bjDMiS0IZ2zB/Rc+U+RGQlNCT5rjbxRxWkabgjEc/ncLbdEPbNoG1QH/8MF/K/EOdG8oifrLikYkmrItZjCaNGoL2EyEgES7a5cGvOhdTx3qJ9e3R6WDpmOg9ZTgWVYGkxbEUzWXZ8zBpSCnEFYL3FLxoCY6jsdzH1UaijCJriCx5ZU73keHFmidbm04sZhcpqwkg8Tn7WLNoK5/OZdIcNDguOZwWaX+OdfMxZMD4ydIWXAPWMdghUtTMcZ/fNVNaKXNfwLHSJEOTNDObIVVMhcCLPObTfpcaj2ZOeGiaPn03QJdTCLeoPEvbz++XIlQkYtGss++YYf1+/5l7g8qm3Bji99Gzy1EaWuoN4xK103cDSiYO0dp0powmec6cW4MHg5DjoBsxPgg8Xl/cz4GYj/O4fDAGEWAZr/dtqyFAbMUSU5FVndQQxF1Wz5pzNSLIWHUWcDMetxdHWo87EhQMDkWMWJNsxaDVEwruTDLgjgSfIoMAJhEZsfPPzDf1dzS0twYLEexkUJZTPNo7X1E5OAjjgzExEMtlpCGxp72XccH+GN/SkG5qHgz7mwazcdAcNTKwK5aiMtF+aSMkmVq3l/WwDO0lGYqmGIohgdjamguy7TGuL9PtGgqpW3r6NtKN3T2xgY7GDdGGZknto8ReV7yjNjOMxPaGbn+6iw56EpqyvrlloIFq6u3VmkMerxFCW3pqqShgFTGBowF6MuCsJ3Bu4taoBUoVQuIKIRfrw1Ouj3qCszkIUMu7YT3Rgi+oTknI1hMRi0yE/3GTjvA6CnTIEprbhzkwhnku0CtDxmj1pUIDaiwYaXGxYaknFO33+vxUYr0x1Igagxs73JykuJaS4PKxJF3iwUuzPjsL77j+f3r1uz5yacGTncriTZyXZE3i4/GpCFJxAZkFKMgGhxu7iqaw5uGGfvOkLx6vdblwGfviLl/cx5GNuGWWrX3THiasWyEPBJxjw9A8kXQHHHUs63bUEyII+Ly4nOz7+vmpxUvqfMUvV+9atcJ+KvHv9u2x8HsdV+hvFz//0co3a5Mn1hxdmGy8+nxB+bTru9sdsPM49fMPjv/g0MPzW4+8sSBVvRIq3rz2yZnPbzx1/WDFqvHzK7fPh3oPnLq1+7MvB//8+pvp95Xbp2dm7//o6gfvp7LMpnf7j7U8kLv1ws8eKmjNB059uONK06+f28u8XbXxkf2op+qjoTV1F5MvT3/1xv596T/84pnfbnrl1n/WOS+NfPXq2Nm13mv7Klac2SNf+IL9uqq6j3qw5UXmQtX5f/i+Rdw3t33VY+M7ax7fdb5tnTomjT2769LFx65crF77xd+q2+579PD93ydfdObPPte+Gj3wZS514+a/XjsX/mdl8Vxg67nqz9quXKpAa/Y/u7vt6bEFqjLzveobq0OrVh++vsldPLRhB/LP7cx+7O7/zsjenZMH/l0YeObT3hTHC0/MvdYVFrs/vpAtHr+8o+OlhYnrfwVPXj+Yq7789Z7/tq194WD35Sff8l6Ff8/W/GT27Nbdj6efWFm15aWxzX959HLs2ntttX+6Odv/w+LA4NP7w9w7Cw/ZAlSuODdPpR/GavwPStbNSg==
|
||||
eNqdVX1sE+cZdxpt/Zg21pKNQbdxMlErsZx9Zzt27MwdxsEhpImN7VASRLPz3Wv74rt7r++9/ozSrFmF+oHGjpZ+qUwpBLtKDRSCtrRpoJvWNlDUAdU20g+qfYh9VKrQJFZNQ+neu9glEfy1++Pu3ud93ufj93ue5x2r5ADSRKg0VEUFA8TxmCw0fayCwENZoOFHyzLAaShMRMKx+MEsEufXpzFWNZ/dzqmiDapA4UQbD2V7jrXzaQ7byb8qAdPMRAIKxQ8adg5bZaBpXApoVh+1Y9jKQ+JLwWRh3QwkCVpbKCuCEjAEWQ0g68hOIpGhACRDlFIx7YK0LCqioakQGUu+GkaAk8kiyUkaIAIMZJWkgLPIsMTYPIYMQqnmFRdV00Myq5hZGra+/PdRw1aFk00FBDASQQ4YCgLQeCSqNR1rtLZFiUoSIpkz5BQCEoeBQGFIcRRBDRVtxlGVQ8QgAVUzrauIgIWwCBaXpp75V4+L5CMqKevIiIEGQV9EQDAir6kakNRVYWII8JiojuwcqaQBJxAneybSUMP6keW0HOV4HhD8gMJDgZjXD6dKotpCCSBpBD1JqFCACYE+mQFApTlJzIHy4in9VU5VJZE307QPaVCp1qijjUhu3J402KMJ0QrWT4RJEIEue6RI6kehWFurw+Z4tUBrmBMVidQDLXEknrJq7s8s3VA5PkOM0LXa1MuLh48s1YGafqiH48OxZSY5xKf1QxyS3a6ppXKUVbAoA70SjNzorrZ53Z3TxrI2z7FlhrWiwuuHzFL71bLDpCKKNA+JDf0l5kgdHwkoKZzWDzpd3pcR0FTSDeCnZXIMZ7WxCcIFODtXqXXFgXB3ncRLllUTHYQXfTaExBbK4aB6YY5yMA4XxXp9zjYf66E6e+LVYM1N/KY0HIsjTtGShIpNddorfDqrZIAwGbwp4bMG4SQbI3zSiTQoqFADdC0qvbqdji7OA7qrY2qxumiIUpwilky3+qzJfL5UyAt8VhDSubzMeEsup5gAWT55onaE9IDhhgREy5o+0epyOo7UturgT5JkGZplaIZ9vUCTbgaSKIsEUPNdm0rGWYZhpm9UwDADyPyquBjzOblUAwGZsGY4v27G5fV637i5Ut2Uk6h425ZHQygFS6NhHbI2faNCzcQBRqsW6tq0KOjzzWQx6BR4r9eTaEswCYFPtiZdQBDcCRawTo5ze5Ke14yJwBMrBpsqRJjWAE9GMC7q8y0yVzAaze9kW51ukmk7GUm8lBVALJvogEYOWjulktEEOeFoMEQHOT4N6JhZgHqlo7830NMVnIyRIIMQZkSw94OGxsFBPjmYkP1KP3YM9W3sYTv7wu7Edi4o5zO98U7GHch356Koo68vwEZLaHBziDDlcTqcjMvh9dCsjbGxNpYuREICs8XZur2U3yixW2JDg4HNQ/kO+FChLTRgC2zNhMRYNOnd9oCn0+bBvcV0HCu4o4T6NFXtysslN/JkHW421GVLhe6X+niYLBRxnmTD4bTf3k6R4iSzUfPXWoQmLUKTBnEwPqbeIO2UYGLgty0fh+3UZnJ7hRWp2E7FDDAB+ZIpHRMx8PdCBcw/TTDI5kTBn+WY+Jb7+3q7gyAe7esOlhzRAUXMJKShgMhG+J5ETywSK0UiQhAuAcHjaaWZGg5uxtVmVuH10P/PqH65nV7a8XRYXbymKwrUFDGZLMcAIg2kT/ISzApksiNQJpxHA/36iTbgTrgZ4PAkebcz4U7SG8nMrFv7cj5MGNdChZNIjeV4fSrt9Ft9LpfT2k7JnL/NTdrJvMwfKS/eUm81PLP2ydss5tO4O3pM+ZBp+ujqt+wvHt7wzL65q9HCbT9v6V8zvmlsw/jpex9vfeudvU1D666cWvW09G5oYPzJXTP5ykzjj+6ylJt3NKykVxyY8u0cHT3/4b8W/nT62oDtYenTZ+HRzOdvZNbu/tg/1R8/d/neJ9Tox3f8s/r2+NzuE+pcY+iPxdfmVvXro6dvPbDucd+ZNXdfGLvQu3rf5f4HJ/qff+/Zzmz3lvHUDwrdFst9u+BZsfmzi3ccn7/9H+eGL1E79u+xPLfue3e+PfvAferKi5L1K8//JPnYwmMD73/9hxfgNz96c+XuWy7GVjzS/MnobJOvOvw7vvB+ZuS3K/7W/MKaT9N/2XNt9dF9W08e/i4K37Pw+1uPSz9ecfub/z03fWr9r6sH39u1/ty3e1wtT5z/WU97+K/Xpr/6tabpX1yZeervZw7v/c70hYUEe890emvvGfHBS92bVnWg8//RnjtV3DO7T1x452Hroxvujmz7w0vxP79+BV9mTv5mdP9+z/dvcZ76vGFmcls5kNq/5pMN8ivVs5+5rx5vWt39jdNrCQFffNFoedfz74t3Nlos/wOSJtA5
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user